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1 Introduction

Lattice calculations devoted to extraction of the parton distribution functions (PDFs) have
attracted recently a considerable interest (see Refs. [1, 2] for reviews and references).
Starting with the paper [3] by X. Ji. Modern, the efforts aim at getting PDFs f(x) as
functions of the fraction variable x rather than just calculate their xN moments. The key
element of these efforts is the analysis of equal-time bilocal operators that define various
parton functions, in particular, PDFs, distribution amplitudes (DAs), generalized parton
distributions (GPDs), and transverse momentum dependent distributions (TMDs). The
major object of Ji’s approach in the case of ordinary PDFs, are quasi-PDFs Q(y, p3) [3, 4].
Tho get the PDFs from them, one should take the large-momentum p3 → ∞ limit of
Q(y, p3).
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There are alternative methods based on the coordinate-space formulation, such as the
“good lattice cross sections” approach [5, 6] and the and the pseudo-PDF approach [7–9],
in which the equal-time correlators M(z3, p3) are considered as functions of the Ioffe-time
[10–12] ν = z3p3 and the probing scale parameter z23 . In these latter case, the parton
distributions are extracted by taking the short-distance z23 → 0 limit at fixed ν.

To convert the data measured at a Euclidean lattice data into the PDFs defined on
the light cone, it should be taken into account that the limits p3 → ∞ and z3 → 0 limits
are singular. To perform the conversion in such a situation, one needs to derive and use
matching relations.

In the quasi-PDF approach, the matching relations were derived for quark [3, 13–15]
and gluon PDFs [16–18], and also for GPDs [19–21] and the pion DA [19].

The matching relations conditions for the bilocal operators in the coordinate repre-
sentation have been originally derived in applications to singlet PDFs [15, 22–25]. The
pseudo-PDF procedure for lattice extraction of nonforward parton functions, such as non-
singlet GPDs and the pion DA was described in Ref. [26], where the necessary matching
conditions have been also obtained.

The pseudo-PDF approach to extraction of unpolarized gluon PDFs was formulated
in our paper [27] (see also Ref. [28]). The results of one-loop calculations for the gluon
bilocal operators have been presented there, and, in a more detailed form in Ref. [29]. The
matching conditions following from these results have been used in lattice extractions of
the unpolarized gluon PDFs in Refs. [30, 31] and [32].

In the present work, we describe the basics of the pseudo-PDF approach to lattice ex-
traction of the polarized gluon PDFs. The paper is organized as follows. In Section 2, we
investigate kinematic structure of the polarized matrix elements of the gluonic bilocal op-
erators built from the gluon stress-tensor and its dual. In particular, we identify the matrix
elements that contain information about the twist-2 polarized gluon PDF. In Section 3,
we present the results for one-loop corrections to the bilocal operator, and discuss their
ultraviolet and short-distance behavior. The matching relations necessary for the lattice
extraction of the polarized gluon PDFs are derived in Section 4. The summary of the paper
is given in section 5.
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2 Matrix elements

2.1 Definitions

To extract polarized gluon distributions of a nucleon, we consider matrix elements of bilo-
cal operators Gµα(z)G̃λβ(0) composed of two gluon fields, with the dual field defined by
G̃λβ = 1

2ελβργG
ργ . The matrix elements are specified by

mµα;λβ(z, p) ≡ 〈p, s|Gµα(z) Ẽ(z, 0;A)G̃λβ(0)|p, s〉 , (2.1)

where Ẽ(z, 0;A) is the usual 0→ z straight-line gauge link in the gluon (adjoint) represen-
tation

Ẽ(z, 0;A) ≡ P exp

[
ig zσ

∫ 1

0
dt Ãσ(tz)

]
. (2.2)

The standard definition of the polarized gluon PDFs [33] uses the contracted amplitude
gαλmµα;λβ , but we will keep all four indices µ, α, λ, β non-contracted. The part that de-
pends on the nucleon spin is determined by the z-odd combination, which vanishes for the
unpolarized case and is linear in the spin-vector s. Thus, we start with the amplitude

M̃µα;λβ(z, p) ≡ m̃µα;λβ(z, p)− m̃µα;λβ(−z, p) . (2.3)

To simplify further formulas, we normalize sµ by s2 = −m2, where m is the nucleon mass.
This means that our polarization vector sµ is related by sµ = mSµ to the usual polarization
vector Sµ which is normalized by S2 = −1.

2.2 Invariant amplitudes

The tensor structures for the decomposition of M̃µα;λβ(z, p) over invariant amplitudes may
be built from two available 4-vectors pα, zα, one pseudo-vector sα and the metric tensor gαβ .
Let us first list the structures in which s carries one of the µα;λβ indices. Incorporating
the antisymmetry of Gρσ with respect to its indices, we have

M̃
(1)
µα;λβ(z, p) = (gµλsαpβ − gµβsαpλ − gαλsµpβ + gαβsµpλ)M̃sp

+ (gµλpαsβ − gµβpαsλ − gαλpµsβ + gαβpµsλ)M̃ps

+ (gµλsαzβ − gµβsαzλ − gαλsµzβ + gαβsµzλ)M̃sz

+ (gµλzαsβ − gµβzαsλ − gαλzµsβ + gαβzµsλ)M̃zs

+(pµsα − pαsµ)(pλzβ − pβzλ)M̃pspz + (pµzα − pαzµ)(pλsβ − pβsλ)M̃pzps

+(sµzα − sαzµ)(pλzβ − pβzλ)M̃szpz + (pµzα − pαzµ)(sλzβ − sβzλ)M̃pzsz ,

(2.4)

where the invariant amplitudes M̃ are functions of the invariant interval z2 and the Ioffe
time [34] (pz) ≡ −ν (the minus sign here is introduced to have ν = p3z3 when z = {0, 0, 0, z3}).
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There are also structures containing s through the (sz) product accompanied by all
the tensor combinations of p, z and metric tensor that have been used in Ref. [27] for the
unpolarized case,

M̃
(2)
µα;λβ(z, p) =(sz) (gµλpαpβ − gµβpαpλ − gαλpµpβ + gαβpµpλ)M̃pp

+(sz) (gµλzαzβ − gµβzαzλ − gαλzµzβ + gαβzµzλ)M̃zz

+(sz) (gµλzαpβ − gµβzαpλ − gαλzµpβ + gαβzµpλ)M̃zp

+(sz) (gµλpαzβ − gµβpαzλ − gαλpµzβ + gαβpµzλ)M̃pz

+(sz) (pµzα − pαzµ) (pλzβ − pβzλ)M̃ppzz

+(sz) (gµλgαβ − gµβgαλ)M̃gg . (2.5)

Since M̃µα;λβ(z, p) is odd in z, the invariant amplitudes M̃sp,M̃ps,M̃pzsz,M̃szpz,M̃zp,M̃pz

are odd functions of ν, while the remaining ones are even functions of ν.
Such a decomposition of M̃µα;λβ(z, p) is quite general. But it may be also constructed, in

particular, from a formal Taylor expansion of Gµα(z) Ẽ(z, 0;A)G̃λβ(0) over local operators,
followed by taking their matrix elements and then recombining back the terms with the
same tensor structure. The implicit assumption of this procedure is that such a Taylor
expansion exists.

In QCD, M̃µα;λβ(z, p) has singularities on the light cone z2 = 0 due to perturbative
logarithms ln

(
−z2

)
generated by gluonic corrections. Thus, we will assume that the invari-

ant amplitudes M̃(ν, z2) are finite for z2 = 0 at the tree level, and will explicitly calculate
the perturbative one-loop corrections that produce the ln

(
−z2

)
terms.

2.3 Relation to PDF

The usual light-cone polarized gluon distribution ∆g(x) is obtained [33] from the matrix
element gαβM̃+α;β+(z, p), with z taken in the light-cone “minus” direction, z = z−. In terms
of the parametrization written above, we have

gαβM̃+α;β+(z−, p) = −2p+s+

[
M̃(+)

ps (ν, 0) + p+z−M̃pp(ν, 0)
]
, (2.6)

where M̃(+)
ps ≡ M̃ps + M̃sp. Thus, the PDF is determined by the structure

M̃(+)
ps − νM̃pp ≡ −iIp(ν) . (2.7)

More specifically,

Ip(ν) =
i

2

∫ 1

−1
dx e−ixνx∆g(x) . (2.8)

Thus, to extract x∆g(x), we should choose the operators with particular combinations of
the {µα;λβ} indices that contain M̃(+)

ps and M̃pp in their parametrization.
It is worth stressing that it is the momentum-weighted density x∆g(x) that is a natural

quantity in this definition of the polarized gluon PDF. Since M̃+α;β+(z−, p) is an odd
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function of z, x∆g(x) is an odd function of x. Hence, Ip(ν) is an odd function of ν, and,
for ν > 0 it can be written as a sine transform

Ip(ν) =

∫ 1

0
dx sin(xν)x∆g(x) . (2.9)

An important quantity is the spin ∆G contributed by the gluons to the total nucleon
spin. It is given by the integral of ∆g(x) over all positive x. As noted in Ref. [34], this
integral may also be written as an integral over the Ioffe-time distribution

∆G ≡
∫ 1

0
dx∆G(x) =

∫ ∞
0

dν Ip(ν) . (2.10)

Thus, to estimate ∆G, it is sufficient to know the Ioffe-time distribution Ip(ν), without
converting it into the PDF ∆G(x).

2.4 Matrix elements for extraction of ∆g(x)

Since the gluon tensor Gρσ is antisymmetric with respect to its indices, the values α = +

and β = + may be taken off the summation in Eq. (2.6). Furthermore, since g−− = 0, the
combination gαβM̃+α;β+(z, p) involves the summation over the transverse indices i, j = 1, 2

only, i.e. it reduces to gijM̃+i;j+(z, p) ≡ M̃+i;+i(z, p) (summation over i implied), for which
we have

M̃+i;+i = M̃0i;0i + M̃3i;3i + M̃0i;3i + M̃3i;0i . (2.11)

When z has just the third component, i.e., z = z3, the decomposition of these combinations
in the basis of the M̃ structures is given by

M̃0i;0i =− 2s0p0M̃(+)
sp + 2p20s3z3M̃pp + 2s3z3M̃gg , (2.12)

M̃3i;3i =− 2p3s3M̃(+)
sp − 2z3s3M̃(+)

sz

+ 2s3z3[p
2
3M̃pp − M̃gg + z23M̃zz + z3p3M̃(+)

zp ] , (2.13)

M0i;3i =− 2 (s0p3Msp + s3p0Mps)− 2s0z3Msz − 2(sz) (p0p3Mpp + p0z3Mpz) (2.14)

M3i;0i =− 2 (s3p0Msp + s0p3Mps)− 2s0z3Mzs − 2(sz) (p3p0Mpp + z3p0Mzp) , (2.15)

where M̃(+)
sz = M̃sz + M̃zs, etc.

One may be tempted to get the “light-cone combination” M̃(+)
ps −νM̃pp by adding these

three projections like in Eq. (2.11). The result (for z = z3) is given by

M̃0i;0i + M̃3i;3i + M̃0i;3i + M̃3i;0i

=− 2s+p+M̃(+)
sp + 2s3z3p

2
+M̃pp

− 2s+z3M̃(+)
sz + 2s3z

3
3M̃zz + 2s3z

2
3p+M̃(+)

zp , (2.16)

where p+ = p0 + p3 and s+ = s0 + s3.

– 5 –



One can see that only the first two terms on the right hand side resemble the combi-
nation that we had in the case of a light-cone separation. The other terms are built from
the contaminating “Euclidean” terms, which are completely absent in the expression (2.6)
for the z = z− function gαβM̃+α;β+(z−, p).

Looking at the projection M̃0i;0i (2.12), we see that it is rather close in structure to
the desired combination M̃(+)

ps − νM̃pp. Still, M̃0i;0i contains the M̃gg contamination.
Fortunately, this term can be subtracted if we notice that

M̃ij;ij =− 2s3z3M̃gg . (2.17)

This observation suggests to arrange the combination

M̃0i;0i + M̃ij;ij =− 2s0p0M̃(+)
sp + 2p20s3z3M̃pp (2.18)

that contains just M̃(+)
sp and M̃pp.

Taking p = {p0, 0⊥, p3}, using the requirement (sp) = 0 and the normalization condition
s2 = −m2, we get s = {p3, 0⊥, p0} for the polarization vector in the direction of the
momentum. This gives

M̃0i;0i + M̃ij;ij =− 2p3p0M̃(+)
sp + 2p30z3M̃pp . (2.19)

Rewriting the right-hand side as

M̃0i;0i + M̃ij;ij =− 2p3p0

[
M̃(+)

sp − (1 +m2/p23)νM̃pp

]
, (2.20)

we see that this combination becomes proportional to the desired amplitude M̃(+)
sp − νM̃pp

for large p3. Writing the ratio

−
[
M̃0i;0i + M̃ij;ij

]
/(2p3p0) =

[
M̃(+)

sp − νM̃pp

]
− m2z23

ν
M̃pp (2.21)

in terms of ν and z23 variables, one may hope to pick out M̃(+)
sp − νM̃pp exploiting the

strong extra z23 dependence of the remaining term.
In a similar way, the M̃gg term may be excluded from M̃3i;3i (2.13) by building the

projection

M̃3i;3i − M̃ij;ij = −2p3p0[M̃(+)
sp − νM̃pp]

− 2z3p0M̃(+)
sz + 2p0z

3
3M̃zz + 2p0p3z

2
3M̃(+)

pz . (2.22)

Note that it contains M̃(+)
sp and M̃pp in exactly the desired combination. Still, there remain

three contaminations. As they all come with z3 factors, one may hope that these terms are
suppressed for small z3.
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Finally, the remaining projections (2.14), (2.15)

M0i;3i =− 2p20

(
M̃(+)

sp − νMpp

)
+ 2m2M̃sp − 2νMsz + 2p20z

2
3Mpz , (2.23)

M3i;0i =− 2p20

(
M̃(+)

sp − νMpp

)
+ 2m2M̃ps − 2νMzs + 2p20z

2
3Mzp , (2.24)

contain, again, M̃(+)
sp and M̃pp in the combination −2p20[M̃

(+)
sp − νM̃pp] plus 2m2M̃sp or

2m2M̃ps. Hence, they are proportional to M̃(+)
ps − νM̃pp for large p0, but have two other

contaminations.
A possible advantage of M̃0i;3i and M̃3i;0i is that they have 2p20 factor in front of M̃(+)

sp ,
while we have the 2p3p0 factor in the case of M̃0i;0i + M̃ij;ij . Hence, M̃0i;3i and M̃3i;0i may
have a stronger signal for small p3 than M̃0i;0i + M̃ij;ij .

2.5 Relation to E and B fields

So far, our parametrization was based on the most general properties of matrix elements,
like Lorentz covariance and antisymmetry of Gρσ with respect to its indices. Now, let us
incorporate the fact that we deal with the matrix element G(z)G̃(0) in which both G and
G̃ may be written in terms of the electric Ek and magnetic Bk fields.

Namely, we have G0i = Ei, G̃0i = Bi, Gij = −εijkBk , G̃ij = εijkEk, with the familiar
E ↔ B interchange when G → G̃. To treat the fields in a more symmetric way, we use
translation invariance of the forward matrix elements, and shift the arguments of the fields
by z/2 to find

M̃0i;0i (z) = 〈Ei (z/2)Bi (−z/2)〉 − {z → −z}
= 〈E⊥ (z/2) ·B⊥ (−z/2)〉 − {z → −z} (2.25)

and

M̃3i;3i (z) =−
[
〈ε3ikBk (z/2) ε3ilEl (−z/2)〉 − {z → −z}

]
= −

[
〈Bk (z/2)Ek (−z/2)〉 − {z → −z}

]
= M̃0i;0i (z) . (2.26)

Thus, we arrive at the relation

M̃3i;3i (z) = M̃0i;0i (z) . (2.27)

Basically, it results from the fact that changing 0i into 3i corresponds to the E ↔ B

interchange, which makes no change in the E↔ B-symmetric GG̃ operator.
However, Eq. (2.27) looks rather unexpected in view of different structure of the

decompositions (2.12) and (2.13) for these projections. Combining these decompositions
with Eq. (2.27) results in the “sum rule”

2M̃gg = −M̃(+)
zs −m2M̃pp + z23M̃zz + νM̃(+)

zp (2.28)
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involving the invariant amplitudes both from M̃
(1)
µα;λβ(z, p) (2.4) and M̃

(2)
µα;λβ(z, p) (2.5).

Substituting this relation for M̃gg into Eq. (2.5) changes the tensor coefficients accompa-
nying the invariant amplitudes M̃zs,M̃sz,M̃pp,M̃zz,M̃zp and M̃pz. As an example, M̃pp

will be accompanied by the

gµλ

(
pαpβ −

p2

4
gαβ

)
− gµβ

(
pαpλ −

p2

4
gαλ

)
− gαλ

(
pµpβ −

p2

4
gµβ

)
+ gαβ

(
pµpλ −

p2

4
gµλ

)
(2.29)

factor, in which the original pρpσ-type tensors are substituted by their traceless versions.
The changes to traceless versions will occur in the structures accompanying all other in-
variant amplitudes listed above. Another sum rule is derived by considering

M̃ij;ij (z) =−
[
〈εijkBk (z/2) εijlEl (−z/2)〉 − {z → −z}

]
= −2

[
〈B3 (z/2)E3 (−z/2)〉 − {z → −z}

]
= 2M̃03;03 (z) . (2.30)

Thus, we have M̃ij;ij (z) = 2 〈E3 (z/2) ·B3 (−z/2)〉 − {z → −z} . To use the resulting
relation M̃ij;ij (z) = 2M̃03;03 (z) , we need the decomposition

M̃03;03 =p0z3(p0s3 − p3s0)M̃(+)
pspz + s0p0z

2
3M̃(+)

szpz − s3p20z33M̃ppzz

+ s3z3

(
M̃(+)

sz +m2M̃pp − z23M̃zz − νM̃(+)
zp + M̃gg

)
, (2.31)

where M̃(+)
pspz = M̃pspz + M̃pzps, and, similarly, M̃(+)

szpz = M̃szpz + M̃pzsz . Using the sum
rule (2.28) simplifies this expression into

M̃03;03 = p0z3(p0s3 − p3s0)M̃(+)
pspz + s0p0z

2
3M̃(+)

szpz − s3p20z33M̃ppzz − s3z3M̃gg . (2.32)

Applying now M̃03;03 = 1
2M̃ij;ij = −s3z3M̃gg, we obtain the second sum rule

s3p0z
2
3M̃ppzz =(p0s3 − p3s0)M̃(+)

pspz + s0z3M̃(+)
szpz (2.33)

relating the invariant amplitude M̃ppzz from M̃
(2)
µα;λβ with the invariant amplitudes M̃(+)

pspz

and M̃(+)
szpz from M̃

(1)
µα;λβ .

Finally, let us derive the field representation for M̃0i;3i and M̃3i;0i. They are obtained
through

M̃0i;3i (z) = G01 (z/2)G02 (−z/2)−G02 (z/2)G01 (−z/2)− {z → −z} (2.34)
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and

M̃3i;0i (z) = G31 (z/2)G23 (−z/2)−G32 (z/2)G13 (−z/2)− {z → −z} . (2.35)

This gives

M̃0i;3i (z) = 2 〈E⊥ (z/2)×E⊥ (−z/2)〉3 (2.36)

and

M̃3i;0i (z) = −2 〈B⊥ (z/2)×B⊥ (−z/2)〉3 . (2.37)

2.6 Multiplicatively renormalizable combinations

Off the light cone, the M̃µα;λβ matrix elements have extra ultraviolet divergences related
to presence of the gauge link. For any set of its indices {µα;λβ}, each matrix element is
multiplicatively renormalizable with respect to these divergences [35]. However, in general,
the anomalous dimensions are different.

In Ref. [36], it was established that the combinations represented in Eq. (2.11), namely,
M̃0i;i0, M̃3i;i3, M̃0i;i3, M̃3i;i0, with summation over transverse indices i, are each multiplica-
tively renormalizable at the one-loop level. Furthermore, as we will see, the combination
GijG̃ij (with summation over transverse i, j) has the same one-loop UV anomalous dimen-
sion as M̃0i;i0, while the matrix element of G30G̃03 has the same one-loop UV anomalous
dimension as M3i;i3. Hence, the combinations of Eqs. (2.18) and (2.22) are multiplicatively
renormalizable at the one-loop level.

2.7 Reduced Ioffe-time distribution

Within the pseudo-PDF approach [7], the link-related UV divergences are eliminated through
introducing the reduced Ioffe-time distribution. Namely, for each multiplicatively renormal-
izable amplitudeM we build the ratio

M(ν, z23) ≡ M(ν, z23)

M(0, z23)
, (2.38)

in which the link-related UV divergent Z(z23µ
2
UV ) factors generated by the vertex and link

self-energy diagrams cancel. As a result, the small-z23 dependence of the reduced pseudo-
ITD M(ν, z23) comes from the logarithmic DGLAP evolution effects only.

3 One loop corrections

Our next goal is to develop one-loop matching relations for the matrix elements that may
be used in the lattice extraction of polarized gluon PDF. In their calculation, we have used
the same method [37] that was used in Refs. [27, 29] for the unpolarized case.
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3.1 Link self-energy contribution

The self-energy correction for the gauge link is given by the simplest diagram (see Fig. 1).
In lattice perturbation theory, it was calculated at one loop in Ref. [38]. The result is close
to that given by the expression

ΓUV(z3, a) ∼ − αs
2π

CF

[
2
|z3|
a

tan−1
(
|z3|
a

)
− ln

(
1 +

z23
a2

)]
(3.1)

obtained using Polyakov regularization 1/z2 → 1/(z2 − a2) for the gluon propagator in the
coordinate space, with the parameter a related to the lattice spacing by a = aL/π. An
important property of this contribution is the presence of a ∼ z3/aL linear term, where aL
is the lattice spacing that provides here the ultraviolet cut-off.

z t1z t2z 0

Figure 1. Self-energy-type correction for the gauge link.

Clearly, this correction is just a function of z3. It does not induce any ν-dependence,
and the resulting ν-independent factors cancel in the ratio (2.38). For this reason, the
explicit form of this factor is not essential in the pseudo-PDF approach.

For completeness, we present here the expression for the link self-energy digram in
Feynman gauge obtained using the dimensional regularization,

− g2Nc

4π2[(−z2µ2UV + iε)]
d
2
−2

Γ
(
d/2− 1

)
(3− d)(4− d)

Gµα(z)Gλβ(0) , (3.2)

where the pole for d = 3 (d = 4) corresponds to the linear (logarithmic) UV divergences
present in this diagram.

3.2 UV divergent vertex terms

UV divergent terms are also present in vertex diagrams involving gluons that connect the
gauge link with the gluon lines, see Fig. 2. Clearly, the gluon exchange produces a correc-
tion just to one of the fields in the Gµα(z)G̃λβ(0) operator, while another remains intact. A
minor complication compared to Refs. [27, 29] is the presence of a dual field G̃ in one of the
vertices. But this changes only the tensor structure of the contributions without affecting
the integral.

As established in Refs. [27, 29], the vertex correction may be represented as the sum
of the UV divergent and UV finite parts. The UV-divergent part of the vertex correction
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0 0z z tztz

a) b)

Figure 2. Vertex diagrams with gluons coming out of the gauge link.

to Gµα(z) is given by

Ncg
2

8π2
Γ(d/2− 1)

(d− 2)(−z2)d/2−1

∫ 1

0
du
(
u3−d − u

)
(zαGzµ(ūz)− zµGzα(ūz)) , (3.3)

where Gzσ ≡ zρGρσ and ū ≡ 1− u. As we see, the overall d-dependent factor here is finite
for d = 4, but the u-integral diverges at the lower limit. If one uses the dimensional UV
regularization with d = 4− 2εUV, the divergence converts into a pole at εUV = 0. Isolating
the UV divergence by taking ū = 1 in the gluonic field produces

Ncg
2

4π2
Γ(d/2− 1)

(d− 2)(−z2)d/2−1

(
1

4− d
− 1

2

)
(zαGzµ(z)− zµGzα(z)) (3.4)

plus the remainder given by

Ncg
2

8π2
Γ(d/2− 1)

(d− 2)(−z2)d/2−1

∫ 1

0
du
[
u3−d − u

]
+(0)

(zαGzµ(ūz)− zµGzα(ūz)) , (3.5)

where the plus-prescription at u = 0 is defined as∫ 1

0
du [f(u)]+(0) g(u) =

∫ 1

0
duf(u)[g(u)− g(0)] . (3.6)

As explained in Refs. [27, 29], if we take z = z3, the field Gµα(z) = zαGzµ(z)−zµGzα(z)

in Eq. (3.4) is actually proportional to the field Gµα(z) in the original operator. In explicit
form: G0i(z) = 0, Gij(z) = 0, G03(z) = −z23G03(z) and G3i(z) = −z23G3i(z). Thus, when
one of the indices equals 3, we have a nontrivial vertex anomalous dimension (AD, call it
γ), since G3α(z) = −z23G3α(z) for all α. In all other cases, we have a trivial (vanishing)
vertex AD, since Gij(z) = 0 and G0i(z) = 0.

For the dual field G̃λβ , the “γ-counting” is inverse: if none of the indices λ, β equals 3,
the field has AD equal to γ. Otherwise, its AD is zero. Combining the ADs from G and
G̃, we see that the matrix elements M̃0i;0i, M̃ji;ji, M̃03;03 and M̃3i;3i all have vertex AD
equal to γ; while M̃0i;3i has zero AD and M̃3i;0i has AD equal to 2γ. These observations
lead to the results announced in Section 2.6. Namely, the matrix element M̃ij;ij has the
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same one-loop UV anomalous dimension as M̃0i;i0, while M̃30;03 has the same one-loop UV
anomalous dimension as M3i;i3.

Of course, the UV cut-off produced by the dimensional regularization is rather different
from that produced by a finite lattice spacing. The latter, as pointed out earlier, is similar to
the Polyakov regularization 1/z2 → 1/(z2 − a2) for the gluon propagator in the coordinate
space, with the parameter a related to the lattice spacing by a = aL/π. The UV logarithms
(αsCV /4π) ln z23µ

2
UV in this case are substituted by (αsCV /4π) ln

(
1 + z23/a

2
)
(compare with

Eq. (3.1)). In higher orders, they exponentiate into

ZL(z3/aL) =
(
1 + π2z23/a

2
L

)αsCV /4π . (3.7)

For each particular type of the operator discussed above, one would have ZγL(z3/aL), where
γ is the number (0, or 1, or 2) corresponding to the operator in question.

Building the matching relations for particular matrix elements entering in the combi-
nations listed in Eqs. (2.18), (2.22) and (2.24), we will need the following results for the
UV-divergent parts of vertex corrections

Gli(z3)G̃li(0)
UV−→ g2NcΓ(d/2− 1)

4π2(z23)d/2−2

∫ 1

0
du

(
u3−d − u
d− 2

)
Gli(ūz3)G̃li(0) , (3.8)

where l = 0, 3 or l = j (in the latter case, also summation over j is implied). We also have

G3i(z3)G̃0i(0)
UV−→ g2NcΓ(d/2− 1)

2π2(z23)d/2−2

∫ 1

0
du

(
u3−d − u
d− 2

)
G3i(ūz3)G̃0i(0) (3.9)

and G0i(z3)G̃3i(0)
UV−→ 0.

3.3 Evolution contribution from the vertex diagrams

The UV finite contribution from the vertex diagrams shown in Fig. 2 generates the evolution
z23-dependence of the matrix element. It may be symbolically written as

Gµα(z3)G̃λβ(0)
Evol−→ g2NcΓ(d/2− 2)

4π2(z23)d/2−2

∫ 1

0
du

[
u3−d − 1

d− 3

]
+

Gµα(ūz3)G̃λβ(0) . (3.10)

In this case, the gluonic operator has the same tensor structure as the original operator
Gµα(z3)G̃λβ(0) differing from it just by rescaling z → ūz. There is no mixing with operators
of a different type. Also, the evolution factor is the same for any combination of the indices
in GµαG̃λβ .

The u-integral now does not diverge for d = 4, but the overall Γ(d/2− 2) factor has
a pole 1/(d − 4). Note that the singularity for d = 3 from the pole 1/(d − 3) formally
corresponds to a linear UV divergence. However, it is compensated by a zero coming for
d = 3 from the

[
u3−d − 1

]
combination in the integrand. The remaining 1/(d − 4) pole

corresponds to a collinear divergence that appears because all the propagators and external
lines correspond to massless particles. The integrand factor

[
u3−d − 1

]
+
for d = 4 produces

the [ū/u]+ part of the evolution kernel.
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3.4 Gluon self-energy diagrams

z 0

a)

z 0

b)

Figure 3. Gluon self-energy-type insertions into the right leg.

Another simple type of one-loop corrections is represented by the gluon self-energy
diagrams, one of which is shown in Fig. 3a. These diagrams have both the UV and
collinear divergences. The combined contribution of the Fig. 3 diagrams and their left-leg
analogs is given by

g2Nc

8π2
1

2− d/2

[
2− β0

2Nc

]
Gµα(z)Gλβ(0) , (3.11)

where β0 = 11Nc/3 in gluodynamics, so that the terms in the square bracket combine into
1/6.

3.5 Box diagram

The most nontrivial is the calculation of the “box” diagram corresponding to a gluon ex-
change between two gluon lines (see Fig. 4). While this diagram has no UV divergences, it
contains DGLAP log z23 evolution contributions. In distinction to the vertex diagrams, the
original Gµα(z)Gνβ(0) operator generates in this case a mixture of various bilocal operators
in which Gµα(uz)Gνβ(0) is projected onto the structures built from the metric tensor g and
the vectors p and z.

z 0

Figure 4. Box diagram.

The results for arbitrary indices σρµλ are given below. We present them in the operator
form, however, the operators that have the form of a full derivative are abandoned. In other
words, we keep only those operators that survive in the forward matrix element.

The full result for the box correction to the forward matrix element of the GσρG̃µλ
operator may be represented by a sum of three terms. The first one has Γ(d/2) as an
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overall factor.

Gσρ(z)G̃µλ(0)
Box,1−→ g2NcΓ(d/2)

4π2
(
z23
)d/2 (εσρµzzλ − εσρλzzµ)

∫ 1

0
du
ū3

3
Gzξ(uz)G

ξ
z (0) (3.12)

The second term is proportional to Γ(d/2− 1)

Gσρ(z)G̃µλ(0)
Box,2−→ g2NcΓ(d/2− 1)

8π2
(
z23
)d/2−1 ∫ 1

0
du

{
εσρµλ

ū3

3
Gzξ(uz)G

ξ
z (0)

− ū
3

3
ε ν
σρλ Gzν(uz)Gzµ(0) −

(
2uū+

ū3

3

)
ε ν
σρλ Gzµ(uz)Gzν(0)

+ ū2
(
ε η
σρz Gλη(uz)Gzµ(0)− ε νη

σρ zµGzν(uz)Gλη(0)

)
+ ū(1 + u)

(
ε η
σρz Gzµ(uz)Gλη(0)− ε νη

σρ zµGλη(uz)Gzν(0)

)
+

(
ū2

2
− ū3

3

)(
εσρzλ

(
Gµξ(uz)G

ξ
z (0) +Gzξ(uz)G

ξ
µ (0)

)
− ε ν

σρλ zµ

(
Gνξ(uz)G

ξ
z (0) +Gzξ(uz)G

ξ
ν (0)

) )
+ 2ūε η

σρz zµGλξ(uz)G
ξ
η (0) − ū

3

6
εσρzλzµGηξ(uz)G

ηξ(0)

}
− {λ↔ µ} . (3.13)

The third term is proportional to Γ(d/2− 2):

Gσρ(z)G̃µλ(0)
Box,3−→ 1

2
ε νη
σρ

g2NcΓ(d/2− 2)

8π2
(
z23
)d/2−2 ∫ 1

0
du

{
− 2ūGλη(uz)Gµν(0)

− uGµλ(uz)Gνη(0) + ū(1/2− u)Gνη(uz)Gµλ(0) + ū(1/2 + u)Gµλ(uz)Gνη(0)

+ ūu2gλη

(
Gµξ(uz)G

ξ
ν (0) +Gνξ(uz)G

ξ
µ (0)

)
+ ū

(
gµνGλξ(uz)G

ξ
η (0)− gµηGλξ(uz)G ξ

ν (0)
)

− ū3

6
gµνgληGζξ(uz)G

ζξ(0)

}
− {λ↔ µ} . (3.14)

We use here the notation εzαβγ = zµεµαβγ , etc.
In practice, however, one may only need the projections of these expressions onto partic-

ular combinations of indices corresponding to matrix elements M̃0i;0i+M̃ij;ij , M̃3i;3i − M̃ij;ij ,
M̃0i;3i and M̃3i;0i that contain the “twist-2” invariant amplitude M̃(+)

ps −νM̃pp and are listed
in Eqs. (2.18), (2.22), (2.23) and (2.24).
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4 Matching relations

As discussed already, the sum M̃00 ≡ M̃0i;0i + M̃ij;ij contains only the invariant amplitudes
M̃(+)

sp and M̃pp entering in the “twist-2” combination M̃(+)
sp − νM̃pp . Moreover, since

M̃00 = −2p3p0

[
M̃(+)

sp − νM̃pp − νM̃ppm
2/p23

]
, (4.1)

the ratio M̃00/(−2p3p0) tends to M̃(+)
sp −νM̃pp for large p3 at fixed ν. Other combinations of

matrix elements, namely, (2.22), (2.23) and (2.24), contain extra “contaminating” invariant
amplitudes, like M̃(+)

sz , M̃(+)
pz , M̃zz, etc. For this reason, the combination M̃0i;0i + M̃ij;ij is

the primary object of the ongoing lattice studies of the polarized gluon distribution.

4.1 Total one-loop correction

Combining all the one-loop corrections for the relevant operator (assuming that it is inserted
into a forward matrix element) we get

G0i(z)G̃0i(0) +Gij(z)G̃ij(0)

→g2Nc

8π2

[
4

3

(
1

εUV
+ log

(
z23µ

2 e
2γE

4

))
+ 2

](
G0i(z)G̃0i(0) +Gji(z)G̃ji(0)

)
+
g2Nc

8π2

∫ 1

0
du

(
1

ū
− ū
)

+

(
G0i(uz)G̃0i(0) +Gji(uz)G̃ji(0)

)
+
g2Nc

8π2

∫ 1

0
du

{
ū2
(
G0i(uz)G̃0i(0) +Gij(uz)G̃ij(0)

)
− ū(1 + u)

(
G3i(uz)G̃3i(0) + 2G30(uz)G̃30(0)

) }
+
g2Nc

8π2

∫ 1

0
du

((
1

εIR
− log

(
z23µ

2 e
2γE

4

))(
2ūu+ 2

[u
ū
− u
]
+
− 1

2

(
β0
Nc

+ 6

)
δ(ū)

)
−
[

4u

ū
+

4 log(1− u)

ū

]
+

)(
G0i(uz)G̃0i(0) +Gij(uz)G̃ij(0)

)
+
g2Nc

8π2

(
1

εIR
− log

(
z23µ

2 e
2γE

4

))∫ 1

0
du 2ūu

(
G3i(uz)G̃3i(0) + 2G30(uz)G̃30(0)

)
(4.2)

Using the relations in Eqs. (2.27) and (2.30) we change G3i(uz)G̃3i(0)+2G30(uz)G̃30(0)

into G0i(uz)G̃0i(0) +Gij(uz)G̃ij(0) and write everything in terms of the latter. Switching
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to matrix elements, we get

M̃0i;i0(z, p) + M̃ji;ij(z, p)

→ g2Nc

8π2

[
4

3

(
1

εUV
+ log

(
z23µ

2 e
2γE

4

))
+ 2

](
M̃0i;i0(z, p) + M̃ji;ij(z, p)

)
+
g2Nc

8π2

∫ 1

0
du

{
−2ūu+

(
1

ū
− ū
)

+

− 4

[
u+ log(1− u)

ū

]
+

+

(
1

εIR
− log

(
z23µ

2 e
2γE

4

))[{
4uū+ 2

[
u2/ū

]
+

}
− 1

2

(
β0
Nc

+ 6

)
δ(ū)

]}
×
(
M̃0i;i0(uz, p) + M̃ji;ij(uz, p)

)
. (4.3)

4.2 Gluon-quark mixing

0z

Figure 5. Gluon-quark mixing diagram.

In addition to the gluon-gluon transitions, we also need to include the contribution
from gluon-quark mixing. The result that correspons to M̃0i;i0 + M̃ji;ij in the MS scheme
at the operator level is:

−g
2CF
8π2

∫ 1

0
du 2ūu ∂0O0

q (uz)− g2CF
8π2

log

(
z23µ

2 e
2γE

4

)∫ 1

0
du
(
1− ū2

)
∂0O0

q (uz) . (4.4)

The singlet combination of quark fields is defined as

O0
q (z) =

1

2

∑
f

(
ψ̄f (uz)γ0γ5ψf (0) + ψ̄f (0)γ0γ5ψf (uz)

)
, (4.5)

with f numerating quark flavors. Since O0
q is even in z, the matrix element can be

parametrized by

〈p, s| O0
q (z) |p, s〉 = 2p3

∫ 1

0
cos (xpz) ∆fS (x) . (4.6)

Then, applying the time derivative, we have:

∂0 〈p, s| O0
q (z) |p, s〉 = 2p0p3 ∆IS (ν) , (4.7)
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where ν = −(zp), as usual, and

∆IS (ν) = −
∫ 1

0
x sin (xν) ∆fS (x) . (4.8)

Applying this parametrization to Eq. (4.4), we obtain:

〈p, s|G0i (z) G̃i0 (0) |p, s〉+ 〈p, s|Gij (z) G̃ji (0) |p, s〉

→ − 2p0p3
g2CF
8π2

∫ 1

0
du

[
log

(
z23µ

2 e
2γE

4

)
B̃gq(u) + 2ūu

]
∆IS (uν) , (4.9)

with the gq component of the evolution kernel given by B̃gq(u) = 1− (1− u)2.

4.3 Building reduced Ioffe-time pseudodistribution

A disadvantage of M̃00(z3, p3) is that it is proportional to p3 for small momenta p3, and one
cannot use M̃00(z3, p3 = 0) in the denominator of the ratio defining the reduced pseudo-
ITD, like it is done in Eq. (2.38). To overcome this difficulty, we propose to form the ratio of
M̃00(z3, p3) and the p3 = 0 value of the unpolarized matrix elementM00 ≡M0i;i0+Mij;ji of
the operator G0iGi0 +GijGji discussed in Ref.[27]. As established there, at the tree level,
M00(z3, p3) = 2p20Mpp(ν, z

2
3), with the invariant amplitude Mpp(ν, z

2
3) being proportional

to the pseudo-ITD for the unpolarized gluon density xfg(x) divided by 〈xg〉. Thus, we are
going to consider the pseudo-ITD M̃

(
ν, z23

)
defined by

M̃
(
ν, z23

)
≡ {M̃00 (z3, p3) /p3p0}/ZL(z3/aL)

{M00 (z3, p3 = 0) /m2}
. (4.10)

The factor 1/ZL(z3/aL) (defined by Eq. (3.7)) is included to cancel the UV logarithmic
vertex AD of the M̃00 matrix element.

As we discussed, the main reason for taking the ratio is to cancel the factor Zlin(z23/a
2)

generated by linear divergence in the gluon-link self-energy. This factor is the same in
M̃00 (z3, p3) and in M00 (z3, p3 = 0), so this factor cancels in the ratio. Furthermore, the
denominator factor does not have DGLAP evolution logarithms, hence the DGLAP struc-
ture of M̃

(
ν, z23

)
is determined by DGLAP logarithms of the numerator factor M̃00 (z3, p3).

Using the results of our calculations for the one-loop corrections to the combinations
M̃0i;i0(z, p) + M̃ji;ij(z, p) and M0i;i0(z3, p3 = 0) + Mij;ji(z3, p3 = 0), and neglecting the
additional term in Eq. (2.21) with factor z23/ν, we obtain the matching relation

i M̃
(
ν, z23

)
〈xg〉µ2

=Ip
(
ν, µ2

)
− αsNc

2π

∫ 1

0
duIp

(
uν, µ2

){
log

(
z23µ

2 e
2γE

4

)
B̃gg(u)

+4

[
u+ log(ū)

ū

]
+

−
[
u2

ū
+ 2u2

]
+

}
− αsCF

2π

∫ 1

0
du [∆IS (uν)−∆IS (ν)]

{
log

(
z23µ

2 e
2γE

4

)
B̃gq(u) + 2ūu

}
(4.11)
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between the “lattice function” M̃(ν, z23) and the polarized light-cone ITD Ip(ν, µ2). Here

B̃gg(u) ≡
[

2u2

ū
+ 4uū

]
+

(4.12)

is the gg part of the Altarelli-Parisi kernel for polarized gluon distribution.
Eq. (4.11) allows one to extract just the shape of the polarized gluon distribution.

Its normalization, i.e., the magnitude of 〈xg〉µ2 must be taken from an independent lattice
calculation, similar to that performed in Ref. [39]. The singlet quark function ∆IS(wν, µ2)

that appears in the O(αs) correction should be also calculated (or estimated) independently.
Using Eq. (2.9) allows us to write (4.11) directly in terms of the LC polarized gluon

distribution:

i M̃
(
ν, z23

)
=

∫ 1

0
dx
x∆g(x, µ2)

〈xg〉µ2
R̃gg

(
xν, z23µ

2, z23µ
2
UV

)
+

∫ 1

0
dx
x∆fS(x, µ2)

〈xg〉µ2
R̃gq

(
xν, z23µ

2
)
, (4.13)

where the gluon-gluon kernel R̃gg is given by

R̃gg
(
xν, z23µ

2, z23µ
2
UV

)
= sin(xν)−g

2Nc

8π2

∫ 1

0
du sin(uxν)

{
log

(
z23µ

2 e
2γE

4

)
B̃gg(u)

+4

[
u+ log(ū)

ū

]
+

−
[
u2

ū
+ 2u2

]
+

}
, (4.14)

and the gluon-quark kernel R̃gq is

R̃gq
(
xν, z23µ

2
)

=− αsCF
2π

∫ 1

0
du [sin(uxν)− sin(xν)]

{
log

(
z23µ

2 e
2γE

4

)
B̃gq(u) + 2ūu

}
. (4.15)

5 Summary

In this paper, we formulated the basic points of the pseudo-PDF approach to lattice calcula-
tion of polarized gluon PDFs. In particular, we have presented the results of our calculations
of the one-loop corrections for the bilocal Gµα(z)G̃λβ(0) correlator of gluonic fields. We gave
the expressions for a general situation when all four indices are arbitrary, and also specified
them for combinations of indices giving three matrix elements that contain the structures
corresponding to twist-2 invariant amplitude related to the polarized PDF. We have studied
the evolution properties of these matrix elements, and derived matching relations between
Euclidean and light-cone Ioffe-time distributions that are necessary for extraction of the
polarized gluon distributions from the lattice data.
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