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Searches for neutrinoless-double beta decay rates are crucial in addressing questions within fun-
damental symmetries and neutrino physics. The rates of these decays depend not only on unknown
parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract in-
formation about the neutrino, one needs an accurate treatment of the complex many-body dynamics
of the nucleus. Neutrinoless-double beta decays take place at momentum transfers on the order of
100 MeV/c and require both nuclear electroweak vector and axial currents. Muon capture, a process
in the same momentum transfer regime, has readily available experimental data to validate these
currents. In this work, we present results of ab initio calculations of partial muon capture rates for
3He and 6Li nuclei using variational and Green’s Function Monte Carlo computational methods.
We estimate the impact of the three-nucleon interactions, the cutoffs used to regularize two-nucleon
(2N) interactions, and the energy range of 2N scattering data used to fit these interactions.

Introduction, conclusions and outlook. Nuclei play a
crucial role in high-precision tests of the Standard Model
and searches for physics beyond the Standard Model.
These investigations, including neutrinoless double beta
decay (0νββ) searches [1–15] and high-precision beta de-
cay experiments [16–18], require a thorough understand-
ing of standard nuclear effects in order to separate them
from new physics signals. In particular, 0νββ decay ex-
periments aim to establish the origin and nature of neu-
trino masses and test leptogenesis scenarios leading to
the observed matter-antimatter asymmetry in the uni-
verse [1]. Rates of these decays depend not only on un-
known neutrino parameters but also on nuclear matrix
elements. The latter can be provided only from theoreti-
cal calculations. Thus, a prerequisite to this experimental
program is an accurate treatment of the complex many-
body dynamics of the nucleus and its interactions with
neutrinos. If one assumes that 0νββ decay results come
from the exchange of a light Majorana neutrino between
two nucleons, then the momentum carried by the neu-
trino is on the order of 100 MeV/c [1, 19]. Muon captures
on nuclei—processes where a muon captures on a pro-
ton in the nucleus releasing a neutron and a neutrino—
involve momentum transfers on the order of the muon
mass. The scope of this work is to validate our nuclear
model in this kinematic regime by calculating muon cap-
ture rates in A= 3 and A= 6 nuclei for comparison with
available experimental data.

Muon capture reactions have been treated extensively
from both the theoretical and experimental points of view
[20–23] and rates have been obtained in light systems
with several methods [24–34]. Here, we present calcula-
tions of partial muon capture rates using quantum Monte
Carlo methods (QMC) [35]—both variational (VMC)
and Green’s function Monte Carlo (GFMC) methods—
to solve the nuclear many-body problem. QMC methods
allow one to fully retain the complexity of many-body

physics and have been successfully applied to study many
nuclear electroweak properties over a wide range of en-
ergy and momentum transfer, including total muon cap-
ture rates in 3H and 4He [36], low-energy electroweak
transitions [37–41], nuclear responses induced by elec-
trons and neutrinos [42–44], neutrinoless double beta de-
cay matrix elements [19, 45–47], and matrix elements for
dark matter scattering [48].

The Norfolk two-nucleon (2N) and three-nucleon (3N)
(NV2+3) local chiral interactions [49–52] have been
used in combination with QMC methods to study static
properties of light nuclei [50, 53–56], and in auxiliary-
field diffusion Monte Carlo [57], Brueckner-Bethe-
Goldstone [58, 59] and Fermi hypernetted chain/single-
operator chain [60, 61] approaches to investigate the
equation of state of neutron matter [62, 63]. Refer-
ence [64], a study which included the current authors,
reports on Gamow-Teller (GT) matrix elements calcu-
lated for A ≤ 10 nuclei using the NV2+3 models and
their consistent axial-vector currents at tree-level from
Refs. [51, 52, 65]. The study validated the many-body
interactions and currents in the limit of vanishing mo-
mentum transfer. In the present work, we use the same
nuclear Hamiltonians and axial currents, along with chi-
ral vector currents retaining loop corrections developed
in Refs. [37, 38, 66, 67], to test the model at moderate
momentum transfers on the order of 100 MeV/c.

In the A= 3 system, we obtain an average rate for all
Norfolk models of Γ(A = 3; VMC) = 1516±32 s−1 at the
VMC level that agrees within error bars with the experi-
mental result of 1496.0±4.0 s−1 [68]. In the A= 6 system,
the VMC partial capture rate of Γ(A = 6; VMC) = 1252±
59 s−1 is significantly slower than the available experi-
mental data point of 1600+330

−129 s−1 [69], but falls into the
range of previous theoretical estimates [70–76]. We an-
alyzed uncertainties due to (i) the choice of cutoffs used
to regularize the NV2 interactions, (ii) the energy range
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of 2N scattering data used to fit the model low-energy
constants (LECs), (iii) two different versions of NV3 in-
teractions, i.e., the non-starred model fit to the nd scat-
tering length and the trinucleon binding energies, and
the starred model fit to the triton GT matrix element
and the trinucleon binding energies, and (iv) a 10% vari-
ation in the nucleonic axial radius. In the A= 3 system,
the largest source of uncertainty comes from the choice
of 3N interaction model, while for A= 6 we find that
the uncertainty due to the 3N interaction is slightly less
than, but on the order of, the cutoff and energy range
uncertainties. On average, there is a change in the rate
by ±0.6% when the axial radius is varied by ±10%.

To evaluate our performance at the GFMC level, we
propagated two of our calculations for both A= 3 and
A= 6 in imaginary time, specifically those correspond-
ing to models NV2+3-Ia and NV2+3-Ia*, or Ia and
Ia* for short (these models share the same 2N interac-
tion, but differ in how the 3N interaction is fit). Model
Ia, constrained by strong interaction data only, achieves
sub-percent agreement with the experimental datum for
A= 3 with a calculated rate of 1498 ± 2 s−1. Its coun-
terpart, model Ia*, constrained to both strong and elec-
troweak data, underpredicts the experimental rate by a
few percent. For A= 6, we find that the model Ia* prop-
agation significantly decreases the rate due to the mono-
tonic growth of the 6He ground state rms radius at early
imaginary times. By contrast, model Ia has a stable ra-
dius throughout the GFMC propagation and the rate de-
creases by less than 1%; nevertheless, it still underpre-
dicts the experimental datum.

Given the large error bars on the 6Li datum and the
wide range of values from past theoretical calculations,
we advocate for renewed experimental and theoretical at-
tention to this partial capture rate. While in this letter
we focus on 3He and 6Li to demonstrate the impact of
this sort of study, there are other muon capture rates
with available experimental data which the combination
of QMC methods and NV2+3 chiral Hamiltonians could
be made to address with future development; examples
are 10B [77], 11B [78–80], 12C [81, 82], 16O [83, 84], and
40Ca [85]. Calculations of these rates, particularly for
the heavier nuclei, would be valuable in further validat-
ing the present ab initio approach in the kinematic regime
relevant to neutrinoless double beta decay.

Partial muon capture rate. The muon capture pro-

cesses 3He(µ−, νµ)3H and 6Li(µ−, νµ)6He are induced by
the weak-interaction Hamiltonian [86, 87]

〈kν , hν |HW |kµ, sµ〉 =
GV√

2

∫
dxe−ikν ·x l̃σ(x)jσ(x) , (1)

where GV =GF cos θC = 1.1363 × 10−5 GeV−2 is the
Fermi coupling constant extracted from analyses of su-
perallowed β-decays [88], jσ and l̃σ are the hadronic and
leptonic four-current density operators [24], sµ is the
muon spin, hν is the neutrino helicity, and kµ and kν are
the muon and neutrino momenta, respectively. The value
of GV adopted here is ∼ 1.1% smaller than that used in
previous calculations based on the hyperspherical har-
monics [89] method with chiral currents from Ref. [26].

For a transition from an initial nuclear state
|i, JiMi〉—where Ji/f and Mi/f denote the nuclear
spin and its projection—to a final nuclear state
|f, Jf Mf ,−kν〉 recoiling with momentum −kν , the gen-
eral expression for the capture rate (Γ), summed over the
final states and averaged over the initial states, is given
(in the limit of vanishing kµ) by [24, 86, 87]

dΓ =
1

2(2Ji + 1)

∑
sµ,Mi

∑
hν ,Mf

2π δ(energy) (2)

× |〈kν , hν ; f, JfMf ,−kν |Hweak|sµ; i, JiMi〉|2
dkν

(2π)3
,

where the argument of the δ-function is

mµ +mi + Ei = Eν +
√
E2
ν + (mf + Ef )2 , (3)

and Ei and Ef are the initial and final state energies
of the nucleus [90–92]—we have neglected internal elec-
tronic energies, since they are of the order of tens of eV’s
for the light atoms under consideration. We also used
the following definitions

mi = Z mp +N mn + (Z − 1)me , (4)

mf = (Z − 1)(mp +me) + (N + 1)mn ,

for an initial nucleus with charge number Z and neutron
number N , and we denoted with mp, mn, and me the
proton, neutron, and electron masses, respectively.

The final integrated rate can be conveniently written
in terms of matrix elements of the nuclear electroweak
current components [25],

Γ =
G2
V

2π

|ψav
1s |2

(2Ji + 1)

E∗2
ν

recoil

∑
Mf ,Mi

[
|〈Jf ,Mf |ρ(E∗

ν ẑ)|Ji,Mi〉|2 + |〈Jf ,Mf |jz(E∗
ν ẑ)|Ji,Mi〉|2

+ 2Re [〈Jf ,Mf |ρ(E∗
ν ẑ)|Ji,Mi〉〈Jf ,Mf |jz(E∗

ν ẑ)|Ji,Mi〉∗] + |〈Jf ,Mf |jx(E∗
ν ẑ)|Ji,Mi〉|2

+|〈Jf ,Mf |jy(E∗
ν ẑ)|Ji,Mi〉|2 − 2 Im [〈Jf ,Mf |jx(E∗

ν ẑ)|Ji,Mi〉〈Jf ,Mf |jy(E∗
ν ẑ)|Ji,Mi〉∗]

]
, (5)
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where we have chosen k̂ν =−ẑ, and have introduced the
outgoing neutrino energy [25]

E∗
ν =

(mi + Ei +mµ)
2 − (mf + Ef )

2

2 (mi + Ei +mµ)
, (6)

and recoil factor

1

recoil
=

(
1− E∗

ν

mi + Ei +mµ

)
. (7)

The factor |ψav
1s |2 is written as R|ψ1s(0)|2, where ψ1s(0)

is the 1s wave function, evaluated at the origin, of a
hydrogen-like atom, and R approximately accounts for
the finite size of the nuclear charge distribution [25], here
calculated with the NV2+3 Hamiltonians.

Nuclear Hamiltonians and electroweak currents. To
calculate the nuclear matrix elements required by Eq. (5)
we employ VMC [93] and GFMC [94] methods. For a
comprehensive review of these methods, see Refs. [35, 54]
and references therein. Details about the calculation of
matrix elements using GFMC wave functions are found
in Eqs. (19)–(24) of Ref. [95].

The many-body Hamiltonian is composed of a (one-
body) kinetic energy term, and the Norfolk 2N and 3N
local chiral interactions [49–52]. Models in class I (II) fit
about 2700 (3700) data points up to lab energy of 125
(200) MeV in the nucleon-nucleon scattering database
with a χ2/datum of about . 1.1 (. 1.4). Within each
class, models a and b differ in the set of cutoffs adopted
for the short- and long-range components of the inter-
action, either (RS , RL) = (0.8, 1.2) fm for model a or
(RS , RL) = (0.7, 1.0) fm for model b [49, 50]. Accompa-
nying each of these 2N models is a chiral 3N interaction
with LECs cD and cE (in standard notation) constrained
to reproduce the trinucleon binding energies and, concur-
rently, either the GT matrix element contributing to tri-
tium β-decay [52] in the starred model or the nd-doublet
scattering length in the non-starred one [53].

Lastly, the vector- and axial-current operators enter-
ing the calculation were derived with time-ordered per-
turbation theory by the JLab-Pisa group using the same
χEFT formulation as the NV2+3 interactions. Details
about the electroweak currents used in this work can be
found in Refs. [37, 38, 51, 52, 65–67].

Results. The results of the VMC calculation of the
partial muon capture rate in A= 3 and A= 6 using
the NV2+3 nuclear Hamiltonian are presented in Ta-
ble I. Capture rates were determined using nuclear axial
and vector current operators consistent with the NV2+3
model. The nuclear axial currents [51] contain only tree-
level diagrams while the vector current operators account
for loop corrections derived in Ref. [37, 38, 66, 67].

Calculations of the rate with the leading order one-
body only [Γ(1b)] and one- plus two-body electroweak
currents [Γ(2b)] were performed for ground-state to
ground-state transitions. The partial capture rate on

3He has been precisely measured [68] and the one-body
contribution alone cannot reproduce this measurement.
With the two-body electroweak currents included, the
VMC rates increase by about 9% to 16%. At this level,
the agreement with the datum ranges from about 0.5%
to 4.9%. How the 3N interaction was fit has the most
significant impact on the rate, leading to differences on
average of 55 s−1 whenever the 3N interaction is changed.
Note that the LEC cD entering the 3N interaction gov-
erns the strength of the axial contact current at next-to-
next-to-next-to-leading order in the chiral expansion [64].
Therefore, variations in the 3N interaction lead to vari-
ations in the current, as also observed in the study of
Ref. [64] on beta decay matrix elements. The cutoff and
energy range of the fit lead to changes of 16 s−1 and 22
s−1 on average, respectively, which is consistent with the
findings of Refs. [26, 27].

In the 6Li capture, the inclusion of two-body elec-
troweak currents also increases the rate with a greater
enhancement in the non-starred models relative to their
starred counterparts. Even with this increase, ranging
approximately from 3% to 7%, the rates predicted at
the VMC level for the NV2+3 models are about 11–21%
slower than the available experimental datum [69]. Here,
the difference due to the 3N interaction is no longer
the dominant contribution to the uncertainty. We find
that, on average, the cutoff and energy range of the fit
both change the rate by 70 s−1, while the 3N interaction
changes the rate by 61 s−1.

We compute a VMC average for both rates under study
and use the average changes due to the chiral 2N interac-
tion cutoffs, the energy range used to fit the interaction,
and the 3N interaction to assign a total error bar. An ad-
ditional source of uncertainty was considered by varying
the nucleonic axial radius parameter by ±10%. We found
that, on average, the difference in the rate was ±0.6% due
to this variation. We combine the four uncertainties in
quadrature to determine the overall uncertainty on the
VMC averages, obtaining Γ(A=3; VMC) = 1516±32 s−1

and Γ(A=6; VMC) = 1252± 59 s−1.

In addition to the VMC calculation, a GFMC propa-
gation was performed for models Ia and Ia*, and corre-
sponding results are reported in Table II. These two
models provided the fastest and slowest VMC partial
capture rates for A = 3 and should give an upper and
lower limit on GFMC rates. Figure 1 displays our av-
erage VMC results, as well as both VMC and GFMC
results for models Ia and Ia*, compared with experimen-
tal data and past theoretical calculations. The GFMC
error is taken to be half the difference between the two
available calculations.

At the VMC level, model Ia overpredicted the A= 3
muon capture rate by 4.8%. After propagation, the rate
is decreased and reaches the sub-percent level of agree-
ment with the datum. By contrast, model Ia*, which
had 1.2% agreement with the experimental datum at the
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Capture Model R Γ(1b) (s−1) Γ(2b) (s−1) Expt. (s−1)

3He( 1
2

+
; 1
2
) → 3H( 1

2

+
; 1
2
) Ia (Ib) 0.995 (0.995) 1354.3 ± 0.8 (1367.4 ± 0.2) 1568.7 ± 0.9 (1550.0 ± 0.3) 1496.0 ± 4.0 [68]

Ia* (Ib*) 0.995 (0.995) 1361.3 ± 0.2 (1362.6 ± 0.2) 1477.8 ± 0.3 (1487.8 ± 0.3)

IIa (IIb) 0.995 (0.995) 1373.7 ± 0.2 (1376.8 ± 0.2) 1538.1 ± 0.3 (1516.6 ± 0.3)

IIa* (IIb*) 0.995 (0.995) 1368.6 ± 0.2 (1376.5 ± 0.2) 1488.6 ± 0.3 (1501.2 ± 0.3)
6Li(1+;0) → 6He(0+;1) Ia (Ib) 0.990 (0.990) 1204 ± 2 (1247 ± 2) 1290 ± 2 (1334 ± 2) 1600+330

−129 [69]

Ia* (Ib*) 0.990 (0.990) 1161 ± 3 (1193 ± 2) 1185 ± 3 (1240 ± 2)

IIa (IIb) 0.990 (0.990) 1242 ± 2 (1156 ± 2) 1309 ± 2 (1198 ± 2)

IIa* (IIb*) 0.990 (0.990) 1224 ± 2 (1162 ± 2) 1265 ± 2 (1196 ± 2)

TABLE I. VMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one-body only [Γ(1b)], and
one- and two-body [Γ(2b)] axial and vector currents corresponding to the eight NV2+3 models. The third column gives the
factor R used to account for the finite nuclear charge distribution. The experimental result is given in the last column. All
uncertainties on the theoretical predictions are Monte Carlo errors.

Capture Model Γ(VMC) (s−1) Γ(GFMC) (s−1) Expt.
3He( 1

2

+
; 1
2
) → 3H( 1

2

+
; 1
2
) Ia 1569.2 ± 0.9 1498 ± 2 1496.0 ± 4.0 [68]

Ia* 1478.3 ± 0.3 1410 ± 2
6Li(1+;0) → 6He(0+;1) Ia 1290 ± 2 1288 ± 10 1600 +330

−129 [69]
Ia* 1184 ± 2 928 ± 8

TABLE II. VMC and GFMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one- and two-body
axial and vector currents with the NV2+3 models. The experimental result is given in the last column. All uncertainties on
the theoretical predictions are Monte Carlo errors.

VMC level, now underpredicts the rate by 5.7%.

In Fig. 1 panel (a), one sees that model Ia is in good
agreement with the published results of past chiral calcu-
lations in Refs. [26] and [27]. Though model Ia* appears
rather slow, the upper and lower limit on the GFMC rate
is reasonable. For example, using the more recent value
of GV brings the rate of [26] within our GFMC band.
Because these past calculations use a different set of chi-
ral currents and underlying nuclear interactions than the
present work, it is not as direct to compare them to our
GFMC results. In the future, benchmark calculations
with other ab initio methods based on the same dynami-
cal inputs would be useful to further validate the present
microscopic approach.

While the A= 3 GFMC rates exhibit few-percent de-
creases from the VMC ones, the A= 6 rates display a
dramatically different behavior for models Ia and Ia*.
The matrix elements for the model Ia calculation were
fairly stable when propagated from VMC to GFMC, re-
sulting in a modest sub-percent change of the overall rate.
However, for model Ia*, the dominant matrix elements
changed at the few percent level, but since the rate is
proportional to the square of the matrix element, this
leads to a change of roughly 20% in the rate.

To further understand this behavior, one can look at
the system size as a function of imaginary time τ during

the GFMC propagation of the A= 6 nuclei. The sys-
tem size for 6Li(1+; 0) grows at the same rate in τ for
both models; however, the 6He(0+; 1) ground state size
is stable for model Ia while increasing monotonically in τ
before beginning to converge for model Ia* (see Supple-
mental Material [96]). Because of the e−iq·ri dependence
in the dominant one-body terms of the current operator,
the matrix elements at a finite value of q experience a
more significant drop for model Ia* due to the diffuse-
ness of 6He(0+; 1) with that interaction. Performing the
same analysis for the A= 3 system, we find that the sys-
tem size is consistent between both models as a function
of τ , explaining the similarity in their decreasing trend
for this partial muon capture rate.

The difference with experiment in A= 6 is significant
for both models Ia and Ia*, especially when compared
with the few percent agreement obtained in GFMC calcu-
lations of the GT matrix element for the 6He→ 6Li beta
decay [64]. As detailed in Ref. [76], calculations of this
rate [70–76] have ranged from 1160 s−1 to 1790 s−1. The
calculation of Ref. [76] matched the experimental datum
by modelling 6Li as a 3He + t cluster and using the Fujii-
Primakoff [70] effective Hamiltonian for muon capture.
Sub-percent agreement was also obtained by Ref. [73],
which treated the 6Li and 6He nuclei as elementary parti-
cles with magnetic and axial form factors extracted from
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FIG. 1. The partial muon capture rate in (a) 3He and (b) 6Li from the the NV2+3-Ia and NV2+3-Ia* models in VMC (light blue
circle) and GFMC (dark blue star) calculations compared with other work (orange squares) [26–29, 70–76]. The experimental
values (dashed gray line) and their error (shaded region) [68, 69] are included for comparison with the theory predictions.

experiment. The two calculations presented by the au-
thors of that work adopted different formulations of the
partially conserved axial current (PCAC) relation to ob-
tain the pseudoscalar form factor, with the faster rate
using the Gell-Mann-Lévy version [97] and the slower
rate using the Nambu one [98]. The Nambu definition
is consistent with the induced pseudoscalar term in the
weak axial current from χEFT.

It is difficult to compare our result with those of other
theoretical treatments of the 6Li partial capture rate,
particularly since most of these treatments are decades
old. For example, in the work of Ref. [74] the weak-
interaction Hamiltonian is that of Eq. (1); however, the
6Li and 6He bound states are described by shell-model
wave functions with valence configurations restricted to
the 1p-shell; moreover, the nuclear electroweak current
neglects meson-exchange contributions [74]. We find that
our result at leading order (obtained with one-body cur-
rents) is quenched relative to the shell model one, as we
would have expected (see Ref. [64]). More modern cal-
culations with other ab initio methods and a novel mea-
surement of the rate would be valuable in establishing the
validity of our nuclear inputs and many-body approach.
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[77] M. Giffon, A. Gonçalvès, P. A. M. Guichon, J. Julien,
L. Roussel, and C. Samour, µ− partial capture rates in
10B, 12C, and 14N, Phys. Rev. C 24, 241 (1981).

[78] J. Deutsch, L. Grenacs, P. Igo-Kemenes, P. Lipnik, and
P. Macq, Muon capture in boron and oxygen, Il Nuovo
Cimento B (1965-1970) 52, 557 (1967).

[79] J. P. Deutsch, L. Grenacs, J. Lehmann, P. Lipnik, and
P. C. Macq, Hyperfine effect in the mu-mesonic b-11 atom
and information on be-11 from muon capture measure-
ments, Phys. Lett. B 28, 178 (1968).

[80] V. Wiaux, R. Prieels, J. Deutsch, J. Govaerts, V. Bru-
danin, V. Egorov, C. Petitjean, and P. Truöl, Muon cap-
ture by 11B and the hyperfine effect, Phys. Rev. C 65,
025503 (2002).

[81] L. P. Roesch, N. Schlumpf, D. Taqqu, V. L. Telegdi,
P. Truttmann, and A. Zehnder, Measurement of the Cap-
ture Rates to the Excited States in 12C (µ−, Neutrino)
12B* and a Novel Technique to Deduce the Alignment of
12B* (1-), Phys. Lett. B 107, 31 (1981).

[82] Y. Abe, T. Abrahão, H. Almazan, C. Alt, S. Appel,
J. C. Barriere, E. Baussan, I. Bekman, M. Bergevin,
T. J. C. Bezerra, L. Bezrukov, E. Blucher, T. Brugière,
C. Buck, J. Busenitz, A. Cabrera, L. Camilleri, R. Carr,
M. Cerrada, E. Chauveau, P. Chimenti, A. P. Collin,
E. Conover, J. M. Conrad, J. I. Crespo-Anadón,
K. Crum, A. S. Cucoanes, E. Damon, J. V. Daw-
son, H. de Kerret, J. Dhooghe, D. Dietrich, Z. Djur-
cic, J. C. dos Anjos, M. Dracos, A. Etenko, M. Fal-
lot, J. Felde, S. M. Fernandes, V. Fischer, D. Franco,
M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Göger-
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