Photoproduction of Cascade Baryons Using the GlueX Detector at Jefferson Laboratory

Ashley Ernst
FLORIDA STATE UNIVERSITY
COLLEGE OF ARTS AND SCIENCES

PHOTOPRODUCTION OF CASCADE BARYONS USING THE GLUEX DETECTOR AT
JEFFERSON LABORATORY

By
ASHLEY ERNST

A Dissertation submitted to the
Department of Physics
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

2020

Copyright © 2020 Ashley Ernst. All Rights Reserved.
Ashley Ernst defended this dissertation on July 1, 2020.
The members of the supervisory committee were:

Volker Crede
Professor Directing Dissertation

Tomasz Plewa
University Representative

Simon Capstick
Committee Member

Paul Eugenio
Committee Member

Rachel Yohay
Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements.
"It is no good to try to stop knowledge from going forward. Ignorance is never better than knowledge."

- Enrico Fermi
ACKNOWLEDGMENTS

A doctoral degree is no small feat. There have been several individuals along the way who are deserving of many thanks for their help and support. First off, I’d like to thank my advisor Volker Crede for his mentoring along the way. It is quite obvious that each student is unique and he adapts his mentoring style to account for that. I sincerely appreciate the mentoring that encouraged me to pursue the opportunities that I was presented. From the very beginning, he presented me with opportunities to become engaged with the research group. I was able to start with in the group several months earlier than most graduate students start research. With his advising and help, I was able to receive my fellowship that supported my years conducting this research.

This research and dissertation would have been substantially different if not for the continual support from my significant other, Richard. His continual support, both in life and in physics, was crucial at many steps along the way. There are no words for how grateful I am for all his help. He and our pup, Atira have an uncanny ability of knowing when they are needed for help. Discussions with him have made me a better physicist and person. A very sincere thank you to both of our families for their support. My father and Lisa have been a constant source of support that has been crucial in becoming who I am today. To Kathy, Joe, and Felix, thank you so much for treating me as your daughter. The love and support from you guys has been greatly appreciated.

Many thanks to those at Florida State University for all their support along with way. This work would not be where it is if not for the support of my graduate committee. Thank you to Simon, Rachel, Paul, and Tomek for all the time and effort put forth for this research. To all the faculty in the physics department, thank you. From courses to hallway discussions, you pushed my knowledge of physics to new levels. Special thank you to Simon and Jorge for their discussions regarding the physics of my work. Thank you to all the classmates and friends I made along the way. Edmundo, Jason, Gabriel, and Frank never ceased to amaze me with their never-ending, thought-provoking questions. Their curiosity pushed my understanding of the physics, coding, and GlueX hardware and software further than it otherwise would be. To Krista for her mutual support in courses, outreach, life, and the eating of baked goods. Thank you to the graduate coordinator for the majority of my time in the department, Felicia for being a friend and always pushing my
bureaucratic issues to a solution. Lastly at Florida State University, thank you to Jonathan and Shannon for managing and always figuring out my grant issues.

Lastly and most importantly, this work would not be possible without the efforts of the entire GlueX Collaboration. The GlueX Collaboration is comprised of many talented individuals. Thank you to all the JLab staff, technicians, and users for making GlueX a reality. This work has been presented along the way at dozens of meetings. Thank you to all that provided feedback and suggestions at each of those talks. Many, many thanks to Sean. He has answered hundreds of questions regarding coding and the inner workings of both GlueX hardware and software. Without his expertise, this work and GlueX in general would not be what it is today. To Mark for his help with the time-of-flight and for his extensive help with numerous computer discussions. To Beni for all his help with the time-of-flight, particularly the discussions about the inner workings of the electronics. GlueX collaboration meetings would not have been the same if it weren’t for Naomi and her solidarity in finding non-meat food options. To Thomas for implementing MCwrapper and the many discussions regarding the intricacies involved in Monte Carlo production. Saturday game nights with him, Simon, and Sean, also made Newport News a much more welcoming and entertaining place to live.

As with any several year process, there are likely numerous people deserving of thanks who are not mentioned here. An exhaustive list of all those who supported this work and GlueX would be an enormous task filling dozens of pages. Thank you to everyone from staff at FSU, professors who offered discussion, to staff and experts at Jlab, who played a role in this work or in GlueX. Your help was greatly appreciated.
TABLE OF CONTENTS

List of Tables .. viii
List of Figures .. vix
Abstract ... xv

1 Introduction ... 1
 1.1 Quantum Chromodynamics .. 1
 1.1.1 Asymptotic Freedom .. 2
 1.1.2 Confinement ... 2
 1.2 Hadron Spectroscopy ... 3
 1.2.1 Meson Spectroscopy .. 4
 1.2.2 Baryon Spectroscopy ... 6
 1.3 Cascade Baryons .. 8
 1.3.1 Previous Experiments: Kaon Production .. 11
 1.3.2 Previous Experiments: Photoproduction .. 12

2 GlueX Collaboration at Jefferson Lab ... 16
 2.1 Continuous Electron Beam Accelerator Facility .. 17
 2.2 The GlueX Beamline .. 18
 2.2.1 The Bremsstrahlung Technique and the Tagger Hall 19
 2.3 The GlueX Spectrometer ... 22
 2.3.1 Target and Start Counter ... 22
 2.3.2 Drift Chambers ... 23
 2.3.3 Calorimetry .. 25
 2.3.4 The Time-of-Flight Spectrometer .. 26
 2.3.5 Detection of Internally Reflected Cherenkov Light Detector 30

3 Data Sets and Analysis Framework ... 32
 3.1 Data Sets .. 32
 3.2 Analysis Framework ... 32
 3.2.1 Tagger Accidental .. 36
 3.2.2 Kinematic Fitting .. 37

4 Ground State Cascade Baryons $\Xi(1320)^-$ at GlueX ... 40
 4.1 Event Selection: Kinematic Fitting ... 42
 4.2 Events After Selection ... 43

5 Monte Carlo Event Simulation for $\Xi(1320)^-$... 50
 5.1 Monte Carlo Generation ... 50
 5.2 Monte Carlo/Data Matching ... 51
6 Cross Section of $\Xi(1320)^-$
6.1 Fitting of Data ... 58
6.2 Monte Carlo Efficiency 59
6.3 Flux .. 59
6.4 Total Production Cross Section Results 61
6.5 Differential Cross Section 62
6.6 Systematic Uncertainties and Studies 64
 6.6.1 Phase Space Coverage 65
 6.6.2 Effect of χ^2/NDF Cut 69
 6.6.3 Signal Resolution and Stability 69
 6.6.4 Effect of E_γ Binning 70
 6.6.5 Miscellaneous Studies 71
6.7 Status of the Analysis 75

7 Search for Excited States 77
7.1 Channel Motivation for the Decay $\Xi^{-*} \rightarrow K^-\Lambda$ 78
7.2 Event Selection .. 81
 7.2.1 Second Look .. 82
7.3 Results ... 84
 7.3.1 Second Look .. 87

8 Summary and Outlook 91

Appendix
A Tabulated Results ... 93

B Decay Channels ... 94

Bibliography ... 99
Biographical Sketch .. 103
LIST OF TABLES

1.1 The current status of the Cascade resonances from the 2020 edition of the PDG. Red denotes an assumption based on the quark model [5]. .. 9

1.2 The current status of the Cascade resonances from the 2020 edition of the PDG compared to the status in 1981 and the results from the MPS [5, 19]. 13

3.1 The timing requirements for each relevant particle hypothesis in the 4 detectors with timing information [43]. ... 35

6.1 The run number ranges for each of the run periods in consideration. .. 60

7.1 The known resonances that decay to $K\Lambda$ and their corresponding branching ratios as of the 2020 edition of the PDG review [5]. .. 80

A.1 The values for each run period used for the total cross section. The quoted uncertainty on all values is statistical. ... 93

B.1 Decay channels of interest and branching ratios from the PDG Review [5]. 95
LIST OF FIGURES

1.1 The strong coupling constant as a function of momentum transfer Q. The points represent measurements from experiments and the curve is the prediction for QCD. Reproduced from [2] which is licensed under CC BY NC ND. .. 3

1.2 The pseudoscalar meson nonet (left) and the vector meson nonet (right) representing the ground state mesons with $L = 0$. ... 5

1.3 The symmetric decuplet (left) and the mixed symmetry octet (right) from SU(3) flavor symmetry. ... 6

1.4 Lattice QCD predictions for Ξ baryons where the color denotes the flavor multiplet, yellow representing the decuplet, and blue representing the octet. Reprinted figure with permission from [6]. Copyright 2013 by the American Physical Society. 10

1.5 (left) Schematic of the MultiParticle Spectrometer showing the two different arms of the detector; (right) Results of the experiment: (from top to bottom) detector acceptances, missing mass squared detector A and B. Reprinted figures with permission from [19]. Copyright 1983 by the American Physical Society. 12

1.6 Schematic of the CLAS detector previously located in Hall B at Jefferson Lab [21]. ... 13

1.7 (left) Missing mass spectrum for $\gamma p \rightarrow K^+K^+(X)$, which shows a clear signal for $\Xi(1320)^-$ and $\Xi(1530)^-$. (right) Total production cross section for $\gamma p \rightarrow K^+K^+(X)$ for $\Xi(1320)^-$. Reprinted figure with permission from [22]. Copyright 2007 by the American Physical Society. ... 14

1.8 (left) Missing mass spectrum for $\gamma p \rightarrow K^+K^+(X)$ for the CLAS g12 experiment (right) Total production cross section for CLAS g12 for $\gamma p \rightarrow K^+K^+(X)$ for $\Xi(1320)^-$. Reprinted figures with permission from [24]. Copyright 2018 by the American Physical Society. ... 15

2.1 (Top) Schematic for the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab showing the 4 experimental halls. (Bottom) The aerial view of the accelerator with the individual experimental halls marked in red. Both are reproduced from [21]. ... 17

2.2 Schematic for the GlueX beamline. Reproduced from [29]. 18

2.3 An example of the flux determined by the PS and the degree of polarization obtained from the TPOL for the commissioning of the detector in 2016. Reprinted figures with permission from [33]. Copyright 2017 by the American Physical Society. 21

2.4 An image of the pair spectrometer in the hall. The beam travels from left to right across the image. ... 21
2.5 Schematic of the overall GlueX detector located in Hall D at Jefferson Lab. Reproduced from [29]. ... 22

2.6 Schematic of the start counter detector and the target cell. Reproduced from [29]. . . . 23

2.7 Image of the central drift chamber (left) and forward drift chamber (right). Reproduced from [29]. .. 24

2.8 (left) Image of the barrel calorimeter prior to it being placed into the solenoid. (right) The forward calorimeter without the front cover to show the crystals. Reproduced from [29]. .. 25

2.9 Image of the time of flight spectrometer in the hall prior to the upgrade but with the inclusion of the Lucite shielding. .. 27

2.10 The cross section of the Time-of-Flight spectrometer before and after the implementation of the Lucite shielding. ... 28

2.11 Before and after diagrams of the central portion of time-of-flight spectrometer demonstrating the change in paddle segmentation and beam hole size. ... 29

2.12 A schematic for the placement of the DIRC within the GlueX detector. Reproduced from [29]. .. 30

2.13 An example of the Cherenkov angle with the expected momentum separation for each of the particle types. Reproduced from [42]. 31

3.1 Example of a β plots for the Time-of-Flight spectrometer for all positively charged candidates and negatively charged candidates. Taken from the monitoring histograms produced for run 51582 of the Fall 2018 run period. 33

3.2 (left) Example of a Δt plot for the Time-of-Flight spectrometer for K^+ candidates and (right) of the energy deposition in the Central Drift Chamber. Both plots were taken from the monitoring histograms produced for run 51582 of the Fall 2018 run period. .. 34

3.3 Example of the beam bunch distribution for the Spring 2017 data set. 37

4.1 Feynman diagrams for photoproduction of the octet ground state Ξ baryons. The top diagram is for $\Xi(1320)^-$ while the bottom diagrams are the two production mechanisms for $\Xi(1320)^0$. .. 41

4.2 Simulations for momentum vs polar angle for all tracks where the red box denotes the kaon-pion separation currently possible in the TOF. The three high intensity regions consist of kaons, kaons and protons, and pions from highest momentum to lowest. Reproduced from [47]. .. 41

4.3 Feynman diagram for the reaction $\gamma p \rightarrow K^+K^+\Xi^-$. .. 42
4.4 Invariant mass spectrum for $\Xi(1320)^- \rightarrow \Lambda \pi^-$ versus the χ^2/NDF from the kinematic fit in the Spring 2017 data set (top left), Spring 2018 (top right), Fall 2018 (bottom left). The red lines on these histograms denote which combinations are kept for use in all subsequent histograms. The yields in the slice of $\Lambda \pi^-$ mass containing $\Xi(1320)^-$ as a function of the χ^2/NDF for data and Monte Carlo (bottom right). All distributions are flat beyond χ^2/NDF of 15. 44

4.5 Invariant mass spectrum for $\Xi(1320)^- \rightarrow \Lambda \pi^-$ in the Spring 2017 data set (top), Spring 2018 (middle), and Fall 2018 (bottom). The left column shows the $\Lambda \pi^-$ invariant mass using the measured and kinematically fit 4-momenta while the right shows the overall fit using the kinematically fit data. 46

4.6 Measured momentum vs polar angle distributions for events within the $\Xi(1320)^-$ mass peak for the Spring 2017 run period. The distributions are for the two kaons (top left), two pions (top right), and the proton (bottom). 47

4.7 Vertex locations in the GlueX coordinate system for the production vertex, the decay vertex of Ξ, and the decay vertex of Λ for Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom). 48

4.8 (left) The $-t$ distributions for each of the different run periods. (right) The invariant mass of the intermediate hyperon formed from the low momentum kaon and Ξ. 49

5.1 Efficiency by run number for each of the different run periods: Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom). 52

5.2 The comparison of the momentum (left) and polar angle (right) for the two kaons in generated Monte Carlo events. K_2 denotes the kaon from the decay of the intermediate hyperon and K_1 denotes the initial kaon produced at the production vertex. 53

5.3 The distributions of $-t$ for Fall 2018 (blue) and varying input parameter tests. The colors represent different input t-slopes, across a row increases the width of the intermediate hyperon (0.4, 0.6, 0.8, 1.0 GeV), and down a column increases the mass (2.0, 2.4, 2.8 GeV). 54

5.4 The distributions of $-t$ for each of the data sets with the chosen input parameters for generation of t-slope = 1.4 GeV$^{-2}$, and an intermediate of mass 2.0 GeV and width 0.4 GeV. 55

5.5 Kinematic comparison between data and Monte Carlo. The left histograms show the momentum distributions while the right column show polar angle distributions. The top row is for kaons, middle is pions, and bottom row is the proton. 56

6.1 (left) The signal yields for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue) resulting from the fits to each bin. (right) The fit for the low energy data from the Fall 2018 run period. 58
6.2 The Monte Carlo efficiency for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue) found by dividing the yields in Monte Carlo by the amount of events generated.

6.3 The incoming beam flux as a function of beam energy for Spring 2017 (green), Spring 2018 (red), Fall 2018 nominal energy range (blue), and Fall 2018 low energy range (violet).

6.4 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of beam energy for Spring 2017 (green), Spring 2018 (red), Fall 2018 nominal energy range (blue), and Fall 2018 low energy range (violet). These data are compared to the CLAS g12 results (yellow) from reference [24].

6.5 The efficiency and production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of momentum transfer to the kaon for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

6.6 The differential production cross section on a log scale for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of momentum transfer to the kaon and beam energy for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

6.7 The differential production cross section on a linear scale for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of momentum transfer to the kaon and beam energy for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

6.8 Depiction of the Gottfried-Jackson reference frame in which the intermediate hyperon is at rest and the z-axis is along the beam direction.

6.9 Polar angle vs azimuthal angle for the decay kaon in the Gottfried-Jackson rest frame of the intermediate hyperon for data (left) and Monte Carlo (right) for the Spring 2017 data set.

6.10 Polar angle vs azimuthal angle for the decay kaon in the Gottfried-Jackson rest frame of the intermediate hyperon for generated Monte Carlo (left) and the difference in the reconstructed and thrown polar angles (right) for the Spring 2017 data set.

6.11 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of χ^2/NDF for the kinematic fit for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

6.12 The mass (left) and width (right) for $\Xi(1320)^-$ for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of beam energy for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

6.13 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of beam energy for Spring 2017 with variations in energy range width (left) and energy range start values (right).
6.14 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of incoming beam energy for the Spring 2017 data set with (light green) and without (dark green) the scaling factor included in the accidental subtraction. 72

6.15 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of incoming beam energy for the Spring 2017 data set using the generated beam energy (dark green) and reconstructed beam energy (light green) in the determination of the efficiency. 74

6.16 The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of incoming beam energy for the Spring 2017 data set using the nominal uniqueness tracking and tracking all particles. 74

7.1 A depiction of the quark placement for a Cascade baryon. 79

7.2 The quark line drawings for examples of the two major decays of an excited Cascade baryon within the first excitation band. If the excitation is between the strange quark pair, as with the lowest mass excitation, the state preferentially decays to KY or $K\Lambda$ due to the strange quarks being spectators in the $\Xi\pi$ interaction, as shown in the figure. 80

7.3 Feynman diagram for the reaction $\gamma p \rightarrow K^+ K^+ \Xi^{*-} \rightarrow K^+ K^+ K^- \Lambda \rightarrow K^+ K^+ K^- \pi^- p$. 81

7.4 Example plot for momentum vs polar angular for all the experimental K^+ tracks for the Fall 2018 data set. 82

7.5 Possible reconstruction chains for background reaction $\gamma p \rightarrow \phi N^* \rightarrow K^+ K^+ \Xi^{*-} \Lambda$. 82

7.6 (left) Invariant mass histogram of $K^+ K^-$ showing strong signal for ϕ background; (right) Invariant mass of $p\pi$ versus the invariant mass $K^+ K^-$ showing clean signal Λ signal and clear correlation with ϕ. 83

7.7 The distribution of the $K^- \Lambda$ invariant mass while stepping through the values for χ^2/NDF for Spring 2017 (green), Spring 2018 (red), and Fall 2018 (blue). 84

7.8 The distribution of the $K^- \Lambda$ invariant mass while stepping through the values for the flight significance for Spring 2017 (green), Spring 2018 (red), and Fall 2018 (blue). 85

7.9 The distribution of the $K^- \Lambda$ invariant mass versus χ^2/NDF (left) and versus the flight significance of Λ for the Fall 2018 data set. A faint band is present the $K\Lambda$ mass associated with $\Xi(1820)$ for low values of χ^2/NDF and high values of flight significance. 86

7.10 Invariant mass spectrum for ΛK^- for Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom left). The combined distributions is shown in the bottom right. This decay channel has known branching ratios for the states: $\Xi(1690)^-$, $\Xi(1820)^-$, $\Xi(1950)^-$, $\Xi(2030)^-$, and $\Xi(2120)^-$. 87

7.11 The fitted invariant mass spectrum for ΛK^- for Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom left). The combined distributions is shown in the
This decay channel has known branching ratios for the states: $\Xi(1690)^-$, $\Xi(1820)^-$, $\Xi(1950)^-$, $\Xi(2030)^-$, and $\Xi(2120)^-$ [5].

7.12 (top left) The invariant mass spectrum for $\Lambda K^−$ for Spring 2017 (green), Spring 2018 (red), and Fall 2018 (blue) with the new selection requirements. The new fitted invariant mass spectrum for $\Lambda K^−$ for Spring 2017 (top right), Spring 2018 (bottom left), and Fall 2018 (bottom right).

7.13 The invariant mass spectrum for $\Lambda K^−$ for the combined Phase-I GlueX data. The statistical significance of $\Xi(1820)^-$ in this distribution is 16.6σ, representing the first observation of an excited Cascade baryon in photoproduction.

B.1 Possible reconstruction chains of interest for $\Xi \rightarrow \Lambda \pi$, the octet ground state using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.2 Possible reconstruction chains of interest for $\Xi^* \rightarrow \Xi \pi$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.3 Possible reconstruction chains of interest for $\Xi^* \rightarrow \Lambda K$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.4 Possible reconstruction chains of interest for $\Xi \rightarrow \Xi \gamma$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.5 Possible reconstruction chains of interest for $\Xi^* \rightarrow \Sigma K$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.6 Possible reconstruction chains of interest for $\Xi^* \rightarrow \Xi \pi \pi$ through a three-body decay or via a two-body decay with an intermediate $\Xi(1530)$ using the previously mentioned decays in figure B.2. Branching ratios are those from the PDG and current as of the 2020 edition [5].

B.7 Possible reconstruction chains of interest for $\Xi^* \rightarrow K \Lambda \pi$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].
Multi-strange baryons have played an important role in understanding the strong interaction. Despite their importance to advancing quantum chromodynamics (QCD), little is known about such hyperons due to the lack of a strange probe. Almost all knowledge of Cascade baryons today stems from kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s. The 1980s saw advancement in electronics and computational resources allowing for higher statistic experiments such as the MultiParticle Spectrometer (MPS) at Brookhaven National Laboratory. From these previous experiments, the octet and decuplet ground states, \(\Xi(1320) \) and \(\Xi(1530) \) respectively, were well established with known properties and four excited states were well established. This research uses the GlueX experiment at Jefferson Laboratory to extend photoproduction cross section measurements for \(\Xi(1320)^- \) to higher beam energies to further understand the production mechanism, as well as to search for the first excited Cascade resonance observation in photoproduction through the decay \(\Xi^{-*} \rightarrow K^{-}\Lambda \). The GlueX Spectrometer is a nearly hermetic detector used to study exclusive photoproduction reactions with photon beam energies up to 12 GeV. The first phase of GlueX running has recently been completed. Preliminary results for the total cross section and differential cross sections in terms of momentum transfer \(-t\) are shown within. Additionally, the first observation of an excited Cascade baryon, in particular \(\Xi(1820)^- \), is shown.
CHAPTER 1

INTRODUCTION

Modern nuclear physics has many open questions with answers still being worked towards. The Nuclear Science Advisory Committee (NSAC) composes a long range plan for the field every 4-8 years. This long range plan is the basis of which funding is provided and frames the major open questions of interest for the field as a whole. The current open questions include [1]: How does matter emerge? How do subatomic particles arrange themselves? Is there more to learn about the four fundamental forces? How can nuclear physics benefit society?

The work presented here is in regards to the second question, ”how do subatomic particles arrange themselves?” All matter is composed of elementary particles, particularly the quarks and leptons of the standard model. The standard model is composed of six quarks (up/down, charm/strange, and top/bottom), six leptons (electrons, muons, taus, and their corresponding neutrinos), and four force carriers or gauge bosons (W$^\pm$/Z bosons, photon, and gluon). The four fundamental forces of nature associated with these force carriers listed in increasing strength are gravity, weak nuclear force (W$^\pm$/Z bosons), electromagnetic force (photon), and the strong nuclear force (gluon). With the exception of gravity, these forces interact through the mediation of a known force carrier.

The electromagnetic force accounts for the binding of the nucleus with the electrons in an atom. Nucleons, protons and neutrons, are within the nucleus and are bound to each other by the strong force. Nucleons are composed of quarks, specifically the lightest quarks (up and down). These quarks, along with the gluon, are bound together by the strong force. The strong interaction is described by the quantum field theory known as quantum chromodynamics (QCD).

1.1 Quantum Chromodynamics

Hadrons, such as nucleons, are any composite particle of quarks and gluons that are bound by the strong interaction. The theory of QCD is analogous to the theory of electromagnetism on small scales, Quantum Electrodynamics (QED). QED represents the interaction between charged
particles through the exchange of photons, more specifically the electric charge interacts through
the exchange of photons. Since photons do not have electric charge, they do not interact with
other photons. Analogous to the electric charge, in QCD, each of the constituents carries a charge,
referred to as the color charge. There are three types of color charge: red, blue, and green and the
corresponding anti-colors: anti-red, anti-blue, and anti-green. In QCD, the color charge interacts
through the exchange of gluons. Gluons do have color and anti-color charge themselves, which
allows gluons to be able to interact among themselves. Another peculiarity is the strength of the
interaction at different energy scales which leads to two unique features: asymptotic freedom and
confinement.

1.1.1 Asymptotic Freedom

Asymptotic freedom describes the characteristic of the interaction strength between any two
strongly interacting particles at high momentum transfer Q. The distance between two quarks
is inversely proportional to the momentum transfer between them. As the distance between two
quarks decreases, or Q increases, the strength of the interaction decreases.

The characteristic strength of the interaction is denoted by the coupling constant, α_s. The de-
pendence of the coupling strength as a function of the momentum transfer is shown in figure 1.1 [2].
It can be seen that at high momentum transfers, the coupling strength vanishes asymptotically.
This feature was first explained mathematically by David Gross and Frank Wilczek [3] and inde-

1.1.2 Confinement

Confinement is an effect at low momentum transfer or large distances. This property describes
the effect in which the quarks are confined within hadrons. Confinement, or more precisely color
confinement is the notion that all asymptotic particles must be color neutral. Color neutrality can
be achieved in two ways, the combination of a color and its anti-color or all the colors (or anti-
colors) combined together. Consequently, hadrons come mainly in two forms: mesons and baryons.
A meson is a boson (integer spin) consisting primarily of a quark and antiquark. A baryon is a
fermion (half integer spin) typically composed of three quarks.

As quarks themselves are not color neutral, 'free' quarks do not appear in nature. The strength
of the strong interaction increases as the distance between two quarks increases. The energy required
Figure 1.1: The strong coupling constant as a function of momentum transfer Q. The points represent measurements from experiments and the curve is the prediction for QCD. Reproduced from [2] which is licensed under CC BY NC ND.

to separate a quark from a hadron is greater than that of production of a quark anti-quark pair. Since the coupling strength of QCD at these energy scales is so large, QCD is not able to be solved via perturbative methods, so long-distance QCD is referred to as the non-perturbative regime. The non-perturbative regime is not solvable via analytical methods and thus there is no theoretical proof for confinement unlike asymptotic freedom, as shown by Gross, Wilczek, and Politzer.

1.2 Hadron Spectroscopy

Much like that of atomic spectroscopy, hadron spectroscopy seeks to understand the spectrum of particles. Hadrons have previously been described as mesons or baryons, which are composed of a quark anti-quark pair or three quarks, respectively. These quarks, known as valence quarks, give rise to the quantum numbers of the hadrons they compose. Hadrons additionally contain gluons, and an infinite 'sea' of quark anti-quark pairs that do not contribute to the overall quantum numbers of a given hadron. Thus in further discussions regards the quantum numbers of mesons and baryons,
only the valence quarks are considered. Since QCD is non-perturbative in the energy range of hadrons, the relevant degrees of freedom are studied through the exploration of the spectrum of hadrons. It is of particular interest how the quarks and gluons give rise to the excited spectrum of hadrons.

The quantum numbers used to describe a hadron include the total angular momentum J, the parity P, and the isospin I. The total angular momentum quantum number, J, is frequently referred to as the spin. It is the combination of the orbital angular momentum L of the quarks and their total intrinsic spin S. Parity represents the invariance under spatial transformations. Isospin symmetry reveals that there are $2I + 1$ different charged states that exist with the same quantum numbers. For example, the nucleon has isospin 1/2 resulting in two charged states, namely the proton and the neutron.

1.2.1 Meson Spectroscopy

While not the directly related to this work, meson spectroscopy, particularly mapping the spectrum of exotic mesons, is the main motivation for the GlueX collaboration which will be discussed extensively for the remainder of this report. The meson multiplets can be constructed using SU(3) flavor symmetry, where the 3 denotes the three lightest quark flavors: up, down, and strange. For ground state mesons, this results in the multiplet structure of $3 \otimes \bar{3} = 8 \oplus 1$. Each of these values represent the dimensions of the irreducible multiplet. Unlike the baryons which will be discussed in section 1.2.2, the octet and singlet are not experimentally observed as independent due to the annihilation mixing between different light quark pairs. In principle, there are two non-strange, isospin zero states where one state belongs to the octet and the other to the singlet. The octet state is constructed without the use of strange quarks and the singlet state is pure $s\bar{s}$. These two states are not mass eigenstates and therefore, the two wave-functions mix. The resulting mixing angle stems from the diagonalization of the mass matrix to the observed states and is representative of the underlying symmetry breaking.

There are η mesons in the octet and in the singlet, typically denoted η_8 and η_1. These two eigenstates mix, resulting in the observed particles η and η', which are included in a nonet of pseudoscalar mesons with $J^{PC} = 0^{-+}$ for the ground state, as shown in figure 1.2. There is also a nonet of heavier particles, referred to as vector mesons with $J^{PC} = 1^{--}$. Similar to the pseudoscalar mesons, the eigenstates of this multiplet are ω_8 and ω_1 which mix to form the observed hadrons ω.

and \(\phi \). For the pseudoscalar mesons, the mixing between the states is large, while the mixing for the vector mesons is quite small, resulting in the \(\phi \) being almost entirely \(s\bar{s} \).

Allowed Quantum Numbers. Hadrons are typically classified by their name, mass, and spin-parity measurements \(J^{PC} \). The parity of a hadron has two components: the intrinsic parity \(\pm 1 \) and the orbital momentum contribution \((-1)^L \). Due to the antiquark in mesons, the intrinsic parity is negative, while that of baryons is positive. Neutral mesons are assigned an additional quantum number, the charge conjugation or C-parity, which represents the behavior under the symmetry operator of changing particles to antiparticles, and vice-versa. Charge conjugation flips all the internal quantum numbers of a state (charge, flavor, baryon, and lepton numbers). When applied to a state, the result is its antiparticle, therefore, it is only a relevant quantum number for particles that are their own antiparticles, specifically only flavor-neutral mesons [5]. The charge parity (C-parity) represents the behavior under the operator of charge conjugation and is found using
\[
C = (-1)^{L+S} .
\]
Charge parity can be extended to G-parity, the generalization of the behavior under charge conjugation, which includes states that are not flavor neutral or specifically accounts for isospin of the meson. G-parity can be found by
\[
G = (-1)^{I+L+S} ,
\]
where \(I \) is the isospin of the meson.

Exotics are considered all hadrons that differ from the ordinary quark structure of \(q\bar{q} \) for mesons and \(qqq \) for baryons. Due to the negative intrinsic parity for mesons, there are certain combinations of quantum numbers that are not possible. The quantum numbers for a meson are defined such that:

\[
P = (-1)^{L+1} \quad \quad C = (-1)^{L+S} \quad \quad J = L + S .
\]

(1.1)
There are two possibilities for S, 0 for anti-aligned spins and 1 for aligned spins. It can be seen that the allowed quantum numbers for mesons include:

$$J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{++}, 2^{+-}, 2^{--}, \ldots.$$ \hfill (1.2)

There are clearly combinations that are not allowed with the conventional view of mesons. If the gluons are considered and are allowed degrees of freedom within the meson, the other quantum numbers become accessible. These include:

$$J^{PC} = 0^{+-}, 0^{--}, 1^{--}, 2^{+-}, \ldots.$$ \hfill (1.3)

1.2.2 Baryon Spectroscopy

Baryons are strongly interacting fermions, which generally consist of 3 quarks. The strong interaction between any quark pair is considered independent of flavor, which is an experimental goal to verify within the field, and is the dominating term in the interaction Hamiltonian. Therefore, SU(3) flavor symmetry may be considered among the up, down, and strange quarks. The flavor symmetry results in $3 \otimes 3 \otimes 3 = 10_S \oplus 8_{MS} \oplus 8_{MA} \oplus 1_A$, which can be found using the Young Tableau formulation from group theory [5]. All particles in each multiplet, as seen in figure 1.3, should have similar properties. The ground state decuplet is entirely symmetric in terms of quark flavor, while the ground state octet has mixed symmetry and is either symmetric or antisymmetric under the exchange of two of the three quarks. The wavefunction of a baryon must be overall antisymmetric, and it consists of four components: flavor ϕ, spin χ, spatial ψ_L, and color C.

![Figure 1.3: The symmetric decuplet (left) and the mixed symmetry octet (right) from SU(3) flavor symmetry.](image)
The flavor and spin are commonly coupled together resulting in an overall symmetry of SU(6) by $SU(3) \otimes SU(2) = SU(6)$, which decomposes to $6 \otimes 6 \otimes 6 = 56_S \oplus 70_{MS} \oplus 70_{MA} \oplus 20_A$. Analogous to the harmonic oscillator, excitation bands can be formed by combining the multiplets with units of orbital or radial angular momentum. The excitation bands are commonly referred to by their multiplet and the total orbital angular momentum between the oscillators and parity L^P. All observed hadrons are a part of the color singlet C^A. Therefore, the Pauli exclusion principle requires that the remaining three components of a baryon wave function must be overall symmetric when the quarks are identical within the strong interaction.

For the decuplet, the flavor wavefunction is entirely symmetric and may couple to spin to be overall symmetric or mixed symmetric. To make the overall wavefunction antisymmetric, the spatial portion for the ground-state baryons must be symmetric or mixed, respectively. For the ground state, the symmetric spatial portion is $L = 0$ resulting in the wavefunction $\phi S \chi S \psi S 0^C A$. This results in a spin-parity of $J^P = \frac{3}{2}^+$. For the octet, coupling the flavor wavefunction to spin results in a flavor-spin symmetry of either symmetric, mixed, or antisymmetric. To create the overall wavefunction, the spatial component must be symmetric, mixed, or antisymmetric in nature. The ground state octet baryons must have $L = 0$ orbital momentum and therefore flavor and spin couple together symmetrically. The resulting ground state wavefunction is $\frac{1}{\sqrt{2}} (\phi^{MS} \chi^{MS} + \phi^{MA} \chi^{MA}) \psi^S 0^C A$.

The ground state octet has spin parity of $J^P = \frac{1}{2}^+$. Both the decuplet and the octet ground states are a part of the $[56, 0^+]$ ground state multiplet. Higher excitation bands require more orbital angular momentum within the baryon and result in more complicated wavefunctions for the flavor and spin in order to retain the overall antisymmetry of the baryons, as later discussed in section 7.1.

Baryons are not bound by the charge conjugation invariance and therefore have no combinations of quantum numbers that are not allowed. Exotic baryons are those that are different from the qqq state, such as the pentaquark which is a baryon consisting of four quarks and an anti-quark. Since quantum numbers alone can not identify if a baryon is exotic, the internal structure has to be studied to determine this through other means such as studying the momentum transfer dependence of the production of the state for excited states.

Strange baryons are considered the bridge between light-flavor and heavy-flavor regimes. These hadrons are essential in determining the relevant degrees of freedom of QCD in the non-perturbative
regime. Experimentally, strangeness is energetically costly to produce because there is a lack of a strange probe resulting in little being known about the spectrum. With each additional strange quark, less is known about the corresponding hyperons.

1.3 Cascade Baryons

The Cascade baryons, Ξ, are doubly-strange baryons, which are either $|uss\rangle$ or $|dss\rangle$ in quark content. There are only two states for which the existence is experimentally certain and four states for which the existence is very likely [5]. Flavor SU(3) symmetry implies that particles within the same multiplet have similar properties, and only differ in quark content and consequently mass. Therefore, by not discriminating by charge, there should be as many Ξ states as there are N^* and Δ^* states combined, for which the Particle Data Group (PDG) lists 25 with at least very likely existence [5]. The quantum numbers of the strange hadrons are mostly unknown. The spin-parity assignment J^P for the octet ground state $\Xi(1320)$ relies heavily on quark model predictions, and the remaining parity values are based upon this assumption. The number of known states for Cascade baryons has remained mostly unchanged since 1988 [5]. A summary of the previously observed Cascade baryons is shown in table 1.1. This table includes the masses of the known states as well as their total spin and parity, J^P. Additionally, each state and decay mode is given a star rating, ranging from zero stars to four stars, that denote the amount of evidence available for a particular state. Four stars represents that the existence of the state is certain, three is very likely, two is evidence is fair, one is evidence is poor, and zero is no evidence [5].

For the known lower mass resonances, the widths Γ are only 10-20 MeV, which is 5-30 times narrower than the corresponding N^* and Δ^* states. The octet ground state $\Xi(1320)$ decays weakly, which results in a long lifetime relative to strongly decaying hadrons. This lifetime corresponds directly to the width as $\Gamma = \frac{1}{\tau}$, resulting in a much smaller width than the strongly decaying N^* and Δ^* states.

The Lagrangian of QCD can not be solved analytically in the non-perturbative regime. Numerical approximations are considered in what is known as Lattice QCD. Using Lattice QCD, a large amount of Cascade baryon states are predicted. The results from the Hadron Spectrum collaboration are shown in figure 1.4 [6]. The colors of the states are used to distinguish between the two SU(3) flavor multiplets, yellow being decuplet and blue the octet. The two lowest excitation
Table 1.1: The current status of the Cascade resonances from the 2020 edition of the PDG. Red denotes an assumption based on the quark model [5].

<table>
<thead>
<tr>
<th>Particle</th>
<th>J^P</th>
<th>Overall Status</th>
<th>Status Ξ</th>
<th>π</th>
<th>ΛK</th>
<th>ΣK</th>
<th>Ξ(1530)π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ(1318)</td>
<td>1/2+</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(1530)</td>
<td>3/2+</td>
<td>****</td>
<td>****</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(1620)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(1690)</td>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(1820)</td>
<td>3/2−</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Ξ(1950)</td>
<td></td>
<td>***</td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(2030)</td>
<td>5/2?</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(2120)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(2250)</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(2370)</td>
<td></td>
<td>**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ξ(2500)</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bands are marked. The ’391’ as the title of the results spectrum represents the pion mass in the calculation. Lattice QCD includes all contributions and reactions possible within an energy range. By artificially increasing the pion mass, the number of possible reactions is limited by raising the three pion mass threshold which would be computationally more expensive. Therefore, the results are normalized to another particle in the spectrum. In the case of baryons, the spectrum are normalized to the Ω− mass, which is experimentally measured as 1.672 GeV. While not exactly correct, an approximate value for the masses in the spectrum can be determined using the Ω− mass. Using this approximation, all the excited states in the first excitation band could occur at or lower than 2 GeV in mass. This would make the states in the first excitation band accessible at GlueX beam energies. The discussion of these first excitation band states continues in section 7.1.

Cascade spectroscopy has been mainly studied through kaon beams in the 1960s through 1980s, at a large variety of places including at the Lawrence Berkeley National Laboratory, then Lawrence Radiation Laboratory [7, 8, 9], at Argonne National Laboratory [10], at CERN [11, 12], and at Brookhaven National Laboratory [13, 14, 15, 16] as a few examples. These studies have resulted in little progress due to the low-intensity and technological limitations, both in electronics and computing. The first of these experiments was performed in low-sensitivity bubble chamber experiments, and the latter were able to include electronics to help improve the sensitivity and statistics [5].
The two main production mechanisms of Ξ include that from kaon production and from photoproduction. With kaon production, the typical experimental design is to have a charged kaon beam incident on hydrogen. The reaction of interest is typically:

$$K^- p \rightarrow K^+ \Xi^- .$$ \footnote{1.4}

This is energetically favorable as the K^- is composed of a \bar{u} and a s quark. Therefore, in the interaction, only one strange quark pair must be produced in order to have two s quarks for the Ξ. An additional anti-strange quark is in the K^+ to conserve strangeness in the reaction.

Photoproduction, on the other hand, is more energetically expensive as the initial state contains no strange quarks and thus 1 GeV in mass goes solely to the production of kaons in the final state.
Typically, photoproduction consists of a photon beam incident on hydrogen. The production of two $s\bar{s}$ pairs is not favorable. Therefore, the predicted production mechanism includes the production and then decay of an intermediate singly-strange hyperon. The resulting reaction becomes:

$$\gamma p \rightarrow K^+ Y* \rightarrow K^+ K^+ \Xi^-.$$ \hspace{1cm} (1.5)

1.3.1 Previous Experiments: Kaon Production

Kaon-induced experiments, both from bubble chambers and higher statistic experiments, have provided much of what is currently known about the Cascade baryons [5]. During the initial era of Ξ physics, only $\Xi(1320)$ and $\Xi(1530)$ were certain to exist and were classified into the $[56, 0^+]$ ground state multiplet. Several experiments also showed decent evidence for the existence of $\Xi(1820)$ and $\Xi(2030)$ though only the total spin of the $\Xi(1820)$ could be determined [17, 18]. Several other resonances were seen from the many experiments though their existence could never be distinguished from statistical fluctuations.

MultiParticle Spectrometer. One kaon production experiment was at the MultiParticle Spectrometer (MPS) at Brookhaven National Laboratory in the 1980s. This experiment is of particular interest as the analysis was performed by members of the Florida State University physics department. This experiment studied the reaction $K^- p \rightarrow K^+ (X^-)$ where (X) was the missing mass. The MPS consisted of two kaon detectors arranged as seen in figure 1.5 (left), which were able to identify low momentum K^+ mesons as well as additional detectors downstream from the target to identify the decay product Λ from the Cascade baryon. The mass of the final state particle was calculated from the range through the detector and the momentum and then was cut upon to separate the kaons from the pions and protons. A Ξ resonance was determined from the missing mass, and was considered a signal if the cross section as a function of incident kaon momentum was consistent with that from the CERN bubble chamber experiment from the Amsterdam-CERN-Nijmegen-Oxford Collaboration [19]. The two detectors have different acceptances and thus the signal from each was analyzed separately. The resultant missing mass squared histograms for each are shown in figure 1.5 (right) where the shaded region denotes the detection of a Lambda from the decay of the Cascade baryon. Many Cascade baryon resonances were seen in these spectra, as seen in the table 1.2.

11
1.3.2 Previous Experiments: Photoproduction

The CEBAF Large Acceptance Spectrometer (CLAS) collaboration operating the CLAS detector in Hall B at Jefferson Laboratory is interested in a large range of nuclear physics topics. The detector was designed such that there was high momentum resolution and geometric coverage for charged particles and no magnetic field around the target [20]. The detector consisted of several sub-detectors used to track particle paths and flight times, and a schematic of the detector can be seen in figure 1.6.

CLAS g11. One of the hadron spectroscopy experiments was that known as 'g11.' It was a photoproduction experiment conducted from May to July 2004 [22]. The experiment ran with a beam energy range of 1.60 – 3.85 GeV. The Cascade baryons were studied with an inclusive reaction $\gamma p \rightarrow K^+ K^+(X)$ for $\Xi(1320)^-$ and $\gamma p \rightarrow K^+ K^+ \pi^-(X)$ where X denotes a missing $\Xi(1320)^0$ resulting from $\Xi(1530)^- \rightarrow \pi^- \Xi(1320)^0$.

Figure 1.5: (left) Schematic of the MultiParticle Spectrometer showing the two different arms of the detector; (right) Results of the experiment: (from top to bottom) detector acceptances, missing mass squared detector A and B. Reprinted figures with permission from [19]. Copyright 1983 by the American Physical Society.
Table 1.2: The current status of the Cascade resonances from the 2020 edition of the PDG compared to the status in 1981 and the results from the MPS [5, 19].

<table>
<thead>
<tr>
<th>Current Particle</th>
<th>Current Status</th>
<th>Previous Mass</th>
<th>Previous Status</th>
<th>Mass from MPS (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ(1318)</td>
<td>****</td>
<td>1320</td>
<td>****</td>
<td>1320 ± 6</td>
</tr>
<tr>
<td>Ξ(1530)</td>
<td>****</td>
<td>1530</td>
<td>****</td>
<td>1541 ± 12</td>
</tr>
<tr>
<td>Ξ(1620)</td>
<td>*</td>
<td>1630</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Ξ(1690)</td>
<td>***</td>
<td>1680</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Ξ(1820)</td>
<td>***</td>
<td>1820</td>
<td>***</td>
<td>1822 ± 6</td>
</tr>
<tr>
<td>Ξ(1950)</td>
<td>***</td>
<td>1940</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Ξ(2030)</td>
<td>***</td>
<td>2030</td>
<td>***</td>
<td>2022 ± 7</td>
</tr>
<tr>
<td>Ξ(2120)</td>
<td>*</td>
<td>2120</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Ξ(2250)</td>
<td>**</td>
<td>2250</td>
<td>*</td>
<td>2214 ± 5</td>
</tr>
<tr>
<td>Ξ(2370)</td>
<td>**</td>
<td>2370</td>
<td>**</td>
<td>2356 ± 10</td>
</tr>
<tr>
<td>Ξ(2500)</td>
<td>*</td>
<td>2500</td>
<td>**</td>
<td>2505 ± 10</td>
</tr>
</tbody>
</table>

Figure 1.6: Schematic of the CLAS detector previously located in Hall B at Jefferson Lab [21].

This experiment saw approximately 7,700 Ξ(1320)− s with a mass resolution of about 6.7 MeV, as shown in figure 1.7 (left) [22]. From these events, the first total photoproduction cross section for Ξ(1320)− was measured, as well as differential cross sections in terms of angular distributions. A t-channel production model was developed as an extension from the previous kaon production
experiments [23].

Figure 1.7: (left) Missing mass spectrum for $\gamma p \rightarrow K^+ K^+(X)$, which shows a clear signal for $\Xi(1320)^-$ and $\Xi(1530)^-$. (right) Total production cross section for $\gamma p \rightarrow K^+ K^+(X)$ for $\Xi(1320)^-$. Reprinted figures with permission from [22]. Copyright 2007 by the American Physical Society.

CLAS g12. Another spectroscopy experiment run by the CLAS collaboration was that of CLAS g12. This experiment ran from March through June 2008. The nominal beam energy and overall statistics for this run period were higher than that of g11.

Compared to the previous experiment 'g11', more events were seen for $\Xi(1320)^-$ in CLAS 'g12' with approximately 11,000 events [24]. The total cross section was also able to be extended to higher energies as the nominal beam energy was increased. The total cross section is shown in figure 1.8 (right) with only the inclusion of statistical errors. The contribution of systematic uncertainties added an additional 8.8% overall uncertainty to each point [24]. The total production cross section appears to level off with increasing energy which will be discussed in chapter 6.
Figure 1.8: (left) Missing mass spectrum for $\gamma p \rightarrow K^+K^+(X)$ for the CLAS g12 experiment (right) Total production cross section for CLAS g12 for $\gamma p \rightarrow K^+K^+(X)$ for $\Xi(1320)^-$. Reprinted figures with permission from [24]. Copyright 2018 by the American Physical Society.
CHAPTER 2

GLUEX COLLABORATION AT JEFFERSON LAB

GlueX is a hadron spectroscopy experiment based in Hall D at the US Department of Energy’s Jefferson National Accelerator Facility (Jefferson Lab or JLab) in Newport News, Virginia. It was built as part of the 12 GeV upgrade of Jefferson Lab. The collaboration consists of approximately 150 members from 29 institutions across 9 countries [25]. Commissioning of the detector was completed in Spring 2016. Phase-I GlueX represents the first 200 days of approved data taking by the Program Advisory Committee at Jefferson Lab, and this data taking took place over 3 run periods in Spring 2017, Spring 2018, and Fall 2018. It was recently completed with almost 300 billion physics events recorded. Phase-II data taking started in Spring 2020. This work will focus on the 3 data sets contributing to the total Phase-I data.

There are two end stations at Jefferson Laboratory, Hall B and Hall D, in which spectroscopy experiments take place. As discussed in section 1.3.2, CLAS [20] was a spectroscopy experiment located in Hall B prior to the 12 GeV upgrade to the accelerator. There are two new generation experiments in these halls, CLAS12 [26] and GlueX [27], which are both spectroscopy experiments but were designed to prioritize different aspects. The old generation CLAS detector, with which results will be compared with, consisted of six toroidal magnetic field coils. The magnetic field configuration resulted in charged particles that bend in arcs toward or away from the beam line. This prioritized momentum separation of the charged particles, which consequently resulted in limited acceptance. Therefore, it is advantageous for reactions to be studied inclusively in order to maximize statistics.

The primary goal of GlueX is to search for and map out the spectrum of exotic mesons. To be able to effectively map out the spectrum, the experiment needs to exclusively reconstruct a large variety of hadronic states with high efficiency and purity. GlueX is nearly hermetic with high efficiency for both charged and neutral particles. The main difference from the CLAS detector is the use of a solenoid to produce the magnetic field that cause charged particles to travel helically.
within the GlueX detector. This results in higher uniform acceptance at the exchange of momentum separation [27].

2.1 Continuous Electron Beam Accelerator Facility

The Continuous Electron Beam Accelerator Facility (CEBAF) is a 12 GeV electron accelerator at Jefferson Lab. It consists of two linear accelerators (linac(s)) and two re-circulation arcs in order to connect the linacs. The electrons start at the injector where they are inserted into the start of the north linear accelerator in 4 ns bunches. Each linear accelerator is primarily composed of 5 and 7-cell superconducting radiofrequency (RF) cavities stationed in cyromodules [28]. The superconducting RF cavities are used to accelerate the beam, achieving an acceleration of 1.09 GeV

Figure 2.1: (Top) Schematic for the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab showing the 4 experimental halls. (Bottom) The aerial view of the accelerator with the individual experimental halls marked in red. Both are reproduced from [21].
per passage through one of the linacs. At the end of each linac, there is a series of dipole magnets used to separate the RF bunches by energy as the magnetic field strength to curve the beam is dependent on the energy of the electrons. Each arc is composed of 5 individual beamlines for this purpose.

The connecting arcs are composed of dipole and quadrupole magnets. Dipole magnets steer the electron beam as it travels around the arc. The quadrupole magnets focus the beam in one plane. Quadrupole magnets are arranged such that the magnets alternate between focusing and de-focusing to achieve an overall net focusing of the beam in both transverse planes. Prior to entering into the south linac, the electron beam encounters another RF separator, aptly named an RF combiner, to rejoin the individual beamlines back into one [28]. The electrons continue to travel around the accelerator up to 5 times for Halls A-C and up to 5.5 times for Hall D. The resulting design maximum energy for the halls is ~ 10.9 GeV for A-C and ~ 12 GeV for D.

2.2 The GlueX Beamline

Hall D, seen in figure 2.1, houses the GlueX detector and is located at the east end of the north linear accelerator. After 5.5 passes around the accelerator ring, the electrons are near the design energy of 12 GeV and are directed into Hall D. Hall D is comprised of two buildings, the tagger hall and the counting house. The beam initially travels to the tagger hall before traveling an additional 75 m into the main spectrometer located in the counting house. The schematic of the beamline from accelerator to beam dump is shown in figure 2.2. The beamline consists of a photon tagger, an electron beam dump, a collimator, the pair spectrometer and triplet polarimeter, the main GlueX spectrometer, and ends with a photon beam dump.

![Figure 2.2: Schematic for the GlueX beamline. Reproduced from [29].](image-url)
2.2.1 The Bremsstrahlung Technique and the Tagger Hall

Electrons that are up to 12 GeV in energy enter the tagger hall where they are incident on a thin diamond radiator in the case of polarized runs, or on an aluminum radiator in the case of amorphous runs. For polarized runs, the diamond radiator has four orientations that are considered. These orientations are 0°, 45°, 90°, and 135° with respect to the hall floor. Each set of orthogonal polarization orientations allows for measurements such as the beam asymmetry and other polarization observables such as those present from weak decays. The advantage of having two sets of orthogonal polarization directions is having a cross check for systematic studies.

Upon the electrons hitting the radiator, diamond or amorphous, the electrons undergo bremsstrahlung radiation producing a photon beam. The scattered electron beam then passes through the tagging system consisting of a tagger hodoscope and a higher resolution tagger microscope. A dipole magnet is used to deflect the electrons that did not interact with the radiator or lost less than a quarter of their initial energy into a beam dump. Electrons that lost more than a quarter of their initial energy are directed to an array of scintillation counters known as the Tagger which then 'tag' the photons as a specific energy [27]. The Tagger allows for the electrons energy to be determined. The energy of the radiated photon is then determined by the difference in the measured energy of the electrons and the initial energy given by the accelerator. This process is possible because the electrons from the accelerator have fixed and known energy prior to interacting with the radiator.

The diamond radiator in particular is mounted onto a goniometer in the hall to allow for fine tuning of the angles at which the diamond is oriented. The lattice of the diamond causes the resulting photon beam to be linearly polarized and coherent. The orientation of the diamond in the four orientations previously mentioned alter the direction of the linear polarization. The resulting coherent bremsstrahlung spectrum has an energy range within which the degree of polarization and the photon flux significantly increase over the incoherent spectrum. This energy range is referred to as the coherent peak. The upper edge of this range is known as the coherent edge as both the degree of polarization and the beam flux sharply drop after that defined energy. Fine tuning of the crystal plane adjusts the energy at which the coherent edge occurs as the position is a function of the angle between the beam and the normal to the crystalline plane of the diamond [27]. The higher resolution Tagger Microscope is placed such that it covers the coherent peak. Nominal GlueX running results in a coherent edge in the photon beam spectrum to be located at ~ 9 GeV.
As the energy of the resulting photons increases, the trajectory occurs at a smaller polar angle from the beamline for the coherent portion of the photon beam. This is advantageous as it allows the lower energy photons to travel at larger angles which are easily blocked through the use of a collimator. The coherent portion of the beam spectrum at 12 GeV in energy has an emission angle of under 15 μrad while the incoherent portion spread is up to 43 μrad polar angle from the beamline [27]. The collimator is placed 75 m after the diamond radiator and ~ 25 m upstream of the target. The resulting nominal collimator aperture is thus 5 mm.

Triplet Polarimeter. After passing though the collimator, the photons approach the Triplet Polarimeter (TPOL) which is used to measure the degree of polarization of the photons. The polarization is measured via the process of triplet production through the reaction $\gamma e^- \rightarrow e^- e^+ e^-$. The TPOL has a thin Beryllium converter to trigger triplet photoproduction [30]. In triplet photoproduction, the photon interacts with an electron in the converter, this electron then recoils from the Beryllium atom. The excess energy produces an electron-positron pair. The TPOL measures the recoil electron while the Pair Spectrometer (PS) measures the produced pair further down the beamline.

The degree of polarization is calculated using the polarized cross section like that of a beam asymmetry measurement. When a photon beam has linear polarization, the production cross section σ gains a modification to the unpolarized cross section σ_0, as in equation 2.1 where P_γ is the degree of polarization of the photon, Σ is the beam asymmetry, and ϕ is the azimuthal angle of the recoiled particle of interest.

$$\sigma = \sigma_0[1 - P_\gamma \Sigma \cos(2\phi)] .$$ (2.1)

In the case of a beam asymmetry measurement, like those in [31, 32, 33], the degree of polarization is known and Σ is the value of interest. The opposite is the case here. The beam asymmetry can be calculated to first order in α from the QED tree-level diagrams allowing the degree of polarization to be fit [30]. A resulting example of the degree of polarization from the 2016 commissioning of GlueX is seen in figure 2.3 (bottom).

Pair Spectrometer. The pair spectrometer (PS), shown in figure 2.4, is used primarily to determine the beam flux within the coherent peak. The PS reconstructs the energy of a beam photon by detecting the electron-positron pair produced by the photon in the TPOL.
Figure 2.3: An example of the flux determined by the PS and the degree of polarization obtained from the TPOL for the commissioning of the detector in 2016. Reprinted figures with permission from [33]. Copyright 2017 by the American Physical Society.

Figure 2.4: An image of the pair spectrometer in the hall. The beam travels from left to right across the image.

of the photon beam flux may be used to calibrate the energy determined by the tagging system. The detectors cover a momentum range for the electrons and positrons that corresponds to photon energies between 6.0 and 12.4 GeV [34]. An example of the resulting flux from the PS and the degree of polarization from the TPOL for the 2016 commissioning run period is shown in figure 2.3.
2.3 The GlueX Spectrometer

Shortly after the PS, the photon beam reaches the main detector setup, shown in figure 2.5, which consists of a start counter, solenoid magnet, two drift chambers, two calorimeters, and a time-of-flight spectrometer. The solenoid is a 2 T superconducting solenoid which produces the necessary field required for the desired hermiticity, as well as momentum and energy resolutions needed for tracking particles. It helps to reduce electromagnetic background due to its geometry by causing low energy electron-positron pairs to spiral near the beamline. The solenoid magnet houses the target, start counter, barrel calorimeter, and the central and forward drift chambers. The solenoid stands almost 4 m high and 4 m long [27].

![Schematic of the overall GlueX detector located in Hall D at Jefferson Lab. Reproduced from [29].](image)

2.3.1 Target and Start Counter

Target. The target cell is located within the solenoid and is filled with liquid hydrogen. The target is filled by condensing and cooling hydrogen gas to an operating temperature of 20.1 K [27]. At the standard operating equilibrium pressure of 19 psia, the boiling point of liquid hydrogen is 1 K greater than the operating temperature, which reduces boiling within the target cell resulting in a more stable density [27]. The resulting density of the liquid hydrogen is approximately stable
at 71.2 ± 0.3 mg/cm³ [27]. The target is located at 50 cm in z, where 0 cm is defined at the start of the solenoid, and is 30 cm long.

![Diagram of the detector system](image)

Fig. 2.6: Schematic of the start counter detector and the target cell. Reproduced from [29].

Start Counter. The start counter (SC) is located immediately outside of the target cell and the schematic of which is shown in figure 2.6. The primary purpose of this detector is to accurately associate the beam photons with the correct RF bunch. It has a cylindrical shape with a cone-shaped nose consisting of 30 narrow scintillator paddles [35]. The segmentation allows for operation up to a beam intensity of $10^8 \gamma$/s. Beam bunches enter the target every 4 ns and thus the resolution of the SC must be sufficiently high to accurately identify the corresponding bunch for each event. The start counter is integral in the design of the detector system.

2.3.2 Drift Chambers

The drift chambers are responsible for the tracking of charged particles, in which they provide position, timing, and energy deposition information. Both of the drift chambers are filled with their own mixture of argon and carbon dioxide which is monitored by shift personnel during periods of running. Charged particles passing through a drift chamber ionize the gas. The induced current is then measured by the electronics. The gas mixtures are optimized for position resolution in either detector. The motion of the charged particles in the magnetic field, as well as the timing, allow one to determine the momentum of the particle. Images of both of the drift chambers in GlueX, the Central Drift Chamber and the Forward Drift Chamber, are shown in figure 2.7.
Central Drift Chamber. The central drift chamber (CDC) is of cylindrical straw-tube design located in the upstream half of the solenoid and is the first layer around the target and start counter. It is composed of 28 layers of 1.5 m long, 1.6 cm diameter straws; a total of 3522 straws make up this detector [36]. Each straw contains an anode wire made from 20 µm diameter gold-plated tungsten [36]. The inner wall of each straw acts as a cathode to ensure uniformity in the electric field around the wire. The straw is used to add rigidity, support the tension in the wire, and prevent the wires from touching. The alignment of these straws is a major calibration effort that is taken every run period as seen in reference [36].

The CDC provides the information needed to make timing cuts and cuts based on the amount of energy deposited while traveling through the detector. As shown in figure 3.2, the proton is clearly distinguishable from the mesons and leptons by energy deposition below 1 GeV in the CDC. The CDC provides polar angular coverage from 6° to 168° from the beamline.

As discussed briefly in section 5.1, the CDC experienced a degradation in the gas mixture during the Spring 2018 run period resulting in a loss in efficiency for the channel studied in this work.

Figure 2.7: Image of the central drift chamber (left) and forward drift chamber (right). Reproduced from [29].

Forward Drift Chamber. The forward drift chamber (FDC) is located in the downstream half of the solenoid and is used to track charged particles along the beam line. The FDC has an polar angular coverage from 1° to 10° from the beamline. The FDC handles a high volume of tracks as well as spiraling trajectories due to the nearness to the electromagnetic background surrounding the beamline. It is composed of Cathode Strip Chambers, which consist of two cathode planes divided into strips and placed at an angle with respect to wire planes [37]. The FDC consists of 4
identical disk shaped packages, each with 6 cells. A cell consists of two cathode strip planes with anode and field-shaping wires in between. Spatial and direction information is determined from the charge induced on the strips and timing information from the wires.

2.3.3 Calorimetry

The two calorimeters, the Barrel Calorimeter and the Forward Calorimeter, are shown in figure 2.8, and are used to detect neutral particles. Both measure the energies and positions of the showers from the photons or neutrons. Additionally, both of the calorimeters measure the timing of the hits for both neutral and charged particles.

Barrel Calorimeter. The barrel calorimeter (BCAL) is located just inside the solenoid and covers a range in polar angle of 11° to 126° from the beamline [38]. The BCAL determines the position and energies of photon- or neutron-induced electromagnetic showers as well as the flight time of all particles. The BCAL consists of 48 modules of scintillating fibers with trapezoidal cross section, forming a 3.9 m long cylinder that fills the solenoid [38]. Each module consists of approximately 15,000 fibers sandwiched within 185 layers of 0.5 mm thick lead [27]. The BCAL, as later discussed in section 3.2, is the detector with the highest timing priority in determining a charged particle’s hypothesis.

![Figure 2.8](image-url)

Figure 2.8: (left) Image of the barrel calorimeter prior to it being placed into the solenoid. (right) The forward calorimeter without the front cover to show the crystals. Reproduced from [29].

25
Forward Calorimeter. The forward calorimeter (FCAL) is a lead-glass calorimeter located downstream of the main solenoid. It covers a polar angular region of 1° to 11° from the beamline [27]. It consists of 2,800 4 cm square lead-glass modules, each containing a lead-glass block and a Photo-Multiplier Tube (PMT), arranged in a circular array [39]. The detector is located within its own dark room. As a particle, typically an electron, positron, or photon, enters the detector, it interacts with the nuclei in the detector through bremsstrahlung or pair production. The resultant particles similarly interact cause a 'shower' of interactions to occur. The light is then measured by a PMT and the amount detected is directly proportional to the energy deposited.

2.3.4 The Time-of-Flight Spectrometer

The time-of-flight spectrometer (TOF) is a planar detector located directly upstream of the FCAL. The TOF was constructed at and is maintained by Florida State University. The primary purpose of this detector is to determine the flight time of charged particles. It is composed of two planes of scintillator paddles with PMTs on both ends of each paddle. The nominal configuration for Phase-I GlueX is shown in figure 2.9. Each plane consists of 38 full-length (252 cm) full-width (6 cm) paddles, 4 full-length half-width paddles, and 4 half-length full-width paddles along the beamline [40]. The half-width and half-length paddles are situated around the beamline, in order to lower the rates due to electromagnetic background, especially at high beam intensities. The TOF reads the time at which charged particles pass through it with a design accuracy up to 80 ps. In conjunction with the time from the accelerator (RF time) and its momentum, a particle's flight time and path-length traveled are determined. The detector is accurate to sufficiently distinguish between charged pions and kaons up to 2.5 GeV in momentum.

The TOF additionally has a Lucite shield around the beam hole to help lower the interaction rates. This shielding was installed in December of 2015. The implementation of this structure in the detector simulation geometry is further discussed below.

In the summer and fall of 2019, the TOF was upgraded to further reduce interaction rates in the central paddles. This is in anticipation of Phase-II running which will include higher beam intensities and began in Spring 2020. This upgrade increased the size of the region around the beamline as well as increased the segmentation of the central paddles. A schematic of the central region before and after the upgrade is shown in figure 2.11. The hole around the beamline was increased in size from a 12 cm square to an 18 cm square. Several changes were implemented in
regards to the segmentation of the paddles. The four half-length paddles per plane were increased to eight half-length paddles per plane. Their widths were also decreased from 6 cm to 4.5 cm. The four half-width paddles remained immediately after the half-length paddles. The upgrade included the addition of four full-length 3/4-width paddles surrounding the half-width paddles before returning to the nominal full-length full-width paddles.

Simulation Geometry Updates. As part of this work, a year was spent on-site at Jefferson Lab. The Time-of-Flight specific work performed while stationed at the lab includes the calibration of the Fall 2018 run period and two simulation geometry updates. Monte Carlo simulation are generated and then past through Geant4 [41], which simulates the detector responses for the particular Monte Carlo events. An accurate representation of the detector volumes placement and materials is need in order to accurately model the data. These detector geometry updates are integral in producing Monte Carlo events that are an accurate representation of data. The update described in section 2.3.4 was also the primary step in validating the corresponding software update for the new geometry.

Geometry Update: Inclusion of Lucite Shielding. In December of 2015, a shield was added to the front of the Time-of-Flight spectrometer as shown in figure 2.9. This addition was in order to reduce the high rates caused by increased beam intensities as consequently increased

![Figure 2.9: Image of the time of flight spectrometer in the hall prior to the upgrade but with the inclusion of the Lucite shielding.](image)
electromagnetic background around the beam hole. The shielding consisted of a face of six layers of Lucite added around the beam hole in the front of the Time-of-Flight spectrometer. These layers were held in place by an inner section of polyethylene that went through the two planes of the detector and continued out the back of the detector. Measurements were taken in the hall in November of 2018. The face of the shield is 25 cm by 25 cm and 5.7 cm thick. The polyethylene inner section is 13.3 cm long with an inner square hole with a side length of 9.5 cm.

![Figure 2.10: The cross section of the Time-of-Flight spectrometer before and after the implementation of the Lucite shielding.](image)

The implementation of this shielding into the detector geometry required the addition of four new volumes, one for the face and three for the support structure. The support structure consists of the portion within the face, the portion within the planes of the Time-of-Flight, and the portion behind the detector. Figure 2.10 shows the cross section of the detector geometry before and after the implementation of the shielding.

Geometry Update: Detector Upgrade. During the summer and fall of 2019, the Time-of-Flight spectrometer underwent an extensive upgrade to increase the segmentation of the inner paddles to accommodate increasing beam intensity rates. This work contributed to that upgrade by placing the new geometry into the detector specification software package that is used by Geant4 [41]
to simulate the detector response. This new detector geometry was then used to test the upgrade to the reconstruction software prior to physics running with the new geometry starting in the spring of 2020.

Figure 2.11: Before and after diagrams of the central portion of time-of-flight spectrometer demonstrating the change in paddle segmentation and beam hole size.

A schematic of the central region of the Time-of-Flight spectrometer before and after the upgrade can be seen in figure 2.11. The upgrade included increasing the size of the beam hole as well as increasing the segmentation near the center of the Time-of-Flight spectrometer. This involved adding two additional volumes to the geometry and modifying the remaining five volumes. The beam hole changes from a 12 cm square to an 18 cm square. Consequently, the central single-sided paddles decreased in length from 120 cm to 117 cm. These paddles also decreased in width from 6 cm to 4.5 cm and the number of them per side doubled. The half-width paddles (3 cm) stayed the same on either side of the single-sided paddles. Prior to the upgrade, the following paddles were the nominal 6 cm double-sided paddles. The upgrade included an additional two paddles on
each side of the half-width paddles which are 4.5 cm in width. These changes have been tested and implemented as the nominal geometry for the Spring 2020 run period and onward.

2.3.5 Detection of Internally Reflected Cherenkov Light Detector

Phase-II GlueX represents an additional 400 days of approved data taking by the Program Advisory Committee at Jefferson Lab. This new phase started in early 2020. Phase-II will bring additional statistics, higher beam intensities, and improved particle identification. The Detector of Internally Reflected Cherenkov light detector (DIRC) is the addition to the main GlueX spectrometer that will improved the particle identification by extending the momentum range in which pions are distinguishable from kaons.

The DIRC will increase the number of reactions that are able to be studied, as well as reduce the background due to misidentification of higher momentum particles. The DIRC is designed to extend the momentum region in which kaons and pions can be distinguished to 4 GeV, an increase from 2 GeV with the TOF [42]. Installation of the DIRC took place in 2018, with commissioning occurring in early 2019. It is located between the TOF and the solenoid, as shown in figure 2.12. The DIRC consists of four boxes, each containing 12 synthetic fused silica bars [42]. When a charged particle hits the DIRC, Cherenkov light is emitted at an angle known as the Cherenkov angle.
angle. The cosine of this angle is inversely proportional to the velocity of the particle and is greater than the critical angle for total internal reflection in the momentum range of interest. The quartz bars are used as radiators and light guides for the Cherenkov light and the Cherenkov angle is preserved through the lights path. The particles can be distinguished by their Cherenkov angle at a given momentum as seen in figure 2.13. This detector will play a large role in kaon identification in Phase-II GlueX, which started running in the spring of 2020.

![Figure 2.13: An example of the Cherenkov angle with the expected momentum separation for each of the particle types. Reproduced from [42].](image)

Figure 2.13: An example of the Cherenkov angle with the expected momentum separation for each of the particle types. Reproduced from [42].
CHAPTER 3

DATA SETS AND ANALYSIS FRAMEWORK

From the detectors, the detector digital outputs are collected and calibrated. This data is then constructed into tracks and showers and stored in the format of Reconstructed Event STorage (REST) files. At this stage, all hit level information is discarded. The process of going from raw data to REST data is computationally expensive and is only performed a limited number of times at the collaboration level, usually after substantial improvements to detector calibration. The REST data are saved to be later used to form subsets for specific reactions with lenient selection criteria in so-called 'analysis launches'. It is at that stage that particle classification is performed.

3.1 Data Sets

This analysis is based on Phase-I running of GlueX which consists of the three major run periods taken over 2 years. After the successful commissioning in Spring 2016, the first physics data taking was in Spring 2017. It occurred from January 2017 to March 2017 and resulted in \(~ 50\) billion physics events or \(~ 0.8\) Pb of data. The next major run period was in Spring 2018 occurring from December 2017 to May 2018. Spring 2018 resulted in \(~ 145\) billion physics events or \(~ 1.9\) Pb of data, a substantial increase from Spring 2017 and the largest portion of the Phase-I data. The latest data set of Phase-I was the Fall 2018 run period from September 2018 to November 2018, resulting in \(~ 78\) billion physics events or about \(~ 1.1\) Pb of data. This run period also included 4.5 days of running with the coherent edge at a lower energy and the Pair Spectrometer moved to a lower operating beam energy range, which allows for measurements directly comparable to previously measured quantities, primarily from the CLAS collaboration.

3.2 Analysis Framework

After the data have been reconstructed from detector hits to tracks and showers, an analysis launch for particular reactions is performed, which produces a skim of the data for each of the reactions of interest. These skims over the data include primary loose particle selection criteria.
to allow for a subset of the data to be considered for further study. The event selection starts by building all possible combinations for the desired reaction with at least the minimum number of required charged tracks and/or neutral showers. All detected tracks and showers are candidates for particles of the charge of interest. The combinations are then subjected to various selection criteria to eliminate hypotheses that are not consistent with the reaction of interest. The charge of a particle is determined by the direction of curvature in the magnetic field. Each track is then reconstructed under several different particle hypotheses: proton/antiproton, kaon, pion, and electron/positron. The fractional velocity β, defined as the velocity divided by the speed of light, for these candidates is calculated using the path length and time-of-flight. This value when viewed as a function of momentum clearly shows bands for each of the different particle hypotheses, as shown in figure 3.1. At low momentum, there is a clear separation of the different particle candidates. As momentum increases, each of the bands approaches one or the speed of light. The additional horizontal bands are due to hypotheses associated with an incorrect beam bunch, including those with a fractional velocity greater than one.

![Figure 3.1: Example of a β plots for the Time-of-Flight spectrometer for all positively charged candidates and negatively charged candidates. Taken from the monitoring histograms produced for run 51582 of the Fall 2018 run period.](image)

Additionally, for each particle hypothesis, a difference in timing is calculated. This difference is between the back propagated timing from a fast timing detector to the track vertex and the forward propagated time from when the photon beam bunch passed through the center of the target to the track vertex. Since the mass is assumed in the propagation from the detector, these distributions
should be centered at 0 ns for correct hypotheses. The difference between these times is used to determine the validity of the hypothesis. If it is inconsistent within a given range, depending on the analysis, the hypothesis is discarded from consideration. By using this method, the number of tracks and showers under consideration for each hypothesis is reduced. An example of the difference in timing versus momentum distributions for candidates of a K^+ in the Time-of-Flight spectrometer is shown in figure 3.2.

![Figure 3.2: (left) Example of a Δt plot for the Time-of-Flight spectrometer for K^+ candidates and (right) of the energy deposition in the Central Drift Chamber. Both plots were taken from the monitoring histograms produced for run 51582 of the Fall 2018 run period.](image)

The correct hypotheses are contained in the band at 0 ns. The upper and lower bands are that of the protons and pions, respectively. The bands that do not asymptotically approach 0 ns contain those whose candidates are associated with the incorrect beam bunch resulting in a shift by a factor of 4 ns, as discussed in section 3.2.1. It can be seen that with the TOF, pions and kaons are separable up to approximately 2 GeV in momentum. In practice, the best timing information available is used for each track. The hierarchy for the detectors with timing information is BCAL>TOF>FCAL>SC. The timing is considered in this order due to the individual detector resolutions. The BCAL and TOF also cover different angular regions so the order between the first two is arbitrary. The timing requirements applied at the time of the analysis launch for the relevant particles are found in table 3.1.
Table 3.1: The timing requirements for each relevant particle hypothesis in the 4 detectors with timing information [43].

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>BCAL (ns)</th>
<th>TOF (ns)</th>
<th>FCAL (ns)</th>
<th>SC (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π±</td>
<td>±1.0</td>
<td>±0.5</td>
<td>±2.0</td>
<td>±2.5</td>
</tr>
<tr>
<td>K±</td>
<td>±0.75</td>
<td>±0.3</td>
<td>±2.5</td>
<td>±2.5</td>
</tr>
<tr>
<td>p</td>
<td>±1.0</td>
<td>±0.6</td>
<td>±2.0</td>
<td>±2.5</td>
</tr>
</tbody>
</table>

As charged particles travel through a medium, the particles interact with the electrons in the medium which results in ionization loss. Energy loss by ionization can be described using the Bethe formula, equation 3.1, which shows that the loss is inversely proportional to β^2 [5]. In equation 3.1, the medium is expressed by the density ρ, atomic mass A, and atomic number Z through which the particle of charge q is traveling at fractional velocity β [5]. The coefficient K is approximately 0.307 MeVg$^{-1}$cm2 derived from fundamental values, W_{max} is the maximum energy transfer to an electron in a single collision, and I is the excitation energy of the medium [5].

$$-\left(\frac{dE}{dx}\right) = \frac{Kq^2Z\rho}{A\beta^2}\left[\frac{1}{2}ln\frac{2me^2\beta^2\gamma^2W_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$ \hspace{1cm} (3.1)

The Bethe formula depends on the fractional velocity. If one looks at the ionization loss as a function of momentum, bands form for particles with different mass. In GlueX, the resolution and relevant momentum are such that this value can be used to separate the proton from the lower mass particles using the Central Drift Chamber (CDC). An example of which is shown on the right side of figure 3.2. The large deposition at low momentum is that of the proton while the other particles are indistinguishable on the shown scale. The band associated with kaons lies between the two primary bands but at significantly lower yields. The separation of the proton band is apparent up to about 1 GeV in momentum. In the CDC, classifications are used to select those hypotheses within the region of separation and retain all the candidates outside of that region. For protons or anti-protons, the energy deposition per unit length needs to be greater than [43]:

$$dE/dx > e^{-4p+2.25} + 1.0 .$$ \hspace{1cm} (3.2)

Meanwhile, all the mesons must obey [43]:

$$dE/dx < e^{-7p+3.0} + 6.2 .$$ \hspace{1cm} (3.3)
Kaons are typically much less abundant than pions as shown by the relative intensities in figure 3.1. Therefore, channels containing kaons have additional constraints in order to have a more reasonable output file size. These additional constraints include the requirement that there is timing in at least one of the four timing detectors (BCAL/TOF/FCAL/SC) and that there is enough information to calculate \(\frac{dE}{dx}\) in the CDC. Other particles, such as pions and protons, are not required to satisfy both of these constraints.

Loose mass constraints may also be applied for decaying particles such as the mass of \(\pi^0\) from the detection of two photons. These in general are sufficiently loose to not have an effect on the requested channel. For example, the ground state \(\Xi(1320)\) has a requirement that the invariant mass is between 1.1 GeV and 1.5 GeV [43]. Additionally, the \(\Lambda\) has the requirement to be within 1.0 GeV and 1.2 GeV [43].

3.2.1 Tagger Accidentals

Figure 3.3 shows an example of the beam bunch distribution for the Spring 2017 data set. This quantity is the difference in timing between the beam photon time measured in the tagger and the propagated RF time in the main spectrometer. The central peak is known as the prompt peak and represents the correct choice in RF bunch associated with the beam photon. The side peaks are known as out-of-time beam photons which show a 4 ns pattern matching that of the 4 ns timing between electron bunches. So called 'accidentals' are photons within the prompt peak that are incorrectly associated. Naively, the 4 ns structure continues underneath the prompt peak at the same scale as it occurs in the side peaks. The accidental beam photons can be caused by a variety of events including incorrect identification of the beam photon or hits in nearby counters at the same time as a correct photon.

All plots shown in chapter 4 and beyond are 'accidental subtracted.' This is a correction for the photons that have the same structure as the side peaks that are underneath the prompt peak. The correction is performed by only considering events within the prompt peak and then subtracting the average number of events within the first peak on either side of the central peak.

Recently, collaborators discovered that the naive approach of the accidentals having the same structure as the side peaks is too simplistic of an assumption. In order for the side peaks to be used to approximate the prompt peak distribution, they need to be scaled by a small scale factor\(^1\) to

\(^1\)run-dependent, \(<\sim 5\%\), still under investigation
accurately represent the tails associated with the prompt peak. The value represents a correction factor due to correlations or intensity variations between the beam bunches in the incoming photon flux. This small factor is determined by comparing the nominal tagger timing with that from the pair spectrometer and is dependent on the run number for that particular data. This likely stems from variations in the accelerator, such as but not limited to, effects in transmissions due to running multiple experiments concurrently. This factor is used to weight the events in the side peaks prior to the subtraction of the average. All plots here forth include accidental subtraction with the use of the additional scaling factor.

3.2.2 Kinematic Fitting

One of the major tools used in hadron spectroscopy is the use of kinematic fitting, which consists of applying a set of constraints to a particle combination hypothesis for a particular reaction. Kinematic fitting is the act of varying the measurements within their uncertainties such that the resulting values are consistent with the external constraints on the system. The most commonly used of this is the requirement of energy and momentum conservation. The momentum, and depending on the fit, the position, measurements of each particle in the final state are adjusted to force the exact conservation of the both energy and momentum for the reaction. The resultant pulls, or the change divided by change in uncertainties, should result in a Gaussian distributions. If there is no bias in the measurements, the Gaussian should be centered at zero difference. Additionally,
if the uncertainties are correctly determined, the Gaussian should have a width of one, assuming no cross correlations between the measurements.

There are four fit types available in the GlueX analysis framework. The available requirements can be on the momentum 4-vectors and the vertices. The four options include: no fit, momentum, vertex, and the combinations of momentum 4-vectors with vertex constraints. All fits requiring 4-momentum conservation also include the constraint on the mass of decaying particles unless otherwise requested to not be constrained. In general, the main fit used for analyses within GlueX is that which constrains the 4-momentum and the vertex positions.

Conservation of 4-momentum is straightforward with four constraint equations, one for each quantity with no free parameters in the fit for an exclusive reaction. For an inclusive reaction where one particle is missing from the reaction, the only difference is that the three components of the missing particle’s momentum are unknown as well. In general, each additional mass constraint provides an additional constraint equation with no additional free parameters. The vertex constraint requires that all particles for a particular interaction have tracks that intersect at the same point in space. This constraint results in two independent equations per particle at the vertex, corresponding to the bend plane of the tracks in magnetic field and in the non-bend plane [44, 45]. The location of the vertex contributes three unknowns, one for each coordinate. For example, if one considers the decay of a particle into two decay particles (\(A \rightarrow BC\)), there are four equations, two associated with both \(B\) and \(C\), and three unknowns associated with the three components of the vertex position. The vertex constraint is particularly useful for channels in which a particle decays weakly. Weak decays occur on a time scale of the weak interaction \((10^{-11}\) s\) as opposed to the time scale of the strong interaction \((10^{-23}\) s\) [46]. The drastic change in the time scale results in a detectable distance traveled prior to decaying. The addition of the vertex constraint will thus have two vertices to constrain, the production vertex and the vertex of the weakly decaying particle.

As with any fit, a figure of merit is provided for each event that converges. In GlueX, the two figures used are the \(\chi^2\) for the fit and the corresponding confidence level. These two figures of merit are not independent as the confidence level is an integration over the \(\chi^2\) distribution. The \(\chi^2\) is typically more robust to use due to the level of non-gaussian uncertainties due to tracking within the detector. The \(\chi^2\) is typically normalized to the Number of Degrees of Freedom (NDF) within the fit, and will be referred to as \(\chi^2/\text{NDF}\) for the rest of this work. Once normalized to
the NDF, the idealized distribution for the value from the fit peaks at one. Particle combinations with a χ^2/NDF less than one are typically associated with statistical fluctuations within the fit. Events where the χ^2/NDF is much greater than one are a result of being inconsistent with the fit constraints. These events are removed from further analysis by selecting a maximum χ^2/NDF to consider for each combination. In the case of this work, a maximum χ^2/NDF value of 3.5 is used.
CHAPTER 4

GROUND STATE CASCADE BARYONS Ξ(1320)− AT GLUEX

Cascade resonances are predicted to be produced through \(t \)-channel photoproduction of singly strange \(\Lambda \) or \(\Sigma \) hyperon resonances [23]. The difficulty of studying Cascade baryons using photoproduction stems from the large amount of energy needed to produce strange quarks. For each strange quark in the final state, a kaon containing an anti-strange quark must be produced with rest mass of \(\sim 500 \) MeV. Therefore, in \(\Xi \) photoproduction, 1 GeV of energy is lost solely to the production of the kaons in the system. The increase in the energy of CEBAF to 12 GeV provides the necessary energy to produce high-mass Cascade baryons.

The diagrams in figure 4.1 show the current models used to describe the production of negatively-charged and neutrally-charged Cascade baryons. Through \(t \)-channel production, a kaon and an excited, singly-strange hyperon are produced [23]. This excited intermediate hyperon then decays into an additional kaon and a Cascade baryon. The kaon produced through the \(t \)-channel mechanism is predicted to be very forwarding-going and to have high momentum. This allows for the two kaons to be separated via their polar angle, the angle between the beam line and their trajectory. Figure 4.2 shows the simulations of the momentum vs polar angle distribution done for both the octet ground state \(\Xi(1320)^− \) and an excited state \(\Xi(1820)^− \) [47]. The three high intensity regions in figure 4.2 consist of kaons, kaons and protons, and pions from highest momentum to lowest. The red box indicates the region in which the TOF spectrometer was designed to be able to easily identify kaons from pions via momentum separation.

The baseline GlueX detector can only separate the kaons and pions up to a momentum of 2 GeV and therefore, is not capable of directly identifying the high momentum \(t \)-channel produced kaon from a pion with the current separation, as its momentum is \(\sim 6 \) GeV for the ground state Cascade baryon. This kaon lowers in momentum as higher mass Cascade baryons (excited states) are considered. Even with the DIRC addition, it is unrealistic to expect a direct identification of this kaon for the ground state \(\Xi \). Instead, the set of particles are considered as a whole through
Figure 4.1: Feynman diagrams for photoproduction of the octet ground state Ξ baryons. The top diagram is for Ξ(1320)$^-$ while the bottom diagrams are the two production mechanisms for Ξ(1320)0.

Figure 4.2: Simulations for momentum vs polar angle for all tracks where the red box denotes the kaon-pion separation currently possible in the TOF. The three high intensity regions consist of kaons, kaons and protons, and pions from highest momentum to lowest. Reproduced from [47].

the use of kinematic fitting for both the ground state and excited Cascade baryons as shown in section 4.1. By classifying a combination of particles instead of individual particles, the likelihood of correctly identifying the initial kaon is improved as its momentum is outside of the region in which it can be directly identified. The primary source of background in these reactions will be the misidentification of the high momentum kaons as pions. The DIRC addition will extend kaon identification to higher momentum, an aspect that will greatly enhance the likelihood of positively identifying kaons for the Cascade spectrum, especially the excited states.
The ground state negatively-charged Cascade baryons $\Xi(1320)^-$ are detected via an exclusive decay chain. The decays of $\Xi^- \to \Lambda \pi^-$, and $\Lambda \to p \pi^-$ are considered, resulting in a final state of $K^+K^+p\pi^-\pi^-$ as shown in figure 4.3. These decays have branching ratios of 99.9% for the Ξ and 64% for the Λ [5]. The neutron decay of $\Lambda \to n\pi^0$ can also be considered but is not in the scope of this work. The neutron decay is much more challenging due to lower statistics because of the branching ratio as well as the difficulty of detecting neutrons. This analysis uses the three different run periods (Spring 2017, Spring 2018, and Fall 2018) from GlueX Phase-I data taking with skims produced for the reaction $\gamma p \to K^+K^+\Xi^-$ including kinematic fit constraints of 4-momentum, vertex, and Λ mass. As previously mentioned in chapter 3, the reconstruction of the data, or transforming the detector output into tracks and showers, is computationally expensive, and is only performed after significant changes to the detector calibration or to the reconstruction software. In this work, the Spring 2017 data set utilizes the third iteration of the reconstruction of the data. The Spring 2018 data set uses the second iteration of the reconstruction. Similarly, the Fall 2018 uses the second iteration of the reconstruction. The standard GlueX analysis cuts, as discussed in chapter 3, apply to all sets of this reaction.

4.1 Event Selection: Kinematic Fitting

Kinematic fitting is the most important tool in this analysis and believed to be the main advantage of studying exclusive reactions. The form of kinematic fitting used in this analysis results in the requirement for 4-momentum conservation, Λ mass constraint, and vertex constraints. The

1 using 1_14_11_11_23 with flags B4,M23
2 Analysis launch versions: 2017,01 - ver20, 2018,01 - ver03, and 2018,08 - ver02/05
latter requires that particle tracks originate from the same vertex. For the \(\Xi(1320)^- \), three different vertices are constrained: \(\gamma p \rightarrow K^+ K^+ \Xi^- \) (production vertex), \(\Xi^- \rightarrow \Lambda \pi^- \), and \(\Lambda \rightarrow p \pi^- \). Each event is required to converge and is given a confidence level and \(\chi^2/NDF \) value based on how likely it is to be the desired reaction. The \(\Lambda \pi^- \) invariant masses as a function of \(\chi^2/NDF \) are shown for each data set in figure 4.4. These histograms show that events with a high \(\chi^2/NDF \) are typically background. This background includes particle combinations which pass the initial selection criteria described in section 3, but fail to match the constraints applied by the kinematic fit. All the \(\chi^2/NDF \) distributions beyond 15 are flat with no structures in the invariant mass distributions. A \(\chi^2/NDF \) cut of 3.5 is applied to kinematic fit results, as denoted by the red lines and arrows in figure 4.4. The effect of this criteria on the cross section is discussed later in section 6.6.2. A histogram showing the number of events appearing within the \(\Xi(1320)^- \) mass range for each run period for data and Monte Carlo are also shown in figure 4.4 (bottom right). This histogram shows that the effect of \(\chi^2/NDF \) is similar between data and Monte Carlo as well as that the level of background is consistent in data as the cut is loosened.

4.2 Events After Selection

The signature for the octet ground state \(\Xi(1320)^- \) can be observed in the data through the above reaction where the detected final state particles are \(K^+ K^+ p \pi^- \pi^- \). The \(\Lambda \pi^- \) invariant mass distributions from data are shown in figure 4.5. Included are the distributions using the measured 4-momenta, as well as the 4-momenta that is output after the kinematic fit. The kinematic fit improves the overall resolution from \(\sim 7 \) MeV to \(\sim 4 \) MeV. This work was used as the example for the detector resolution in the overall GlueX Spectrometer publication [27]. The background for all the distributions is relatively small. The fluctuation at approximately 1.38 GeV is likely due to a \(\Sigma(1385)^- \) resulting from a misidentification of an initial kaon, as a \(\pi^- \), for the final state of \(\gamma p \rightarrow K^+ \pi^+ \Sigma^- \rightarrow K^+ \pi^+ p \pi^- \pi^- \). The dip in the kinematically fit spectrum at 1.5 GeV is an artifact of the loose mass constraint on \(\Xi \) during the analysis launch for the reaction.

The kinematically fit spectrum is fit in order to extract the yields for \(\Xi(1320)^- \). The Cascade baryon decays weakly resulting in a much longer time scale than a strongly decaying particle. Since the natural width of a resonance is inversely proportional to the lifetime, the natural width for the Cascade baryon is negligible in comparison to the detector resolution with an order of magnitude
Figure 4.4: Invariant mass spectrum for $\Xi(1320)^- \rightarrow \Lambda\pi^-$ versus the χ^2/NDF from the kinematic fit in the Spring 2017 data set (top left), Spring 2018 (top right), Fall 2018 (bottom left). The red lines on these histograms denote which combinations are kept for use in all subsequent histograms. The yields in the slice of $\Lambda\pi^-$ mass containing $\Xi(1320)^-$ as a function of the χ^2/NDF for data and Monte Carlo (bottom right). All distributions are flat beyond χ^2/NDF of 15.

$\ll 1$ eV for the natural width and 1 MeV for the detector resolution. Therefore, it is safe to assume that the entirety of the width of the distribution can be accounted for by the resolution of the detector. The signal is thus represented by a gaussian distribution. The background is currently modeled by a second-order Chebyshev polynomial of the first kind. The primary reason for the choice in model is due to the stability of the fit over a normal polynomial due to reduced correlations between the coefficients [48]. The extraction of the yields from this spectrum is currently a work in progress as there are larger effects on the cross section under study. As the analysis reaches
completion, changes to the model for the background will need to be studied to understand the contribution of the Σ(1385) on the yields extracted from Ξ(1320). There is a yield of 3081 ± 78 events from the Spring 2017 data, 4755±100 from the Spring 2018 data, 5291±84 from the nominal energy Fall 2018 data, and 314 ± 23 for the low-energy Fall 2018 data.

The kinematics for these events were as anticipated from the original GlueX proposals, shown in figure 4.2. The momentum versus polar angle distributions for each of the three particle types are shown in figure 4.6. There are two kaons with vastly differing kinematics, one at high momentum and low polar angle and the other with low momentum and high polar angle. Though the high momentum kaon is lower in momentum than that predicted by the proposal, it is still outside of the reach of direct kaon identification using the timing in the detectors. At that momentum, it is indistinguishable from a pion at the same momentum. When all the particle candidates in the combination are considered, such as by the kinematic fit, the invariant mass distribution shows a relatively clean peak for the Ξ, despite the initial kaon being outside the momentum reach of the fast timing detectors. Therefore, while the kaon is outside of the direct identification range of GlueX, it is still able to be identified indirectly. Alternatively, the second kaon from the decay of the intermediate hyperon is much lower in momentum, it is clearly within the momentum range in which it should be distinguishable from a pion at the same momentum. It is also the only particle at very large polar angles and is therefore largely detected by the BCAL. The proton and the two pions have similar kinematics. Both have low momentum and low polar angle. Though the low momentum kaon, the proton, and the pions are well within the region of momentum separation, there is a concern due to their proximity to the lower threshold of measurable momentum. This concern will be discussed in further detail in section 6.6.1.

Part of the kinematic fit was the constraint on the vertex positions for the production vertex, the Cascade baryon decay vertex, and the Lambda baryon decay vertex. Both Ξ and Λ have detached vertices resulting in a measurable distance traveled in the detector before decaying. The mean lifetime for Ξ is 163.9 ps and for Λ is 263.2 ps [5]. This results in approximate distances traveled before decay (cτ) of 5 cm for Ξ and 8 cm for Λ. Figure 4.7 shows the distributions for the vertex positions for each run period. It can clearly be seen that the vertex of Ξ and Λ move a measurable distance from the production vertex. The production vertex aligns with the target location which
Figure 4.5: Invariant mass spectrum for $\Xi(1320)^- \rightarrow \Lambda\pi^-$ in the Spring 2017 data set (top), Spring 2018 (middle), and Fall 2018 (bottom). The left column shows the $\Lambda\pi^-$ invariant mass using the measured and kinematically fit 4-momenta while the right shows the overall fit using the kinematically fit data.
Figure 4.6: Measured momentum vs polar angle distributions for events within the \(\Xi(1320)^- \) mass peak for the Spring 2017 run period. The distributions are for the two kaons (top left), two pions (top right), and the proton (bottom).

is at a \(z \)-position of 50 - 80 cm in the GlueX coordinate system, in which 0 cm is defined by the start of the solenoid.

In the proposed production mechanism, there is an intermediate hyperon produced which subsequently decays into a low momentum kaon and a Cascade baryon. Since this intermediate hyperon decays strongly, there is no separation in the vertices to distinguish between the kaons in that manner. The kaons appear in two different kinematics regions of phase space which allows one to separate them via their momentum or polar angle. This work proposes separating them by polar angle and will be discussed later in the Monte Carlo studies shown in chapter 5. The momentum
Figure 4.7: Vertex locations in the GlueX coordinate system for the production vertex, the decay vertex of Ξ, and the decay vertex of Λ for Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom).

Transfer $-t$ can be defined in this reaction as shown in equation 4.1.

$$ t = (p_\gamma - p_{K^+})^2, $$

(4.1)

where the 4-momentum of the kaon is that of the t-channel produced kaon. The distribution for each of the run periods is shown in figure 4.8. The value known as the t-slope is the slope of the exponential decay. Each distribution has a resulting t-slope of ~ 1.4 GeV$^{-2}$.

In conjunction with the $-t$ distribution, which uses the high momentum kaon, the low momentum kaon can be combined with the Ξ to form the intermediate hyperon. It can be seen in figure 4.8 (right) that there are no statistically significant peaks in the mass spectrum. This is
Figure 4.8: (left) The $-t$ distributions for each of the different run periods. (right) The invariant mass of the intermediate hyperon formed from the low momentum kaon and Ξ.

likely due to the fact that there are many Λ and/or Σ hyperons that contribute. It would require an amplitude analysis to separate out the contributions from the intermediate hyperon.
CHAPTER 5

MONTE CARLO EVENT SIMULATION FOR
Ξ(1320)−

Monte Carlo events produced at GlueX typically utilize MCwrapper, which is a set of scripts to standardize the production of Monte Carlo simulations for easy comparison between analysers [49]. The first step in Monte Carlo production is the generation of 4-vectors associated with the particles of interest. The amount of input information used to produce these 4-vectors can vary depending on the known information, from using isobar decays of particles to using amplitudes to impact the kinematic distributions. These produced 4-vectors are then passed through Geant4, which is a software used to simulate detector geometry and response [41]. Geant4 can also handle more complicated decays such as detached vertices by using the PDG value of the mean lifetime of a particle [41]. In order to make the Monte Carlo events look more like data, the hits in the detectors are then smeared to account for the detector inefficiencies and resolutions. Background in the form of random triggers, or a random sampling of uncorrelated background events from data, is also included at this time. These data are subsequently treated as actual data are. They are reconstructed and skimmed over in the same way as described in section 3.2.

5.1 Monte Carlo Generation

This work creates Monte Carlo simulations using the genr8 generator [50] for the reaction γp → K+Y* → K+K+Ξ(1320)− using the MCwrapper [49] robot for the Open Science Grid. The particles are allowed to decay in Geant4 [41], which allows the detached vertices to be handled correctly and for the branching ratios to be built into the Monte Carlo production. Beam properties to produce the beam spectrum to match data are taken from values stored in the Calibration Constants DataBase (CCDB) from the pair spectrometer.

The Monte Carlo efficiency quoted in this work includes a combination of the detector acceptance and the efficiency. The efficiency represents the fraction of events that are detected and survive the selection criteria performed on data. For an absolute measurement, like that of the to-
tal cross section discussed in chapter 6, the Monte Carlo events and efficiency should be as accurate a representation of data as possible. Initial Monte Carlo simulation sets showed a beam current dependence on the efficiency as shown in figures 5.1. In the Spring 2017 run period, there were two distinct beam current intensities. The low intensity period occurred between run numbers 30274 and 30788. After run 30788, the beam current was increased. The efficiency has a sharp drop for the run number corresponding to the switch to high beam intensities. In the Spring 2018 run period, there was also an issue with the gas inside the Central Drift Chamber (CDC). As seen in figure 5.1, as the CDC gas mixture degraded, the efficiency for detecting Ξ^- also dropped.

The Monte Carlo events used for this measurement include the full run ranges of each run period. This scales the number of events per run to be proportional to the number of events in the data. This should accurately account for the run number dependence from difference in beam intensities or detector response. The software used is the same as that associated with the respective reconstruction and analysis launches in data.

5.2 Monte Carlo/Data Matching

The input parameters for the generator include the mass and width of every particle and the t-slope of the reaction. The values for the mass and width for the known particles are taken from the PDG [5]. This leaves three free parameters for the generator in order to match to data. These include the mass and width of the intermediate hyperon and the t-slope for the reaction. It was found that too large of a mass and width for the intermediate hyperon left little room for variations in the t distribution.

As mentioned in chapter 4, the two kaons are both produced at the production vertex which leaves ambiguity in the determination of the momentum transfer t. In Monte Carlo, it is known which kaon is which due to the production of the intermediate hyperon being built into the reaction. The two proposed ways of identifying the initial kaon were via momentum or polar angle separation with the decay kaon. The two distributions for the momentum and the polar angle of the decay kaon versus the initial kaon for generated Monte Carlo events in the lab frame are shown in figure 5.2. In both of these distributions the decay kaon is on the y-axis and the t-channel produced kaon is on the x-axis. These histograms are produced prior to smearing or reconstruction from the detector response. The resulting effect is that a large portion of the combinations in the histograms will not
be detected at all after being treated like data, more specifically, only $\sim 1\%$ of these combinations be considered in the final distributions, as can be estimated from figure 5.1. Additionally, the resulting combinations are likely not at the momentum or polar angle in which they will be detected after being treated like data. The red curve in both histograms represents the possible selection criteria by either momentum or polar angle. It can be seen that the selection by polar angle is correct more frequently, but by a marginal amount (99.3% of the time vs 97.3%).

A large number of tests were run for varying values for the three free parameters. Each test varied the t-slope, intermediate mass, or intermediate width. The Monte Carlo events are then treated the same as data, including the determination of which kaon is used for the calculation of the momentum transfer. For a subset of these tests, the t distribution is scaled to the same intensity as data and plotted in figure 5.3. In each plot, the chosen t-slope values (0.0, 0.7, 1.4,
Figure 5.2: The comparison of the momentum (left) and polar angle (right) for the two kaons in generated Monte Carlo events. K_2 denotes the kaon from the decay of the intermediate hyperon and K_1 denotes the initial kaon produced at the production vertex.

2.1, 2.8, 3.5 GeV$^{-2}$) are shown for a single value of intermediate mass and width. Across a row, the intermediate hyperon width increases (0.4, 0.6, 0.8, 1.0 GeV) and the intermediate hyperon mass increases down a column with the values (2.0, 2.4, 2.8 GeV). The chosen values for the input parameters based on the best agreement with data kinematics are a t-slope of 1.4 GeV$^{-2}$, and an intermediate of mass 2.0 GeV and width 0.4 GeV. This corresponds to the cyan distribution in the top left plot of figure 5.3.

A sample of high statistics Monte Carlo events was then produced with the values associated with the chosen values. The resulting high statistics sample of the chosen parameter set is shown in figure 5.4, corresponding to the same input parameters as in the cyan distribution in the top left plot of figure 5.3. The momentum transfer distributions agree reasonably well with the data, particularly the Spring 2017 sets. This is improved matching from what initial sets gave. The t distributions could be improved with further adjustment of the input parameters.

While the t distribution is useful to compare as an overall summary of the reaction, the kinematics of individual particles are the most important variables to match between data and Monte Carlo events. The kinematics resulting from this choice of parameters can be found in figures 5.5. In each of these histograms, the number of events in Monte Carlo is normalized to the number of events in data. It can be seen that the Monte Carlo events agree within reason with the data, particularly with the kaons. The kinematics of the pions and protons are an indirect consequence
Figure 5.3: The distributions of $-t$ for Fall 2018 (blue) and varying input parameter tests. The colors represent different input t-slopes, across a row increases the width of the intermediate hyperon (0.4, 0.6, 0.8, 1.0 GeV), and down a column increases the mass (2.0, 2.4, 2.8 GeV).

of the free input parameters. The kinematics of these particles are determined through the handling of the decays of Ξ and Λ, which occurs in Geant4. The protons vary significantly in their momentum distributions between data and Monte Carlo events. The kinematics of the proton are a consequence of the earlier steps in the reaction and are not directly affected by the input parameters. The distributions could still be improved. The effect of the input parameters on the proton kinematics is being investigated, particularly in ranges of momentum transfer t. Future work could improve on the Monte Carlo by comparing the kinematics of all the particles as a function of the momentum transfer $-t$.
Figure 5.4: The distributions of $-t$ for each of the data sets with the chosen input parameters for generation of t-slope $= 1.4 \text{ GeV}^{-2}$, and an intermediate of mass 2.0 GeV and width 0.4 GeV.

There is a known inconsistency in Monte Carlo, that is being investigated, that may result in the loss of the low momentum protons. It is the inclusion of the CUTS card in Geant4 which affects how particles deposit their rest mass in the sub-detectors. If this is indeed the issue, the efficiency found in chapter 6 would increase with the return of the low momentum protons.
Figure 5.5: Kinematic comparison between data and Monte Carlo. The left histograms show the momentum distributions while the right column show polar angle distributions. The top row is for kaons, middle is pions, and bottom row is the proton.
CHAPTER 6

CROSS SECTION OF $\Xi(1320)^-$

A production cross section is a physics observable which describes the probability of the production occurring. The cross section is based on the number of observed events normalized to the incoming beam flux as well as the number of target particles. This allows for cross sections between experiments that consider the same production mechanism to be comparable. It is commonly quoted in the units of barns which have the dimension of area. It can be considered the effective area of the target particle seen from the perspective of the beam particle or photon in this case [46]. Cross sections are used to understand detector performance on an absolute scale. Differential cross sections are cross sections considering their dependence on a reaction variable such as beam energy, momentum transfer, or kinematic variables. The study of differential cross sections improves the understanding of the production mechanism by understanding the dependencies on such variables.

More specifically, the total cross section for photoproduction of $\Xi(1320)^-$ is calculated using:

$$\sigma = \frac{N}{TargetFactor \times Flux \times BR_{\Xi} \times BR_{\Lambda} \times \epsilon}.$$ \hspace{1cm} (6.1)

The target factor represents the number of target particles per cross sectional area. This value is calculated for a target of length L and density ρ by [46]:

$$TargetFactor[\text{atoms/m}^2] = \frac{N_A[\text{atoms/mol}] \times L[\text{m}] \times \rho[\text{kg/m}^3]}{A[\text{kg/mol}]},$$ \hspace{1cm} (6.2)

where N_A is Avogadro’s number, and A is the molar mass. For GlueX, this factor is 1.22×10^{-1} $(1.22 \times 10^{-28} \text{ m}^2)$ for a 29 cm long liquid hydrogen target cell. The number of signal events N is obtained from the fit of the data. The efficiency, ϵ, is the probability that the particles are detected if produced. This efficiency may be factored into several contributions. For instance, the incoming beam photon flux used in equation 6.1 is the tagged flux from the Pair Spectrometer (PS). Only the tagged flux needs to be considered as the efficiency of the PS is factored from the overall efficiency. Therefore, the efficiency of the PS tagging the flux is canceled from the overall equation. For this analysis, the branching ratios (BR) are the probability of a decay to a specific decay mode.
in relation to all the possible decays. The BRs were built into the efficiency as well. Monte Carlo
events are produced such that all decay modes are possible but only those with the final state
of interest are detected. Generally, the Monte Carlo efficiency is the number of events detected
divided by the number of events generated. Values for the efficiency quoted in the remainder of
the document include the branching ratios such that $\epsilon'(\epsilon' \times BR_{\Xi} \times BR_{\Lambda})$.

6.1 Fitting of Data

The yield is taken from the fit of the data using a Gaussian to model the peak and a second-
order ChebyChev polynomial of the first kind to model the background. The yields for both the
signal and background are free parameters within the fit. The yields have the accidental beam
photons subtracted, as discussed in section 3.2.1, using one beam bunch on each side of the prompt
signal peak and weighting them by -0.5 and the scaling factor associated with the corresponding
run number that the event occurred in. The overall fits from the full beam energy range were shown
in figures 4.5 previously. The resulting yields as a function of beam energy for each of the data
sets are shown in figure 6.1 (left). As this analysis moves towards publication, the fit to extract
the yields will need to include a contribution to the background signal for the $\Sigma(1385)$.

![Figure 6.1: (left) The signal yields for Spring 2017 (green), Spring 2018 (red), and Fall
2018 nominal energy range (blue) resulting from the fits to each bin. (right) The fit for
the low energy data from the Fall 2018 run period.](image)

As previously mentioned, there was a short time during the Fall 2018 run in which the coherent
edge of the beam energy spectrum was moved to approximately 3 to 6 GeV. This was achieved by
moving the Pair Spectrometer operating energy down and orienting the diamond to the have the coherent edge within the beam energy region measured with CLAS. As discussed in section 2.2.1, the angle between the electron beam and the diamond’s crystalline plane controls the energy at which most of the beam photons are produced. The resulting fit for that low energy data is shown in figure 6.1 (right). As it was a short run, the yields are limited but it should allow for some overlap in the previous total cross section measurements performed by CLAS, which had beam energies up to 5.4 GeV [24].

6.2 Monte Carlo Efficiency

The efficiency used here is the combination of the acceptance and the efficiency of the detector. The efficiency is that of the $\Xi(1320)^-$ and requires that it travels through the detector, is reconstructed, and passes the selection criteria of that which the data is subjected to. All decay modes are produced and then only the decays of $\Xi^- \rightarrow \Lambda \pi^- \rightarrow (p \pi^-)\pi^-$ are analyzed. The resulting quoted efficiency is thus more accurately defined as equation 6.3d obtained through:

\[
\epsilon' = \epsilon \times BR_{\Xi} \times BR_{\Lambda}
\]

\[
= \frac{N_{\text{recon}}(\Xi \rightarrow \Lambda\pi)}{N_{\text{gen}}(\Xi \rightarrow \Lambda\pi)} \times BR_{\Xi} \times BR_{\Lambda}
\]

\[
= \frac{N_{\text{recon}}(\Xi \rightarrow \Lambda\pi)}{N_{\text{gen}}(\Xi \rightarrow X)} \times BR_{\Xi} \times BR_{\Lambda}
\]

\[
(6.3d)
\]

Because of this, the cross section does not need to account for the branching ratio as it cancels out with the branching ratios from the efficiency calculation in equation 6.1. The efficiency as a function of beam energy that is used for the cross section measurement is shown in figure 6.2. The efficiency for each run period is not consistent because the Monte Carlo models the data according to the parameters of a specific run period.

6.3 Flux

The incoming photon beam flux values are obtained from the pair spectrometer. These values are specifically obtained from the standardized procedure of using a script in ld_utilities which accesses the values from CCDB for the PS. The flux is determined using the query for runs that are
Figure 6.2: The Monte Carlo efficiency for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue) found by dividing the yields in Monte Carlo by the amount of events generated.

considered physics production data and are approved physics runs to be analyzed. The run ranges of the different run periods are:

<table>
<thead>
<tr>
<th>Run Period</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2017</td>
<td>30274-31057</td>
</tr>
<tr>
<td>Spring 2018</td>
<td>40856-42577</td>
</tr>
<tr>
<td>Fall 2018</td>
<td>50677-51768</td>
</tr>
<tr>
<td>Fall 2018 Low Energy</td>
<td>51384-51457</td>
</tr>
</tbody>
</table>

The number of runs used in the flux values were compared to that used in the data. The Spring 2017 flux and data run numbers agreed exactly where both sets included 347 runs. The Spring 2018 flux values included 543 runs while data included 548 runs. The flux values were not included for runs 41007, 41173, 41207, 41221, and 42182. These run numbers were excluded from this analysis. The Fall 2018 data set had a similar issue in which the flux values included 496 runs and data 450 runs. In this case, run 51172 was not included for the flux values but was for data. Additionally, run numbers in the range 51384 to 51457 (low energy runs) were included in the flux calculation but aren’t included in this analysis. The overlap of 449 runs was used for the Fall 2018 run period. The resulting histogram containing each data set are shown in figure 6.3.
6.4 Total Production Cross Section Results

The final results combine each of the pieces as shown in equation 6.1. The statistical uncertainties of each of these pieces are added in quadrature to form the overall statistical uncertainty for each data point. The final results are compared with the CLAS g12 results which were extracted from the histogram in the paper using Engauge Digitizer [51] and then converted to being a function of beam energy instead of as a function of \sqrt{s}. The two CLAS results shown in section 1.3.2 demonstrate a total cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ that rises from threshold and then appears to level off with increasing beam energy. Based solely on these results and the theoretical model from Nakayama [52], one could hopefully expect that there is a continued plateau with increasing beam energy before the expected decline in the production cross section as phase space opens up to more reactions.

This analysis currently shows a drop in the cross section in the GlueX energy regime as seen in figure 6.4. Due to the slight inconsistencies between the lower energy data, it is possible that there is an overall normalization factor still to be accounted for, which is under study and will be discussed further in section 6.6. This would result in a less sharp drop in the cross section at increasing energies. Each of the data sets are presented separately as the cross section is not currently in its final state. The cross section is an absolute measurement in that all the factors of
the detector must be understood to properly normalize the number of signal events. The GlueX collaboration is still in the process of understanding the differences between the data sets for this reaction and several other reactions.

![Figure 6.4: The total production cross section for $\gamma p \rightarrow K^+K^+\Xi^-$ as a function of beam energy for Spring 2017 (green), Spring 2018 (red), Fall 2018 nominal energy range (blue), and Fall 2018 low energy range (violet). These data are compared to the CLAS g12 results (yellow) from reference [24].](image)

The two spring data sets match quite well for most of the beam energies. The discrepancy in the Fall 2018 data set at the coherent edge (~ 9 GeV) is likely due to statistical fluctuations and bin migration, as shown and discussed in section 6.6.4. The transition from one bin to the next has a significant drop in statistics for all components of the cross section. The Fall 2018 data is arguably the best data set of the Phase-I GlueX running in terms of statistics and stability of the beam. It is also the least understood data set as it has been the least studied by the collaboration since it has only been available since May of 2019.

6.5 Differential Cross Section

The total cross section measurement is useful in understanding the systematic uncertainties of the detector but provides little insight on the underlying physics of the reaction. To learn about the physics of the production, the total cross section must be extended to a function of kinematic variables. In this case, the production cross section was extended to the differential cross section as a function of the momentum transfer $-t$. Since $\Xi(1320)$ is predicted to be formed via a t-channel
production mechanism, there should be variations in the rate of production as a function of that variable. Such a measurement is useful for understanding the underlying production model. The differential cross section for $\Xi(1320)^-$ was calculated using:

$$\frac{d\sigma}{dt} = \frac{N}{\text{TargetFactor} \ast \text{Flux} \ast \epsilon' \ast \Delta t}.$$

The differential cross section was calculated in two fashions, binned in and integrated over beam energy. Both are shown here. The component pieces for the differential cross section as a function of $-t$ are shown in figure 6.5. The differential cross section should scale proportional to the factor e^{-bt} where b is the t-slope. It can be seen that the lowest bins in t in the differential cross section do not represent an exponential. This currently has two possible causes. The first is an acceptance argument regarding the minimum threshold for the momentum that is reconstructed in the detector. This is also demonstrated by the Monte Carlo efficiency as it approaches zero as t approaches zero GeV2. At low t, the difference in energy between the beam photon and the t-channel produced kaon is small. This means that a very small amount of momentum is transferred to the intermediate hyperon. It is likely that a low momentum intermediate hyperon would result in a proton that is below the momentum threshold after three decays (Y^*, Ξ, and Λ). A model is needed to accurately extrapolate over this region of the differential cross section if it is indeed an acceptance issue. This would also increase the values for the total cross section. There is also a physics argument in which the cross section drops to zero at low t. This argument has been presented for the example in the case of η meson cross sections as the requirement of the conservation of helicity as in reference [53]. Input from theorists regarding the production mechanism of Ξ would be needed to make further conclusions regarding this matter. Both of these are likely present in the cross section measurement to varying degrees of magnitude.

This can continue to be extended to a differential cross section in terms of momentum transfer as well as being binned in beam energy like the total production cross section. Typically, this differential cross section is shown on a log scale as it is expected to follow an exponential decay distribution. The distributions shown in figure 6.6 agree decently well in terms of order of magnitude and shape especially in the beam energy range of the coherent peak as that has the largest statistics. If one only considers the data points in which there are decent statistics such as the central region of $-t$ for any given histogram, the differential cross sections have a linear tendency in a log scale.
Figure 6.5: The efficiency and production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of momentum transfer to the kaon for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

as expected. There are quite a few points in which the statistics, or another factor, is poor such as the lowest $-t$ bin which has both poor efficiency and low statistics. The cross section points at high $-t$ are notably poor due to expected lower cross sections because of being an exponential distribution which results in lower than average statistics.

If instead the differential cross section is considered on a linear scale, as shown in figure 6.7, the distributions should follow an exponential decay distribution. The distributions do follow an exponential decay distribution within the stated statistical uncertainties. This will more easily allow the comparison between the data sets. Similar to the conclusions to the log scale differential cross sections, the data sets agree fairly well when there are sufficiently high statistics. Much like the total cross section, the two spring data sets agree within reason within statistics while the Fall 2018 data set appears to be higher for most kinematic regions. The lowest data point in terms of t for all histograms is still problematic with low statistics and poor efficiency.

6.6 Systematic Uncertainties and Studies

With the measurement of a cross section, there are many notable checks and studies to be completed. This is not an exhaustive list but includes some of the notable results. There are choices that have a direct impact on the result of the cross section that must be studied to make sure there is no inherent bias. These include choices such as the fit functions used to extract yields,
any cuts on the data or Monte Carlo, and binning of the data. The cross section has already been shown in terms of run periods which have passage of time between them. Many factors could play a role in the differences, be it from the accelerator, the individual detectors, or changes in the reconstruction code or calibration improvements. Similarly, systematic checks of the kinematic distributions, the stability of the detector resolution, and mass from the fits are important to verify. These don’t contribute to the systematic uncertainties of the measurement, but instead can point to potential problems that need to be fixed.

6.6.1 Phase Space Coverage

The first systematic check is that of phase space coverage. The total production cross section could have an overall normalization factor that shifts the distribution. One such cause of a
normalization factor is the potential for acceptance holes in phase space that need to be extrapolated over. The decay of the intermediate hyperon should be isotropic and thus the phase space coverage will be studied in its rest frame. There are a couple of reference frames in which one could study the rest frame of the intermediate hyperon. One such reference frame to consider is the Gottfried-Jackson frame, which is the preferred frame when considered a t-channel production mechanism. This frame is in the rest frame of a particle of interest with the z-axis being aligned with the beam axis in the intermediate hyperon rest frame [54]. The y-axis is chosen such that it is orthogonal to the production plane formed by the beam photon and the intermediate hyperon. If one considers the intermediate hyperon rest frame, it is expected that the kaon from the decay and the Ξ baryon are evenly distributed across the phase space. The kaon and Cascade baryon should
travel back-to-back of each other. Figure 6.8 shows the definition of the frame in question.

Figure 6.8: Depiction of the Gottfried-Jackson reference frame in which the intermediate hyperon is at rest and the z-axis is along the beam direction.

Figure 6.9: Polar angle vs azimuthal angle for the decay kaon in the Gottfried-Jackson rest frame of the intermediate hyperon for data (left) and Monte Carlo (right) for the Spring 2017 data set.

Since the \(\Xi \) and the kaon from the decay of the intermediate hyperon are back-to-back, one can evaluate any holes in phase space by considering the kinematics of the kaon. This kaon should be evenly distributed across both \(\phi \) and \(\theta \) in this frame as the decay of the intermediate hyperon should be isotropic or at the very least symmetric. As seen in figure 6.9, this is not the case. The kaon tends to greatly prefer the backwards direction in polar angle. This is entirely unexpected, but it occurs in both data and Monte Carlo. There is a hole that covers approximately half of the
phase space as the kaon doesn’t occur in the forward direction. Presumably, the generated Monte Carlo events should have the desired behavior if the problem arises within the analysis framework chain.

Figure 6.10 shows the generated Monte Carlo. Two problems of interest rise from these three plots. Firstly, the generated (or "thrown") Monte Carlo events do not have the desired behavior. It is not symmetric nor isotropic in nature. The only requirement to be included in this plot is that there be a beam photon that occurs within a tagger counter. Naively, it could be expected that the distribution is biased towards the backward direction by the selection of which is the t-channel kaon or the decay channel. As previously shown in figure 5.2, this is unlikely the case since the correct kaon is most commonly chosen as the decay kaon.

The second issue is that the maximum in both the generated and reconstructed Monte Carlo events occur at very different polar angles. This could be due to a problem in the reconstruction of the data or that the majority of the generated Monte Carlo events are lost in that kinematic region. Figure 6.10 shows that in the process of the analysis, the polar angle of the decay kaon is shifted by an average of 30°. This points to the possibility of an issue with kaons at large polar angles. In the collaboration as a whole, kaons at large polar angles are just starting to be studied as a result of the very recent paper on $\gamma p \rightarrow K^+\Sigma^0$ [32]. Improvements in track reconstruction are
being implemented as work continues to progress. It is likely that these improvements help this reaction as well.

6.6.2 Effect of χ^2/NDF Cut

Because the selection criteria on the χ^2/NDF has the largest impact on this channel, it is necessary to consider the effects of this selection criteria on the overall cross section measurement. The expected distribution for cross section versus χ^2/NDF is expected to be flat as this would represent that the data and Monte Carlo are treated in the same way in the kinematic fit. This distribution is considered for a single beam energy range in with high statistics, particularly 8.4 to 8.9 GeV. For calculating the cross section, the only values that change as a function of χ^2/NDF is the number of signal events and the number of Monte Carlo events. Therefore, this study will show if the handling of data and Monte Carlo events by the kinematic fit is similar. As can be seen in figure 6.11, the distributions are mostly flat as the χ^2/NDF selection criteria is loosened or tightened.

![Figure 6.11: The total production cross section for $\gamma p \rightarrow K^+K^+\Xi^-$ as a function of χ^2/NDF for the kinematic fit for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).](image)

6.6.3 Signal Resolution and Stability

Since each energy range in the total cross section has the yields extracted through a fitting procedure, one can verify the stability of the fit by looking at the parameters in the same ranges. The
mass of $\Xi(1320)^-$ is a parameter in the fit. The accepted mass for this state is 1.32171 GeV [5]. For the overall fit with full statistics, the obtained values are 1.3221 GeV for Spring 2017, 1.3228 GeV for Spring 2018, and 1.3221 GeV for Fall 2018. Since $\Xi(1320)^-$ decays weakly in which the time scale is much larger than that of a strongly decaying particle, the natural width of the $\Xi(1320)$ is much more narrow. The resulting width of the Ξ peak is then detector resolution. The overall fit to the data shows that the detector resolution was between 4 and 5 MeV for each of the data sets.

![Figure 6.12](image)

Figure 6.12: The mass (left) and width (right) for $\Xi(1320)^-$ for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of beam energy for Spring 2017 (green), Spring 2018 (red), and Fall 2018 nominal energy range (blue).

Figure 6.12 shows the resulting mass and width for all the fits used in the total cross section measurement. The figure for the mass also includes a line to represent the known mass for $\Xi(1320)^-$. The mass in each of the energy ranges is flat but systematically higher than the known mass by approximately 0.5 MeV. The widths or detector resolution varies more drastically as a function of beam energy, ranging from 3 to 6 MeV in any given energy range.

6.6.4 Effect of E_γ Binning

The choice of how the total cross section is displayed should have little effect on the resulting values. The two main choices regarding the beam energy ranges include the width of the bins and the starting points. The width of the bins was allowed to vary from the nominal 500 MeV to 333 and 250 MeV. The starting point beam energy varied from the nominal 6.4 GeV to 6.3 and 6.5 GeV. The resulting effect of these choices is shown in figure 6.13.
The general trend between all the options is consistent. When considering the width of the bins, there are data points in each set that are outliers. This is likely due to statistics especially for the smaller ranges. With regards to the starting point energy, the lower threshold for the flux measurement is approximately 6.3 GeV. It is expected that the lowest cross section point is an outlier as the flux measurement is poor and the uncertainty for the flux is also poorly measured. It appears that 6.5 is the more stable starting point energy. This is a logical conclusion as the coherent edge of the beam spectrum is located at 9.0 GeV which coincides with the beam energy ranges.

6.6.5 Miscellaneous Studies

A handful of additional studies have occurred that are not a systematic uncertainty but still worth mentioning. These include certain checks on the analysis as well as various changes minor changes in the cross section calculation. Some of these studies include the effect on the cross section due to including the scale factor in the accidental subtraction, to using the thrown beam photon when determining the efficiency, and the effect of uniqueness tracking.

Scaled Accidentals. Previously discussed in section 3.2.1, the accidental beam photons under the prompt peak is typically 5% higher than the average of the side peaks. Inclusion of the scaling factor to increase the number of accidental beam photons is thought to make the system-
Figure 6.14: The total production cross section for \(\gamma p \rightarrow K^+ K^+ \Xi^- \) as a function of incoming beam energy for the Spring 2017 data set with (light green) and without (dark green) the scaling factor included in the accidental subtraction.

atic uncertainty on the flux determination negligible. As the scaling factor is small, one would anticipate that the effect on the overall cross section is small as well. This effect on the Spring 2017 data set is shown in figure 6.14, where the closed points represent the nominal measurement of the scaling factor included and the open points represent not including the scaling factor in the accidental subtraction. The overall effect of including the scale factor is negligible as the effect is much smaller than the statistical uncertainties for the data points.

Choice of Beam Photon for Binning: Bin Migration. The incoming beam photon is used to determine how each of the components of the cross section is binned. For the signal in data and the incoming photon flux, the determination of which energy range to be placed in is trivial. For Monte Carlo, the decision is not trivial. Each Monte Carlo event has two beam photon energies associated with it, the one given during generation and the one after reconstructing the Monte Carlo events like data. The efficiency calculation is determined by dividing the number of reconstructed events by the number of generated events. The generated events only have the generated beam energy. The choice is then whether the reconstructed Monte Carlo events are associated with the
generated beam energy as in equation 6.5a or the reconstructed beam energy as in equation 6.5b.

\[\epsilon(E_\gamma) = \frac{N_{\text{recon}}(E_\gamma,\text{thrown})}{N_{\text{gen}}(E_\gamma,\text{thrown})} \]

\[= \frac{N_{\text{recon}}(E_\gamma,\text{recon})}{N_{\text{gen}}(E_\gamma,\text{thrown})} \]

By using the generated beam energy, as with equation 6.5a, the efficiency is strictly for a particular beam energy. A complication that this causes is that of bin migration. Since the cross section is given for a particle beam energy range, events that are generated in one range and then reconstructed in another shift the efficiency.

For example, one of the cross section points has a range from 8.4 to 8.9 GeV in beam energy. If a beam photon is generated at 8.899 GeV in energy and then reconstructed at 8.901 GeV in energy and the efficiency is determined with equation 6.5a. The efficiency is straightforward as both the numerator and the denominator occur within the same energy range. The Monte Carlo events are then no longer treated just like data since it is possible that the beam photons in data can have a similar shift. For equation 6.5b, the efficiency is no longer as trivial. The efficiency for the energy range in question lowers due to the event being included in the denominator, but not the numerator. The efficiency in the adjacent energy range also increases for the opposite reason. In this case, the reconstructed Monte Carlo events are treated much the same as data. It could be argued that either option is the more correct way to handle the efficiency determination.

Figure 6.15 shows that this choice had minimal effect for the total cross section in this analysis. This is likely because of the fact that there are so few energy bins resulting in large ranges for each data point. There would be more of an effect for a channel with high statistics and thus finer energy binning.

Uniqueness Tracking. Uniqueness tracking is the handling of multiple combinations per event, or the handling of combinatorics. If more than one hypotheses fits all the selection criteria required for a reaction, all are considered. The general approach is to only require that the particles needed for a measurement be required to be unique.

For example, consider a reaction with less final state particles such as \(\gamma p \rightarrow p\phi \rightarrow pK^+K^- \). The beam photon along with the three final state particles may all be required to be unique. If only the \(\phi \) invariant mass is of interest, multiple hypotheses for the proton do not necessarily need to be considered. Requiring the proton to be unique would falsely boost the statistics as the \(K^+K^- \)
Figure 6.15: The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of incoming beam energy for the Spring 2017 data set using the generated beam energy (dark green) and reconstructed beam energy (light green) in the determination of the efficiency.

Invariant mass for that event would be added to the histogram twice. In the case of multiple hypotheses for one of the kaons though, both should be considered and added to the histogram as the resultant KK invariant mass may not be the same between the hypotheses. In the case of more complicated measurements than a straightforward invariant mass, the decision of which particles must be unique is nontrivial.

Figure 6.16: The total production cross section for $\gamma p \rightarrow K^+ K^+ \Xi^-$ as a function of incoming beam energy for the Spring 2017 data set using the nominal uniqueness tracking and tracking all particles.
In the case of the total cross section for $\Xi(1320)^-$, the nominal uniqueness tracking includes that of the beam photon, the t-channel produced kaon, the proton, and the two pions. Note, that the kaon from the decay of the intermediate hyperon is not normally tracked in this analysis. All the other particles are directly needed for the cross section measurement and the decay kaon is a bystander. The beam photon is needed both for the determining the beam energy as well as its timing information for accidental subtraction. The proton and the two pions definitely need to be tracked as they are used in determining the Ξ invariant mass. The t-channel produced kaon is needed for determining the momentum transfer t when each data point is split further for the differential cross section. Figure 6.16 shows the effect of including that additional kaon in the uniqueness tracking. Overall, the effect is small except for the energy bin directly after the coherent edge of the beam energy spectrum.

6.7 Status of the Analysis

The cross section analysis for $\Xi(1320)$ as presented is a work in progress. The total and differential production cross sections were shown with statistical uncertainties as well as some of the relevant systematic uncertainties and checks. There is still more work that is needed to understand these cross section measurements and their uncertainties. Currently, there are approximately 20 different reactions with cross section measurements under analysis within the collaboration. These include channels such as high-statistic meson channels like ω and ρ, and more rare processes like the Ξ.

Until this point, the GlueX collaboration has only published measurements in which the yields are presented as a ratio such as in beam asymmetry measurements [31, 32, 33] or in the cross section of the J/ψ which is normalized to the Bethe-Heitler process [55]. This analysis, as well as many other ongoing cross section analyses, are the first set of measurements which require complete understanding of the detector and its systematic uncertainties. Cross section measurements are arguably the most difficult measurement in terms of the sheer amount of understanding of the detector required for an accurate measurement with reasonable uncertainties. Many common procedures are still being finalized such as the handling of combinatorics and uniqueness tracking, or the handling of accidental beam photons. Common systematic uncertainties are also under study.
such as those associated with photon beam flux determination, tracking efficiencies, and the effect of the common analysis selection criteria as discussed in section 3.2.

The work presented here is the accumulation of several years of work in which this analysis had effects on many of the standards that are currently in place in the collaboration. This work has evolved as the data has become available. A large portion of this work was done in order to have yields for this channel that were statistically significant to make a measurement of any kind. The analysis started with the hope of making a quasi-two-body beam asymmetry measurement for the intermediate hyperon selected such that it decays to a \(\Xi \). That analysis was tabled as there were not enough statistics to make a measurement until the full Phase-I GlueX data set became available.

The selection criteria as discussed in section 3.2 have changed over the years due to the effect on the \(\Xi(1320) \) yields. The yields have consistently been used as a check on new reconstruction software as well as for other experimental conditions. When this analysis started, none of the data presented was yet available. There was only a weeks worth of physics data from the Spring 2016 commissioning run available to analyze. The most recent data set presented, Fall 2018, has only been calibrated and available for analysis for a little over a year. This is not nearly long enough to fully understand the data set especially if multiple iterations of the reconstruction are required.

As previously mentioned, the data sets were presented separately in each of the plots. This is due to systematic difference between the data sets in which need to be understood. The data, when published, will be presented as a cross section for the entirety of Phase-I GlueX (i.e. all three data sets added together). Until this channel, and the several other channels under analysis, agree between the data sets, the cross section measurements will not be ready for publication. There is still much to learn for all of the channels under study, and it is currently the main focus of the collaboration.
CHAPTER 7
SEARCH FOR EXCITED STATES

Previously in photoproduction, the only detected Cascade baryon resonances were the octet ground state \(\Xi(1320)^- \) and the decuplet ground state \(\Xi(1530)^- \), as shown in section 1.3.2. The first excitation band is comprised of the ground state particles with one unit of orbital angular momentum. A convenient method of viewing this is to consider approximate SU(6) flavor-spin symmetry in which the flavor and spin are coupled together. By doing this, the resulting overall symmetry of the wavefunctions is easier to form as the orbital motion is the only component needed to be added to the other three components: color, flavor, and spin. Much like that for baryons in section 1.2.2, the irreducible multiplets for SU(6), where the 6 denotes the flavor-spin states \((u, u, \text{etc.})\) are:

\[
6 \otimes 6 \otimes 6 = 56_S \oplus 70_{MS} \oplus 70_{MA} \oplus 20_A,
\] (7.1)

where the subscript represents the symmetry under the exchange of any two identical states within QCD. Since the color portion of the wavefunction is antisymmetric for all observed hadrons, the remaining three components must be overall symmetric. These three components can be combined by adding a spatial component to each of the multiplets for SU(6) flavor-spin. A decomposition of these flavor-spin multiplet into those previously discussed results in:

\[
56_S = ^410 \oplus ^28
\] (7.2)

\[
70_M = ^210 \oplus ^48 \oplus ^28 \oplus ^21
\] (7.3)

\[
20_A = ^28 \oplus ^41,
\] (7.4)

where the \(10, 8, \text{and } 1\) represent the decuplet, octet, and singlet flavor multiplets, and the superscript represents the spin component presented as \(2S + 1\). For the ground state multiplet, the orbital motion refers to \(L = 0\) which is symmetric in nature. Therefore, the ground state multiplet can only be formed with the flavor-spin multiplet with dimensionality \(56\) as in equation 7.2, such that the antisymmetric color, symmetric flavor-spin, and symmetric \(L = 0\) spatial components combine to form the overall symmetric wavefunction for a fermion.
For the first excitation band, where the orbital angular momentum is $L = 1$ and has mixed symmetry, the wavefunctions are formed by combining the spatial component with those in the 70 flavor-spin multiplet in equation 7.3. With the flavor-spin multiplet, one simply needs to combine the spatial portion with each of the decomposed pieces contributing to the flavor-spin multiplet.

For the Cascade baryons, the first excitation band is predicted to have seven states, two associated with the decuplet and five with the two octets. The flavor-spin components that contribute are the decuplet with intrinsic spin $S = 1/2$ (210) and the octets have intrinsic spin of 1/2 and 3/2 (4^8 and 2^8, respectively). When combined with one unit of orbital angular momentum $L = 1$, the resulting states have spin J and parity P of $J = S \otimes L$ and $P = (-1)^L$. For the decuplet, this results in the states with J^P of 3/2$^-$, and 1/2$^-$. For the octets, the expected states are: 5/2$^-$, 3/2$^-$, 3/2$^-$, 1/2$^-$, and 1/2$. Theoretically, all seven of these states could be accessible at GlueX energies. There are currently five states known to varying degrees of certainty that possibly fit into this excitation band. These states and their evidence classification are: $\Xi(1620)$ (*), $\Xi(1690)$ (**), $\Xi(1820)$ (**), $\Xi(1950)$ (**), and $\Xi(2030)$ (***) [5]. The state $\Xi(1820)$ has a $J^P = 3/2^-$ and the state $\Xi(2030)$ has $J = 5/2$ [5]. Of the remaining states, not much is experimentally known about their spin and parity. Assuming these five states are indeed in the first excitation band, there are at least two additional states that are completely unknown. Knowledge of the N and Δ spectra provide evidence that this is likely not a safe assumption to make. Both spectra have states in the second excitation band which occur at masses lower than the highest mass first-excitation band resonance [56].

7.1 Channel Motivation for the Decay $\Xi^{-*} \rightarrow K^- \Lambda$

The two major decay modes for the lower mass excited states are $\Xi^* \rightarrow \Xi \pi$ and $\Xi^* \rightarrow KY$. There are also decay channels with smaller branching ratios to $\Xi^* \rightarrow \Xi \pi \pi$ via two-body through $\Xi(1530)$ or three-body decay and $\Xi^* \rightarrow KY \pi$ but these tend to be from excited states with mass higher than that is accessible with GlueX beam energies.

One can consider the spatial coordinates for the 3 quarks as two relative coordinates, one between a pair of quarks and the other between the third quark and the center of mass of the
For the ground state, the spatial component of the baryon wave-function needs to be symmetric. For a baryon with only light quarks (Nucleons and Deltas), it is trivial to symmetrize. When strange quarks are added in the case of Cascade baryons, the strange quarks must be the two quarks within the pair in order to maintain the desired symmetry due to the difference in mass of the quarks, as depicted in Figure 7.1.

When a unit of orbital of angular momentum is added to a baryon, there are two options for where the excitation can occur: within the pair or between the pair and the third quark. In the case of all light quarks, the excitation in either place is equivalent. For the Cascade baryons, the excitation within the pair of strange quarks results in the lowest energy state. If the system is considered as two 3D harmonic oscillators, the reduced mass of the pair is greater than the reduced mass of the third quark with the pair. The excitation energy is proportional to the frequency $w = \sqrt{k/\mu}$. Therefore, assuming that the confinement potential is flavor independent (or k is the same in both cases), the excitation energy is lower in the pair of the two strange quarks.

When the excitation is between the pair of strange quarks, the decay to $\Xi \pi$ is suppressed resulting in the prominent decay to KY [57]. For each multiplet, the lowest mass excitation should decouple from $\Xi \pi$ and be seen in the decay to KY. Another benefit of the $\Xi \pi$ suppression is that the resulting excited states should be much more narrow than the heavier excited Cascade baryon states and than the analogous light quark baryons. The preferential decays can be understood by considering the quark content movement, which is shown in the quark line drawings in Figure 7.2. In the decay to $\Xi \pi$, the strange quarks are spectators in the interaction resulting in the the decay mode being suppressed.
Figure 7.2: The quark line drawings for examples of the two major decays of an excited Cascade baryon within the first excitation band. If the excitation is between the strange quark pair, as with the lowest mass excitation, the state preferentially decays to $K\Xi$ or $K\Lambda$ due to the strange quarks being spectators in the $\Xi\pi$ interaction, as shown in the figure.

For $\Xi^{-*} \to KY$, there are a few full decay chains to consider. These include the primary decays to $K^-\Lambda$, $K^-\Sigma^0$, and $K^0\Sigma^-$. The secondary decays include $\Lambda \to p\pi^-$, $\Lambda \to n\pi^0$, $\Sigma^0 \to \Lambda\gamma$, $\Sigma^0 \to \Lambda\gamma\gamma$, $\Sigma^- \to n\pi^-$, additional decays of the K^0, and subsequent decays of particles until reaching a 'stable' final state.

The most straightforward channel to detect with the GlueX detector due to the lack of neutral particles in the final state is photoproduction of $K^+K^+\Xi^{-*}$ where $\Xi^{-*} \to K^-\Lambda$ and $\Lambda \to p\pi^-$, depicted in figure 7.3. The reaction has the final state of $K^+K^+K^-\pi^-p$. Of the KY decays, this channel ends with the fewest final state particles and entirely consists of charged final state particles. There are several excited states that have a non-zero branching ratio for this decay mode. These states and their branching ratios include [5]:

Table 7.1: The known resonances that decay to KA and their corresponding branching ratios as of the 2020 edition of the PDG review [5].

<table>
<thead>
<tr>
<th>Particle</th>
<th>BR to KA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Xi(1690)$</td>
<td>seen</td>
</tr>
<tr>
<td>$\Xi(1820)$</td>
<td>large</td>
</tr>
<tr>
<td>$\Xi(1950)$</td>
<td>seen</td>
</tr>
<tr>
<td>$\Xi(2030)$</td>
<td>~ 0.2</td>
</tr>
<tr>
<td>$\Xi(2120)$</td>
<td>seen</td>
</tr>
</tbody>
</table>
7.2 Event Selection

![Feynman diagram](image-url)

Figure 7.3: Feynman diagram for the reaction $\gamma p \rightarrow K^+K^+\Xi^{-*} \rightarrow K^+K^+K^-\Lambda \rightarrow K^+K^+K^-\pi^-p$.

An initial look into this channel consisted of event selection to maximize purity. The requirements for the kinematic fit include: 4-momentum conservation, Λ mass constraint, and vertex constraints for the production reaction $\gamma p \rightarrow K^+K^+K^-\Lambda$, and the decay $\Lambda \rightarrow p\pi^-$. The event selection was performed using stringent particle identification timing, stringent χ^2/NDF of the kinematic fit, and a ϕ meson invariant mass veto. The change in timing requirements included being within 0.4 ns for the kaons in the barrel calorimeter, 0.2 ns for the kaons in the time-of-flight spectrometer, 0.8 ns for the protons in the barrel calorimeter, and 0.5 ns for protons in the time-of-flight spectrometer. The requirement for the kinematic fit is a tight χ^2/NDF cut of 2 for each of the combinations.

The Λ mass, as required by the kinematic fit, is formed exactly at the known value. This results in a distribution that is a gaussian in the π^- invariant mass with no apparent background and is not an accurate representation of any background that may be present. With a tight χ^2/NDF as selected, the distribution is expected to be clean with minimal background as combination that do not agree with the kinematic fit constraints should have large values for χ^2/NDF.

By examining the various mass spectra formed by particles in the channel, it can be seen that there is a strong ϕ meson signal in the K^+K^- invariant mass spectrum, as seen in figure 7.6 (left). This is not unexpected as all three kaons are produced at the production vertex. There is no selection criteria at this point that would prohibit this reaction from occurring in this data. There appears to be a strong presence of $\gamma p \rightarrow K^+\phi\Lambda$. This results from either the reaction where the Λ and K^+ couple to the $N^*(1535)$ resonance as shown in the Feynman diagram in figure 7.5 [58]
or from the reaction $\Lambda^* \rightarrow \Lambda \phi$. The K^+ and K^- both have a small polar angle and thus travel along the beam line, which may provide evidence of the former reaction. The ϕ meson has a mass of 1.02 GeV. All events in which the K^+K^- invariant mass fell between 1.00 to 1.05 GeV were removed from further analysis.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure7.5.png}
\caption{Possible reconstruction chains for background reaction $\gamma p \rightarrow \phi N^* \rightarrow K^+K^+K^-\Lambda$.}
\end{figure}

7.2.1 Second Look

A subsequent look into this channel followed the approach of the $\Xi(1320)^-$ by removing the stringent timing requirements on the individual particles in each of the detectors. This new approach kept the process of removing the ϕ meson and χ^2/NDF requirement on the events. The effect of the χ^2/NDF selection criteria can be seen for all the data sets in figure 7.7. It can be seen that for values of χ^2/NDF greater than 3.5 are composed significantly of background.
This second look at the data added a requirement on the flight significance of the Λ. The Λ has a detached vertex of approximately 8 cm which should be evident in the data. This was evident for the ground state Ξ(1320) where the location of the vertices changed significantly between the decays as was shown in figure 4.7. The flight significance is the path length traveled by the Λ before its decay divided by the uncertainty in that value. This value is shown in the units of σ. Background from combinations where the Λ does not have a significant flight will peak at a flight significance of 0σ. Therefore, a 5σ cut is that which keeps the events with a flight significance greater than 5. This value can be used to clean up the Λ distribution as the invariant mass is artificially clean due to the Λ mass constraint in the kinematic fit.

The flight significance distributions in figures 7.8 show the effect as the value is stepped through with a requirement that the χ²/NDF is less than five. Background in this distribution peaks at a flight significance of 0σ. The overall total distributions for both the χ²/NDF and the flight significance versus the KΛ invariant mass can be seen in figure 7.9. There is a faint band for Ξ(1820)− in each of these distributions associated with low χ²/NDF and for high values of the flight significance. This analysis proposes a χ²/NDF cut of 3.5 like for Ξ(1320), and a flight significance cut of 1σ.
7.3 Results

After requiring these selection criteria and removing the scaled accidental beam photons, the resulting invariant mass distributions for \(K^-\Lambda\) are shown for each data set in figure 7.10. These distributions require the aforementioned stringent timing cuts, a tight \(\chi^2/NDF\) cut of less than 2.0, and a \(K^+K^-\) invariant mass veto for the \(\phi\) meson. A possible signal for \(\Xi(1820)^-\) is seen in each \(K^-\Lambda\) invariant mass spectrum. The signal is fit with a Voigtian function, which is a convolution of a Gaussian and a Breit-Wigner function. As detector resolution is comparable to that of the natural width for \(\Xi(1820)^-\), both the natural width and the detector resolution account for the width of the peak. For this fit, the detector resolution was taken from the \(\Xi(1320)^-\) invariant mass. The known width of for \(\Xi(1820)^-\) is \(24^{+15}_{-10}\) MeV [5]. The fit is allowed to vary from 15 MeV to
Figure 7.8: The distribution of the K^-\,Λ invariant mass while stepping through the values for the flight significance for Spring 2017 (green), Spring 2018 (red), and Fall 2018 (blue).

100 MeV.

The background is modeled as a reverse Argus function. An Argus function is used to more accurately parametrize threshold behavior developed for the upper threshold of B meson decays [59]. This function has the form as shown in equation 7.5 where a and b are free parameters, m_0 is the threshold mass, and m is invariant mass.

$$f(a, b, 1 - \frac{m^2}{m_0^2}) = am \sqrt{1 - \frac{m^2}{m_0^2}} * e^{-b(1 - \frac{m^2}{m_0^2})}.$$ \hspace{1cm} (7.5)

The background for Cascade baryon production rises from threshold, thus the Argus function is modified to reflect a production threshold, as shown in equation 7.6. In this case, a represents the number of background events, b is a free parameter, m_0 is the production threshold mass, and m
Figure 7.9: The distribution of the $K^{-}\Lambda$ invariant mass versus χ^2/NDF (left) and versus the flight significance of Λ for the Fall 2018 data set. A faint band is present the $K\Lambda$ mass associated with $\Xi(1820)$ for low values of χ^2/NDF and high values of flight significance.

is the $K\Lambda$ mass.

$$f'(a, b, \frac{m^2}{m_0^2} - 1) = a m \sqrt{\frac{m^2}{m_0^2} - 1} * e^{-b(\frac{m^2}{m_0^2} - 1)} . \quad (7.6)$$

There is evidence for the excited Cascade baryon $\Xi(1820)^-$ with statistical fluctuations near the masses of other known excited states. The resulting fits are shown in figures 7.11. The threshold mass is consistent among all the fits at $1610 - 1611$ MeV for three of the fits (Spring 2017, Spring 2018, and the combined data set). The Fall 2018 threshold mass is a bit different at 1623 MeV. The resulting width from each fit varies from each data set from 42 MeV in Spring 2017, 15 MeV in Spring 2018, to 31 MeV in Fall 2018. The combined data set results in a width of 28 MeV.

The local significance of the peak at 1820 MeV is determined via a null hypothesis method using equation 7.7. This considers the difference in how good the resulting fit works with and without the added peak in the model.

$$Significance = \sqrt{[-2\ln L(H_0)] - [-2\ln L(H)]} . \quad (7.7)$$

The peak for $\Xi(1820)^-$ is clearly in each data set of the distributions and more tenuous evidence for possible other excited states. The $\Xi(1820)^-$ peak has a significance of 4.4σ for Spring 2017, 6.4σ for Spring 2018, 9.2σ for Fall 2018, and 11.5σ for the combined data. The resultant combined GlueX Phase-I data have 694 ± 79 events. In order to do a meaningful analysis beyond the first observation of a state in the first excitation band, more events will be needed.
Figure 7.10: Invariant mass spectrum for ΛK^- for Spring 2017 (top left), Spring 2018 (top right), and Fall 2018 (bottom left). The combined distributions is shown in the bottom right. This decay channel has known branching ratios for the states: $\Xi(1690)^-$, $\Xi(1820)^-$, $\Xi(1950)^-$, $\Xi(2030)^-$, and $\Xi(2120)^-$ [5].

7.3.1 Second Look

After applying the new cuts to the data and removing the overly stringent timing cuts, the new distributions are shown in figure 7.12 (top left). These distributions require a χ^2/NDF less than 3.5, the same as $\Xi(1320)^-$, a flight significance greater than 1σ, and a K^+K^- invariant mass veto for the ϕ meson. The peak for $\Xi(1820)^-$ is still evident in the $K^-\Lambda$ invariant mass distributions, but with significantly more statistics. The re-evaluation of the selection criteria resulted in over three times the amount of signal events with the combined data. Figure 7.12 shows these same histograms with the previously discussed fit applied. The peak for $\Xi(1820)^-$ now has a significance
of 5.8\(\sigma\) for Spring 2017, 9.5\(\sigma\) for Spring 2018, 12.4\(\sigma\) for Fall 2018, and 16.6\(\sigma\) for the combined data shown in figure 7.13. There is no doubt that \(\Xi(1820)^-\) is in the data, which makes this the first state in the first excitation band to be seen in photoproduction! Additionally, there are other statistical fluctuations that need to be explored in these distributions. It is likely that there are other excited states within this reaction. There are several other states with known branching ratios to \(\Lambda K^-\), such as \(\Xi(1690)^-\), \(\Xi(1950)^-\), \(\Xi(2030)^-\), and \(\Xi(2120)^-\) [5].

Phase-II of GlueX should result in even more statistics, and as previously mentioned in section 2.3.5, will include the addition of the DIRC detector. Considering the momentum versus polar angle distribution for this channel, shown in figure 7.4, it is obvious that increased pion/kaon
Figure 7.12: (top left) The invariant mass spectrum for ΛK^- for Spring 2017 (green), Spring 2018 (red), and Fall 2018 (blue) with the new selection requirements. The new fitted invariant mass spectrum for ΛK^- for Spring 2017 (top right), Spring 2018 (bottom left), and Fall 2018 (bottom right).

separation at higher momentum will only improve the ability to detect these excited states. This should prove fruitful in the identification of the states within the first excitation band.
Figure 7.13: The invariant mass spectrum for ΛK^- for the combined Phase-I GlueX data. The statistical significance of $\Xi(1820)^-$ in this distribution is 16.6σ, representing the first observation of an excited Cascade baryon in photoproduction.
CHAPTER 8

SUMMARY AND OUTLOOK

Modern nuclear physics strives to understand the nature of the quarks and gluons in hadrons. The underlying patterns of hadrons are essential for understanding their structure. In order to understand the quantum chromodynamics, the full spectrum of hadrons and their properties is needed. Nucleons and Deltas have been extensively studied in previous experiments, particularly by the CLAS experiment at Jefferson Lab. Hyperons are the next logical step to study to understand QCD. The spectrum of hyperons is needed to further advance QCD. As the strangeness of a baryon increases, less is known about the corresponding states. GlueX has higher beam energies than previous photoproduction experiments. This work focused on doubly-strange baryons as determining the properties of known states and mapping out the spectrum of excited states is beneficial in understanding the underlying pattern of baryons.

The goal of this research is to improve the understanding of Cascade baryons. Only six resonances are certain to exist with at least 25 states expected based off of Nucleons and Deltas. Of the known states, only three have spin-parity measurements. This work shows some of the feasibility, and took the initial steps of a fruitful program. Several properties of the Cascade baryons are understudied and are of interest. These measurement of properties include: branching ratios, isospin mass splittings, cross sections, and polarization observables. The \(t \)-channel production mechanism is also not yet well understood. To aid in this, measurement of the properties of the intermediate hyperon, and of the exchange particle in a \(t \)-channel production mechanism will further the knowledge about the production mechanism.

This work discussed the production cross section of the ground state Cascade baryon. While some systematic uncertainties are still being studied before GlueX is ready to publish cross sections, this channel has shown useful in the progress of the collaboration. There are some differences apparent among the run periods which appear in all the channels under investigation in GlueX currently. The performance of the Monte Carlo efficiency and the inclusion of all of phase space is also being studied.
This work also served as an initial look into the excited Cascade spectrum. This work shows a first observation of an excited state in photoproduction, as seen in figure 7.13. A significant observation was made in the GlueX Phase-I data using stringent requirements on the events. Loosening the requirements and following an additional approach showed a more significant result with much more statistics. This shows the feasibility with other channels and regaining statistics through different approaches. Following this work, several other members of the collaboration are studying other decay channels of interest. At the end of this document in appendix B, several channels for all the known states are shown, many of which will be studied. There are still many channels to be studied within GlueX and improvements to be made for more observations of excited states.

The ground state Cascade baryon will continue to be studied with the GlueX Phase-I data. Other measurements of interest that are feasible include those previously mentioned as well as the parity of the ground state, and the beam asymmetry both for the intermediate hyperon and for the three-body production of the Cascade baryon. The ground state Cascade baryon parity measurement is of particular interest as it has never been measured. It decays weakly, which violates parity, and therefore the parity cannot be determined from the decay products. A possibility is to use the intermediate hyperons, such as Λ* or Σ* as a way to determine the parity of Cascade baryons. This also allows for determination of which excited hyperons are in fact the intermediate particles of the Cascade baryon reaction. It may be possible to use the angular distribution of the decay to determine the moments, which can then be related to the parity of the Cascade resonances [18, 52].

Baryon spectroscopy provides insight on the degrees of freedom associated with excited hadrons. In particular, studying multi-strange baryons will help in understanding the structure of all baryons since the parity of a baryon heavily depends on the internal structure. Multi-strange baryons are considered to be the link between light-flavor and the heavy-flavor regime. Thus, understanding the nature of the Cascade spectrum will provide useful insight of QCD in the non-perturbative regime.

APPENDIX A

TABULATED RESULTS

Contained in this appendix are the tabulated results for cross section as well as the values that make up the cross section.

Table A.1: The values for each run period used for the total cross section. The quoted uncertainty on all values is statistical.

<table>
<thead>
<tr>
<th>Energy Bin (GeV)</th>
<th>Signal Yield</th>
<th>MC Yield</th>
<th>Thrown Yield</th>
<th>Efficiency x BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 - 6.9</td>
<td>162 ± 14</td>
<td>411 ± 20</td>
<td>61320 ± 248</td>
<td>0.671 ± 0.033</td>
</tr>
<tr>
<td>6.9 - 7.4</td>
<td>152 ± 0</td>
<td>427 ± 21</td>
<td>52247 ± 229</td>
<td>0.816 ± 0.04</td>
</tr>
<tr>
<td>7.4 - 7.9</td>
<td>315 ± 20</td>
<td>1155 ± 34</td>
<td>131969 ± 363</td>
<td>0.875 ± 0.026</td>
</tr>
<tr>
<td>7.9 - 8.4</td>
<td>508 ± 26</td>
<td>2658 ± 52</td>
<td>277535 ± 527</td>
<td>0.958 ± 0.019</td>
</tr>
<tr>
<td>8.4 - 8.9</td>
<td>587 ± 28</td>
<td>3703 ± 61</td>
<td>369893 ± 608</td>
<td>1 ± 0.017</td>
</tr>
<tr>
<td>8.9 - 9.4</td>
<td>75 ± 9</td>
<td>1091 ± 33</td>
<td>111220 ± 333</td>
<td>0.981 ± 0.03</td>
</tr>
<tr>
<td>9.4 - 9.9</td>
<td>171 ± 15</td>
<td>1601 ± 40</td>
<td>155795 ± 395</td>
<td>1.03 ± 0.026</td>
</tr>
<tr>
<td>9.9 - 10.4</td>
<td>113 ± 12</td>
<td>1292 ± 36</td>
<td>134419 ± 367</td>
<td>0.961 ± 0.027</td>
</tr>
<tr>
<td>10.4 - 10.9</td>
<td>128 ± 13</td>
<td>1100 ± 33</td>
<td>117443 ± 343</td>
<td>0.936 ± 0.028</td>
</tr>
</tbody>
</table>

- Run Period 2017-01: Reconstruction version 03, Analysis Launch version 20 -

- Run Period 2018-01: Reconstruction version 02, Analysis Launch version 03 -

- Run Period 2018-08: Reconstruction version 02, Analysis Launch version 02 -

- Run Period 2018-08 Low Energy: Reconstruction version 02, Analysis Launch version 05 -
APPENDIX B

DECAY CHANNELS

Provided here are a subset of the decay modes that can be considered for a Cascade baryon analysis. Table B.1 shows all the possible decays listing in the Particle Data Group’s review for each particle and the corresponding branching ratios [5]. In the following reactions, only the subsequent decays that have the highest branching ratio are considered. This is done for two reasons. First it will be the overall reaction with the highest statistics due to the highest branching ratio. Secondly, the decay modes shown tend to be those with higher efficiencies for GlueX and are the decays that should be considered first and foremost. For example, in all cases the decay $\Lambda \to p\pi^-$ is used, while $\Lambda \to n\pi^0$ is never used.

After each construction of the decay modes, the known branching ratios for the known lowest mass states, up to $\Xi(2250)$, are included with the varying degrees of certainty. The quoted branching ratios include not known to decay via this mechanism (-), unknown branching ratio with little certainty (?), unknown branching ratio but known to decay via this process (seen), a qualitative branching ratio (small/large), and a quantitative branching ratio.

The two channels for the octet ground state Cascade baryons $\Xi(1320)$ are those shown in figure B.1. These are the highest branching ratio decays of the octet ground state of the Ξ baryons. The two channels have the highest cross section of the Cascade baryons. There channels can be used to obtain the pseudo-two body beam asymmetries, cross sections, and isospin mass splittings. This analysis performed that of the cross section for the negatively-charged state.

\[
\begin{align*}
K^+K^+\Xi^- & \to K^+K^+ (\pi^-\Lambda) \to (2K^+)(2\pi^-)p \\
K^+K_S^0\Xi^0 & \to K^+(\pi^+\pi^-)(\pi^0\Lambda) \to K^+(2\pi^-)(2\gamma)p
\end{align*}
\]

<table>
<thead>
<tr>
<th>$\Xi(1320)$</th>
<th>$\Xi(1530)$</th>
<th>$\Xi(1620)$</th>
<th>$\Xi(1690)$</th>
<th>$\Xi(1820)$</th>
<th>$\Xi(1950)$</th>
<th>$\Xi(2030)$</th>
<th>$\Xi(2120)$</th>
<th>$\Xi(2250)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>> 0.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure B.1: Possible reconstruction chains of interest for $\Xi \to \Lambda\pi$, the octet ground state using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].
Table B.1: Decay channels of interest and branching ratios from the PDG Review [5].

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR</th>
<th>Decay</th>
<th>BR</th>
<th>Decay</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ^0</td>
<td>→ $\Lambda\pi^0$</td>
<td>0.995</td>
<td>$\Xi(1530)$ → $\Xi\pi$</td>
<td>1</td>
<td>$\Xi(1620)$ → $\Xi\pi$</td>
</tr>
<tr>
<td>Ξ^-</td>
<td>→ $\Lambda\pi^-$</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(1690)$ → ΛK</td>
<td>seen</td>
<td>$\Xi(1820)$ → ΛK</td>
<td>large</td>
<td>$\Xi(1950)$ → ΛK</td>
<td>seen</td>
</tr>
<tr>
<td>→ ΣK</td>
<td>seen</td>
<td></td>
<td></td>
<td>ΣK</td>
<td>possibly</td>
</tr>
<tr>
<td>→ $\Xi\pi$</td>
<td>seen</td>
<td>$\Xi(1530)\pi$</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Xi(1530)\pi$</td>
<td>?</td>
<td>$\Xi(1530)\pi$</td>
<td>small</td>
<td>$\Xi(1530)\pi$</td>
<td>?</td>
</tr>
<tr>
<td>→ $\Xi\pi\pi$</td>
<td>possibly</td>
<td>$\Xi(2120)$ → ΛK</td>
<td>seen</td>
<td>$\Xi(2250)$ → $\Xi\pi\pi$</td>
<td>?</td>
</tr>
<tr>
<td>$\Xi(2030)$ → ΛK</td>
<td>~ 0.2</td>
<td>$\Xi(2120)$ → ΛK</td>
<td>seen</td>
<td>$\Lambda K\pi$</td>
<td>?</td>
</tr>
<tr>
<td>→ ΣK</td>
<td>~ 0.8</td>
<td>$\Xi(2500)$ → ΛK</td>
<td>?</td>
<td>$\Sigma K\pi$</td>
<td>?</td>
</tr>
<tr>
<td>→ $\Xi\pi$</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Xi(1530)\pi$</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Xi\pi\pi$</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Lambda K\pi$</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Sigma K\pi$</td>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Xi(2370)$ → $\Lambda K\pi$</td>
<td>seen</td>
<td>$\Xi(2500)$ → ΛK</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Sigma K\pi$</td>
<td>seen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ ΩK</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Lambda K^+(892)$</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Sigma K^+(892)$</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\Sigma(1385)K$</td>
<td>?</td>
<td>$\Lambda K\pi$</td>
<td>seen with \downarrow</td>
<td>$\Sigma K\pi$</td>
<td>seen with \uparrow</td>
</tr>
<tr>
<td>Λ → $p\pi^-$</td>
<td>0.64</td>
<td>Σ^+ → $p\pi^0$</td>
<td>0.52</td>
<td>Σ^+ → $\Lambda\gamma$</td>
<td>1</td>
</tr>
<tr>
<td>→ $n\pi^0$</td>
<td>0.36</td>
<td>Σ^+ → $n\pi^+$</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ^- → $n\pi^-$</td>
<td>0.998</td>
<td>π^0 → $\gamma\gamma$</td>
<td>0.988</td>
<td>Σ^- → $\Lambda\gamma$</td>
<td>< 0.03</td>
</tr>
<tr>
<td>K^0_S → $\pi^+\pi^-$</td>
<td>0.69</td>
<td>K^0_L → $\pi^0\pi^0\pi^0$</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ $\pi^0\pi^0$</td>
<td>0.31</td>
<td>K^0_L → $\pi^+\pi^-\pi^0$</td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K^0_L → $\pi^+\nu_e\bar{\nu}_e$</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The reactions shown in figure B.2 have the next highest cross section and is a channel of interest. The $\Xi^* → \Xi\pi$ decay is the primary decay for $\Xi(1530)$ which is the ground state of the decuplet and analogous to a ground state Δ baryon. This decay channel is also of particular interest because it is the only known decay of the $\Xi(1620)$, a one-star state. This state has only recently been seen at BELLE after not being seen since the 1980s [60]. This channel is currently under study by fellow GlueX collaboration members.
\[K^+ K^+ \Xi^-* \rightarrow K^+ K^+ (\pi^0 \Xi^-) \rightarrow (2K^+)\pi^-\pi^0\Lambda \rightarrow (2K^+)(2\pi^-)(2\gamma)p \]

\[K^+ K^0\Xi^0* \rightarrow K^+ K^0\Xi^0 (\pi^0 \Xi^-) \rightarrow K^+\pi^+\pi^-(2\pi^0)\Lambda \rightarrow K^+\pi^+(2\pi^-)(4\gamma)p \]

Another channel that has been extensively studied by this analysis (chapter 7) is the reaction shown in figure B.3. This reaction is believed to be the largest branching ratio for the \(\Xi(1820) \) which is predicted to be the first excitation of the decuplet ground state, \(\Xi(1530) \). The first reaction of the two shown in the figure is of particular interest because of the expectation that it should be a narrow state due to its decoupling from the more common \(\pi \) decay (\(\Xi^* \rightarrow \Xi\pi \)) as discussed in section 7.1. At the start of the analysis, there was no previous observation of an excited resonance of the \(\Xi \) baryons using photoproduction.

\[K^+ K^+ \Xi^-* \rightarrow K^+ K^+ (K^-\Lambda) \rightarrow (2K^+)K^-\pi^-p \]

\[K^+ K^0\Xi^0* \rightarrow K^+ K^0\Xi^0 (K^0\Lambda) \rightarrow K^+(2\pi^+)(3\pi^-)p \]

The reactions shown in figure B.4 are a radiative decay known for the decuplet ground state \(\Xi(1530) \). Not much is known about this decay mechanism. The branching ratio quoted here is an upper limit on the branching ratio of less than 4%. While this channel will be experimentally complicated to study because of its small branching ratio and lone photon, it is a useful channel in providing information about the form factors.
\[K^+ K^+ \Xi^- \longrightarrow K^+ K^+(\gamma \Xi^-) \longrightarrow (2K^+)\pi^- \gamma \Lambda \longrightarrow (2K^+)(2\pi^-)\gamma p \]
\[K^+ K_S^0 \Xi^0* \longrightarrow K^+ K_S^0(\gamma \Xi^0) \longrightarrow K^+ \pi^+ \pi^0 \gamma \Lambda \longrightarrow K^+ \pi^+ (2\pi^-)(3\gamma)p \]

<table>
<thead>
<tr>
<th>(\Xi(1320))</th>
<th>(\Xi(1530))</th>
<th>(\Xi(1620))</th>
<th>(\Xi(1690))</th>
<th>(\Xi(1820))</th>
<th>(\Xi(1950))</th>
<th>(\Xi(2030))</th>
<th>(\Xi(2120))</th>
<th>(\Xi(2250))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure B.4: Possible reconstruction chains of interest for \(\Xi \rightarrow \Xi \gamma \) using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

Analogous to the \(\Lambda K \) decay channel, there are also several \(\Sigma K \) decay channels as the \(\Sigma \) baryon has three isospin related states. These channels are more computational complicated than the \(K \Lambda \) channel as each either has photons or an intermediate \(\Lambda \) baryon to consider.

\[K^+ K^+ \Xi^* \longrightarrow K^+ K^+(K^- \Sigma^0) \longrightarrow (2K^+)K^- \gamma \Lambda \longrightarrow (2K^+)(2\pi^-)\gamma p \]
\[K^+ K_S^0(\gamma \Xi^0) \longrightarrow (2K^+)(2\pi^-)n \]
\[K^+ K_S^0(\gamma \Xi^0) \longrightarrow (2K^+)(2\pi^-)\gamma \Lambda \longrightarrow (2K^+)(2\pi^-)(3\gamma)p \]

<table>
<thead>
<tr>
<th>(\Xi(1320))</th>
<th>(\Xi(1530))</th>
<th>(\Xi(1620))</th>
<th>(\Xi(1690))</th>
<th>(\Xi(1820))</th>
<th>(\Xi(1950))</th>
<th>(\Xi(2030))</th>
<th>(\Xi(2120))</th>
<th>(\Xi(2250))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>-</td>
<td>-</td>
<td>seen</td>
<td>small</td>
<td>possibly</td>
<td>(\sim 0.8)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure B.5: Possible reconstruction chains of interest for \(\Xi^* \rightarrow \Sigma K \) using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

The last two decay mechanisms of interest are of those for higher mass excited states as shown in figures B.6 and B.7. They are at the upper mass limit of what GlueX can experimentally detect. These include the decay \(\Xi^* \rightarrow \Xi \pi \pi \) and \(\Xi^* \rightarrow KY \pi \), respectively. Being the most complicated of the channels mentioned, both of these will likely be the last of the \(\Xi \) channels to consider at GlueX.
Figure B.6: Possible reconstruction chains of interest for $\Xi^* \to \Xi \pi \pi$ through a three-body decay or via a two-body decay with an intermediate $\Xi(1530)$ using the previously mentioned decays in figure B.2. Branching ratios are those from the PDG and current as of the 2020 edition [5].

<table>
<thead>
<tr>
<th>BR: 2-body</th>
<th>$\Xi(1320)$</th>
<th>$\Xi(1530)$</th>
<th>$\Xi(1620)$</th>
<th>$\Xi(1690)$</th>
<th>$\Xi(1820)$</th>
<th>$\Xi(1950)$</th>
<th>$\Xi(2030)$</th>
<th>$\Xi(2120)$</th>
<th>$\Xi(2250)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>small</td>
<td>small</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure B.7: Possible reconstruction chains of interest for $\Xi^* \to K \Lambda \pi$ using the previously mentioned decays. Branching ratios are those from the PDG and current as of the 2020 edition [5].

<table>
<thead>
<tr>
<th>BR</th>
<th>$\Xi(1320)$</th>
<th>$\Xi(1530)$</th>
<th>$\Xi(1620)$</th>
<th>$\Xi(1690)$</th>
<th>$\Xi(1820)$</th>
<th>$\Xi(1950)$</th>
<th>$\Xi(2030)$</th>
<th>$\Xi(2120)$</th>
<th>$\Xi(2250)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>small</td>
<td>-</td>
<td>-</td>
<td>small</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[53] T. Hu et al. Photoproduction of η mesons off the proton for 1.2 < E_γ < 4.7 GeV using CLAS at Jefferson Laboratory. 6 2020.

BIOGRAPHICAL SKETCH

I attended a small private school, Ohio Northern University (ONU) for my undergraduate education where I earned a Bachelor’s of Science as a double major in Physics and Applied Mathematics in 2015. During my time at ONU, I was able to participate in several research groups including research in computational solid state physics, mathematical physics, and computational physical chemistry. I also had the opportunity to intern at Argonne National Laboratory preforming research in accelerator physics. The research in solid state, mathematical, and accelerator physics are described in the following paragraphs.

My main research project during my undergraduate career consisted of computationally determining surface characteristics for doped semiconductors. Under the guidance of Dr. Mellita Caragiu at ONU, and in collaboration with the research group of Dr. R. Diehl, at Penn State University, I conducted computational solid state physics to create theoretical energy versus intensity graphs for electron scattering in low energy electron diffraction. These graphs are then compared to experimental results obtained by Dr. Diehls research group. By comparing the experimental with theoretical results, we were able determine the geometrical coordinates of atoms that are adsorbed to surfaces. I worked with Dr. Caragiu for nearly 3 years, and during this project I earned a departmental research award every year I was a part of the project. I am very grateful for the experience and opportunity. The knowledge gained has been invaluable, both in research practices and academic knowledge, as I feel that this experience helped me to become a better scientist.

My senior year I started a research project exploring the mathematics behind problems pertaining to nuclear isospin in systems of particles, under the guidance of Dr. Bill Fuller at ONU. The project included deriving the multiplets for many particle systems from the representation of the individual isospins as well as examining the coherent spin states. The goal of the project was to receive an introduction to the representation theory of lie groups and its application to particle and nuclear physics. This research resulted in me being awarded the William Rowan Hamilton Research award which is presented to one student who performed outstanding research in applied mathematics. It was a part of my senior capstone for my major in mathematics, and was used as a way to bridge the gap to research in hadronic physics.
I was fortunate to be able to participate in an internship at Argonne National Laboratory for the summer of 2014. This internship was specifically within the Accelerator Systems Division of the Advanced Photon Source under the Lee Teng Undergraduate Internship in Accelerator Science and Engineering. As an added benefit that has been immensely invaluable, I was sent to the US Particle Accelerator School. I successfully completed the Fundamentals of Accelerator Physics and Technology course combined with the Simulations and Measurements Lab. This intensive two week course provided me with working knowledge of the many kinds of accelerators and their components, which I was able to directly apply to my summer research project. Under Dr. Ali Nassiri and Dr. Bob Kustom, I conducted initial design simulations using Microwave Studio for a sample of magnesium diboride in a Fabry-Perot open resonator. The project is working towards finding a method to use this material in cryogen-free radio frequency cavities. The use of magnesium diboride in radio frequency cavities would allow for operation at higher temperatures and for a higher accelerating gradient beyond the limit caused by the quench field of niobium.

I started at Florida State University in the Fall of 2015, where I joined the research group lead by Dr. Volker Crede that semester. During the summer of 2016, I started the work presented here. The proposal for which granted me the National Science Foundation Graduate Research Fellowship to fund the next three academic years. The work presented here was shown at the International Conference on Meson-Nucleon Physics at Carnegie Melon in 2019, at APS Division of Nuclear Physics National Meeting in Pittsburgh in 2017, at the Jefferson Lab Users Organization meeting in 2019, at 8 of the 12 GlueX Collaboration meetings that occurred during my tenure with GlueX, and at 4 seminars in the Physics department or at the University.

During my time with the GlueX Collaboration, I started and convened the hyperon working group for its entirety. The group started in April 2019 as an informal meeting and was promoted to an official GlueX meeting in July 2019. As convener of the working group, I was one of five analysis leaders under the Physics Analysis Coordinator. My time as convener working group presented me with valuable experience mentoring other graduate students around the globe. In June 2020, this meeting was retired as the GlueX working groups were restructured.

In April 2020, due to the combination of the work described herein and my leadership in GlueX, I was awarded the John D. Fox scholarship in nuclear physics by the Department of Physics at Florida State University.