
Octet and decuplet baryon σ-terms and mass decompositions

P. M. Copeland,1 Chueng-Ryong Ji,2 and W. Melnitchouk3

1Department of Physics, Duke University, Durham, North Carolina 27708, USA
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

3Jefferson Lab, Newport News, Virginia 23606, USA
(Dated: November 25, 2021)

We present a comprehensive analysis of the SU(3) octet and decuplet baryon masses and σ-
terms using high-precision lattice QCD data and chiral SU(3) effective theory with finite range
regularization. The effects of various systematic uncertainties, including from the scale setting
of the lattice data and the regularization prescriptions, are quantified. We find the pion-nucleon
and strange nucleon σ-terms to be σπN = 44(3)(3) MeV and σNs = 50(6)(1) MeV, respectively.
The results provide constraints on the energy-momentum tensor mass decompositions of the SU(3)
octet and decuplet baryons, where we find the trace anomaly and quark/gluon energies decrease for
strange baryons due to their larger strange σ-terms.

Introduction.— Matrix elements that quantify the
scalar quark content of baryons are important for under-
standing chiral symmetry breaking in quantum chromo-
dynamics (QCD), as well as the decomposition of baryon
masses from the energy-momentum tensor (EMT) [1–
4]. Usually referred to as “σ-terms”, they can be
used to calculate the trace anomaly of the EMT, whose
existence may explain the confinement of quarks in
hadrons [1, 4, 5]. They also play an important role in
building dark matter models, where σ-terms often ap-
pear in the couplings of spin-1/2 dark matter particles
to scalar quark bilinears [6–10]. While there are numer-
ous reasons to have precise and accurate determinations
of baryon σ-terms, in practice these have been rather
difficult to determine consistently from phenomenology.

The best determined σ-terms are those of the nucleon.
Its light (u and d) quark contribution, commonly referred
to as the pion-nucleon σ-term, σπN , was determined by
Gasser et al. [11] from an analysis of πN scattering in the
early 1990s. These studies, along with σ-term extractions
from chiral extrapolations of baryon mass lattice QCD
data, predict a “canonical” magnitude of σπN ≈ 45 MeV.
This value is also typically supported by direct lattice
simulations of σπN [12]. More recent calculations of σπN
determined directly from pionic atom scattering experi-
ments predict a magnitude of around 60 MeV [13, 14], in
tension with the smaller canonical predictions.

The strange nucleon σ-term, σNs, is even more contro-
versial. Values found in the literature range from small
negative to ≈ 300 MeV, with large uncertainties, but
more recent results narrow the spread to σNs ≈ 20–
60 MeV [12, 15–18]. This range is still about twice that
for σπN , and constitutes one of the largest sources of un-
certainty when applying σ-terms, as in spin-independent
WIMP-nucleon scattering [6] for instance.

One of the reasons for this uncertainty lies in the
limited lattice baryon mass data available at different
strange quark masses since strange σ-terms are tradition-
ally determined from chiral extrapolations. Moreover, as
highlighted by Shanahan et al. [16, 17], the available data

can depend strongly on the lattice scale setting scheme.
Attempts to minimize this dependence were made by Ren
et al. [18] by globally fitting lattice data from different
collaborations over various ranges of ms.

Further uncertainties arise from the forms used for the
chiral extrapolations of the lattice data to the physical
point. In particular, the convergence of the chiral ex-
pansion as a function of the meson mass can depend on
the regularization scheme chosen, and it has been argued
that finite range regularization (FRR) schemes, which in-
volve an effective resummation of higher order terms in
the baryon mass, parametrized by a finite range regulator
parameter, can provide better convergence over a larger
range of masses [15, 19, 20]. It is also crucial to cap-
ture all intermediate π, K, and η meson states from the
baryon self-energies in order to accurately describe the
full light and strange quark dependence of the baryons.

In this paper, we employ the latest calculations of the
octet and decuplet baryon masses within a relativistic
chiral SU(3) effective theory framework [21] that uses
FRR to analyze high-precision lattice QCD data from
the PACS-CS [22] and QCDSF-UKQCD [23] Collabora-
tions. Using the Feynman-Hellmann theorem [15, 16], we
then use the parameters determined in the global fits to
extract the light-quark and strange-quark σ-terms for all
SU(3) octet and decuplet baryons, and discuss the im-
pact of the results on baryon mass decompositions from
the EMT.
Baryon masses and σ-terms.— The σ-terms for a

baryon B are defined as the forward baryon matrix el-
ements of a quark scalar current of flavor q,

σBq = mq 〈B|qq|B〉, fBq =
σBq
MB

, (1)

where mq and MB are the quark and baryon masses,
respectively, and fBq are the corresponding quark mass
fractions. For the nucleon, the πN and strange σ-terms
are defined as σπN ≡ σN` = m`〈N |uu+dd|N〉 and σNs =
ms〈N |ss|N〉, respectively, where the average light quark
mass is m` = (mu + md)/2. From the mq dependence
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of the baryon masses, one can compute σBq using the
Feynman-Hellmann theorem,

σBq = mq
∂MB

∂mq
. (2)

In a chiral expansion of the baryon mass one can
write [15, 16],

MB = M
(0)
B + δM

(1)
B + δM

(3/2)
B + · · · , (3)

where M
(0)
B is the bare baryon mass in the chiral limit,

mq → 0, and δM
(1)
B and δM

(3/2)
B are quark mass depen-

dent corrections.
The first correction is linear in the quark masses,

δM
(1)
B = −C(1)

B` m` − C(1)
Bsms, (4)

with coefficients C
(1)
B` and C

(1)
Bs determined from the chiral

SU(3) effective theory [24]. These coefficients for octet
(B = B) and decuplet (B = T ) baryons are linear combi-
nations of the shared parameters, α, β and σ for octet,
and γ and σ for decuplet,

C
(1)
Bq = aqB α+ bqB β + cqB σ, (5a)

C
(1)
Tq = aqT γ + bqT σ̄, (5b)

where the values of the constants aqB, bqB, and cqB for q =
`, s are given in Ref. [24].

The δM
(3/2)
B term arises from the meson loop self-

energies of the baryons, ΣBB′φ, where B′ and φ denote
the intermediate baryon and meson in the loop. The
unique feature of this correction is that it is nonanalytic
in the quark mass mq ∼ m2

φ, according to the Gell-
Mann–Oakes–Renner (GOR) relation [25], with a low-
energy structure that is model independent. In this work
we use the latest calculations for the baryon self-energies
computed within a relativistic SU(3) chiral effective the-
ory regularized with FRR [21], which introduces an ad-
ditional cutoff parameter ΛB.

To avoid mixing between the δM
(3/2)
B term and the

lower order analytic M
(0)
B and δM

(1)
B terms, we “renor-

malize” the self-energies by subtracting the values of the
O(m0

φ) and O(m2
φ) terms at mφ = 0,

ΣBB′φ = ΣBB′φ − ΣBB′φ(0)−m2
φ

∂ΣBB′φ

∂m2
φ

(0), (6)

where the explicit expressions for the self-energies ΣBB′φ

are given in Ref. [21]. This then allows δM
(3/2)
B to be

simply written as a sum of the renormalized self-energies
over all B′ and φ states,

δM
(3/2)
B =

∑
B′φ

ΣBB′φ. (7)

To preserve SU(3) symmetry, we set all octet baryon
masses in the self-energy equations to the average ex-
perimental octet mass, MB = 1142 MeV, and all decu-
plet baryon masses to their experimental average, MT =
1455 GeV, which gives an octet-decuplet mass difference
of 313 MeV.

Baryon mass parameters from lattice data.— To com-
pute the Bq σ-terms requires determining the parameters

{M (0)
B , α, β, σ, γ, σ,ΛB} in the various terms of Eq. (3),

which can be done by analysing lattice QCD data on
octet and decuplet baryons as a function of quark mass.
Such data are available from the PACS-CS [22] and
QCDSF-UKQCD [23] Collaborations, with the latter
dataset for Nf = 2 + 1 flavors particularly useful for
studying variations with both m` and ms. In our anal-
ysis we fit the lattice baryon mass data using Eq. (3)
as a function of both the π and K masses, using the
GOR relation [25] to relate the quark and meson masses,
m` ∝ m2

π/2 and ms ∝ m2
K − m2

π/2 [24, 26]. For the η

meson loops in δM
(3/2)
B , the η mass can be obtained by

m2
η ∝ 2

3 (m` + 2ms)→ (4m2
K −m2

π)/3 [24].

When converting the data from lattice units to physical
units, the method used to determine the lattice spacing a
at each quark mass can have a significant impact on the
magnitude of the strange quark σ-terms [17]. A standard
practice for setting the scale is to assume that the lat-
tice spacing remains fixed at each quark mass simulation
point, which we refer to as the mass independent lattice
spacing (MILS) scheme. In this case the lattice spacing
is provided by the collaborations as a = 0.0907 fm for the
PACS-CS points [22] and a = 0.075 fm for the QCDSF-
UKQCD data [23]. These values are also close to those
determined self-consistently using chiral EFT [27].

Alternatively, the scale can be chosen by relating it to
an external quantity that is invariant under changes in
the quark masses, so that any variation observed in a
lattice simulation must be attributed to changes in the
lattice spacing. Referring to this as the mass dependent
lattice spacing (MDLS) scheme, we choose the Sommer
scale r0 = 0.4921 fm for the PACS-CS data [22], and the
SU(3) singlet quantity XN = (MN +MΣ +MΞ)/3 for the
QCDSF-UKQCD data [23].

We apply small, finite volume corrections to both sets
of data using the expressions derived in Refs. [29–31]. To
minimize the effects of finite lattice volume, only data
from the largest (323 × 64) lattice volumes are selected.
Data at large mπ masses, m2

π & 0.25 GeV2, which are
more susceptible to the choice of scale, are excluded.
With these cuts, fitting to the PACS-CS and QCDSF-
UKQCD data gives agreement between the two scale set-
ting schemes, reducing the systematic uncertainty in σBs.

In fitting the free parameters we allow distinct bare

masses M
(0)
B and M

(0)
T for the octet and decuplet, re-

spectively. The parameters α, β, σ, and M
(0)
B are shared

in the global fit of the octet, and similarly γ, σ, and M
(0)
T
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FIG. 1. Fits to the octet (top) and decuplet (bottom)
baryon masses versus m2

π from the finite volume corrected
PACS-CS [22] (lighter circles) and QCDSF-UKQCD [23]
(darker triangles) data, using the MILS (main panels) and
MDLS (insets) schemes. The experimental masses (black cir-
cles) are not used in the fit.

are shared in the global fit of the decuplet. In previous
work [15, 16] the cutoff ΛB was a shared parameter be-
tween all baryons. In the present analysis, since the cut-
off does not appear in the original Lagrangian, we allow
distinct ΛB values to effectively parametrize the ultravi-
olet structure of each individual baryon B, which is to be
determined from fitting to the lattice data.

For the coupling constants, following Ref. [21] we use
the values D = 0.85 and F = 0.41 the octet-octet cou-
plings, C = 6

5gA for the octet-decuplet, and H = 9
5gA for

the decuplet-decuplet coupling, with gA = D+ F = 1.26
the axial vector charge. For the pseudoscalar decay con-
stant we use the convention where fφ = 93 MeV. The
effects of varying the couplings within their uncertainties
are relatively small [18, 28], and can be mostly compen-
sated for by adjusting the free parameters.

The octet and decuplet baryon masses are fit to the
PACS-CS [22] and QCDSF-UKQCD [23] data, and the
fits presented in Fig. 1 for both the MILS and MDLS
schemes. The data shown include finite volume correc-
tions, as well as corrections for the nonphysical values

of the strange quark masses used in the simulations, al-
though the latter does not affect the fit results. Fairly
good fits were obtained to the octet data, with χ2 per
degree of freedom (dof) values χ2

dof = 0.78 and 0.89 for
the MILS and MDLS schemes, respectively. The decu-
plet baryon data are somewhat more difficult to fit, with
χ2

dof = 2.7 and 3.3 for the MILS and MDLS cases, re-
spectively, which mostly stems from the large spread of
the lattice data and small uncertainties on the heavier
baryon masses, most notably the Ω. The parameter val-
ues were found to be somewhat different for the MDLS
and MILS fits (see Supplementary Material), with the
latter generally giving values ≈ 100 − 200 MeV larger
than the former.
Extracted σ-terms.— From the parameters determined

through the fits to the lattice QCD data, we can di-
rectly obtain predictions for the light and strange quark
σ-terms. Despite differences in the parameters values for
the two sets of results, the σBq values come out to be quite
consistent. For the case of the nucleon, we get σπN =
46(3) MeV and 41(4) MeV and σNs = 49(8) MeV and
50(8) MeV for the MILS and MDLS cases, respectively.
This can be compared with the values σNs = 59(6) MeV
and 21(6) MeV for the MILS and MDLS schemes ob-
tained in Refs. [16, 17]. Note that our fits do not include
experimental data points for the physical masses, which
may unnaturally affect the slopes of the fitted masses due
to the extremely small uncertainty on the data, explain-
ing our somewhat larger σNs than the σNs = 27(27)(4)
found in Ref. [18].

The agreement between the MILS and MDLS results
persists for all other baryons in the SU(3) octet and decu-
plet. In Table I we show the averaged values for the mass
independent and mass dependent results, with differences
between the two quoted as a systematic uncertainty. To
explore the model dependence of the results from the
renormalization prescription and the imposition of SU(3)
symmetry, we in addition perform a less restricted fit in
which no parameters are shared between the baryons,

apart from the bare masses, M
(0)
B , and which does not

use Eq. (6) for the self-energies. This fit, which we refer
to as the “generalized” scheme, gives results that are con-
sistent with the more constrained fits described above for
both MILS and MDLS. In particular, for the nucleon the
πN σ-term is σπN = 47(4) MeV and 45(5) MeV and the
strange σ-term is σNs = 59(14) MeV and 68(15) MeV for
the MILS and MDLS scenarios, respectively, suggesting
the model used for the extrapolation of the lattice data
is not overreaching (see Supplementary Material).

Our results for σπN and σNs agree well with the aver-
age Nf = 2 + 1 lattice values in the FLAG review [12].
On the other hand, despite our comprehensive treatment
of multiple data sets, scale setting schemes and fitting
models, we cannot reconcile our results with those from
the Roy-Steiner equations for the πN σ-term, σπN ≈
60 MeV [13, 14]. A global analysis of experimental data
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TABLE I. σ-terms (σBq, q = `, s), baryon masses (MB), and their ratios (fBq), together with the trace anomaly (fBa) and the
sum of the quark and gluon energy contributions 〈x〉EBq + 3

4
〈x〉Bg, extracted from fits to lattice QCD data. The first uncertainty

is statistical and the second is systematic from the differences between the MILS and MDLS results.

B (MeV) σB` (MeV) σBs (MeV) MB (MeV) fB` fBs fBa 〈x〉EBq + 3
4
〈x〉Bg

N(939) 44(3)(3) 50(6)(1) 920(10)(10) 0.047(3)(3) 0.053(6)(1) 0.900(7)(3) 0.675(7)(3)
Λ(1116) 31(1)(2) 196(5)(7) 1080(6)(10) 0.028(1)(2) 0.176(4)(6) 0.796(4)(6) 0.597(4)(7)
Σ(1193) 25(1)(1) 256(5)(7) 1145(5)(13) 0.021(1)(1) 0.215(4)(6) 0.764(4)(6) 0.573(4)(6)
Ξ(1318) 15(1)(1) 365(5)(12) 1269(3)(12) 0.011(1)(1) 0.277(4)(10) 0.712(4)(10) 0.534(4)(10)

∆(1232) 29(9)(3) 67(11)(3) 1263(28)(23) 0.024(9)(2) 0.054(9)(2) 0.921(13)(3) 0.692(13)(3)
Σ∗(1383) 18(6)(2) 189(11)(9) 1385(13)(22) 0.013(4)(1) 0.137(8)(7) 0.850(9)(7) 0.638(9)(7)
Ξ∗(1533) 10(3)(2) 307(12)(15) 1520(6)(21) 0.007(2)(1) 0.200(8)(10) 0.793(8)(10) 0.594(8)(10)
Ω(1672) 5(1)(1) 418(14)(20) 1663(8)(18) 0.003(1)(1) 0.250(8)(12) 0.747(8)(12) 0.560(8)(12)
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FIG. 2. Nucleon σ-terms compared with the Gupta et al. [32]
(blue) and ETMC [33] (green) direct calculations on the lat-
tice. The σπN is plotted as a function of m2

π with the strange
quark mass fixed, and σNs as a function of m2

K with the pion
mass fixed at the physical point.

and lattice simulations may be needed to obtain clar-
ity on this difference. Recent results by Gupta et al. [32]
have indicated that the discrepancy may be related to ex-
cited πN and ππN states in direct calculations of σπN on
the lattice. We note, however, that SU(2) heavy baryon
chiral perturbation theory is used for the computation of
the scalar charge and σπN in Ref. [32], while a generaliza-
tion to SU(3) is required for strange quark σ-terms, σBs,
along with the other baryon σ-terms. Additionally, the
better convergence offered by FRR could provide an im-
proved functional form to guide the lattice calculations.
In Fig. 2 we compare our MILS σπN results with direct
calculations from Ref. [32, 33], and the prediction for σNs
with Ref. [33], which shows good agreement all masses
apart from the smallest m2

π results.

Baryon mass decomposition.— The quark mass frac-
tions in Eq. (1) represent the contributions of the var-
ious quarks to the baryon mass, which is defined by
the matrix elements of the EMT of QCD, MB =
〈B|
∫
d3xT 00

QCD|B〉/〈B|B〉. This can be accordingly decom-

posed as [1–4],

MB =

[∑
q

(
〈x〉EBq + fBq

)
+

3

4
〈x〉Bg +

1

4
fBa

]
MB, (8)

where 〈x〉EBq = 3
4

(
〈x〉Bq−fBq

)
is interpreted as the quark

kinetic and potential energy, and 〈x〉Bq,Bg are the quark
and gluon momentum fractions of the baryons at the
scale µ. The trace anomaly of the EMT, fBa, can be com-
puted from the sum rule fBa +

∑
q fBq = 1 [1, 2]. Since

the σ-term and trace anomaly contributions are scale in-
dependent, so is the sum,

∑
q〈x〉EBq + 3

4 〈x〉Bg = 3
4fBa.

The numerical values of the various terms in Eq. (8) are
listed in Table I.

The decomposition (8) is scheme dependent and corre-
sponds to defining the trace anomaly as the trace of the
renormalized gluon component of the EMT. An alterna-
tive decomposition defines the baryons mass from only
the trace of the EMT, in which case the quark and gluon
energy contributions do not appear explicitly but are ab-
sorbed by the trace anomaly [4, 34]. Both of these de-
compostions are identical for octet and decuplet baryons,
however, in a more general decomposition, such as those
involving baryon gravitational form factors at zero mo-
mentum transfer, new form factors appear for the de-
cuplet case. For the temporal component of the EMT,
these terms do not contribute due to the vanishing spin
polarization for the decuplet for the µ = 0 component.
(For spatial components, they do not vanish, and can pro-
vide information on unique anisotropic terms in the pres-
sure/work distributions of decuplet baryons, similarly to
those discussed for spin-1 hadrons [35]).

While the debate about the most appropriate mass de-
composition scheme continues [4, 34, 36, 37], we note
that the σ-term contribution to MB is independent of
the scheme. In Fig. 3 we use Eq. (8) to illustrate the de-
composition for several representative octet and decuplet
masses (nucleon, ∆, Ξ and Ω) into their trace anomaly,
quark energy, and gluon momentum components.

The latter contributions decrease with increasing mag-
nitude of the quark mass fractions for heavier baryons,
so that the sum of the quark mass fractions is ≈ 3 times
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fB` fBs
1
4
fBa 〈x〉EBq + 3

4
〈x〉Bg

FIG. 3. Mass decomposition of the nucleon, ∆, Ξ, and Ω
baryons in the rest frame, showing the fractional contribu-
tions of the light (blue) and strange (red) σ-terms, the trace
anomaly (orange) and the sum of the quark and gluon energies
(yellow) to the total masses of the baryons. For the nucleon,
the quark and gluon contributions are shown separately, com-
puted using PDFs from the JAM global QCD analysis [39, 40]
at µ = 2 GeV.

larger for the Ξ compared to the nucleon, for example.
This is of particular interest as the glue energy from the
trace anomaly may be associated with quark confinement
in hadrons (see e.g., Refs. [1, 4, 5]) by exerting a restor-
ing pressure on the hadrons [4, 5], reminiscent of that in
a bag model [1]. The decreasing magnitude of the trace
anomalies for heavier baryons may indicate a proportion-
ally smaller restoring pressure.

Outlook.— It is clear from this analysis that to better
understand the internal quark and gluon compositions of
baryons in QCD, the quark and gluon momentum distri-
butions of other octet and decuplet baryons should be
further studied using lattice and effective field theory
techniques. Further applications of our results include
constraining dark matter models, such as those involving
WIMPs interacting with heavy nuclei [6, 9, 10], which
require σ-terms of heavy nuclei and taking into account
nuclear binding energies [7, 10]. Our results for the light
and strange quark σ-terms of octet and decuplet baryons
with reduced systematic uncertainty can serve as a good
basis for computing the σ-terms of heavy nuclei, and in
the various other applications discussed above.
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SUPPLEMENTARY MATERIAL

In this section we provide additional details about the fits to the lattice QCD data on baryon masses, using different
lattice scale setting schemes and a generalized parametrization of the baryon masses compared to that used in Eq. (4)

with chiral SU(3) constraints for δM
(1)
B .

Generalized mass expansion scheme

To explore the model dependence of our analysis of the baryon masses, we consider a generalized parametrization for
MB, which does not impose the constraints from SU(3) symmetry and renormalization that were used in Eqs. (4)–(7).

In this alternative scenario the coefficients C
(1)
B` and C

(1)
Bs in Eq. (4) and ΛB in δM

(3/2)
B are treated as free parameters

to be determined for each baryon B from the data. The only constraint imposed is that the bare baryon mass is the

same for all baryons. Additionally, in contrast to Eq. (7), the δM
(3/2)
B term is not renormalized and is given by the

direct sum over all possible intermediate states for the self-energies,

δM
(3/2)
B =

∑
B′φ

ΣBB′φ. (9)

Since the parameters in this scheme are uncorrelated, in each self-energy term ΣBB′φ we use the appropriate physical
baryon mass instead of the mass averaged over the multiplet.

Fits to data

The results for the octet and decuplet baryon masses are given in Figs. 4 and 5, respectively, for the MDLS and
MILS schemes, using the SU(3) constrained and generalized mass expansion schemes. Note that the SU(3) constrained
results are identical to those shown in Fig. 1, which we include here for more direct comparison with the generalized
results at small m2

π values.
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MILS (right) schemes, with the standard SU(3) constrained (top) and generalized (bottom) mass expansion schemes. The fits
are compared with PACS-CS (darker) [22] and QCDSF-UKQCD (lighter) [23] data, with the empirical values indicated by the
black circles at the physical point.
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FIG. 5. As in Fig. 4, but for the decuplet baryons ∆ (blue), Σ∗ (orange), Ξ∗ (green) and Ω (red).

Fit Parameters

The relations for the C
(1)
B` and C

(1)
Bs coefficients in the linear quark mass term, δM

(1)
B , in terms of the fit parameters

α, β and σ for the octet, and γ and σ for the decuplet, in the SU(3) constrained scenario are given in Table II [24].

The values of the octet parameters {M (0)
B , α, β, σ, ΛB} and decuplet parameters {M (0)

T , γ, σ, ΛT } determined from
the fits of the SU(3) constrained scheme are given in Tables III and IV, respectively. Similarly, the octet baryon

parameters {M (0)
B , C

(1)
B` , C

(1)
Bs , ΛB} and decuplet baryon parameters {M (0)

T , C
(1)
T` , C

(1)
Ts , ΛT } determined from the fits

to the lattice data using the generalized scheme are given in Tables V and VI, respectively.

TABLE II. Relations for the coefficients of the linear light quark, C
(1)
B` , and strange quark, C

(1)
Bs , mass terms in terms of the fit

parameters α, β, σ for the octet baryons and γ and σ for the decuplet baryons [24].

B C
(1)
B` C

(1)
Bs

N 2α+ 2β + 4σ 2σ

Λ α+ 2β + 4σ α+ 2σ

Σ 5
3
α+ 2

3
β + 4σ 1

3
α+ 4

3
β + 2σ

Ξ 1
3
α+ 4

3
β + 4σ 5

3
α+ 2

3
β + 2σ

∆ 2γ − 4σ 2σ

Σ∗ 4
3
(γ − 3σ) 2

3
(γ − 3σ)

Ξ∗ 2
3
(γ − 6σ) 2

3
(2γ − 3σ)

Ω 2γ − 2σ 4σ
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TABLE III. Octet baryon fit parameters M
(0)
B , α, β, σ, and the regulators ΛN , ΛΛ, ΛΣ, and ΛΞ, for the SU(3) constrained

mass expansion scheme and for the MDLS and MILS scenarios. Statistical uncertainties are given in parentheses.

M
(0)
B α β σ ΛN ΛΛ ΛΣ ΛΞ

(MeV) (MeV−1) (MeV−1) (MeV−1) (MeV) (MeV) (MeV) (MeV)
MDLS 799(27) −1 362(100) −1 097(85) −433(53) 535(81) 545(83) 544(78) 555(83)
MILS 794(26) −1 471(71) −1 241(63) −513(43) 687(70) 695(70) 703(66) 708(70)

TABLE IV. Decuplet baryon fit parameters M
(0)
T , γ, σ, and the regulators Λ∆, ΛΣ∗ , ΛΞ∗ , and ΛΩ, for the SU(3) constrained

mass expansion scheme and for the MDLS and MILS scenarios. Statistical errors are given in parentheses.

M
(0)
T σ γ Λ∆ ΛΣ∗ ΛΞ∗ ΛΩ

(MeV) (MeV−1) (MeV−1) (MeV) (MeV) (MeV) (MeV)
MDLS 1 122(93) 252(366) −1 377(467) 483(89) 487(91) 490(94) 492(100)
MILS 1 136(91) 462(267) −1 500(364) 549(101) 548(100) 549(103) 552(107)

TABLE V. Octet baryon fit parameters M
(0)
B , C

(1)
B` , C

(1)
Bs , and ΛB (B = N , Λ, Σ, Ξ) for the generalized baryon mass expansion

scheme.

B M
(0)
B C

(1)
B` C

(1)
Bs ΛB

(MeV) (MeV−1) (MeV−1) (MeV)

MDLS

N

870(32)

−2 738(256) −281(58) 678(118)
Λ −2 186(199) −869(55) 680(110)
Σ −1 858(302) −1 108(66) 442(417)
Ξ −1 226(229) −1 631(114) 448(136)

MILS

N

927(26)

−2 620(192) −233(52) 730(92)
Λ −2 108(153) −782(44) 734(238)
Σ −1 801(178) −992(80) 387(69)
Ξ −1 234(179) −1 491(80) 494(158)

TABLE VI. Decuplet baryon fit parameters M
(0)
T , C

(1)
T` , C

(1)
Ts , and ΛT (T = ∆, Σ∗, Ξ∗, Ω) for the generalized baryon mass

expansion scheme.

T M
(0)
T C

(1)
T` C

(1)
Ts ΛT

(MeV) (MeV−1) (MeV−1) (MeV)

MDLS

∆

1 184(39)

−2 014(544) −370(191) 601(224)
Σ∗ −1 478(547) −851(202) 508(459)
Ξ∗ −898(455) −1 377(145) 499(652)
Ω −407(272) −1 861(160) 540(423)

MILS

∆

1 254(54)

−2 027(545) −294(171) 636(214)
Σ∗ −1 545(456) −733(199) 500(82)
Ξ∗ −1 002(400) −1 238(185) 494(124)
Ω −541(251) −1 698(191) 582(511)
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σ-term results

The octet baryon σ-terms and masses obtained from the fitted parameters in Tables III–VI for the SU(3) contrained
and generalized mass expansion schemes, and for the MDLS and MILS scenarios, are listed in Table VII, along with
the χ2 per degree of freedom (χ2

dof) values. The corresponding decuplet baryon results are given in Table VIII.

TABLE VII. Octet baryon σ-terms and masses from the SU(3) contrained and generalized schemes, for the MDLS and MILS
scenarios, along with the corresponding χ2

dof values.

MDLS MILS
B σB` σBs MB χ2

dof σB` σBs MB χ2
dof

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SU(3) constrained

N 41(4) 50(8) 910(14)

0.89

46(3) 49(8) 930(14)

0.78
Λ 29(2) 203(7) 1 070(8) 32(2) 189(7) 1 089(8)
Σ 24(2) 263(7) 1 132(7) 26(2) 248(7) 1 158(7)
Ξ 14(1) 376(7) 1 257(3) 15(1) 353(6) 1 280(4)

generalized
N 46(5) 68(15) 896(18)

0.82

47(4) 59(14) 921(18)

0.75
Λ 32(7) 212(12) 1 055(12) 34(3) 200(13) 1 076(12)
Σ 23(8) 257(11) 1 138(15) 21(3) 228(22) 1 170(10)
Ξ 14(1) 379(16) 1 260(4) 14(1) 348(17) 1 283(4)

TABLE VIII. Decuplet baryon σ-terms and masses from the SU(3) contrained and generalized schemes, for the MDLS and
MILS scenarios, along with the corresponding χ2

dof values.

MDLS MILS
T σT` σTs MT χ2

dof σT` σTs MT χ2
dof

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
SU(3) constrained

∆ 26(13) 69(17) 1 240(38)

3.29

31(11) 64(15) 1 285(40)

2.70
Σ∗ 16(9) 198(18) 1 363(17) 19(7) 180(14) 1 407(20)
Ξ∗ 8(5) 322(19) 1 499(9) 11(4) 292(16) 1 540(9)
Ω 4(2) 437(19) 1 645(10) 5(2) 398(20) 1 681(12)

generalized
∆ 38(17) 88(50) 1 209(71)

4.39

40(15) 71(48) 1 245(70)

3.61
Σ∗ 23(23) 199(46) 1 368(55) 24(8) 171(46) 1 412(29)
Ξ∗ 13(14) 321(39) 1 500(31) 14(6) 288(45) 1 539(23)
Ω 4(3) 435(25) 1 622(11) 5(3) 400(38) 1 655(12)
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