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Abstract of the Dissertation

Precision Measurement of the Parity Violating Asymmetry

in Elastic Electron Scattering of 208Pb

by

Tao Ye

Doctor of Philosophy

in

Physics

Stony Brook University

2021

The Lead Radius Experiment (PREX) measures the parity violating asymmetry APV in

the elastic scattering of longitudinally polarized electrons from 208Pb nuclei. APV provides a

model independent measure of the neutron skin thickness, the difference between the point

neutron radius Rn and the point proton radius Rp. In the summer of 2019, the PREX-

2 collaboration completed data collection utilizing the electron beam from the Continuous

Electron Beam Accelerator Facility (CEBAF) in Jefferson Lab. The instrumentation and the

experimental technique for systematic control of APV measurement are introduced in Chapter

2 and Chapter 3. Chapter 4 introduces an event cut strategy taking target conditions into

account to guarantee data quality. The discussion of the statistical properties of the data

will be followed by the discussion on the correction for beam fluctuations. An accurate and

precise beam correction method based on Lagrange multiplier regression and eigenvector

analysis is developed in Chapter 5. After completion of data analysis, the PREX-2 result is

APV = 550 ± 16 (stat) ± 8 (syst) parts-per-billion. Combined with the PREX-1 data, the

result leads to the extracted neutron skin thickness Rn − Rp = 0.283 ± 0.071 fm in 208Pb.

Implications of the PREX-2 results are discussed in Chapter 6.
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Chapter 1

Introduction

This chapter mainly discusses the physics motivation and the theoretical context of the parity

violating asymmetry in 208Pb. Section 1.1 introduces the definitions of symmetry energy

parameters in the nuclear Equation of State (EOS) and reviews our current knowledges on

the symmetry energy parameters. The neutron skin thickness in the neutron rich heavy nuclei

is believed to be sensitive to the density dependence of the symmetry energy at saturation

density. A model independent approach for the neutron skin thickness measurement using

parity-violating electron scattering is introduced in Section 1.2. The connection between the

parity-violating asymmetry and the point neutron radius in 208Pb is discussed in Section

1.3. To optimize the sensitivity of the parity-violating asymmetry to the neutron radius and

the statistical efficiency, the optimal experiment kinematics are chosen based on the metric

named Figure of Merit (FOM) discussed in Section 1.4.

1.1 Nuclear Equation of State and the Neutron Skin

The energy per baryon of hadronic matter near saturation density ns is traditionally ex-

pressed as a double Taylor series expansion in density (n− ns) and neutron excess (1− 2x),

e(u, x) = −B +
K0

18
(u− 1)2 +

K ′0
162

(u− 1)3 + S2(u)(1− 2x)2 + el + . . . , (1.1)

where B is the bulk binding energy of symmetry matter at saturation density, K0 and K ′0

are the standard incompressibility and skewness parameters, el is the lepton energy and u

and x are dimensionless parameters:

u =
n

ns
, 1− 2x =

N − Z
N + Z

. (1.2)
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The symmetry energy S(u) is the energy difference between pure neutron matter and sym-

metric matter and is approximately S2(u)

S(u) = e(u, 0)− e(u, 1/2) ≈ S2(u). (1.3)

The Taylor series expansion of the symmetry energy near saturation density ns (u=1) is

S(u) = Sv +
L

3
(u− 1) +

Ksym

18
(u− 1)2 + . . . , (1.4)

where the symmetry energy parameters are defined as below

Sv = S2(1), (1.5)

L = 3u
(∂S2

∂u

)
u=1

, (1.6)

Ksym = 9u2
(∂2S2

∂u2

)
u=1

. (1.7)

L is known as the density dependence of the symmetry energy at saturation density and

is closely related to the pressure of pure neutron matter at saturation density p(1, 0)

p(u, x) = u2ns

(∂e
∂u

)
x
≈ u2ns

[K0

9
(u− 1) +

K ′0
54

(u− 1)2 +
∂S2

∂u
(1− 2x)2

]
+ pl, (1.8)

p(1, 0) ≈ 1

3
nsL, (1.9)

where pl is the lepton pressure. The density dependence of the symmetry energy governs the

nuclear structure of nuclei, the radii of neutron stars and the thickness of their crusts, the

cooling process of neutron stars and etc. Our knowledge of the density dependence of the

symmetry energy L is still limited. One promising experimental portal to L is the neutron

skin thickness, the difference between the RMS radius of the point neutron and the point

proton distributions

∆rnp = Rn −Rp, (1.10)

where the RMS radii Rn and Rp can be calculated with known of the point neutron distri-

bution ρn(r) and the point proton distribution ρp(r)

R2
t =

∫
d3rr2ρt(r)∫
d3rρt(r)

, for t = n, p. (1.11)

For a nucleus with a significant neutron excess, the formation of the neutron skin, to a large

extend, is a consequence of the competition between the symmetry energy and the surface

tension. The symmetry energy in the dense core is expected to be larger than that in the

dilute surface region. On the one hand, placing the excess neutrons in the dense core region
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is favored by the surface tension but disfavored by the symmetry energy. On the other hand,

pushing the excess neutrons out reduces the symmetry energy at the cost of the surface

tension. For a stiff symmetry energy, namely a large slope of the symmetry energy L(u), a

thick neutron skin is expected.
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Figure 1.1: Neutron skin thickness of 208 Pb vs L. The linear fit is ∆rnp = 0.101+0.00147L.

This figure is adapted from [1].

Stable and doubly-magic nuclei with significant neutron excess are ideal candidates for

the neutron skin thickness measurement. 208Pb shows its advantage for having the largest

known splitting to the first excited state (2.6 MeV) of any heavy nucleus. The neutron skin

thickness of 208Pb ∆rnp is valuable for its sensitivity to the slope parameter of the symmetry

energy L. The collective behavior of different mean field models in Figure 1.1 shows a strong

correlation between ∆rnp and L. A detailed discussion on the model dependence of the

correlation between ∆rnp and L will be given in Section 6.2.

Most of the existing measurements for the neutron skin rely on hadronic probes, such as

pions, nucleons, α-particles and antiprotons. Though the hadronic probe generates a large

scattering cross-section from its strong interaction nature, the interpretation of the data from

hadronic probes is built on the model assumptions associated with the reaction mechanism,

multiple scattering effects and the medium modification to the elementary interaction and

etc. The inconsistency between the neutron radius extracted from π+ and π− beam [38], the

broad and dramatic energy-dependency of the neutron skin thickness of 208Pb using proton-

nucleus scattering [39] and the potentially underestimated theoretical uncertainties in the

antiprotonic atoms observables indicate a robust control over the theoretical uncertainties is

needed.
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The Sn isotopes neutron skin thickness has been measured with proton elastic scattering

[40, 41], α-scattering [42], spin-dipole resonance [43], antiprotonic atom observables [44],

pygmy dipole resonance [45]. A constraint in the Sv − L plane was given from the χ2-

analysis of these Sn neutron skin data [6]. The 1-σ confidence band from the Sn neutron

skin is shown as the light blue band in Figure 1.2 and is orthogonally intercepted with

the yellow confidence ellipse given by the nuclear masses fit [5], therefore the neutron skin

thickness is considered as a valuable constraint in Sv and L.
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Figure 1.2: Experimental Constraints on the symmetry energy parameters adapted from

[2, 3, 4]. a) Nuclear masses fit [5]; b) Sn isotopes neutron skin [6]; c) Giant Dipole Resonance

(GDR) [7]; d) Heavy Ion Collision (HIC) [8]; e) Pb Dipole Polarizability [9, 10]. The hatched

region is the common part of the 1-σ bands of all these measurements.

Existing constraints on Sv and L from laboratory observables have been reviewed in

[2, 46, 3] and the illustration of these constraints are shown in Figure 1.2 adapted from

[2, 46, 3, 4]. The density dependence of the symmetry energy is experimentally constrained

within 40 MeV < L < 68 MeV.
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In contrast to the hardronic probes, the promising electroweak probe using the parity

violating elastic scattering is model independent though challenging for high precision, and

the path from the parity violating asymmetry to the neutron skin thickness will be given

in the next section. Limited by the statistical uncertainty, the PREX-1 result has been

interpreted to a limit of 35 MeV < L < 262 MeV [2].

1.2 Parity Violating Electron Scattering

In the Standard Model, the VA theory defines the interaction between fermions and the Z0

boson with the Feynman diagram and the Lagrangian shown below

Z0

f

f

− i g

2 cos θW
γµ(gfV − g

f
Aγ

5).

In the 4-Fermi effective Lagrangian, the parity-violating part of the neutral-current (NC)

interaction of the quark with the electron is

LeqNC =
GF√

2

∑
q=u,d

[
C1q(eγµγ

5e)(qγµq) + C2q(eγµe)(qγ
µγ5q)

]
, (1.12)

where the tree-level electroweak coefficients are

C1u = 2geAg
u
V = −1

2
+

4

3
sin2 θW , C2u = 2geV g

u
A = −1

2
+ 2 sin2 θW , (1.13)

C1d = 2geAg
d
V =

1

2
− 2

3
sin2 θW , C2d = 2geV g

d
A =

1

2
− 2 sin2 θW , (1.14)

and the vector and axial coupling constants gv and gA for fermions are defined in Table 1.1.

gV gA

e −1
2

+ 2 sin2 θW
1
2

u 1
2
− 4

3
sin2 θW −1

2

d −1
2

+ 2
3

sin2 θW
1
2

Table 1.1: Vector and axial coupling constants for the electron (e), the up quark (u) and the

down quark (d).
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dσ ∼

∣∣∣∣∣ γ

N

e−

N

e−

+ Z0

N

e−

N

e− ∣∣∣∣∣
2

Figure 1.3: Cross-section of the electron scattered off a spin-0 nuclear target.

The cross-section of the electron elastically scattered off a spin-0 nuclear target is the

squared scattering amplitudes including both electromagnetic (EM) and weak neutral current

(WNC) interactions:

dσ ∝ |Mγ +MZ |2 = |Mγ|2 + 2|MγMZ |+ |MZ |2, (1.15)

of which the Feynman diagram at tree-level is shown in Figure 1.3 and both the EM and

WNC scattering amplitudes can be expressed in terms of interaction currents Jγ and JZ :

Mγ =
e2

Q2
JeγJ

N
γ , MZ =

GF√
2
JeZJ

N
Z , (1.16)

where Jz contains the vector and the axial currents

JeZ = geV (eγµe)− geA(eγµγ
5e), (1.17)

JqZ = gqV (qγµq)− gqA(qγµγ
5q), q = u, d. (1.18)

Since sin2 θW ≈ 0.23, the vector coupling constant of the electron geV is negligible

geV = −1

2
+ 2 sin2 θW ≈ 0, (1.19)

therefore the axial coupling constant geA is dominant in the Z-exchange scattering amplitude

MZ ∝ geA(eγµe)J
N
Z . (1.20)

At tree-level, the effective axial and vector currents for a neutron (n) and a proton (p) are

given below

gpV = 2guV + gdV =
1

2
− 2 sin2 θW ≈ 0, (1.21)

gpA = 2guA + gdA =
1

2
, (1.22)

gnV = 2gdV + guV = −1

2
, (1.23)

gnA = 2gdA + guA =
1

2
, (1.24)
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where the vector current contribution from the proton gpV is also negligible. For elastic

scattering at Q2 � 1 GeV , the contribution from the pure Z-exchange |Mz|2 is suppressed

by the Fermi constant GF

(
√

2GF )2 =
1

(247 GeV)4
, (1.25)

Therefore the leading contributions to the cross-section are the pure photon-exchange

and γ-Z interference terms

dσ ∝ |Mγ|2 + 2|MγMZ |. (1.26)

Under the parity transformation (P), the space-like components of an axial vector remain

unchanged and its time-like component flips sign,

(j0
A, j

1
A, j

2
A, j

3
A)

P−→ (−j0
A, j

1
A, j

2
A, j

3
A), (1.27)

thus the product of a vector current and an axial current is parity violating

jµAjV µ = (j0
A, j

1
A, j

2
A, j

3
A) · (j0

V , j
1
V , j

2
V , j

3
V ) = j0

Aj
0
V −

3∑
k=1

jkAj
k
V , (1.28)

(−j0
A, j

1
A, j

2
A, j

3
A) · (j0

V ,−j1
V ,−j2

V ,−j3
V ) = −j0

Aj
0
V +

3∑
k=1

jkAj
k
V = −jµAjV µ, (1.29)

so that in the weak neutral interaction, the cross-term of the electron axial current and the

nuclear vector current is also parity violating

jeAj
N
V
P−→ −jeAjNV . (1.30)

Because the left-handed and right-handed components in the electron axial current have

opposite signs

eγµγ5e = eRγ
µeR − eLγµeL, (1.31)

the difference in the cross-section of the left-handed and the right-handed chiral electrons is

proportional to the interference term

dσR − dσL ∝ |MγMZ | ∝ jeγj
N
γ · jeAjNV . (1.32)

In the ultra-relativistic limit E � m, the right-handed helicity state is identical to the

right-handed chiral state

e↑ = PRe↑ + PLe↑ =
1

2
(1 +

|p|
E +m

)eR +
1

2
(1− |p|

E +m
)eL ≈ eR, (1.33)
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and likewise for the left-handed chiral state and the left-handed helicity state. Relativistic

electrons highly polarized along its momentum therefore can be used as a probe for the

vector current in a nuclear target.

The parity-violating asymmetry is defined as the differential cross-section of the scattering

of the left-handed and the right-handed polarized electrons and is sensitive to the neutral

weak form factor FW (Q2) of the nuclear target

APV =
σ↑ − σ↓

σ↑ + σ↓
=

2|MγMZ |
|Mγ|2

≈ GFQ
2|QW |

4
√

2παZ

FW (Q2)

Fch(Q2)
. (1.34)

1.3 Weak Form Factor and Neutron Radius

To reveal the exact relation between the weak form factor FW and the point neutron radius

Rn for a nucleus, the FW (Q2) is transformed to the neutral weak charge density ρW in the

space coordinate

FW (q) =
1

QW

∫
d3r

sin qr

qr
ρW (r). (1.35)

The neutral weak charge density ρW can also be decomposed as

ρW (r) = 4

∫
d3r′

[
GZ
n (|~r − ~r ′|)ρn(r′) +GZ

p (|~r − ~r ′|)ρp(r′)
]
, (1.36)

where the single proton and the single neutron weak charge densities GZ
p (r) and GZ

n (r) are

the Fourier transforms of the nucleon Sachs form factors GZ
p (Q2) and GZ

n (Q2). And ρp(r
′)

and ρn(r′) are the spatial density distributions of the point protons and the point neutrons

in the nucleus.

In the meantime, the electric Sachs form factors of a single proton and a single neutron

contain contributions from the u, d and s quarks known as

Gp
E =

2

3
up −

1

3
dp −

1

3
sp, (1.37)

Gn
E =

2

3
un −

1

3
dn −

1

3
sn. (1.38)

And with the isospin symmetry:

Gu
E := up = dn, (1.39)

Gd
E := dp = un, (1.40)

Gs
E := sp = sn, (1.41)

the quark flavor form factors can be formulated in terms of Sachs form factors

Gu
E = 2Gp

E +Gn
E +Gs

E, (1.42)

Gd
E = 2Gn

E +Gp
E +Gs

E. (1.43)
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Assume the single nucleon density is a linear combination of the u, d and s quarks with

neutral weak A-V coupling constants, the neutron weak charge Sachs form factor can be

expressed in terms of nucleon electric Sachs form factors

GZ
n = gedAVG

u
E + geuAVG

d
E + gedAVG

s
E

= gedAV (2Gp
E +Gn

E +Gs
E) + geuAV (2Gn

E +Gp
E +Gs

E) + gedAVG
s
E

= (2gedAV + geuAV )Gp
E + (2geuAV + gedAV )Gn

E + (2gedAV + geuAV )Gs
E, (1.44)

and similarly for the proton weak charge form factor

GZ
p = (2geuAV + gedAV )Gp

E + (2gedAV + geuAV )Gn
E + (2gedAV + geuAV )Gs

E. (1.45)

where

2geuAV + gedAV =
1

4
− sin2 θW =

1

4
qpW ,

2gedAV + geuAV = −1

4
= −1

4
qnW . (1.46)

For simplicity and convenience, the Sachs form factor relations between the neutral weak

charge and the electric charge are shown as

4GZ
p = qpWG

p
E + qnWG

n
E −Gs

E,

4GZ
n = qnWG

p
E + qpWG

n
E −Gs

E. (1.47)

With the nucleus electric charge density defined as convolutions of the point nucleon density

distributions with the single nucleon form factors,

ρch(r) =

∫
d3r′

[
Gn
E(|~r − ~r ′|)ρn(r′) +Gp

E(|~r − ~r ′|)ρp(r′)
]
, (1.48)

the nuclear weak charge density can be further formulated as

ρW (r) =

∫
d3r′

[
(qnWG

p
E + qpWG

n
E −Gs

E)ρn(r′) + (qpWG
p
E + qnWG

n
E −Gs

E)ρp(r
′)
]

=

∫
d3r′

{
qnW

[
Gp
Eρn(r′) +Gn

Eρp(r
′)
]

+ qpW

[
Gn
Eρn(r′) +Gp

Eρp(r
′)
]
− ρb(r′)Gs

E

}
= qpWρch(r) +

∫
d3r′

{
qnW

[
Gp
Eρn(r′) +Gn

Eρp(r
′)
]
− ρb(r′)Gs

E

}
, (1.49)

where the baryon density ρb(r) = ρn(r) + ρp(r).

The root-mean-square (RMS) radius of point neutrons Rn is the square root of the

expectation value of r2 with a given point neutron distribution ρn(r):

R2
n =

1

N

∫
d3rr2ρn(r), (1.50)
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where N =
∫

d3rρn(r). Likewise, similar integrals for the neutral weak and the electric

charge density produce the neutral weak radius RW and the electric charge radius Rch∫
d3rr2ρW (r) = QWR

2
W , (1.51)∫

d3rr2ρch(r) = ZR2
ch, (1.52)

of which the normalization factors QW and Z are the total neutral weak charge and the total

electric charge of the nucleus respectively

QW =

∫
d3rρW (r) = NqnW + ZqpW , (1.53)

Z =

∫
d3rρch(r). (1.54)

Integrals weighted by r2 over the full space, i.e.
∫

d3rr2 , on the both sides of Equation (1.49)

resulted in an equation connecting the nucleus weak charge radius RW , the nucleus electric

charge radius Rch, the point proton radius Rp, the single proton and the single neutron radius

〈r2
p〉 and 〈r2

n〉 and the nucleon strangeness radius 〈r2
s〉 together

QWR
2
W = qpWZR

2
ch + qnW

[
N〈r2

p〉+NR2
n + Z〈r2

n〉
]
− (N + Z)〈r2

s〉, (1.55)

with the following equalities for the single proton and the single neutron electric Sachs form

factors and their electric charge RMS radii:∫
d3rGp

E(r) = 1, (1.56)∫
d3rGn

E(r) = 0, (1.57)∫
d3rr2Gp

E(r) = 〈r2
p〉, (1.58)∫

d3rr2Gn
E(r) = 〈r2

n〉, (1.59)∫
d3rr2

∫
d3r′Gf (|~r − ~r ′|)ρk(r′) = Qk〈r2

f〉+Qk〈R2
k〉
∫

d3rGf (|~r|). (1.60)

Therefore it is now straightforward to calculate the point neutron radius Rn with the

experimental measurement of RW

R2
n =

QW

qnWN
R2
W −

qpWZ

qnWN
R2

ch − 〈r2
p〉 −

Z

N
〈r2
n〉+

Z +N

qnWN
〈r2
s〉, (1.61)

and recall that qnW and qpW are the single neutron weak charge and the single proton weak

charge as defined in Equation (1.46). Given the measurement of FW (q) carried out at a
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single value of the momentum transfer, assumptions on the surface thickness have to be

made in order to extract RW . To access RW , the Helm model was used to model the weak

form factor [47]

FW (q) =
3

qR0

j1(qR0)e−σ
2q2/2, (1.62)

where R0 is the diffraction radius characterizing the location of the zero point of FW (q0) = 0

and the width σ includes the effect from the surface thickness of point nucleon densities and

the single-nucleon form factor. j1 = sinx/x2 − cosx/x is the spherical Bessel function.

The Fourier transform of Equation (1.62) to the coordinate space is

ρW (r) =
3QW

8πR3
0

{
erf
(R0 + r√

2σ

)
− erf

(r −R0√
2σ

)
+

√
2

π

σ

r

[
e−

1
2

(
r+R0
σ

)2 − e−
1
2

(
r−R0
σ

)2
]}
, (1.63)

therefore the RMS radius of the weak charge is

R2
W =

1

QW

∫
d3rr2ρW (r) =

3

5
(R2

0 + 5σ2). (1.64)

Based on Equation (1.62), for a given FW (q) at a single value of momentum transfer, once R0

is fixed, it uniquely determines σ and vice versa. An exploration on seven mean-field models

[47] shows a variation in σ less than 0.09 fm which results in a negligible uncertainty in RW

from model assumptions. Based on the parity-violating asymmetry measured by PREX-1

[11]

APV = 656± 60 (stat)± 14 (syst) ppb (1.65)

at 〈Q2〉 = 0.00880± 0.00011 GeV2, the weak radius RW was obtained [11, 47]

RW = 5.826± 0.181 (exp.)± 0.027 (mod.) fm. (1.66)

Figure 1.4 illustrates the correlation of APV and Rn [11]. Circles are distorted-wave calcu-

lations for seven nonrelativistic and relativistic mean-field models which reproduce charge

densities and binding energies in good agreement with experiment and span a wide range in

Rn. The red square is the PREX-1 result. The effect of Coulomb distortions can be seen by

comparing the distorted-wave calculations with the plane-wave calculations which are shown

in blue squares.

Based on Equation (1.61), a relation between RW and Rn was given in [47]

R2
n = 0.9525R2

W − 1.671〈r2
s〉+ 0.7450 fm2, (1.67)

where 〈r2
s〉 = 0.02 ± 0.04 fm2 for Q2 < 0.11 GeV2[48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,

59, 60, 61]. From Equation (1.66) and Equation (1.67), the neutron radius Rn was given by

the PREX-1 result [47]

Rn = 5.751± 0.175 (exp.)± 0.026 (mod.)± 0.005 (str) fm. (1.68)
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Figure 1.4: Results of PREX-1 data (red square) vs extracted point neutron RMS radius Rn

shown in [11]. Circles are distorted-wave calculations for seven mean-field neutron densities.

The diamond marks the point proton RMS radius Rp = 5.449 fm as a reference. The blue

squares show plane wave impulse approximation results.

Therefore, with known of FW at a single momentum transfer, the neutron skin thickness

can be determined

∆Rnp = Rn −Rp, (1.69)

where the point proton RMS radius Rp for lead can be calculated from the electric charge

RMS radius Rch and Equation (1.48)

R2
ch =

1

Z

∫
dr3r2ρch(r)

= R2
p + 〈r2

p〉+
N

Z
〈r2
n〉+

3

4M2
+ 〈r2〉so

= R2
p + 0.5956 fm2, (1.70)

where the charge radius of a single proton is 〈r2
p〉 = 0.769 fm2 and that of a neutron is

〈r2
n〉 = −0.116 fm2 [62]. The contribution of spin-orbit currents 〈r2〉so = −0.028 fm2 and the

Darwin contribution 3/4M2 is small with the nucleon mass M [47]. The charge radius of
208Pb Rch = (5.503± 0.002) fm is given by [25]. Therefore, the point proton RMS radius is

Rp = (5.449± 0.002) fm, (1.71)

where the ±0.002 fm uncertainty of Rp is negligible compared with the uncertainty of Rn.

The neutron skin thickness of 208Pb measured by the PREX-1 data is

Rn −Rp = 0.302± 0.175 (exp)± 0.026 (mod)± 0.005 (str) fm. (1.72)
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1.4 Figure of Merit

A common concern of experimental measurements is the relative uncertainty, e.g. the relative

uncertainty of a parity-violating asymmetry measurement is

δA

A
, (1.73)

where δA is the experimental uncertainty, typically dominated by the statistical uncertainty,

and 〈A〉 is the averaged central value of the asymmetry measurement.

The statistical fluctuation of an asymmetry measurement depends on the detected scat-

tered event counts N , which is proportional to the cross section σ with given experiment

kinematics and the available beam time

(δA)2 =
1

N
∝ 1

σ
, (1.74)

Therefore the relative uncertainty of the asymmetry measurement is related with the asym-

metry central value and the cross-section

δA

A
∝ 1√

σ × A
. (1.75)

The figure of merit (FOM) for parity experiments is a conventional metric which is the

product of the cross-section and the asymmetry central value

FOM = σ × A2. (1.76)

therefore the maximized FOM is equivalent to the optimized relative uncertainty with the

available experiment run time.

PREX-2 was proposed to measure the point neutron radius in 208PbRn with 1 % accuracy,

therefore the sensitivity of the parity-violating asymmetry APV to Rn should be taken into

account for choosing the optimal kinematics. The optimal FOM minimizes the experiment

run time required by the 1 % accuracy in Rn.

The sensitivity to the neutron radius ε quantifies the fractional change in the asymmetry

with the neutron radius increased by 1 % at given experiment kinematics

ε =
A1 − A
A

, (1.77)

where A1 is the asymmetry with the neutron radius increased by 1%. The overall FOM for

PREX-2 is

FOM = σ × A2 × ε2. (1.78)
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The sensitivity to Rn was explored in a mean field theory (MFT) calculation [12]. The

sensitivity to Rn, the cross section, the parity violating asymmetry as functions of the mo-

mentum transfer q are shown in Figure 1.5. And the beam energy E and scattering angle Θ

dependence of the overall FOM (σ×A2× ε2) is illustrated in the bottom right plot of Figure

1.5 and suggests an optimal point at 0.85 GeV beam with 6◦ scattering angle, corresponding

to q=0.45 fm−1.

q (fm -1)

d
σ/

d
Ω

(m
b

ar
n

) Cross Section
at E = 0.85 GeV

q (fm -1)

A
 (

p
p

m
)

Asymmetry

q (fm -1)

ε
=

 d
A

/A

Sensitivity
to R_n

E (GeV)
0.5

1

6
10Θ

FOM x ε2

Pb208

Figure 1.5: Cross section, parity violating asymmetry and sensitivity to Rn for 208 Pb elastic

scattering as a function of momentum transfer q. The bottom right plot shows the FOM

(σ×A2× ε2) with beam energy and scattering angle. One optimal choice at 0.85 GeV beam

with 6◦ scattering angle, corresponding to q=0.45 fm−1. [12]

A more recent MFT calculation for the sensitivity to Rn was carried out [13] and the

sensitivities at two fixed beam energies with varying scattering angles is shown in Figure 1.6

and the results are summarized in Table 1.2.
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Figure 1.6: Sensitivity of the parity violating asymmetry to the changes of Rn in 208Pb versus

scattering angle at beam energies of 1.05 GeV and 1.8 GeV. The SLY4 neutron density was

used.[13]

E [GeV] 1.05

θ [◦] 5.0

APV [ppm] 0.719
dσ
dΩ

[mb/str] 1339

ε -2.76

Table 1.2: Calculation results from [13] for expected rate and the sensitivity to Rn at 1.05

GeV beam and 5◦ scattering angle. The neutron and proton densities are calculated in the

Skyrme HF theory with the SLY4 interaction.

Based on the sensitivity ε, the uncertainty of Rn can be translated from the experimental

uncertainty of the measured asymmetry

dRn

Rn

=
1

ε

dAPV

APV

, (1.79)

dAPV

APV

=
1√
Ntot

/(P · APV), (1.80)

where Ntot is the total number of asymmetry patterns collected and the measured asymmetry

P ·APV is the product of the longitudinal polarization for the electron beam P ≈ 90 % and

the parity violating asymmetry APV.

The total number of scattered events detected can be estimated from the following

Ntot = I · T · ρtar ·
dσ

dΩ
· ζ ·∆Ω ·Narm, (1.81)
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where the beam current I is 70 µA, T is the experiment run time to be optimized, ρtar =

1.6× 1021 cm−2 is the number of atoms per target area, ζ = 0.34 is the radiation loss factor,

∆Ω = 0.0037 sr is the acceptance solid angle of each individual spectrometer arm and N = 2

for the two HRS arms configuration in the experimental hall.

To achieve the 1 % accuracy in Rn , a 2.76 % experimental uncertainty in APV is required

and needs approximately 15.4 days beam time

T =
( 1

P · APV · dAPV

APV

)2 1

I · ρtar · dσ
dΩ
· ζ ·∆Ω ·Narm

≈ 15.39 days. (1.82)
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Chapter 2

The PREX-2 Experiment

This chapter discusses instrumentation for the PREX-2 experiment. The topics are organized

as the voyage of an electron beam in chronological order, starting from the generation of a

polarized electron beam to the detection and digitization of scattered electron events. A brief

overview of the accelerator facility in Jefferson Lab is given in Section 2.1. The production of

a longitudinally polarized electron beam is discussed in Section 2.2 and three techniques for

measuring the electron polarization are described in Section 2.3. The hardware and principles

of the beam monitors in Hall A are discussed in Section 2.4. The accelerated electrons are

transported through the Hall A beamline and interact with the 208Pb foil supported by a

target system of which the design is discussed in Section 2.5. Electrons scattered off the target

at 4◦ . θ . 7◦ are guided by a pair of septum magnets and enter the Hall A high resolution

spectrometers (HRSs). The magnet arrangement and the tracking system of the HRS are

introduced in Section 2.6. The elastically scattered events with the desired kinematics are

eventually delivered to the integrating detectors made of fused silica. The signal production

of the integrating detector is discussed in Section 2.7. Electron properties measured by the

beam monitors and the detectors are digitized and recorded by the data acquisition system

of which the framework is outlined in Section 2.8.

2.1 Continuous Electron Beam Accelerator Facility

The PREX-2 experiment was performed in Jefferson Laboratory (JLab) utilizing the Con-

tinous Electron Beam Accelerator Facility (CEBAF) in 2019. The maximum design current

of CEBAF is 200 µA and the accelerator facility is capable of a simultaneous beam delivery

to the four experimental halls shown in Figure 2.1. The CEBAF injector is located in the

green box in Figure 2.1.
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Figure 2.1: CEBAF layout. The four experimental halls A, B, C and D are indicated. The

injector of the accelerator is shown as the green box.

The electron source in the injector is a strained Gallium Arsenide (GaAs) photocathode.

The photocathode is illuminated by a 1497 MHz 780 nm diode laser. The electron bunches

can be split into three 499 MHz bunch trains and enter the desired experimental halls using

radio-frequency (RF) separators.

The accelerator has two linear accelerators (linacs), a north linac and a south linac. Each

linac contains 200 RF cavities assembled into 25 cryomodules cooled by 2 K liquid Helium-

4. The two linacs are joined by 180◦ circular arcs with magnetic fields. An electron beam

gains energy up to 2 GeV with one full pass of the accelerator. During the PREX-2 run,

the accelerated beam energy is set to 1 GeV for optimizing the statistical efficiency for the

parity violating asymmetry measurement of 208Pb.

2.2 Polarized Electron Beam

A Pockels cell is a voltage-controlled wave-plate to convert linearly polarized light to circu-

larly polarized light. The voltage applied to a Pockels cell affects the birefringent retardation

in the Pockels cell crystal therefore changes the degree of polarization of the outgoing pho-

tons. The voltage applied to the Pockels cell is controlled by a helicity generator which flips

the voltage polarity at a desired rate, e.g. 120 Hz or 240 Hz. In addition, an insertable
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λ/2-plate (IHWP) reverses the sign of the laser polarization.

The strained GaAs photocathode is optically pumped by circularly polarized light to

produce polarized electrons, with the ability to rapidly and randomly flip the sign of the

electron beam helicity. The strained substrate layer of GaAsP underneath the surface of

GaAs breaks the degeneracy of the valence band into two states P1/2 and P3/2. The polarized

photons excite the electrons from P3/2 in the valence band to S1/2 in the conduction band.

This procedure is shown in Figure 2.2. The relatively larger gap between P1/2 and S1/2

suppresses the probability of P1/2 → S1/2 transition ensuring that only one state in the

conduction band is populated.

The longitudinal polarization of an electron beam, Pb, is defined as the difference between

the number of electrons that have spin parallel to their momentum, n+, and the number of

those that have spin anti-parallel to their momentum, n−, normalized by the total number

of electron

Pb =
n+ − n−

n+ + n−
. (2.1)

In practice, the longitudinal polarization of the electron beam for the PREX-2 is measured

to 90 %.

-3/2 -1/2 3/21/2

1/2-1/2 1/2-1/2

-3/2 -1/2 3/21/2
Unstrained GaAs Strained GaAs

Figure 2.2: The photo-emission process. Blue and red arrows indicate the helicity of photon

to cause the transition.

2.3 Beam Polarimetry

The longitudinal polarization of the electron beam for the PREX-2 is measured by three

independent experimental setups, a Mott polarimeter near the injector, a Møller polarimeter

and a Compton polarimeter in Hall A.
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2.3.1 Mott Polarimeter

The Mott polarimeter is located near the injector where the electrons have reached 5 MeV

in energy. The Mott polarimeter is based on the scattering of polarized electrons from

unpolarized high-Z nuclei. The spin-orbit interaction arises from the electron’s spin with the

magnetic field due to its motion relative to the target nucleus. Therefore its cross-section

depends on the electron spin

σMott(θ) = σ(θ)(1 + S(θ) ~Pe · n̂), (2.2)

where σ(θ) is the spin-averaged cross-section, S(θ) is the Sherman function characterizing

the analyzing power of the polarimeter, and ~Pe ·n̂ is the projection of the electron polarization

vector normal to the scattering plane.

Therefore the measurement for the asymmetry of the number of electrons scattered to

the left and the right is sensitive to the magnitude of the electron polarization, Pe, with

known of the Sherman function S(θ)

A(θ) =
NL −NR

NL +NR

= PeS(θ). (2.3)

The nuclear target of the Mott polarimeter is a 0.1 µm thick gold foil and the scattered

electrons reaching the maximum analyzing power at θ = 172◦ are detected by four identical

plastic scintillators symmetrically around the beamline longitudinal axis. A Wien filter up-

stream of the polarimeter rotates the electron’s spin from longitudinal to transverse polariza-

tion for the Mott measurement. The Mott measurement is invasive and requires interruption

of beam delivery to all experimental halls.

2.3.2 Møller Polarimeter

The Møller polarimeter in Hall A measures the asymmetry in the electron beam scattering

off electrons in the nuclear target. The measured asymmetry Ameas depends on the beam

longitudinal polarization Pe, the target polarization Ẑ-component Ptarget and the analyzing

power AZZ of Møller scattering

Ameas = Pe · Ptarget · AZZ , (2.4)

where Z is the direction parallel to the beam. The analyzing power AZZ is characterized

by the scattering process where both beam and target are polarized longitudinally. In the

center-of-mass (CM) frame, AZZ can be calculated from quantum electrodynamics (QED)

theory

AZZ = −sin2 θCM(7 + cos2 θCM)

(3 + cos2 θCM)2
. (2.5)
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The maximum longitudinal analyzing power -7/9 is reached at θCM = 90◦. The target

of the Møller polarimeter is a magnetized ferromagnetic 99.99 % pure iron foil placed in a

4 T holding field generated by a set of cryogenically cooled Helmholtz coils. The target foil

is guaranteed to saturate magnetically in the 4 T field [63, 64]. The Møller spectrometer,

shown in Figure 2.3, consists of a series of quadrupole magnets and a dipole magnet. The

spectrometer selects electrons in a bite of 78◦ < θCM < 102◦. Electrons in coincidence are

detected by the lead-glass calorimeter modules in two arms.

During the PREX-2 run, the target foil polarization is theoretically constrained to 8.005%

and its uncertainty 0.6% is the largest systematic uncertainty in the beam polarization result.

The beam polarization is periodically measured using the Møller polarimeter in dedicated

low current runs.
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Figure 2.3: Layout of the Hall A Møller Polarimeter

2.3.3 Compton Polarimeter

The Compton polarimeter measures the asymmetry from e − γ scattering. The electron

beam is transported into the Compton chicane in the Hall A beamline, see in Figure 2.4 and

interacts with circularly polarized photons. The beam polarization Pe is extracted from the

measured beam-helicity-correlated counting rate asymmetry Aexp
c which is the product of

the electron beam polarization Pe, the photon polarization Pγ and the theoretical analyzing
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power of the Compton polarimeter Ath
c :

Aexp
c =

N+ −N−

N+ −N−
= Ath

c PγPe. (2.6)

The photon density is amplified by a Fabry-Perot cavity to increase the statistics to measure

the Compton cross-section asymmetry of a few percent level given the typical JLab beam

energies at a few GeV.

Since less than 10−9 of the beam undergoes Compton scattering and the field integral of

the magnetic chicane sums up to zero, the Compton polarimeter is a non-invasive measure-

ment and is simultaneously commissioned with physics data production runs.

Hall A

Dipoles

Deflected beam line

Optical cavity

Direct beam line

Photon detector

Electron detector

Figure 2.4: Layout of the Hall A Compton Polarimeter

2.4 Beam Monitors

2.4.1 Beam Current Monitors

The Hall A beam current measurement system [65] consists of an Unser monitor, two radio-

frequency (RF) cavities, the associated electronics and a data acquisition system. The system

layout is shown in Figure 2.5. The two cavities and the Unser monitor are enclosed by one

thermally regulated Aluminum shield and three layers of magnetic shields, two of iron and

the innermost one of µ-metal.

The Unser monitor is a parametric current transformer, which is a non-invasive absolute

current reference. The excessive baseline drift in the Unser monitor limits its capability for
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continuous monitoring, therefore the Unser monitor is dedicated as a calibration reference

for the upstream and the downstream RF cavities.

The two RF cavities are pill box type stainless steel waveguides, tuned on the 1497

MHz component of the beam current spectrum corresponding to the TE010 mode, which is

sensitive to the beam intensity but independent of the beam position. The output signal of

a RF cavity is split into two paths. Signal in one of the two paths is down-converted to 10

kHz, reshaped in an RMS-to-DC converter with 50 kHz bandwidth to filter noise, and then

further split and transformed independently by voltage-to-frequency (V2F) converters. The

frequency of the output from a V2F is proportional to the integrated input voltage level and

can be measured as a scaler count.

The other signal split is down-converted to 1 MHz with a 100 kHz bandwidth filter and

follows a similar signal processing with the 10 kHz path. The 1 MHz down-converted signal is

received by the parity data acquisition system for beam current stability monitoring, detector

signal normalization and the feedback control for the beam intensity asymmetry.
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Figure 2.5: Hall A beam current measurement system [14]
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2.4.2 Beam Position Monitors

Y+ X−

X+ Y−

Beam Direction

Figure 2.6: Stripline BPM layout [15]

The transverse beam position at a location in the beamline is measured from the signals of

four open-ended antennas in the stripline type Beam Position Monitor(BPM). The four an-

tennas are placed inside the BPM chamber with 90◦ intervals to each other and are schemat-

ically illustrated in Figure 2.6. The BPM coordinate is rotated by 45◦ around the beam pipe

longitudinal axis with respect to the Hall coordinate to reduce the exposure to synchrotron

radiation.

Figure 2.7: Coordinate system for the field calculation [16].

The signal received in each antenna is a function of chamber radius a, beam intensity I

and beam position (δ, θ) and can be calculated from the image charge method [16] using the

coordinate system shown in Figure 2.7

φi ∝ I
a2 − δ2

a2 + δ2 − 2aδ cos θ
, (2.7)
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where δ is the distance from the electron to the center of the BPM chamber and θ is the angle

of the electron relative to the antenna. The ∆/Σ ratio of each pair of diagonal antennas

is sensitive to the beam position projected to the diagonal line denoted as (u, v), and with

δ � a approximation

φu+ − φu−
φu+ − φu−

=
2

a

a cos θ

1 + δ2/a2
=

2

a

u

1 + δ2/a2
⇒ u ≈ a

2

φu+ − φu−
φu+ − φu−

, (2.8)

To calculate the actual beam position in the Hall x − y coordinates, beam position in the

BPM u− v coordinate is rotated by 45◦(
x

y

)
=

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)(
u

v

)
. (2.9)

The beam position measurement using BPMs is a critical input for the beam modulation

control and the correction for the beam-induced fluctuations in the detected asymmetry.

2.5 Target System

The PREX-2 target system shown in Fig. 2.8 has a 45 ◦ arm, which holds targets for optics

calibration and is cooled by water at room temperature, and an arm installed horizontally

holding targets for the parity production mode. The horizontal arm is cooled by 15 K Helium

flow at 10 g/sec rate, which is sufficient to provide 120 W cooling power [24].

Figure 2.8: The PREX-2 Target CAD drawing.
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Ten 208Pb foils sandwiched by diamond or carbon foils were prepared by the JLab target

group and are listed in Table 2.1. As shown in Table 2.2, diamond has a thermal conductivity

better than 1000 W/(m·K) which improves heat transfer and establishes a gentle temperature

gradient acrossing the surface of the target. Meanwhile it only produces a relative small

amount of heat 13.5 W, compared with 70 W for the main target, see in the last column in

Table 2.1.

Target CAD position(mm)

C-208Pb1-C 667.3

DA-208Pb2-DB 591.1

DC-208Pb3-DD 553

DE-208Pb4-DF 514.9

DG-208Pb5-D20 476.8

D1-208Pb6-D2 438.7

D3-208Pb7-D4 400.6

D5-208Pb8-D6 362.5

D7-208Pb9-D8 324.4

D9-208Pb10-D10 286.3

Table 2.1: List of PREX-II 208Pb target. “C” stands for carbon foil while “D” stands for

diamond foil.

Tmelt ρ cp k L dE/dx I Pbeam

unit K g/cm3 J/(kg·K) W/(m·K) mm Mev/(g·cm2) µA W

Pb 600 11.34 130 35 0.55 1.6 70 70

Diamond 5000 3.51 435 >1000 0.25 2.2 70 13.5

Carbon 3923 1.83 700 150 0.25 2.2 70 7

Table 2.2: The installed target material properties reproduced from Ref. [24]

The heating power from an electron beam interacting with the target material can be

calculated based on [66]

Pbeam = ρ · dE

dx
· L · I, (2.10)

where ρ, L are the mass density and the thickness of the target, dE/dx is the electron energy

loss along its path in the target and I is the beam current. And the temperature rise on the
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target by beam heating is

∆T =
Pbeam − Pcool

M · cp
· t, (2.11)

where M is the mass of the target intercepted with the electron beam so it depends on the

beam raster size dx × dy
M = dx · dy · L · ρ. (2.12)

Although Eq. (2.11) suggests so long as the cooling power meets the balance, the tem-

perature rise in the target will be zero when the heat transfer reaches thermal equilibrium,

an instantaneous change in the beam spot size or beam position would produce local heating

which takes a considerable amount of time to diffuse before a new thermal equilibrium is

established. For this case, the beam raster system plays a key role in reducing instant local

heating. The technical details of the beam raster system will be discussed in Section 3.5.

2.6 High Resolution Spectrometer

Figure 2.9: Hall A Layout [14]

The pair of High Resolution Spectrometer (HRS) arms in Hall A, shown in Figure 2.9 is

designed to study electromagnetic interactions and hadronic structures with high precision.

Both HRSs on the left and the right can be rotated independently around the Hall A pivot
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from 12.5◦ upto 150◦. During the PREX-2 run, the two HRSs are both parked at 12.5◦ to

accept the scattering flux at 5◦ transported from a pair of septum magnets.
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Figure 2.10: HRS layout [17]

The HRS layout is shown in Figure 2.10, each HRS has four superconducting magnets:

three quadrupoles (Q) and one dipole (D). The QQDQ magnet layout achieves a high mo-

mentum resolution at the 10−4 level over the 0.8 GeV/c to 4.0 GeV/c momentum range and

a good position and angular resolution in the scattering plane. The first quadrupole (Q1) is

used to focus the scattered electrons in the dispersive direction and the last two quadrupoles

(Q2 and Q3) focus in the non-dispersive direction. The dipole is mainly used to bend the

electron trajectory by 45◦ for a good momentum resolution.

The position and angle of charge particles at the focal plane are recorded by the vertical

drifting chambers (VDCs). Two VDCs locate approximately 3.5 m downstream of the Q3

exit and separate by a vertical distance of 0.335 m to each other, see in Figure 2.11. Each

VDC chamber consists of two wire planes in the standard UV configuration. The particle’s

central trajectory crosses the wire planes at an angle of 45◦ vertically.

The electric field of the VDCs is shaped by gold-plated Mylar planes at - 4.0 kV while

the sensing wires are grounded. The chamber is circulated with the gas mixture of argon and

ethane. Ionized electrons are accelerated by the electric field and collected at the sensing

wires producing the timing and coordinate information of the charged particles passing

through.

During the PREX-2 run, a momentum resolution of 0.6 MeV [37] was achieved and
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ensured that the closest inelastic state of 208Pb at 2.6 MeV was not intercepted by main

detectors, see in Figure 2.12.
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Figure 2.11: HRS VDC schematic drawing. [18]
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Figure 2.12: An example of Right HRS momentum spectrum for 208Pb [19].
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2.7 Integrating Detectors

Figure 2.13: the PREX-2 main detector CAD drawing

The scattered electrons are detected by two identical fused-silica tiles (16× 3× 0.5 cm3) in

the integrating mode in each HRS, shown in Figure 2.13. The upstream tile provides the

main measurement while the downstream one is for redundancy. The long side of the tile is

orientated along the dispersive direction and approximately 7 cm of its full length is used to

sample the elastically scattered electrons, see in Figure 2.14. Events in excited states falling

outside of the quartz edge are not accepted by main detectors.

Projected x on detector plane

Quartz edge

Projected x

Figure 2.14: Data sampled in counting mode are projected in the dispersive direction (x) in

meters to the detector plane. This figure is adapted from [20].
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The Cherenkov light is produced in the tile when scattered electrons passing through and

is collected by a Hamamatsu R© R7723 2.5” photomultiplier tube (PMT) attached to each tile

on the far end from the beam spot.

The expected signal yield of the PMT 〈s〉 is the product of the number of electrons

N detected by the fused-silica tile within a given time, the electron deposited energy in

the fused-silica E, the Cherenkov light collection efficiency η, the photocathode quantum

efficiency QE and the PMT dynode stages multiplicative gain g

〈s〉 = N · E · η ·QE · g = N · E · k, (2.13)

where k = η·QE ·g quantifies the PMT signal production per unit amount of energy deposited

in the detector.

Assuming the Cherenkov light yield and collection is an identical process for each single

electron, the total PMT signal yield is then the sum of light production of N electrons

s = k
N∑
i=1

E(i). (2.14)

The random fluctuation width in the PMT signal σs is characterized by a Poisson distribu-

tion convoluted with a Landau distribution originated from the electron energy loss in the

material,

σ2
s = σ2

L + σ2
count, (2.15)

where σL and σcount represent the 1-σ standard deviation induced by the random energy loss

and the counting statistics respectively.

The total fluctuation from the random energy loss can be expressed as contributions from

each individual electron

σ2
L = k2

N∑
i

σ2
E = k2Nσ2

E, (2.16)

where σE is the actual fluctuation in energy dimension which contributes the observed fluc-

tuation σL in the detector signal scaled by the PMT signal production coefficient k and the

amount of the detected electrons N . The ratio σE/〈E〉 is also known as the detector energy

resolution.

The Poissonian counting fluctuation is

σ2
count = k2〈E〉2σ2

N = k2〈E〉2N, (2.17)

where the variance of a Posson distribution σ2
N is known to be its mean N .

For an asymmetry measurement using detector signal s

A =
s+ − s−

2〈s〉
, (2.18)
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with s+ − s− � s, the random fluctuation in A can be calculated from error propagation

σ2
A =

1

2〈s〉2
σ2
s

=
1

2〈s〉2
(
σ2
L + σ2

count

)
=

1

2N〈E〉2
(
σ2
E + 〈E〉2

)
=

1

2N

[
1 +

( σE
〈E〉

)2]
, (2.19)

which indicates the dilution effect from the finite detector energy resolution to the statistical

power of the asymmetry measurement. The energy resolution of the fused-silica used in

PREX-2 is measured to 20% and the dilution factor is√
1 +

( σE
〈E〉

)2

= 1.019, (2.20)

which is less than 2%.

2.8 Parity Data Acquisition System

CEBAF Online Data Acquisition (CODA) is the framework commonly used for acquiring

experiment data in Jefferson Lab. The system is scalable for different applications from

a test stand with a few detector channels to a full scale detector with tens of thousands

independent channels. The most common format of the front-end electronics digitizing data

is based on the Versa Module Europa bus (VMEbus).

Figure 2.15: An example of CODA implementation [21]
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Figure 2.15 shows the main components of the CODA back-end: the Read-Out Controller

(ROC), the Event Builder (EB), the Event Transport (ET) and the Event Recorder (ER).

Every front-end crate, e.g. a VME or CAMAC crate, contains a single board computer

running a realtime operating system, such as VxWorks. The ROC runs on this single board

computer and is programmed to process events and send data to the EB. The information

of events from multiple ROCs are collected and re-formatted in the EB then is received by

the ET which moves events efficiently from one Unix process to another on the same CPU

or across the network. The ET station is also where online processing launches. The ER

assembles events from the ET and writes them to a storage disk.

During the PREX-2 run, four ROCs located at the injector, the Hall A counting house,

the left HRS and the right HRS are connected in the same network. Data stream from these

four ROCs is synchronized and transferred to the same ER and written to the same data

file stored in a hard disk.

30 Hz

+ + + +
- - - -

Helicity 
Window
240 Hz

Integrating 
Gate

4.02 
msec

4.16 
msec

Figure 2.16: Integrating DAQ timing diagram for 240 Hz octets.

Regarding the timing for the parity data acquisition (DAQ), the parity DAQ receives

a trigger constantly at 240 Hz or 120 Hz from the helicity control board. The top panel

in Figure 2.16 shows an example of a complete 240 Hz octet pattern. The helicity control

board switches the voltage polarity applied to the Pockels cell based on the generated pseudo-

random binary sequence. To avoid the direct helicity pickup via hardware cross-talk, helicity

pulses are first delayed by 8 helicity windows then sent to the parity DAQ and other timing

control units. A macro-pulse (MPS) signal indicates the beginning of a helicity window.

In addition, a timing signal named “PairSync” is used to distinguish between the first and

the second windows of a helicity windows pair. The HAPPEX timing board receives the

MPS and instructs ADC units and scalers in the parity DAQ with timing of the integrating

gate. The timing of the integrating gate relative to helicity windows is shown in Figure 2.16.
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The customized VQWK ADC unit integrates the signal within each integrating gate and is

capable of over-sampling at four times of the trigger rate for diagnostic purposes.

34



Chapter 3

Experimental Technique

Topics in this chapter are selected to discuss the experimental technique closely related to

the systematic control in the PREX-2 run. Section 3.1 discusses the effect of the helicity

sequence arrangement for the power line 60 Hz noise cancellation as well as any other peri-

odic perturbation. Section 3.2 focuses on the additional cancellation of possible systematic

effects using the insertable half-wave plate and double Wien filters in the accelerator in-

jector. Section 3.3 covers the hardware and the timing structure of the beam modulation

control system, while the beam modulation analysis will be discussed and compared with

other beam correction techniques in Section 5.3. The pedestal and linearity calibrations

for the beam current monitors and the integrating detectors are reviewed in Section 3.4.

The PREX-2 beam raster system is described in Section 3.5. Section 3.6 reviews the offline

analysis software developed for PREX-2.

3.1 Pseudo-random Rapid Helicity Reversal

The key components of the pseudo-random rapid helicity reversal are

1. The helicity sign flips rapidly at a multiple mode of 60Hz, e.g. 120 Hz or 240 Hz.

2. Sequences of the helicity sign form a reversal within each 30 Hz DAQ window, e.g. an

octet with sequence +−−+−+ +− or a quartet with sequence +−−+.

3. The polarity of a whole octet or quartet pattern, e.g. +−−+ or −+ +− for a quartet

pattern, is determined by a pseudo-random number generator at 30 Hz.

4. Communication between the helicity control board and the data acquisition electron-

ics is delayed from the electronically isolated injector controls by multiple full 30 Hz

patterns.
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The 60 Hz power line noise can be picked up by electronic devices, e.g. ADC channels,

and introduces fluctuations if the helicity sequence is not chosen carefully. Possible choices

of the helicity sequence are the 120 Hz quartet and the 240 Hz octet. Though these two

helicity sequence have the same cancellation effect on the 60 Hz noise, their suppression for

the lower harmonic components, e.g. 30 Hz and 15 Hz, are different, see Table 3.1 calculated

from the analytical integration approach ignoring the hardware deadtime:

f =60 Hz f =30 Hz f =15 Hz

120 Hz quartet 0 0.64B sinφ -0.26B cosφ

240 Hz octet 0 -0.26B cosφ -0.05B sinφ

Table 3.1: Analytical calculation for noise cancellation for the two helicity sequences. All

calculations assume the same sine wave electronic noise s(t) = B sin(2πft + φ) and vary

with three frequencies. In all these examples, helicity sequences always start with a positive

helicity.

An example of this calculation is shown below for the 15 Hz noise cancellation with 240

Hz octets. The i-th ADC integrated sample over ∼ 4.16 msec at 240 Hz is

F (i) =
1

T

∫ i/240

(i−1)/240

B sin(2π · 15 · t+ φ)dt, (3.1)

and the helicity-correlated octet difference in the first half of 15 Hz cycle

∆F =
1

8
[F (1)− F (2)− F (3) + F (4)− F (5) + F (6) + F (7)− F (8)]

= −
2(1− 2 cos π

8
+ 2 sin π

8
)

π
B sinφ ≈ −0.05 ·B sinφ.

In general, a higher helicity flip rate leads to a better suppression for the time dependent

noise, e.g. the harmonic noise and the slow baseline drift. The effect of sampling sequence

on the slow baseline drift has been discussed in the Ref [67] where the drifting baseline is

characterized by high-order series in the Taylor expansion of the signal in the time domain.

Limitations for higher helicity flip rate are the ADC maximum sampling rate, the network

capacity for data transfer, the disk read/write speed and the Pockels cell settle time for each

HV polarity transition.

Although ground loop isolation is implemented through the entire network of the helicity

control and the parity DAQ system, a direct communication between the helicity control

board and the ADC electronics potentially could introduce a non-zero false asymmetry in

the measured parity-violating asymmetry.
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Techniques to eliminate the helicity-correlated false asymmetry are alternating helicity

pattern polarity pseudo-randomly and delaying helicity signal by multiple full patterns before

being acquired by the DAQ hardware. The following example (Table 3.2) describes this

effect and assumes the helicity sign dependent noise has a constant strength δ, which is the

electronic pick-up from the helicity control signal seen by the ADC electronics.

Event Number 1 2 3 4

Real-time Helicity + - - +

Delayed Helicity 1 + - - +

Helicity Pick-up 1 δ -δ -δ δ

Delayed Helicity 2 - + + -

Helicity Pick-up 2 -δ δ δ -δ

Table 3.2: An example of helicity pickup with delayed helicity quartets.

In Table 3.2, the real-time helicity is the actual helicity of an event, from which the

parity-violating asymmetry is calculated. The delayed helicity is the signal seen by the

ADC channel at the same time. Since the pattern polarity is pseudo-randomly chosen, the

delayed helicity can either coincide with or differ from the real-time helicity. Both cases are

enumerated in the table as “Delayed Helicity 1” and “Delayed Helicity 2”. The sign of the

pick-up noise follows the signal seen at present, which is the delayed helicity signal sent to

the ADC.

For Case 1 where the delayed helicity sequence happens to be the same with the actual

one, the noise in the helicity-correlated difference form is

∆1 =
1

4
[δ − (−δ)− (−δ) + δ] = δ. (3.2)

This is also the situation when the helicity signal is not delayed. Likewise for Case 2, the

noise can be calculated in the same manner

∆2 =
1

4
[(−δ)− δ − δ + (−δ)] = −δ. (3.3)

Case 2 could also be the case when the helicity sequence is delayed, but not pseudo-random.

With pseudo-random and delayed helicity patterns, for all events, 50% of them meet the

delayed helicity signal with the same polarity while the other 50% meet the complementary

delayed signal, thus the expectation value of the helicity pickup sums up to zero

〈∆〉 = 0.5 ·∆1 + 0.5 ·∆2 = 0. (3.4)
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Though in this example, the real-time helicity sequence is specifically +−−+, the conclusion

is also true for real-time helicity sequence − + +−. Also, the same conclusion applies for

240 Hz octets.

3.2 Slow Reversal
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Figure 3.1: Slug averages of the beam corrected asymmetry using Lagrange multiplier re-

gression without sign correction.

In contrast to the rapid helicity reversal, the slow reversal happens about every 8 hours to

change the sign of the measured asymmetry. During the PREX-2 run, the slow reversal is

done by changing the laser polarization or manipulating the electron spin directly in the

injector. An insertable half-wave plate (IHWP) is toggled to be IN or OUT approximately

every 8 hours to flip the sign of the laser polarization with respect to the polarity of the

HV on the Pockels cell. Data taken between each IHWP state reversal are combined into

“slugs”. In addition, the double-Wien filter in the injector add 180◦ spin precession to the

electrons. The Wien setting was changed twice during the PREX-2 run. Amounts of data for

each IHWP/Wien combination are approximately equal and provide critical cancellation of

the systematic beam asymmetry and potential sources of spurious asymmetry in the grand

average. The slug-wise history of the slow reversal for PREX-2 is shown in Figure 3.1 where

the data points are the beam corrected asymmetries without sign correction for the state of

the half-wave plate and the setting of the double-Wien filter.

The effect of the slow reversal on the measured asymmetry is demonstrated in Table 3.3.

A potential source of false asymmetry δ0 does not change its sign with IHWP or Wien setting.
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The other false asymmetry term δ1 changes its sign with the IHWP status, therefore the

IHWP reversal alone is not sufficient to cancel this effect. With IHWP and Wien reversals,

both δ0 and δ1 are cancelled out in the average of the sign corrected asymmetries and the

parity violating asymmetry APV is recovered.

IHWP Wien Measured Asymmetry Sign Corrected Asymmetry

1 IN RIGHT +APV + δ0 + δ1 APV + δ0 + δ1

2 OUT RIGHT −APV + δ0 − δ1 APV − δ0 + δ1

3 IN LEFT −APV + δ0 + δ1 APV − δ0 − δ1

4 OUT LEFT +APV + δ0 − δ1 APV + δ0 − δ1

Grand Average δ0 APV

Table 3.3: Example of noise cancellation by slow reversals.

3.3 Beam Modulation System

The sensitivity of the detector response to the beam is calibrated by beam parameter mod-

ulation and is used as an input for the systematic correction to the measured asymmetry

for beam fluctuations. The beam modulation system intentionally varies beam parameters

concurrently with production data taking. Relevant parameters are the beam positions in

x and y projected to the target, the beam angles respect to the x and y directions and the

beam energy. Beam positions are measured at two points in the field free region, 1.7 m

(BPM 4e) and 5.7 m (BPM 4a) upstream of the target and at a point of high dispersion

in the magnetic arc leading into Hall A, as well as several other locations along the Hall A

beamline for redundancy.

The energy of the beam is varied by the control voltage for the vernier input [68] on SL20,

a RF cavity in the accelerator’s South Linac. To vary beam positions and angles, six air-core

corrector coils in the Hall A beamline upstream of the dispersive arc are chosen according

to the beam transport optics to fully span the beam parameters phase space using only four

of the six coils. The additional two coils are for redundancy so that the orthogonality and

completeness of a four-coil measurement can be cross validated. The coils are driven by

power supply trim cards with separate control voltage inputs to regulate the amplitude and

time steps of their field strength independently. The relative location of BPMs and coils for

the beam modulation system are shown in Figure 3.2.
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Figure 3.2: Schematic diagram of the Hall A beamline with BPMs and coils for the beam

modulation system. The relative positions are not to scale in this plot. This diagram is

modified from [22].

The three coils controlling the horizontal perturbation are labeled with numbers 1, 3

and 5, while numbers 2, 4 and 6 are associated with the coils for the vertical perturbation.

Number 7 is assigned to the unique vernier input for the beam energy modulation. The

typical peak-to-peak beam deflection at BPMs is ≈ ± 200 µm and is apparent over the

BPM resolution (≈ 0.5 µm) and intrinsic beam fluctuations (≈ 100 µm). For example, Figure

3.3 shows the BPM 4eX responses in one full supercycle and data points from different coil

modulations are distinguished by color. For reference, the intrinsic beam fluctuations in BPM

4eX sampled when beam modulation is paused are shown in gray. When vertical modulations

(Coil 2,4,6) and vernier modulation (Coil 7) are activated, the peak-to-peak amplitude in

BPM 4eX stays at a similar level as the intrinsic fluctuations, as expected. When horizontal

modulations are operating, the peak-to-peak amplitude in BPM 4eX increases upto ± 300

µm (relative to the central position).

The 6 coils and the vernier input are modulated in sequence. One period of a coil cycle

consists of 16 (8) steps at the 240 Hz (120 Hz) sampling rate and forms a sine wave, see in

Figure 3.4. A complete cycle for one coil repeats the sine wave for 50 periods, equivalently

3.33 seconds in duration. A supercycle is a group of modulation cycles throughout the six

air-core coils and the vernier input with pauses for 16.4 sec between cycles. Each supercycle

lasts for 2 minutes with a duty factor of 16.6 % and then idles in the next 10 minutes for

production data taking. The duty cycle of each coil in a full supercycle is illustrated in

Figure 3.5.

Details on the beam modulation sensitivity extraction and its analysis will be discussed
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in Section 5.3.
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Figure 3.3: Transverse beam position in x at BPM 4e. The unit of y-axis is mm. The length

of the time window in this plot is 2 minutes. Data points in gray are taken when beam

modulation is paused.
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are sampled at 240 Hz.
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Figure 3.5: An example of one supercycle. The y-axis shows the value of “bmwobj” which

is the software key word to identify the coil in activation, starting from 1 to 7. While beam

modulation is paused, “bmwobj” is assigned to -1. The time scale in this plot is 2 minutes.

3.4 Pedestal and Linearity Calibration

In practice, the strength of a signal from a beam monitor or detector not only can deviate

from linearity over the dynamic range but also extrapolate to a non-zero pedestal. In general,

an observed signal Smeas is a function of its true strength S and if one assumes a quadratic

dependence:

Smeas = a0 + a1S + a2S
2. (3.5)

With |a0| � |a1S| and |a2S
2| � |a1S| approximation, the measured asymmetry is

Atrue =
S+ − S−

S+ + S−
, (3.6)

Ameas ≈ Atrue

(
1 +

a2S
2

a1S
− a0

a1S

)
, (3.7)

that is the measured asymmetry Ameas is the true asymmetry Atrue increased by the size

of the quadratic term relative to the linear term, and decreased by the size of the pedestal

relative to the linear term.

3.4.1 Pedestal

To extrapolate the pedestal of a beam current monitor (BCM), the BCM response is com-

pared to the Unser monitor, a parametric current transformer which can be used as an
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absolute reference of current. The Unser monitor shows its advantage of an excellent linear-

ity in a wide dynamic range therefore is used as the reference to calibrate the BCM pedestal

by linear fit. The Unser monitor signal drifts significantly and randomly at a time scale of

several minutes, which limits its precision for continuous beam intensity monitoring. There-

fore, once the BCM pedestal is calibrated using the Unser monitor, the detector pedestals

are calibrated against the calibrated BCM.

The BCM pedestal is the extrapolated intercept at zero beam current from the linear

fit of the BCM output to the Unser output. Such an extrapolation requires knowledge of

the average Unser pedestal which is obtained from the beam-off data in the calibration

run, shown as the blue points selected during the beam off periods in Figure 3.6. The

integrating detector pedestal is calculated in a similar way by fitting the detector response

to the calibrated BCM output from a dedicated beam current ramping scan.

An example of the BCM pedestal calibration is shown in Figure 3.6 and Figure 3.7.

In Figure 3.6, data points in blue are selected from steady stages during the current scan.

Typically, a calibration run takes 7 steps from 10 µA to 70 µA. The central mean value and

the root-mean-square value of each step are used as the data points and error bars for the

linear fit shown in Figure 3.7. In this example, the pedestal is obtained from the intercept

of the linear function and reads -606.9 in the ADC unit referring to the text box of Figure

3.7. Data points in blue when the beam current is zero are only used to correct the time

dependent offset for the Unser signal. The residual plot on the right panel of Figure 3.7

shows the differences between the calibrated BCM output and the beam current predicted

from the linear fit. At high current (50 µA to 70 µA), the residuals are consistent within

zero.

Figure 3.6: An example of a calibration run with beam current scan.

43



10 20 30 40 50 60 70

 UNSER (uA)

2000

4000

6000

8000

10000

 R
aw

 A
D

C
 p

er
 S

am
p

le
bcm_an_us.hw_sum_raw/bcm_an_us.num_samples

 / ndf 2χ  0.07386 / 4

Prob   0.9993

Pedestal  260.3±606.9 − 

Slope     5.547± 167.5 

bcm_an_us.hw_sum_raw/bcm_an_us.num_samples

10 20 30 40 50 60 70

UNSER (uA)

0.6−

0.4−

0.2−

0

0.2

0.4

 R
es

id
u

al
 (

u
A

) 

bcm_an_us.hw_sum_raw/bcm_an_us.num_samplesbcm_an_us.hw_sum_raw/bcm_an_us.num_samples

Figure 3.7: An example of the BCM calibration using BCM current scan.

3.4.2 Linearity

The linear response of the integrating detector signal is demonstrated to be better than 0.5%,

see Table 3.4 from a bench test using a calibration system with multiple light sources shown

in Figure 3.8. The linearity of the detector response is also monitored throughout the data

taking period by comparison with BCM measurements of beam current fluctuations.

Figure 3.8: PMT non-linearity HV-scan.
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PMT HV (V) Non-Linearity (%) location

ZK4033 -705 -0.063 downstream right

ZK5407 -685 0.157 downstream left

ZK5401 -685 -0.208 upstream right

ZK5307 -615 0.100 upstream left

Table 3.4: PREX-2 PMT non-linearity at nominal HV setting.

3.5 Beam Raster System

For a precise asymmetry measurement at a event rate of a few GHz like PREX-2, the

condition of the target material is extremely critical. A degraded target not only adds

random noise in the measured asymmetry, but also potentially introduces helicity-correlated

false asymmetries. The noise induced from a degraded target behaves as a residual correlation

among detectors even after beam correction applied. A target foil exposed in a continuous

high beam current degrades quickly if it is not properly protected. A melting target causes

a time-dependent density variation and the unevenness on the target surface, i.e. position-

dependent density variation. Target density variation in time or coordinate changes the

scattered event rate from time to time and from spot to spot, thus leads to fluctuations in

the measurement.

To maintain the target condition during the beam time without sacrificing the beam

luminosity, each of the lead targets is sandwiched by diamond or carbon foils to improve

heat transfer from the target bulk to a Helium cooling flow. In the meantime, to reduce the

beam local heating, a high frequency beam raster system, a pair of two air-core magnetic

coils, spreads the original beam spot size from ≈ 100×100 µm2 to 4×4 mm2 . Furthermore,

the frequency of the raster scan current is synchronized with the helicity signal to reduce

noise in the asymmetry width.

The beam raster used in the PREX-2 run is a pair of two air-core magnets which deflects

electrons in both X and Y directions in its dipole fields. The design of the raster is shown

in Figure 3.9. The magnetic rigidity of a dipole field is the magnetic bending strength for

given radius and energy and is approximately

Bρ = 33.356 · p, (3.8)

where B is the magnetic strength in kG and ρ is the deflection radius in meter and p is the

charged particle momentum in GeV/c. And the deflecting angle in the unit of radian can
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Figure 3.9: Raster magnet layout from Ref. [23]

be expressed as

φ =

∫
Bdl

33.356 · p
, (3.9)

so that the projection of the electron beam with momentum p on the target is

d ≈ L · φ, (3.10)

where L is the distance from the exit of the raster magnetic field to the target. Therefore

the amplitude of the raster deflection depends on the amplitude of current flowing through

the coil wires. Although a larger raster amplitude reduces local heating more efficiently, it

also affects the resolution of the spectrometer and introduces a larger beam incident angle

near the edge. In addition, a larger raster pattern increases the risk of intercepting with the

copper frame holding the lead targets. With concerns mentioned above, the PREX-2 raster

size is chosen to be 4×4 mm2.

Raster currents with different waveforms produce different beam density distributions in

the X-Y plane of the target, see the simulated examples in Fig. 3.11. The top part of the

figure is generated from a sine waveform raster current and hot spots are localized at the

four vertices due to the fact that the sine wave has a zero derivative at its peaks and valleys.

In contrast, when the raster current is scanned in a triangular waveform, the beam density

profile is more uniformly distributed on the target. Therefore, the raster scan current in a

triangular waveform is often used in Hall A experiments, including PREX-2.

The scan frequency of the raster current in X and Y is centered around 25 kHz and differs

by 960 Hz so that the beam trajectory projected to the target completes a closed Lissajous
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orbit in every 8 events at 120 Hz or every 16 events at 240 Hz.

fx = 25.55994888 kHz ≈ 213× 120 Hz, (3.11)

fy = 24.59995080 kHz ≈ 205× 120 Hz, (3.12)

∆f = fx − fy = 960 Hz. (3.13)

For a given time period, a larger frequency difference between X and Y current yields a more

uniform rastered beam density, see the examples in Figure 3.10. The X-Y frequency difference

of 960 Hz is used in PREX-2 because its coverage is more uniformly spread compared with

those of the other two options.
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Figure 3.10: Left: |fy − fx| = 120 Hz; Middle: |fy − fx| = 480 Hz; Right: |fy − fx| = 960

Hz. By increasing the frequency difference, the raster pattern is more spread and uniform

in the same time period. Reproduced from Ref. [24].
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Figure 3.11: Raster spatial density from simulations. Top: Raster density generated from

a sine wave function ; Bottom: Raster density generated from a triangular wave function.

Reproduced from Ref. [23].

3.6 Off-line Analysis Software

The offline data analysis framework for PREX-2 has following components:

1. Just Another Parity Analyzer(JAPAN)[69]: processing and packing parity data into

ROOT files, computing correlational variables for LRB correctors.
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2. prex-prompt[70]: generating run summary plots and texts, uploading results automat-

ically to the JLab web server.

3. Beam modulation analysis: calculating beam modulation sensitivities and slopes.

4. Parallel post-processing:

• postpan: performing multivariate linear regression

• JAPAN LRB-Corrector: performing multivariate linear regression

• JAPAN Combiner: applying correction slopes deduced from beam modulation

• Lagrange multiplier analysis [71]: computing eigenvectors for BPMs and applying

corrections using Lagrange multiplier regression.

5. prex-stat[72]: extracting and aggregating statistics at minirun, Slug, Pitt, Wien and

grand levels, handling weighting and sign correction schemes.

The first version of the off-line analysis chain was developed into a working stage in the

first few weeks of the PREX-2 run and successfully completed beam corrections for 80%

of the production data at the end of PREX-2 run. This analysis chain also provides the

first-hand outputs for the daily data quality review during the PREX-2 run. In the next

year after the PREX run completed, the offline analysis chain was armed with the statistics

analysis tool and the Lagrange multiplier regression module, and continued its commission

throughout all the PREX-2 parity analysis rounds.

Learning from the software development experience in previous parity experiments, a

newly-built parity analyzer, named Just Another Parity Analyzer (JAPAN) becomes the

pivot of the PREX-2 parity analysis, for both the online part and the offline part. All the

post-processing and calibration analyses are built upon the output from JAPAN.

JAPAN was built and developed from “QwAnalysis” for the Qweak experiment and

“pan” for the previous Hall A parity experiments.

The JAPAN engine handles decoding, calibration and asymmetry calculation. The

JAPAN output for a run is a ROOT file containing a helicity Tree which holds helicity-

correlated pattern differences, parity asymmetries and pattern averages for detectors and

monitors. Helicity pattern differences and averages in JAPAN are both normalized by the

size of pattern, for example with a 120 Hz quartet pattern,

〈Y 〉 =
1

4
(Y1 + Y2 + Y3 + Y4), (3.14)

∆Y =
1

4
(Y1 − Y2 − Y3 + Y4). (3.15)

49



Figure 3.12: Class inheritance diagram stemmed from VQwDataHandler, VQwSubsystem,

MQwHistograms. An arrow is pointing from the daughter class to its parent.
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The advantage of this normalization scheme is that the ratio of a pattern difference over

its pattern average turns into the corresponding pattern asymmetry without extra scaling

factors

A =
∆Y

〈Y 〉
=
Y L − Y R

Y L + Y R
. (3.16)

Note that this definition is different from that in the previous parity analyzer “pan” which

does not apply normalization in differences. Different conventions on the helicity correlated

difference would require different normalization factors for beam modulation slope calcula-

tion, see the related discussion in Section 5.3 for details.

The core classes of JAPAN and their dependencies on each other are shown in Fig. 3.12.

The key data structures of JAPAN are DataElement, Subsystem and SubsystemArray.

DataElement can be a single hardware channel, e.g. QwVQWK Channel or composite channels

e.g. QwBPMStripline for a rotated coordinate in a BPM. The Subsystem is a container

of DataElements. Usually the data comes from identical modules connected to similar

physics devices, e.g. QwBeamLine, QwDetectorArray and QwHelicity. The SubsystemArray

contains all the Subsystems which hold DataElements for a particular time interval.

Classes interfacing post-processing analysis such as regression and beam modulation event

extraction are all inherited from DataHandler. The QwCorrelator computes the correlation

among specified channels from the helicity tree and evaluates the linear regression slopes.

The LRBCorrector applies the linear regression slopes to detected asymmetries for data in

each 5 minutes. The QwCombiner allows users to mix channels from the helicity Tree in linear

combination therefore provides an option to apply asymmetry correction at run level, such as

beam modulation correction. Additionally, the QwExtractor outputs an independent event

Tree which contains beam modulation events only.

The blinding mechanism for PREX-2 is additive. A constant offset is added in the

blindable asymmetry, such the main detector asymmetry

Ablinded =
Y L − Y R

Y L + Y R
+ (sign of helicity) · Aconst. (3.17)

The blinding factor Aconst can be any value in the blinding box of which the size is 150 ppb,

approximately 10 times of estimated final experimental uncertainties. The value of Aconst is

calculated based on the hash value of a given text sentence and it is not easily tractable.

The software blinder is also aware of the sign of the electron helicity, because the slow

reversal, e.g. the IHWP change or the double-Wien flip, changes the sign of the measured

asymmetry. When a target other than 208Pb targets is presented, the blinder disables its

blinding mechanism since a zero asymmetry measurement from other nuclear target may

expose the blinding factor to a certain degree. Also when the main detector hardware
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channel is known with an device error, the blinder forces the measured asymmetry to be

zero without taking any risk of the blinding factor leakage.

The JAPAN online mode decodes events from CODA data stream directly. The online

mode not only serves as the helicity-correlated feedback engine but also creates memory-

mapped ROOT files for real-time event monitoring.

JAPAN also handles the evaluation for event cuts at event level. The event cut deploy-

ment will be discussed in the next chapter.
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Chapter 4

Statistical Properties of the Data

This chapter discusses the statistical properties of the full data set and the event cuts and

selection strategy. Section 4.1 summarizes the grand average statistics for the sign corrected

asymmetry and the null asymmetries. Section 4.2 describes the event cuts and selection

strategy for the data quality control.

4.1 Statistic Summary

4.1.1 Overview
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Figure 4.1: Slugs plot of PREX-II beam current and target change-out.
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During the PREX-2 run, approximately 80 % of the beam time, the beam current is stable

at 70 µA, see in the top panel of Figure 4.1, and produced an event rate of approximately 4

GHz in the detectors. The typical root-mean-square (RMS) width of the corrected average

asymmetry at this beam condition is around 92 parts-per-million (ppm) for quartets and

octets and stays at the same level through all 208Pb targets. With the event cut and selection,

no sign of target degradation effect on the measured asymmetry can be seen. The first ≈
30% of the data are taken at a 120 Hz helicity flip rate and the rest are taken at a 240 Hz

helicity flip rate. Since a 120 Hz quartet and a 240 Hz octet cover the same integrating

length of 33.33 msec, the observed statistical fluctuations in the asymmetry measurement is

also the same at both helicity flip rates. The last seven slugs of data are produced with a

beam current of 85 µA and this higher luminosity gives a narrower RMS width of 82 ppm

which remains steady till the end of the PREX-2 run.

4.1.2 Sign Corrected Grand Averages
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sequence asymmetry [%]

1

10

210

310

410

510

610
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Figure 4.2: Distribution of 30 million asymme-

tries measured over 1/30 s sequences formed

with 240 Hz helicity flips. Only data taken

with a beam current near to 70 µ A is included.
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Figure 4.3: Distribution of normalized de-

viations from the average(blue) for 5-minute

asymmetry data sets after beam corrections,

compared to a Gaussian fit (red).

Figure 4.2 shows the distribution after beam correction of the sequence asymmetry for

data collected with 240 Hz flip rate and 70 µA beam current. Approximately 62% of the total
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statistics are included in this histogram. The remarkably high level of agreement between

the data and the normal distribution fit over five orders of magnitude is achieved without

the application of a single helicity-correlated data quality cut on any measured parameter.

The beam-corrected asymmetry data are dominated by statistical fluctuations around a

single mean, as demonstrated in Figure 4.3. This plot shows the deviations from the grand

average central value for all 5084 5-minute data segments, with each entry normalized to its

own statistical uncertainty of ≈ 1 ppm. The data describe a normal distribution with unit

variance and zero mean, as expected.

With beam correction using Lagrange multiplier regression, to be discussed in Chapter

5, the grand averaged sign corrected asymmetry is

Acorr = 492.02± 13.52 (stat.)± 2.5 (syst.) ppb. (4.1)

The 5-minute data segments, named “mini-run”, are first aggregated to the slug level for

each slow reversal window. The slug average 〈As〉 and its standard error are calculated with

weights

〈AS〉 =
∑
i

wiA
(i)/
∑
i

wi, (4.2)

σ(AS) = 1/

√∑
i

wi, (4.3)

where weighting factor wi is determined by the statistical uncertainty σi of the corrected

asymmetry in the i-th mini-run

wi = 1/σ2
i . (4.4)

Total 96 Slugs data are collected during the PREX-2 run and they are further partitioned

into 23 Pitts, each has 4 or 5 Slugs with approximately equal statistical uncertainties between

IHWP IN and OUT states at the same Wien setting. The partitions of Pitts can be found

in Table A.1 in Appendix A. The slow noise cancellation between Slugs improves the χ2/ndf

at Pitt level, shown in the second last column in Table 4.1. The Pitt average is the Slugs

weighted average in this Pitt according to the statistical uncertainties σS of the Slugs, that

is

〈AP 〉 =
∑
S

wSA
(S)/

∑
S

wS, σ(AP ) = 1/

√∑
S

wS, wS = 1/σ2
S. (4.5)

Following the same averaging approach, the Slug averages are also aggregated into four

averages for Wien states: LEFT-1, RIGHT-1, LEFT-2 and RIGHT-2,

〈AW 〉 =
∑
S

wSA
(S)/

∑
S

wS, σ(AW ) = 1/

√∑
S

wS. (4.6)
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Figure 4.5, Figure 4.6 and Figure 4.7 show the central value fits and pull plots of four beam

techniques at Slug, Pitt and Wien levels. The grand averaged statistics are summarized in

Table 4.1 of which the last three columns show the values of χ2/ndf at Slug, Pitt and Wien

levels respectively.

Mean (ppb) Stat. Err. (ppb) RMS (ppm) χ2/ndf χ2/ndf χ2/ndf

Reg(5bpm) 497.72 13.73 101.54 119.1/95 20.3/22 2.9/3

Dithering 494.14 14.05 105.48 115.9/95 22.1/22 3.0/3

Reg(all) 492.95 13.43 98.68 118.5/95 22.3/22 3.9/3

Lagrange(all) 492.02 13.52 99.61 117.5/95 23.8/22 3.7/3

Table 4.1: Corrected Asymmetry by Slugs, Pitts and Wiens

Also Slug averages can be grouped by combination of IHWP state (IN/OUT) and Wien

flip (Left/Right). Figure 4.4 displays the averages of the four combinations together with

the grand averaged central value and its statistical uncertainty.

300 350 400 450 500 550 600 650 700 750
 Asymmetry (ppb)

 28.68 ±455.26In, Right

 31.66 ±480.63Out, Right

 24.47 ±533.00Out, Left

 25.08 ±484.22In, Left

 13.52 ±492.02Grand Average

Figure 4.4: Beam corrected grand averages using Lagrange Multipliers.
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Figure 4.5: Slug Averages from different beam corrected results. From top to bottom: 1)

Dithering; 2) Regression (5 BPM); 3) Lagrange Multiplier; 4) Regression (all BPMs). Right-

arm-only and Left-arm-only slugs are marked with blue dots and red dots respectively.
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Figure 4.6: Pitt Averages from different beam corrected results. From the top to the bottom:

1) Dithering; 2) Regression (5 BPM); 3) Lagrange Multiplier; 4) Regression (all BPMs).
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Figure 4.7: Wien Averages from different beam corrected results. From left to right, then top to bottom: 1) Dithering; 2)

Regression (5 BPM); 3) Lagrange Multiplier; 4) Regression (all BPMs).
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4.1.3 Null Asymmetry

Null asymmetries are sensitive to potential cancellation by the slow reversals, i.e. the IHWP

flips and the Wien flips. A null asymmetry consistent with zero is a good indication of no

significant sources of systematic false asymmetry being canceled by the slow reversals. Also,

it is not necessary that null asymmetries have to be consistent with zero.

Depending on the type of source of interest, the way to define a null asymmetry can

be different. The null asymmetries to discuss here are the “IHWP+Spin” reversal null

asymmetry and the “IHWP” reversal null asymmetry

The “IHWP+Spin” reversal null, Anull, is the average of the asymmetries in both in-

sertable half-wave plate (IHWP) states with no sign correction applied. For a given time

period, the “IHWP+Spin” null asymmetry is sensitive to the false asymmetry being canceled

from the slow reversals:

Anull =
1

2
(AIN + AOUT), (4.7)

σnull =
1

2

√
σ2

IN + σ2
OUT, (4.8)

where AIN and AOUT are the measured asymmetries from the IHWP-IN and the IHWP-OUT

states respectively without sign correction and σIN and σOUT are their statistical uncertain-

ties.

The “IHWP” reversal null, denoted as A∗null, is the difference between the sign corrected

asymmetry of the IHWP-IN state and the sign corrected asymmetry of the IHWP-OUT

state

A∗null =
1

2
(A∗IN − A∗OUT), (4.9)

σnull =
1

2

√
σ2

IN + σ2
OUT, (4.10)

In the “IHWP” reversal null asymmetry, the effect of the IHWP reversal is isolated so

that the “IHWP” null indicates the false asymmetry canceled with the IHWP reversal but

survived the spin reversal using the double-Wien filters. The following calculation in Table

4.2 provides an example to demonstrate the difference of these two null asymmetries.

IHWP Wien Measured Asymmetry Sign Corrected Asymmetry

1 IN RIGHT APV + δ0 + δ1 APV + δ0 + δ1

2 OUT RIGHT −APV + δ0 + δ1 APV − δ0 − δ1

3 IN LEFT −APV + δ0 − δ1 APV − δ0 + δ1

4 OUT LEFT APV + δ0 − δ1 APV + δ0 − δ1

Table 4.2: Example of null asymmetries sensitivity to canceled noise by slow reversal.
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δ0 represents the type of false asymmetry which cancels with all slow reversals, that

is, δ0 is always the same change to measured asymmetries. One example for δ0 would be

electronics pick-up from the Pockels cell. δ0 can be obtained from the “IHWP+Spin” reversal

null asymmetry:

Anull =
1

4
(A1 + A2 + A3 + A4) = δ0. (4.11)

While δ1 is the type of false asymmetry which cancels between IN and OUT states and

it only changes sign with spin rotation, e.g. in A1 and A3. One possible source of δ1 is a

polarization-dependent beam asymmetry. Therefore δ1 survives the Wien flip and can only

be obtained from the “IHWP” reversal null asymmetry:

A∗null =
1

4
(A∗1 + A∗3 − A∗2 − A∗4) = δ1. (4.12)

Table 4.3 shows the grand averaged null asymmetry from the four beam correction meth-

ods. The Pitt history of the null asymmetry is also shown in Figure 4.8 (IHWP+Spin Null)

and Figure 4.9 (IHWP Null). Table 4.4 lists the beam corrected asymmetry measured at

IN and OUT states and their null asymmetries in each Pitt. Note that IN, OUT and Wien

averages in this table can be slightly different from the sign corrected results. This is be-

cause a few slugs are excluded in null asymmetry calculation for balancing statistical power

between IN and OUT states. Also note that IHWP+Spin reversal null and IHWP reversal

null have the exact same magnitude and differ only by sign in the Wien-Left state. And this

is expected by definition in the absence of additional systematics.

The sign flip between grand averages of “IHWP+Spin” null and “IHWP” null can be

understood from the “Wien Average” rows in Table 4.4. In the first two Wien flips, i.e.

Right-1 and Left-1, the “IHWP+Spin” null flips sign while the “IHWP” null stays at the

same sign. This indicates the δ1 type noise cancellation is more significant in the first two

Wiens and has a negative value. In contrast, the last two Wien flips, i.e. Right-2 and Left-2,

the “IHWP” null reverses its sign while the “IHWP+Spin” null keeps the sign unchanged

so that δ0 type noise cancellation is dominant in the last two Wiens and has a positive sign.

IHWP+Spin Null Asym. IHWP Null Asym.

Mean (ppb) Std. Err. (ppb) χ2/ndf Mean (ppb) Std. Err. (ppb) χ2/ndf

dit 13.23 14.52 42.11/22 -14.25 14.52 41.98/22

reg 5bpm 18.30 14.09 43.78/22 -14.57 14.09 44.39/22

lagr all 14.50 13.91 42.48/22 -15.61 13.91 42.31/22

reg all 15.69 13.75 42.48/22 -15.20 13.75 42.40/22

Table 4.3: Summary of null asymmetries
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As a summary, although the null asymmetries fluctuate from Pitt to Pitt, the grand

averages of both types of null asymmetry converge to a small value comparable to the grand

statistical uncertainty (13.5 ppb). The small null asymmetries in both cases indicate a nearly

perfect cancellation by the IHWP and Wien reversals and a reliable systematic control over

the beam quality for parity experiments.
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Wien Pitt IN Measured OUT Measured IHWP+Spin Null IHWP Null

Right-1

1 167.25 ± 114.24 -495.82 ± 104.98 -164.29 ± 77.58 -164.29 ± 77.58

2 476.05 ± 108.34 -577.74 ± 121.64 -50.84 ± 81.45 -50.84 ± 81.45

3 383.84 ± 74.26 -411.65 ± 98.58 -13.91 ± 61.71 -13.91 ± 61.71

4 442.37 ± 82.97 -435.76 ± 91.76 3.30 ± 61.85 3.30 ± 61.85

5 468.28 ± 81.69 -442.96 ± 86.47 12.66 ± 59.48 12.66 ± 59.48

Wien Average 403.29 ± 39.58 -462.09 ± 44.12 -29.40 ± 29.64 -29.40 ± 29.64

Left-1

6 -486.58 ± 92.14 393.94 ± 79.18 -46.32 ± 60.74 46.32 ± 60.74

7 -397.66 ± 76.40 540.49 ± 82.39 71.42 ± 56.18 -71.42 ± 56.18

8 -681.16 ± 91.00 578.16 ± 89.14 -51.50 ± 63.69 51.50 ± 63.69

9 -445.52 ± 89.65 566.61 ± 82.86 60.55 ± 61.04 -60.55 ± 61.04

10 -452.09 ± 129.82 515.86 ± 132.78 31.88 ± 92.85 -31.88 ± 92.85

Wien Average -488.45 ± 41.04 514.94 ± 39.68 13.25 ± 28.54 -13.25 ± 28.54

Right-2

11 593.51 ± 91.13 -482.65 ± 93.38 55.43 ± 65.24 55.43 ± 65.24

12 493.52 ± 99.64 -452.77 ± 90.62 20.38 ± 67.35 20.38 ± 67.35

13 511.05 ± 91.39 -384.49 ± 93.64 63.28 ± 65.42 63.28 ± 65.42

14 630.13 ± 126.11 -646.66 ± 130.62 -8.26 ± 90.78 -8.26 ± 90.78

Wien Average 549.81 ± 49.77 -469.89 ± 49.44 39.96 ± 35.08 39.96 ± 35.08

Left-2

15 -612.29 ± 91.68 371.26 ± 95.03 -120.52 ± 66.02 120.52 ± 66.02

16 -391.98 ± 89.34 673.82 ± 90.74 140.92 ± 63.67 -140.92 ± 63.67

17 -637.58 ± 90.67 520.84 ± 88.74 -58.37 ± 63.44 58.37 ± 63.44

18 -666.40 ± 108.75 583.22 ± 91.34 -41.59 ± 71.01 41.59 ± 71.01

19 -633.75 ± 91.69 382.17 ± 90.58 -125.79 ± 64.44 125.79 ± 64.44

20 -309.58 ± 93.73 440.73 ± 95.22 65.58 ± 66.81 -65.58 ± 66.81

21 -524.72 ± 89.00 642.21 ± 86.23 58.75 ± 61.96 -58.75 ± 61.96

22 -326.22 ± 88.59 648.22 ± 90.34 161.00 ± 63.26 -161.00 ± 63.26

23 -95.89 ± 129.54 721.70 ± 133.55 312.90 ± 93.03 -312.90 ± 93.03

Wien Average -481.70 ± 31.68 547.15 ± 31.25 32.73 ± 22.25 -32.73 ± 22.25

Table 4.4: Summary of null asymmetries at Pitt level with beam correction by Lagrange

multiplier.
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Figure 4.8: Pitts summary of “IHWP+Spin” Reversal Null
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Figure 4.9: Pitts summary of “IHWP” Reversal Null
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4.2 Event Cut and Selection

The primary goal of event cuts is accepting events with quality and efficiency while avoiding

systematic bias. To avoid introducing bias to the asymmetry measurement directly, event

cuts are only applied to data at event level, i.e. the 120 Hz or 240 Hz samples. Also, the

evaluation of events stability is based on the mean and the root-mean-square (RMS) of the

data in a moving time window and does not require knowing helicity information. In the

meantime, the length of the moving time window is typically ≈ 6 seconds which is much

longer than that of a helicity pattern (≈ 0.033 seconds). Therefore, data at helicity pattern

level are free from potential effects implicitly imposed by cuts at event level. As a result, the

effects of event cuts on helicity-correlated differences and asymmetries are extremely loose.

The software event cuts in JAPAN, the parity analyzer discussed in Section 3.6 , evaluate

data quality from the following aspects simultaneously:

• Detecting ADC hardware failures, e.g. saturation, null or frozen readback.

• Validating the event timing sequence and the reported helicity information.

• Protecting the experiment blinding factor from target changes and ADC hardware

failures.

• Rejecting signals outside the customized lower and the upper limits.

• Qualifying events with stable beam parameters, e.g. beam current and position, within

a sliding time window.

• Tagging events taken from the beam modulation period.

In practice, these aspects are further categorized into 23 types to indicate single event

errors, see in Table 4.5. Each single event error type is registered by a binary bit. For

every single event, information of all the 23 error types is amalgamated by bitwise OR

manipulations into one unsigned 32-bit integer, named ErrorFlag, which is the criterion for

event selection. By convention, a boolean true confirms a single event error, therefore a single

event which passes all the 23 types of event error check will receive a nulled ErrorFlag.

Not all hardware channels are relevant to the asymmetry analysis. To select qualified

events for the asymmetry analysis, a “global” ErrorFlag only evaluates the relevant hard-

ware channels, e.g. a BCM for normalization and BPMs for beam correction, and labels

whether an event is qualified for the asymmetry analysis or not. In contrast, each device

error code is “locally” associated with only one hardware channel. A device error code is

primarily used for subsystem diagnosis.
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Hexadecimal Decimal Description

0x1 1 a VQWK is saturating

0x2 2 for sample size check

0x4 22 check hardware sum equals to software sums

0x8 23 sequence number check

0x10 24 check to see ADC returning same HW value

0x20 25 check to see ADC returning zero

0x40 26 check to see ADC failed lower limit of the event cut

0x80 27 check to see ADC failed upper limit of the event cut

0x100 28 identify the single event cut is failed for a BCM

0x200 29 to identify the blinder flag

0x400 210 the single event cut is failed for a BPM

0x800 211 the single event cut is failed for a PMT

0x1000 212 the FFB OFF periods for Energy modulation

0x8000 215 the single event cut is failed for a BMod channel

0x10000 216 the mode 3 where we only flag event cut failed events

0x20000 217 any type of helicity decoding problem

0x1000000 224 identify the stability cut

0x2000000 225 the single event cut is a local cut

0x4000000 226 the single event cut is a global cut

0x8000000 227 an event within a beam trip range set by ring parameters

0x10000000 228 identify the stability cut for beam current

0x20000000 229 identify the burp cut

0x80000000 231 an event range being masked

Table 4.5: Table of event cut bits and descriptions.

Besides the single event error flag from JAPAN, a secondary event cut strategy is applied

regarding the lead target condition. Since the diamond foils on the target play a key role

in dissipating local beam heating, the cracking of the diamond foil due to the tension from

thermal expansion reduces the contact area between the lead and the diamond foil and

consequently results in a melting lead target, see the leftmost target in Figure 4.10.

Target degradation not only introduces helicity-correlated noise in the detected asym-

metry, but also adds a noticeable amount of systematic fluctuations. The strategy of event

cut based on the target condition is to filter out events during an instant increase of the

regressed asymmetry width, masked with the gray region in Fig 4.11. As a validation, the
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main detector signals in both HRSs show a significant loss in yields. All these events within

the gray region are excluded in the grand average of the PREX-2 result.

With both JAPAN ErrorFlag and the target condition filter applied, about 50 millions

of helicity patterns, equivalent to 113.6 C charge on target, are included in the final PREX-2

results, see in Table 4.6.

Number Patterns Charge on Target(Coulomb)

Event Flag 51666674 117.0

Filtered for Target 50102805 113.6

Table 4.6: Summary of pattern counts with event error cuts and end-of-target-life filters

Figure 4.10: A picture of PREX-2 208Pb target after the production run ended. The target

number from the left to the right: 8, 7 and 6. Target 208Pb-6 remained at good condition to

the end of the run. The beam raster trace is visible as the darkened region on the diamond

surface.
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Figure 4.11: Minirun summary plots of at the end run of Target 208Pb-2. The signatures of

damaged targets are increasing regression width and sudden change in detector yield. The

gray region in the plot indicates the run being filtered out from grand averaging.
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Chapter 5

Systematic Control of Beam

Fluctuations

In this chapter, the correction to the detected asymmetry for both random fluctuations and

helicity-correlated fluctuations in the beam motion is discussed. Section 5.1 introduces the

linear model to correct the beam induced asymmetry. From Section 5.2 to Section 5.4, the

precision and systematic uncertainties of three different beam correction techniques will be

reviewed. Section 5.4 elaborates on the discussion for Lagrange multiplier and explores its

advantages over techniques based on linear regression or beam modulation alone. Eigenvector

decomposition provides convenience to compare Lagrange multiplier and regression results

on an orthogonal basis and its mathematical foundation is provided in Section 5.5. Results

based on different techniques are compared to each other in Section 5.6 as a validation of

the overall systematic uncertainty from the beam correction.

5.1 Beam-induced Fluctuation in the Detected Asym-

metry

The beam correction to the raw detected asymmetry can be expressed in linear form:

Acorr = Araw −
5∑
i=1

αi∆Bi, (5.1)

where ~B = (X, Y, θX , θY , Ebeam) are beam positions X/Y , angles θX /θY and beam energy

Ebeam on the 208Pb target. ∆Bi is the helicity-correlated beam parameter difference:

∆Bi =
B+
i −B−i

2
. (5.2)
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And αi is the sensitivity of the measured asymmetry to the fluctuation in beam parameter

∆Bi

αi =
∂Araw

∂∆Bi

. (5.3)

Beam parameters on target, such as beam position and angle on a target, can be extrap-

olated from the beam transverse position measured by beam position monitors (BPMs) at

different locations along the beam line. Meanwhile, dispersion in the magnetic dipole field

at the arc region is sensitive to beam energy fluctuations. Therefore, the phase space of five

beam parameters can be spanned by the transverse beam positions along the beamline with

linear transformation:

∆ ~B = R ∆ ~M. (5.4)

This allows us to perform beam corrections on the basis of BPM measurements in practice:

Acorr = Araw −
∑
i

βi∆Mi, (5.5)

where the helicity-correlated difference of a BPM ∆Mi takes the place of ∆Bi in the previous

formula. And sensitivities βi are now partial derivatives against BPM measurements. The

main task of obtaining beam corrections is to choose a set of BPMs to explore the full phase

space and calibrate sensitivities to beam fluctuations with accuracy and precision.

PREX was proposed to measure the ∼ 0.6 ppm asymmetry with an overall uncertainty

of better than 20 ppb (3%). The total scattering event rate at the detectors is ∼4 GHz

and is characterized by event-by-event statistical fluctuation in the raw asymmetry of ∼90

ppm standard deviation over the 33 ms integrating time. In such a high rate measurement,

detected asymmetries can be overwhelmed by fluctuations induced by random as well as

helicity-correlated beam motion. An example of such a case is shown in Figure 5.1. The

distribution of the raw detected asymmetry has a width of 269 ppm dominated by the

random fluctuations in beam energy. After beam correction is applied, the RMS width of

the detected asymmetry is reduced to 92 ppm, as expected with 70 µA beam current on

target integrated in the 33 ms window.

Calibrating sensitivity to beam motion provides linear coefficients to remove its effect on

the detected asymmetry to first order. In addition, the grand averaged correction for beam

motion can potentially make a sizable contribution to the central value of the observed raw

detector asymmetry. Therefore precise and accurate sensitivity calibration techniques are

crucial to achieve a small systematic uncertainty.
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Figure 5.1: Distribution of beam corrected asymmetries sampled from the PREX-2 data

compared with the raw detected asymmetries from the exact same data set.

5.2 Multivariate Linear Regression

5.2.1 Overview

Multivariate linear regression is based on the assumption that the false asymmetry induced

by fluctuations in beam motion has a linear dependence on the helicity-correlated differences

of the BPM measured X and Y coordinates, denoted as xµ here for convenience

f(x) =
∑M

µ=1 βµxµ + β0, (5.6)

x = (x1, . . . , xµ, . . . xM), (5.7)

where f(x) is the model predicted false asymmetry induced by fluctuations in beam motion,

M ≥ 5 is the total number of BPM readout channels and βs are parameters. Concretely, β0 is

the intercept and βµ with µ from 1 to M represents the linear slope of each BPM coordinate.

With the raw measured asymmetry denoted as y, the beam corrected asymmetry can be

expressed as

y − f(x). (5.8)

The second assumption of regression is the corrected asymmetry, that is the difference be-

tween measured asymmetry, is dominated by the statistical fluctuation in the asymmetry

measurement and the instrumental noise in x is negligible. Also the noise is assumed to be
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independent from event to event. The counting statistic of the i-th event yi is determined

by the normal distribution N (µ = 0, σi) and so that the likelihood function of all samples is

P =
n∏
i

p(yi − f(xi)) ∝ exp
{
−

n∑
i

[yi − f(xi)]
2

σ2
i

}
. (5.9)

Therefore a linear regression minimizing the χ2, i.e.

χ2 =
1

n

n∑
i

[yi − f(xi)]
2

σ2
i

, (5.10)

leads to the maximum likelihood.

From the experimental point of view, for a given beam current and detector acceptance,

the statistical noise in y from event to event independently follows the same normal distribu-

tion N (µ = 0, σ). In other words, the event-by-event statistical fluctuations in asymmetry

measurement is sampled from the same parent distribution. Therefore one can factorize the

χ2 with an universal statistical uncertainty σ

χ2 =
1

nσ2

n∑
i

[yi − f(xi)]
2, (5.11)

The statistical uncertainty σ now becomes an overall normalization in χ2.

In fact, the χ2 at the minimum corresponds to the root-mean-square (RMS) value of

the regressed asymmetry. Therefore regression yields the RMS lower limit of the corrected

asymmetry among all techniques given the same BPM data sets under the assumption that

the dependence on the helicity-correlated beam position difference is linear.

5.2.2 χ2 Minimization

The task of χ2 minimization is to estimate the parameters βµs based on the observed samples

yi and xi. The positive quadratic form of χ2 guarantees that it is a convex parabola surface

in the parameter space therefore the global minimum exists and must be unique. And at

the global minimum, gradients ∂χ2/∂βµ in all directions vanish and provide the criterion to

search for the minimum
∂χ2

∂βµ
= 0, µ = 0, ...,M. (5.12)

For example, one can solve for the intercept term β0 from the following equation

∂χ2

∂β0

= 2 · 1

nσ2

n∑
i

[yi −
M∑
µ=1

βµxµ;i − β0] = 0, (5.13)
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which requires the sample means of y and ~x have to be in the plane of the optimized f(x),

that is,

β0 = y −
M∑
µ=1

βµxµ, (5.14)

where y and xµ are sample means calculated as

y =
1

n

n∑
i=1

yi, (5.15)

xµ =
1

n

n∑
i=1

xµ,i. (5.16)

With the property given by Equation (5.14), the centralized form of χ2 is practically

convenient and more commonly used

χ2 =
1

nσ2

n∑
i

[(yi − y)−
M∑
µ=1

βµ(xµ;i − xµ)]2 (5.17)

=
1

nσ2

n∑
i

[y′i − f(x′i)]
2, (5.18)

where centralized y′i and x′i are subtracted their sample means.

To solve the slope terms, i.e. βµ for µ 6= 0, the vanishing gradients must be satisfied

∂χ2

∂βµ
= 2 · 1

nσ2

n∑
i=1

(y′i −
M∑
ν=1

βνx
′
ν;i) · x′µ;i (5.19)

= 2 · 1

nσ2

[ n∑
i=1

y′ix
′
µ;i −

M∑
ν=1

βν

n∑
i=1

x′ν;ix
′
µ;i

]
= 0, µ = 1, ...,M (5.20)

where
∑

i y
′
ix
′
µ;i and

∑
i x
′
ν;ix

′
µ;i can be recognized as the covariance between y and xµs:

cov(y, xµ) =
1

n

n∑
i=1

[
(yi − y)(xµ;i − xµ)

]
=

1

n

∑
i

y′ix
′
µ;i, (5.21)

cov(xν , xµ) =
1

n

n∑
i=1

[
(xν;i − xν)(xµ;i − xµ)

]
=

1

n

∑
i

x′µ;ix
′
ν;i, (5.22)

The gradient Equation (5.20) are now reduced to

cov(y, xµ)−
M∑
ν=1

βνcov(xν , xµ) = 0, µ = 1, ...,M (5.23)
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To solve Equation (5.23) for βµs for all µ simultaneously, the matrix representing this linear

regression system is constructed as
...

cov(y, xµ)
...


M×1

=


. . .

cov(xµ, xν)
. . .


M×M


...

βν
...


M×1

. (5.24)

The column vector B = ~β on the right-hand side can be solved by matrix inversion

Y = XB→ B = X−1Y, (5.25)

where X−1 is the inverse matrix of X of which the elements are the covariance between xµ

and xν , that is Xµν = cov(xµ, xν).

5.2.3 Slope Dilution

Consider a one-dimensional linear regression model , f(x) and the χ2 minimization

f(x) = β1 · x, (5.26)

∂χ2

∂β1

= 0 → β1 =
cov(y, x)

var(x)
. (5.27)

Suppose x can be decomposed into two independent sources: fluctuations in real signal s

and instrumental Gaussian noise ε ∼ N (0, σε)

x = s+ ε. (5.28)

The contribution from instrumental noise ε in the numerator of Equation 5.27 is expected

to be zero, since it is an independent random variable centered at zero:

cov(y, x) = cov(y, s) + cov(y, ε) = cov(y, s) + 0, (5.29)

while in the denominator, the variance of x is

var(x) = σ2
s + σ2

ε . (5.30)

And the dilution of regression slope β1 can be viewed in the following

β1 =
cov(y, x)

σ2
s + σ2

ε

=
cov(y, x)

σ2
s(1 + σ2

ε/σ
2
s)
≈ cov(y, x)

σ2
s

(1− σ2
ε/σ

2
s). (5.31)

The relative ratio between finite instrumental resolution and signal fluctuation flattens the

regression slope from the “true” value as a consequence of the direction that regression chose
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(y-direction in this case) to minimize. This effect is also known as the “dilution” effect, as

the size of the regression slope is always smaller than that of the “true” value.

The typical BPM resolution is known to be 0.3 µm - 0.5 µm and the transverse beam

position fluctuation at different locations along the beam line depends on beam optics and

ranges from 1 µm - 10 µm. Therefore the dilution effect can be larger than 10% for highly

correlated monitors or less than 1% in other cases. Whether the dilution effect matters nor

not will be discussed in Section 5.6 during the systematic uncertainty evaluation.

5.2.4 Multi-dimensional Parameters Correlation

The general way to define the standard-deviation error on a regression slope is in terms

of the error matrix, the inverse of the second derivative matrix of χ2 with respect to the

parameters. The difficulty of interpreting the errors arises when the independent variables

are correlated with each other.

The second derivative matrix is also known as the χ2 curvature matrix, of which the

elements are the second derivatives of χ2 with respect to parameter βµ

Cµν =
1

2

∂2χ2

∂βµ∂βν
=

1

σ2
cov(xµ, xν) =

1

σ2
Xµν , (5.32)

and turns out to be the covariance matrix X.

From Equation 5.25, the sensitivity of fitting parameters to statistical fluctuation in y

can be expressed as
∂βµ
∂yi

=
∑
ν

(X−1)µν
1

n
(xν;i − xν). (5.33)

Since the statistical noise for each yi is sampling the same parent Gaussian distribution, the

squared uncertainty of βµ is in terms of the diagonal element in the inverse of X

σ2
βµ = σ2

y

n∑
i

(
∂βµ
∂yi

)2 =
1

n
σ2
y(X

−1)µµ, (5.34)

which also includes the effects of correlation from other free parameters. The correlations

are picked up when the curvature matrix is inverted. Although a parameter can be either

positively or negatively correlated with others, the effect of correlation always has the errors

overestimated. One way to study regression’s precision without correlation effects is to

diagonalize the covariance matrix X in the first place and solve slopes in the eigenvector

orthogonal basis. This eigenvector analysis is covered in Section 5.5.

The correlation of regression’s free parameter can be the beam position correlation at

different BPMs, e.g. the beam angle fluctuations observed in two BPMs depend on their
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geometrical relation in the beamline. Meanwhile, the instrumental noise among BPM chan-

nels can be correlated or anti-correlated due to electronic cross-talk, and distorts the beam

parameter correlation. Along with the dilution effect, the instrumental noise not only in-

troduces error in the regressed central value but also increases residual beam noise in the

regressed asymmetries.

Since the instrumental noise among BPM channels is not uniform in both magnitude and

sign, it is hard to quantify its impact on matrix inversion analytically. The following results

in Table 5.1 from a generated data based on Monte Carlo sampling shows the increasing

electronic pickup between BPM devices not only increases the regression RMS width but

also shifts the central value from the expected true value. The simulation test in Table 5.1

uses 5 BPMs to regress 5-dimensional independent physical beam fluctuations. All of the

following regression tests were based on the same random seed and the only difference is the

amplitude of instrumental correlated noise.

Mean (ppb) Std. Err. (ppb) RMS (ppm) χ2 / NDF

True Value -41 204 87 14.0 /19

Uncorrected 2290 643 273 13.7 /19

Reg 5BPM (1x Noise) 188 211 90 12.5 /19

Reg 5BPM (2x Noise) 581 219 93 12.2 /19

Reg AllBPM (1x Noise) -25 206 87 13.3 /19

Reg AllBPM (2x Noise) -25 206 87 13.3 /19

Table 5.1: Run averages over 20 Monte Carlo runs. The second column “Std. Err.” is the

estimated statistical uncertainty.

The impacts from the instrumental correlated noise can be largely mitigated by increasing

the number of redundant BPM channels. This effect is demonstrated in the last two rows

named “Reg AllBPM” in Table 5.1, where 12 BPM channels are used in the same simulated

dataset. Results from real data shown in Table 5.7 in Section 5.6 compares the dithering

analysis (5-BPMs) with regression (all-BPMs) and indicates that the simulated situation in

Table 5.1 where the instrumental noise is significant is not a problem for the PREX-2 data.

Another type of harmful parameter correlation comes from the electronic pickup between

the hardware channels of detectors and BPMs, since regression relies on the observed covari-

ance between detected asymmetry y and monitored xµs in Equation (5.25). If the electronic

noise ε1 and ε2 in the detector y and BPM channels xµs are correlated ,

cov(y + ε1, xµ + ε2) = cov(y, xµ) + cov(ε1, ε2), (5.35)
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the non-zero cov(ε1, ε2) directly deviates the regression slope from true value to any direction

at any magnitude.

5.3 Beam Modulation Analysis

5.3.1 Overview

In Section 3.3, the hardware and the timing structure of the beam modulation system were

discussed. This section focuses on the analysis of the beam modulation data. “beam mod-

ulation” and “dithering” are interchangeable terms within the context of this work. Beam

modulation analysis is often referred to as “dithering analysis”.

The beam modulation analysis calibrates the correction slopes using the derivative chain

rule between the detector sensitivities and BPM sensitivities :

∂D̂

∂Cµ
=
∑
ν

∂D̂

∂Mν

∂Mν

∂Cµ
(5.36)

where detector yield D, normalized by the beam current, is further normalized by the mean

〈D〉 of all data selected during the dithering step so that D̂ becomes the fractional yield:

D̂ =
D

〈D〉
. (5.37)

Mk is the beam position monitored by k-th BPM channel and Cj is the trimcard counts

for j-th coil.

Note that the normalization factor of D̂ in Equation (5.37) should also depend on the

software normalization of helicity-correlated differences in the parity analyzer. For example,

in JAPAN, the helicity-correlated difference of BPM computed from a full pattern of 240 Hz

octets is normalized by a factor of 2

∆M =
1

8
(M1 −M2 −M3 +M4 −M5 +M6 +M7 −M8) =

1

2
(〈ML〉 − 〈MR〉), (5.38)

and the same rule applies for detector differences so that the ratio of ∆D over 〈D〉 naturally

becomes the detected asymmetry

A =
∆D

〈D〉
=
〈DL〉 − 〈DR〉

2〈D〉
. (5.39)

Using this convention, the scale of dithering slope ∂D̂/∂Mµ is consistent with that of the

correction slope of detected asymmetry with respect to helicity-correlated BPM differences

∂D̂

∂Mµ

∼
[ DL −DR

〈D〉(ML
µ −MR

µ )

]
∼ ∂A

∂∆Mµ

. (5.40)
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In the previous version of parity analyzer, e.g. PAN, helicity correlated difference is defined

without the factor of 2 in Equation (5.38). In order to match the scale and dimension of

dithering slopes and correction slopes, Equation (5.37) has to be scaled as

D̂ =
D

2〈D〉
, (5.41)

which appears in multiple publications and reports of previous parity experiments using this

different convention of helicity-correlated differences.

5.3.2 Sensitivities Calculation

Sensitivities are calculated from the least square linear fit based on the following linear

model:

D̂(C) =
∂D̂

∂C
(C − C0) + D̂0, (5.42)

M(C) =
∂M

∂C
(C − C0) +M0. (5.43)

where D̂0 andM0 are the response of a detector and a BPM when modulation is not activated.

And C is the generated function with the magnitude B proportional to the driving current

strength in the beam modulation coils

C(t) = B sin(2πft+ φ) + C0, (5.44)

where frequency f is set to 15 Hz and φ is the initial phase relative to DAQ trigger time.

C0 is the constant electronic baseline. The linear slope is calculated from the covariance

between the monitor response and the coil driving signal:

∂D̂

∂C
=

1

〈D〉

∑
i(Di −D0)(Ci − C0)∑

i(Ci − C0)2
, (5.45)

∂M

∂C
=

∑
i(Mi −M0)(Ci − C0)∑

i(Ci − C0)2
, (5.46)

where i is the index of events and increments with time.

Figure 5.2 displays an example of sensitivities extraction. Data points (gray) grouped

by the modulation phase follow the 15 Hz sine waveform (blue dash) as expected. And the

linear correlation between the monitor response and the magnitude of the driving signal is

shown in the right panel. The linear fit to the data is shown as the red line.

The intrinsic random fluctuations of the detector response and the beam position have

no correlation with the modulation signal, therefore their contribution to the sensitivity

extraction is expected to be zero when being integrated over complete modulation cycles.
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Figure 5.2: Example of beam modulation cycle and the linear fit for dithering sensitivity.

Top: Fractional left-arm detector response (D̂); Bottom: beam position at BPM 4eX in mm.
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Figure 5.3: The left-arm detector residual response as a function of the modulation phase.

The frequency of the residual response is 60 Hz.

Fluctuations in the response coherent to the 15 Hz modulation signal, e.g. subharmonic

modes of 15 Hz, potentially distort the extracted sensitivities from their true values. The

dominant coherent subharmonic mode is the 60 Hz noise introduced from the power line.

The 60 Hz oscillation is apparent and visualized in Figure 5.3 when the 15 Hz component is
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corrected by subtraction. Also notice that

B15Hz = 0.01, (5.47)

B60Hz = 0.002. (5.48)

To evaluate the effect from the 60 Hz on (5.45) and (5.46) for the sensitivity extrac-

tion, a response, either in detectors or BPMs, can be decomposed into different frequency

components (fi)

S(t) =
∑
i

Si(t) =
∑
i

Bi sin(2πfit+ φi). (5.49)

When one performs calculation for the numerator part of (5.45) and (5.46), the summation

can be approximately processed as an integral over time in the continuous limit. For a given

frequency component fi, that is∑
i

Si(t)× C(t)→
∫

dtSi(t)× C(t). (5.50)

With the trigonometry product-to-sum formula applied, one can obtain the integral over

multiple full 15 Hz cycles (T = N/f, f = 15 Hz)∫ T

0

dtSi(t)× C(t) =

∫ T

0

dtBi sin(2πfit+ φi)× sin(2πft+ φ)

=

∫ T

0

dt
1

2

{
Bi cos[2π(fi − f)t+ φi − φ]−Bi cos[2π(fi + f)t+ φi + φ]

}
=

1

2

{ Bi

2π(fi − f)
sin[2π(fi − f)T + φi − φ]− Bi

2π(fi − f)
sin[φi − φ]

− Bi

2π(fi + f)
sin[2π(fi + f)T + φi + φ] +

Bi

2π(fi + f)
sin[φi + φ]

}
. (5.51)

The ‘resonance’ contribution , i.e. fi = f = 15 Hz, which is the signal of interest∫ T

0

dtS15Hz(t)× C(t) =
T

2
B15Hz. (5.52)

The 60 Hz contribution is bounded by the amplitude terms B60Hz

2π(60+15)
and B60Hz

2π(60−15)
respectively,

and it is tiny compared with the ‘resonance’ contribution

B60Hz

2π(60± 15)
/(
T

2
B15Hz)

=
1

π
· B60Hz

B15Hz

· 1

N
· 15

60± 15
< 4× 10−4, (5.53)

where the repeats of 15 Hz cycles N = 50 for one single beam modulation supercycle. The

suppression shown here on the 60 Hz is essentially an example of the lock-in amplification

technique.
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5.3.3 Solving Slopes

In the general case, for which number of BPMs and number of coils in use may not be equal,

to solve dithering slope from Equation (5.36), the least square approach can be applied as

follow

χ2 =
∑
µ

1

σ2
µ

( ∂D̂
∂Cµ

−
∑
ν

∂D̂

∂Mν

∂Mν

∂Cµ

)2

(5.54)

For convenience,

yµ :=
∂D̂

∂Cµ
, xµν :=

∂Mν

∂Cµ
, βν :=

∂D̂

∂Mν

, (5.55)

χ2 =
1

σ2

∑
µ

(
yµ −

∑
ν

xµνβν

)2

, (5.56)

where the noise of each measurement, σµ is assumed to be the same so that all equations are

equally weighted. And the matrix form of Equation (5.36) becomes
...

yµ
...


m×1

=


. . .

xµν
. . .


m×n


...

βν
...


n×1

→ Y = XB, (5.57)

To solve B, χ2 is minimized

∂χ2

∂βν
=

2

σ2

∑
µ

(
yµ −

∑
γ

xµγβγ

)
xµν (5.58)

=
2

σ2

(∑
µ

yµxµν −
∑
µ

∑
γ

xµγβγxµν

)
= 0, (5.59)

and terms within the braces can be assembled into a matrix form∑
µ

yµxµν −
∑
µ

∑
γ

xµγβγxµν = 0→ XTY = XTXB (5.60)

The dithering slope matrix B now can be solved from the inversion of the square matrix

XTX

B = (XTX)−1XTY. (5.61)

which is also known as Moore-Penrose inverse or pseudo-inverse.

When the number of dithering coils is more than that of BPMs in the equations, the

dithering slopes solved in this configuration are called over-constrained slopes. The core of

this approach is to minimize the residual sensitivities of all dithering measurements simul-

taneously.
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When the number of BPMs and the number of coils are equal and X itself is squared,

the solution of B from the inversion of X is more commonly used and is the special case of

Moore-Penrose inverse

B = (XTX)−1XTY = X−1Y. (5.62)

In the PREX-2 dithering analysis, only five coils were included therefore the dithering

slopes were calculated using Equation (5.62). The rest of coils data are for redundancy and

are primarily used in checking residual sensitivities, which will be discussed in Section 5.4.4.

The BPM channels used for the PREX-2 dithering analysis are 4aX, 4aY , 4eX, 4eY

and a combined channel of 11X and 12X (11X + 0.4×12X), which are also used for the

regression in the 5 BPMs configuration. The combination of 11X and 12X was determined

from data runs in the early stage for an improvement in the sensitivity to energy fluctuation

and it was fixed for all the rest of the runs when the 11X channel was available. The linear

combination of BPMs for the optimal sensitivity to the energy fluctuation is time dependent

and changes with the accelerator beam optics, therefore the fixed ratio between 11X and

12X is not guaranteed to provide the optimal energy fluctuation observable all the time.

In the meantime, the number of BPM channels is constrained by the number of dithering

coils included for the analysis, i.e. NBPM ≤ Ncoil = 5. The lack of flexibility in the BPMs

choice and composition limits the resolution for monitoring beam parameters and results in

a relatively larger random fluctuation in the corrected asymmetry compared with all other

beam correction techniques. For the detailed discussion and comparison, see Figure 5.5 and

the context in Section 5.4.

5.4 Lagrange Multiplier Regression

The multivariate linear regression gives corrected RMS width at the lower limit while it

is susceptible to instrumental noise for both random and common mode noise. The beam

modulation is more reliable in terms of accuracy while its precision is limited by both the

number of BPMs that can be included in the linear system framed by the number of coils

and the flexibility of BPM composition, as discussed in Section 5.3.3. The idea of regression

with the Lagrange multiplier is to combine the advantages of these two techniques while

reducing the impacts from their drawbacks.

In the Lagrange multiplier analysis for PREX-2, the BPM configuration includes all

the available BPMs in the Hall A beamline. From Slug 1 to Slug 2, due to the hardware

malfunction in the BPM-14 sampling module, 10 BPM channels are included in total. From

Slug 3 to Slug 94, BPM-8 and BPM-14 were replaced by BPM-11 and BPM-16 and totally
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12 BPM channels are included in this run period. The constraints assigned for the Lagrange

multiplier are the measured dithering sensitivities from 5 coils. The number of constraining

coils are fixed for all runs while the choice of the 5 coils out of the total 7 coils are run-period

dependent. Compared with the dithering analysis with 5 BPMs, the Lagrange multiplier

analysis gains more flexibility and precision in monitoring beam fluctuations and a better

control in the relative contribution from each BPM in each dimension of beam fluctuations,

which is now naturally determined from the correlations in beam modulation sensitivities.

Therefore the monitor sensitivity for beam fluctuations provided by the Lagrange multiplier

is reliable and optimal over the time.

5.4.1 Example with Two BPMs and One Beam Modulation Coil

Assume a beam correction for one dimensional beam parameter phase space spanned by

measurements from two BPMs:

Acorr = A− β1∆M1 − β2∆M2. (5.63)

And the goal is to solve two unknown variables β1 and β2

β1 =
∂A

∂∆M1

, β2 =
∂A

∂∆M2

, (5.64)

given one linear constraint from one single beam modulation measurement

∂D̂

∂C
= β1

∂M1

∂C
+ β2

∂M2

∂C
. (5.65)

L = χ2 + λ(
∂D̂

∂C
− β1

∂M1

∂C
− β2

∂M2

∂C
), (5.66)

where

χ2 =
∑
i

(
A(i) − β1∆M

(i)
1 − β2∆M

(i)
2

)2

, (5.67)

Also, without loss of generality, the covariance between ∆M1 and ∆M2 is assumed to be

zero

cov(∆M1,∆M2) = 0 (5.68)

The Lagrange multiplier method is to solve the following equations simultaneously

∂L
∂β1

= −2cov(A,∆M1) + 2β1σ
2
∆M1
− λ∂M1

∂C
= 0 (5.69)

∂L
∂β2

= −2cov(A,∆M2) + 2β2σ
2
∆M2
− λ∂M2

∂C
= 0 (5.70)

∂L
∂λ

=
∂D̂

∂C
− β1

∂M1

∂C
− β2

∂M2

∂C
= 0 (5.71)
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Figure 5.4: χ2 vs (β1, β2)- Visualization of 2-dim Lagrange Multiplier in an arbitrary unit.

Blue: surface of χ2 in parameter space. Orange: constraint β1 + β2 = 40. Red: Intersection

between χ2 surface and the constraint.

From Equation 5.69 and Equation 5.70

β1 =
λ

2σ2
∆M1

∂M1

∂C
+ β′1, (5.72)

β2 =
λ

2σ2
∆M2

∂M2

∂C
+ β′2. (5.73)

where β′1 and β′2 are regression slopes without constraints:

β′1 =
cov(A,∆M1)

σ2
∆M1

, (5.74)

β′2 =
cov(A,∆M2)

σ2
∆M2

. (5.75)

And the Lagrange multiplier factor

λ

2
=
(∂D̂
∂C
− β′1

∂M1

∂C
− β′2

∂M2

∂C

)
/
( 1

σ2
∆M1

∂M1

∂C
+

1

σ2
∆M2

∂M2

∂C

)
, (5.76)
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of which the numerator is so-called dithering residual sensitivities corrected by regression

slopes. The Lagrange multiplier factor also determines the slope differences from regression

λ

2σ2
∆M1

∂M1

∂C
= β1 − β′1, (5.77)

λ

2σ2
∆M2

∂M2

∂C
= β2 − β′2. (5.78)

The difference between regression and the Lagrange multiplier regression can be visualized in

Figure 5.4 showing the χ2 dependence on the slopes β1 and β2 along with the linear constraint

constructed by one beam modulation. The lowest bottom of the blue surface is the solution

from linear regression. Due to the slope dilution caused by the limited BPM resolution, its

location is shifted out of the plane defined by the beam modulation data and usually results

in systematic bias. Meanwhile, with the constraint from the beam modulation alone, the χ2

is not guaranteed to be optimal.

5.4.2 Generalized Lagrange Multiplier Regression

So long as the number of BPMs is greater than the number of dithering coils as constraints,

the problem can be solved with Lagrange multiplier method to minimize

χ2 =
∑
i

(
A(i) −

∑
µ

βµ∆M (i)
µ

)2

, (5.79)

which is similar to Equation (5.67), with constraints from dithering measurement as in

Equation (5.65)

∂D̂

∂Cµ
=
∑
ν

∂D̂

∂Mν

∂Mν

∂Cµ
. (5.80)

For the PREX-2 parity-violating asymmetry analysis, 12 BPM channels were available in

the Hall A beamline and are all used for the beam correction. And 5 beam modulation coils

were selected out of total 7 coils to optimize the phase space orthogonality. Therefore the

indices of BPMs and coils run from 1 to 12 and from 1 to 5 respectively

∆Mµ : µ = 1, 2, . . . , 12, (5.81)

Cµ : µ = 1, 2, . . . , 5. (5.82)

For simplification, the following notations are defined and drop partial derivative symbols

∂D̂

∂Cµ
= dµ,

∂Mν

∂Cµ
= mµν , (5.83)
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For a given detector, to minimize the width under constraints, the Lagrangian is constructed

as

L = χ2 +
∑
γ

λγ

(∑
ν

βνmγν − dγ
)
, (5.84)

and reaches the minimum when
∂L
∂βµ

= 2
∑
ν

cov(∆Mµ,∆Mν)βν − 2cov(A,∆Mµ) +
∑
γ

mµγλγ = 0

∂L
∂λτ

=
∑
ν

mτνβν − dτ = 0,

(5.85)

or in matrix form

. . . . . .

cov(∆Mµ,∆Mν) mµγ

. . . . . .
. . . . . .

mT
ντ 0

. . . . . .





...

βν
...
...

λγ/2
...


=



...

cov(A,∆Mµ)
...
...

dτ
...


. (5.86)

For simplicity of discussion in the following, Equation (5.86) is expressed in term of block

submatrices (
A B

BT 0

)(
X

L

)
=

(
Y

D

)
. (5.87)

The slopes, βν in X can be solved by matrix inversion(
X

L

)
=

(
A B

BT 0

)−1(
Y

D

)
. (5.88)

5.4.3 Comparison with Regression

To quantify the differences between the results from regression and Lagrange multipliers, the

matrix inversion part of Equation (5.88) is represented blockwise(
A B

BT 0

)−1

=

(
A−1 + A−1BC−1BTA−1 −A−1BC−1

−C−1BTA−1 C−1

)
, (5.89)

where C is the Schur complement of block A

C := 0−BTA−1B = −BTA−1B. (5.90)
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With Equation (5.89), Equation (5.88) becomes(
X

L

)
=

(
A−1Y + A−1BC−1BTA−1Y −A−1BC−1D

−C−1BTA−1Y + C−1D

)
, (5.91)

and the difference between Lagrange multiplier and regression can be quickly recognized as

X−A−1Y = A−1BC−1BTA−1Y −A−1BC−1D = −A−1BL, (5.92)

which depends on the Lagrange multiplier factors λi of block L. Recall that the solution of

slopes from regression is

X′ = A−1Y. (5.93)

The meaning of these Lagrange multiplier factors can be understood by rearranging the

following equation

L = −C−1BTA−1Y + C−1D = C−1(D−BTA−1Y) = C−1(D−BTX′), (5.94)

where the part within the braces are also known as the dithering residual sensitivities with

regression slopes used. Explicitly, the Lagrange multiplier factor can be expressed as

λγ
2

=
∑
ν

(C−1)γν

(
dν −

∑
µ

mT
νµβ

′
µ

)
. (5.95)

If A is diagonalized using eigenvalue decomposition (to be discussed in Section 5.5), its pivot

elements are orthogonal monitor-µ’s RMS σ2
µ. On this orthogonal basis, difference in slope

between Lagrange multiplier and regression for a given monitor-µ unfolded from Equation

(5.92) is

βµ − β′µ =
∑
ν

λν
2
· mµν

σ2
µ

(5.96)

=
∑
ν

∑
γ

(C−1)νγ

(
dγ −

∑
τ

mT
γτβ

′
τ

)mµν

σ2
µ

. (5.97)

Those terms summing over indices ν and γ, e.g. regression’s residual sensitivities, are com-

mon for all monitors thus defining the overall common strength in modifying regression

slopes. Terms associated with index µ, i.e. the monitor-µ ’s sensitivity to coil-ν mµν and the

eigenvalue of monitor σ2
µ, represents the local effect in each individual monitor. Since the

eigenvalue σ2
µ is in the denominator, modification in the lower ranked eigenvector is generally

enhanced because of the lower cost in χ2 to satisfy the beam modulation constraints.
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Figure 5.5: Slugs history of the RMS width of corrected asymmetries with different ap-

proaches. Only the two-arm runs are included.

The RMS values of the beam corrected asymmetries using different methods are compared

in Figure 5.5. Both regression with 5 BPMs and beam modulation show a relatively larger

RMS value, which is a clear sign of lacking precision. The accuracy of Lagrange multipliers

and regression with all the available BPMs will be examined in the next section by evaluating

the beam modulation residual sensitivity.

5.4.4 Verifying Lagrange Multiplier and Regression Using Dither-

ing Residual Sensitivity

In this part, the dithering residual sensitivities from both linear regression and Lagrange

Multipliers using all available BPM channels are compared to reveal the precision for both

methods.

The residual sensitivity for a given detector with γ-th coil modulation rγ is defined as:

rγ =
∂D̂

∂Cγ
−
∑
µ

βµ ·
∂Mµ

∂Cγ
, (5.98)

where βµ is the slope solved from Equation (5.85) and ∂D̂
∂Cγ

and ∂Mµ

∂Cγ
are dithering sensitiv-

ities defined in Equation (5.45) and Equation (5.46). Only five coils are used for Lagrange

multiplier analysis at once and the choice of coils is run dependent. Dithering sensitivities

are averaged over supercycles within each stable run period, which are also known as the

segment averaged dithering sensitivities. The supercycle-wise residual sensitivities rγ for
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both left-arm and right-arm detectors are calculated from the supercycle-wise dithering sen-

sitivities corrected by the minirun-wise Lagrange multiplier slopes ∂D̂
∂Mµ

constrained by the

segment averaged dithering sensitivities.

The supercycle-wise history of the dithering and residual sensitivities for all seven coils

can be found in Appendix B. As an example, the supercycle-wise history of the Coil 5

dithering and residual sensitivities spanning the full PREX-2 run is shown in Figure 5.7 for

the left-arm detector and in Figure 5.8 for the right-arm detector. Red dots and black dots

in the plots on the left represent dithering data treated as the redundant sensitivities and

the constraining sensitivities respectively. The histograms in blue curve in the middle shows

the distributions of the constraining dithering data on the left projected to their y-axis. The

histograms in red curve on the right are for the redundant data showing their distributions

with the same projecting direction.

The grand averaged measured sensitivities for each detector and coil are summarized in

the first column in Table 5.2 and Table 5.3. For example, data for coil 5 in this column were

extracted from the values named “Mean” in the text box of the top middle plot of Figure

5.7 and Figure 5.8. The same extraction was done for other coils and detectors from similar

supercycle-wise history plots.

The grand averaged residual sensitivities mean and root-mean-square (RMS) of the ded-

icated coils for Lagrange multiplier constraints are listed in the second and third column in

Table 5.2. Data for Coil 5 in these two columns can also be obtained from values named

“Mean” and “Std. Dev.” in the text box of the middle plot in the second row of Figure 5.7

and Figure 5.8. A similar procedure can be done for other coils to reproduce these columns

in Table 5.2. The deviation of the central value from zero is consistent with the numerical

tolerance and is a negligible contribution to the systematic error. The RMS fluctuation of

residuals is determined by both the statistical precision and the stability of the accelerator

beam tune. For the energy vernier which is the largest sensitivity in the averaged asymme-

try (in the row “us avg vs coil 7” of Table 5.2 ), the nominal sensitivity is 43.89 ppm/count

and the RMS of residual is 0.82 ppm/count. The ratio between the residual RMS over the

nominal sensitivity indicates a precision better than 3 %.

Residual sensitivities from redundant beam modulation measurements, which were not

directly applied as Lagrange Multiplier constraints, provide cross validation for the accuracy

of Lagrange Multiplier. The run averages of these redundant coils are listed in the last two

columns of Table 5.2 and Table 5.3. Data in these two columns can be obtained from the

text box in the last rows on the right panel of similar plots as Figure 5.7 and Figure 5.8.

A example of slug averaged measured sensitivity and residual sensitivity are shown in

Figure 5.6. Coil 5 was excluded from Lagrange multiplier analysis in the first 60 slugs, where
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both the central value and RMS of its residual sensitivities remain at a similar level with

those of the rest of the run period. Note that in Figure 5.6, the “error bars” of data points

at slug level in the residual sensitivity strip charts are the RMS of the residual sensitivity in

the slug to illustrate the cyclewise fluctuation within the slug. The “error bars” should not

be interpreted as the slug averaged uncertainties in this type of plot.

A similar comparison was also performed for regression with the same BPM set. The

residual sensitivities evaluated with regression slopes are slightly worse than those from the

Lagrange multiplier as expected. Both independent and correlated instrumental noises in

the BPMs contribute to the fluctuation of regression’s residual sensitivities. For a side-

by-side comparison between regression and Lagrange multiplier, the residual sensitivities in

redundant coils for regression are also calculated separately in columns titled with “Redun-

dant Residual Sensitivity” in Table 5.3. Though the regression’s residual sensitivity is not

optimized by definition, the results in Table 5.3 are in a similar level with those from the

Lagrange multiplier, therefore suggest regression as a reliable reference for estimating the

systematic noise of the Lagrange multiplier method.
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Figure 5.6: Slug summary of coil 5 residual sensitivity for the left and right main detectors.

The “error bars” of data points at slug level in the residual sensitivity strip charts are the

RMS of the residual sensitivity in the slug to illustrate the cyclewise fluctuation within the

slug. The “error bars” should not be interpreted as the slug averaged uncertainties directly

in this plot.
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Figure 5.7: Cyclewise history for full PREX-2 run. From top to bottom: 1) Measured the left-arm detector’s dithering sensitivity

to coil 5. 2) The left-arm detector’s residual sensitivity to coil 5 corrected by Lagrange Multiplier method. 3) The left-arm

detector’s residual sensitivity to coil 5 corrected by regression with all BPMs. See in the text for a full description of the plots.
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Figure 5.8: Cyclewise history for full PREX-2 run. From top to bottom: 1) Measured the right-arm detector’s dithering

sensitivity to coil 5. 2) The right-arm detector’s residual sensitivity to coil 5 corrected by Lagrange Multiplier method. 3) The

right-arm detector’s residual sensitivity to coil 5 corrected by regression with all BPMs. See in the text for a full description of

the plots.
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Measured

Sensitivity

Mean

Residual

Sensitivity

Mean

Residual

Sensitivity

RMS

Redundant

Residual

Sensitivity

Mean

Redundant

Residual

Sensitivity

RMS

usl vs coil 1 -44.48 7.7e-3 0.85 -3.2e-1 1.58

usl vs coil 2 -7.36 -1.2e-1 0.09 5.3e-2 0.28

usl vs coil 3 -13.96 2.0e-3 0.32 - -

usl vs coil 4 -6.97 -1.8e-3 0.21 - -

usl vs coil 5 64.31 1.2e-3 2.05 -5.1e-1 1.02

usl vs coil 6 8.34 -1.1e-2 0.36 1.6e-1 0.33

usl vs coil 7 53.48 7.9e-5 0.82 - -

usr vs coil 1 49.41 -4.2e-3 0.71 2.0e-1 1.33

usr vs coil 2 -9.18 -3.6e-2 0.09 -2.7e-3 0.26

usr vs coil 3 15.13 -6.6e-5 0.26 - -

usr vs coil 4 -5.75 -9.8e-4 0.21 - -

usr vs coil 5 -68.69 -6.2e-5 1.64 1.1e-1 0.87

usr vs coil 6 8.48 3.1e-3 0.30 -1.4e-2 0.18

usr vs coil 7 32.87 2.9e-3 0.64 - -

us avg vs coil 1 2.03 -7.2e-4 0.71 -6.3e-2 1.39

us avg vs coil 2 -8.27 -7.9e-2 0.08 2.8e-2 0.24

us avg vs coil 3 0.43 4.6e-4 0.27 - -

us avg vs coil 4 -6.48 -1.5e-3 0.19 - -

us avg vs coil 5 -2.19 5.8e-4 1.77 -2.0e-1 0.85

us avg vs coil 6 8.55 -5.0e-3 0.28 7.5e-2 0.22

us avg vs coil 7 43.89 1.6e-3 0.68 - -

us dd vs coil 1 -47.50 3.6e-3 0.34 -2.6e-1 0.45

us dd vs coil 2 0.91 -4.4e-2 0.04 3.0e-2 0.14

us dd vs coil 3 -14.73 5.3e-4 0.13 - -

us dd vs coil 4 -0.71 -5.4e-4 0.10 - -

us dd vs coil 5 66.50 6.4e-4 0.57 -3.1e-1 0.43

us dd vs coil 6 0.03 -8.1e-3 0.18 9.0e-2 0.15

us dd vs coil 7 10.88 -1.3e-3 0.27 - -

Table 5.2: Dithering residual sensitivities of Lagrange multipliers. unit: ppm/counts
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Measured

Sensitivity

Mean

Residual

Sensitivity

Mean

Residual

Sensitivity

RMS

Redundant

Residual

Sensitivity

Mean

Redundant

Residual

Sensitivity

RMS

usl vs coil 1 -44.48 -4.2e-1 1.28 7.4e-1 1.48

usl vs coil 2 -7.36 -3.9 0.82 -1.2 2.46

usl vs coil 3 -13.96 -4.6e-3 0.51 - -

usl vs coil 4 -6.97 -9.7e-1 1.61 - -

usl vs coil 5 64.31 -1.0 1.97 5.9e-2 1.51

usl vs coil 6 8.34 1.4 2.67 2.5 0.62

usl vs coil 7 53.48 3.0e-1 0.95 - -

usr vs coil 1 49.41 2.1e-1 0.91 6.6e-1 1.16

usr vs coil 2 -9.18 -5.1 0.53 -1.7 2.42

usr vs coil 3 15.13 2.1e-3 0.45 - -

usr vs coil 4 -5.75 -1.2 1.70 - -

usr vs coil 5 -68.69 -2.8e-1 1.60 -1.1e-1 1.04

usr vs coil 6 8.48 1.9 2.64 3.1 0.43

usr vs coil 7 32.87 3.7e-1 0.77 - -

us avg vs coil 1 2.03 -6.4e-2 0.76 7.0e-1 1.25

us avg vs coil 2 -8.27 -4.5 0.49 -1.5 2.37

us avg vs coil 3 0.43 1.5e-2 0.40 - -

us avg vs coil 4 -6.48 -1.1 1.61 - -

us avg vs coil 5 -2.19 -6.6e-1 1.71 -7.5e-2 0.81

us avg vs coil 6 8.55 1.7 2.58 2.8 0.49

us avg vs coil 7 43.89 3.2e-1 0.77 - -

us dd vs coil 1 -47.50 -2.5e-1 0.75 3.8e-2 0.45

us dd vs coil 2 0.91 5.9e-1 0.49 2.4e-1 0.75

us dd vs coil 3 -14.73 1.6e-2 0.26 - -

us dd vs coil 4 -0.71 7.4e-2 0.51 - -

us dd vs coil 5 66.50 -3.8e-1 0.57 1.6e-2 0.91

us dd vs coil 6 0.03 -2.4e-1 0.83 -3.0e-1 0.21

us dd vs coil 7 10.88 -4.2e-2 0.39 - -

Table 5.3: Dithering residual sensitivities of Regression. unit: ppm/counts
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5.5 Eigenvector Analysis

As discussed in Section 5.2.4, direct comparison between regression with other beam cor-

rection techniques, e.g. beam modulation, can be overwhelmed by the effects of parameter

correlation which over-estimates the errors. To get rid of the parameter correlation effect, it

is convenient to diagonalize the BPMs covariance matrix by eigenvalue decomposition and

compare regression with other techniques side-by-side on the basis of eigenvectors.

5.5.1 Basic Technique

Covariance between ∆Mµ and ∆Mν in n helicity patterns is

cov(∆Mµ,∆Mν) =
n∑
i

∆M (i)
µ ∆M (i)

ν = ~XT
µ · ~Xν . (5.99)

where ∆Mµ is the helicity-correlated BPM differences and ~X is the events vector

~XT
µ =

(
. . . ∆M

(i)
µ . . .

)
1×n

, (5.100)

µ is the index of BPM and i is the event index.

The covariance matrix is a M ×M symmetric matrix S

S =


. . .

cov(∆Mµ,∆Mν)
. . .


m×m

= XTX (5.101)

where

X =
(
~X1 . . . ~Xm

)
n×m

, (5.102)

where m is the number of BPMs and n is the total number of events.

The orthogonal matrix Q obtained from the eigenvalue decomposition diagonalizes the

covariance matrix S and constructs the orthogonal monitors:

QTSQ = Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λm

 , (5.103)

where
√
λµ is also the RMS of jitter in the orthogonal monitor M ′

µ.

In general, the identity of an eigenvector is based on the ranking sorted by eigenvalues

in descending order. Since the eigenvalue of a given eigenvector could change with the
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accelerator beam optics and result in frequent changes in rank ordering and mixing identities

in the same rank. In practice, the eigenvector set was calculated for each 5-minute data set

and was identified with the best matching of the BPMs components from run to run. And

the ranking of the identified eigenvectors was based on their grand averaged eigenvalues,

equivalently the RMS jitter.
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Figure 5.9: Example of matrix diagonalization with 12 BPMs channels using eigenvector

decomposition. Values of covariance are indicated by the hue of color.

The matrix Q can be viewed as a collection of column vectors ~Qµ

Q =
(
~Q1 . . . ~Qm

)
m×m

, ~Qµ =


...

Qνµ

...


m×1

, (5.104)

which are essentially the eigenvectors of the covariance matrix S

S ~Qµ = λµ ~Qµ. (5.105)

The matrix Q projects the BPM’s ∆Mµ to the orthogonal ∆M ′
µ

~X ′µ = X ~Qµ, (5.106)

and ensures the correlation between orthogonal monitors are all zeros:

cov(∆M ′
µ,∆M

′
ν) = ~X ′µ

T
· ~X ′ν = ( ~QT

µXT )(X ~Qν) = ~QT
µS ~Qν = λµδµν , (5.107)
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where δµν is the Kronecker delta.

Projection of correction slopes in the eigenvector basis β′ν can be also derived from the

derivative chain rule

βµ =
∂A

∂∆Mµ

=
∑
ν

∂A

∂∆M ′
ν

∂∆M ′
ν

∂∆Mµ

=
∑
ν

β′ν
∂∆M ′

ν

∂∆Mµ

=
∑
ν

β′νQνµ, (5.108)

so that

β′ν =
∑
µ

(Q−1)νµβµ =
∑
µ

QT
νµβµ. (5.109)

The last step in Equation (5.109) is valid only if Q is a normalized orthogonal matrix which

is defined as:

QTQ = I→ Q−1 = QT. (5.110)

5.5.2 Run History of Eigenvectors

The eigenvector construction is summarized in Table 5.4 of which each row is filled with

grand averaged ortho-normal weighting factors from the 12 BPM x-y coordinates along the

Hall A beamline.

An eigenvector can be interpreted by the geometrical relation and the BPM locations in

the Hall A beamline. The relative locations of BPMs can be found in Figure 3.2. The top

eigenvector, i.e. Eigenvector-0, has RMS jitter of 15 µm in the helicity-correlated differences

and is basically the subtraction between BPM 4eX and BPM 1X indicating the beam angle

fluctuations. Meanwhile BPM 4aY , BPM 4eY and BPM 1Y attribute to Eigenvector-1 with

approximately equal weights and depict the vertical beam motion. BPM 12X and 11X at

the high dispersion region together make the largest contribution to Eigenvector-2, which

is believed to be sensitive to the beam energy fluctuation. Figure 5.10 shows the history

of Eigenvector-2. Contributions from each BPM are consistent at 0.1 level over the entire

run history. Jitters in y coordinates reflect the BPMs electronic noise mode. For all of

the eigenvectors computed from 12 BPMs, the mini-run history of their components can be

found in Appendix C.

Beam fluctuations in the eigenvector ranked from 5 to 11 are close to the BPM instrumen-

tal resolution (0.3 µm-0.5 µm) and the grand averaged central values are mostly consistent

within their convergence radius. Therefore these low-ranked eigenvectors are more likely

to be subjected to modes of the electronic noises. Meanwhile the top five eigenvectors are

sensitive to the fluctuations in the full phase space.
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Rank 4aX 4eX 1X 11X 12X 16X 4aY 4eY 1Y 11Y 12Y 16Y

0 0.1 0.7 -0.6 -0.2 -0.1 0.3 -0.1 -0.1 0.0 0.0 -0.1 0.0

1 0.1 0.2 0.0 -0.2 0.1 0.1 0.6 0.5 0.4 0.2 0.3 -0.1

2 -0.1 -0.2 0.1 -0.7 -0.7 -0.1 0.0 0.0 -0.1 0.0 0.1 0.0

3 0.0 -0.1 0.1 -0.1 -0.1 0.0 0.1 0.0 0.5 -0.2 -0.8 -0.2

4 -0.4 -0.2 -0.5 0.5 -0.5 -0.2 0.1 0.1 0.0 0.1 0.1 0.1

5 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 -0.5 -0.6 -0.1 -0.5

6 -0.3 -0.5 -0.4 -0.4 0.5 0.3 0.1 -0.2 0.0 0.0 0.1 0.0

7 0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.4 0.3 -0.1 0.5 -0.7

8 -0.1 0.0 0.0 -0.1 0.1 0.0 -0.7 0.5 0.4 -0.3 0.2 0.1

9 -0.6 0.2 0.2 0.0 0.0 0.1 -0.2 0.2 -0.1 0.5 -0.1 -0.4

10 0.5 -0.3 -0.3 0.0 0.1 -0.2 -0.2 0.3 -0.1 0.5 -0.2 -0.3

11 0.2 -0.2 0.1 0.2 -0.3 0.9 -0.1 0.1 0.0 0.1 0.0 -0.1

Table 5.4: Components of eigenvectors with round-off to the first decimal point. The ranking

was sorted by eigenvalues in descending order.

Figure 5.10: History of BPM contributions in Eigenvalues 2.
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Rank Mean (nm) Std. Err. (nm) RMS (um)

Nominal

Slope

(ppm/um)

Slope Diff.

Mean

(ppm/um)

Slope Diff.

RMS

(ppm/um)

0 -3.96 2.12 14.9 -2.70 0.08 0.40

1 2.31 1.38 9.60 9.50 -0.24 0.56

2 -1.83 1.01 7.05 36.29 -0.14 0.66

3 -1.61 0.46 3.33 3.95 -0.13 0.70

4 -1.01 0.38 2.66 -13.55 -0.45 1.19

5 0.16 0.2 1.39 -1.86 0.11 0.79

6 0.15 0.12 0.99 5.36 -0.20 1.82

7 0.02 0.11 0.76 10.91 -1.06 1.87

8 -0.08 0.07 0.48 -2.84 1.55 4.30

9 -0.02 0.06 0.38 4.67 -0.41 3.48

10 -0.04 0.05 0.36 4.96 -1.96 5.39

11 -0.01 0.04 0.31 -6.18 0.63 3.65

Table 5.5: Weighted grand averages of eigenvector helicity correlated differences. Weighting

factor is based on beam corrected statistical error. The ranking was sorted by eigenvalues in

descending order. The last two columns are grand averages of differences between regression

and Lagrange multiplier slopes in eigenvector basis.

5.5.3 Regression vs Lagrange Multipliers

The main goal of eigenvector analysis is to isolate the effects of parameter correlation and

cross validate beam corrections with different methods. The quantity to compare in this

part is the slope, that is the sensitivity of detected asymmetry to the fluctuations in a given

eigenvector. Fluctuation of the slope largely depends on the beam transport optics therefore

is not relevant to the precision of a certain slope calibration technique. The run history of the

slopes of the averaged detected asymmetry to Eigenvector 2 using regression and Lagrange

multiplier are shown in the top panel of Figure 5.11. In the top panel of Figure 5.11, the

mean value displayed in the box is the grand average of the nominal Lagrange multipliers

correction slope. In the bottom panel, the mean and the “Std Dev” in the box are the grand

average central value and RMS width of the difference in slope between Lagrange multipliers

and regression. The same statistics summary for all eigenvectors are summarized in Table

5.5. All eigenvectors are computed from the same 12 BPM channels. The history of slopes

for all eigenvectors can be found in Appendix D
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Though regression potentially is susceptible to BPM’s electronic noise, the beam modu-

lation residuals analysis on the regression suggests that the regression with all 12 BPMs has

little instrumental effect and is consistent with the beam modulation data to a certain de-

gree. Therefore comparing Lagrange multiplier with regression by differentiation is a useful

cross check of beam corrections. The run history and distribution of the differences of slope

for Eigenvector 2 between regression and Lagrange multiplier are shown in the bottom panel

of Figure 5.11, which is the largest slope in the averaged asymmetry of all eigenvectors. The

standard deviation of the slope differences is 0.66 ppm/um, about 2 % of its nominal slope

38 ppm/um. The central offset is -0.14 ppm/um which is negligible relative to the random

noise in the determination of this slope.
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Figure 5.11: Slope History of Eigenvector 2. Top: History of regression and Lagrange

multiplier slopes. Bottom: Difference of regression and Lagrange multiplier slopes.

Table 5.5 summarizes the differences in slopes between the regression and Lagrange mul-

tiplier method. The slope differences in the top five eigenvectors have standard deviation at

a level of 0.6 ppm/um and negligible central values. Although the lower ranked eigenvectors

have larger and noisier slope differences, the grand averaged helicity-correlated differences of

these eigenvectors are tiny therefore its contribution to the systematic noise of beam correc-

tion is small. A detailed evaluation of beam correction uncertainty is discussed in the next

section.

It is also worth pointing out that Eigenvector-2 contributes the largest slope and its 7

µm random fluctuation is apparent over the instrumental resolution (≈ 0.4 µm) therefore
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the calibration of this slope is known to be relatively precise. Also notice that all the lower

ranked eigenvectors, i.e. Eigenvector-5 to Eigenvector-11, have negligible helicity-correlated

central values in their grand averages and contribute with small correction slopes (|β| ≤ 10

ppm/µm) thus have a tiny contribution in the systematic uncertainty. These two facts make

it possible to assign a small systematic uncertainty for the beam correction in PREX-2.

For other experiments with different beam conditions and optics, e.g. the energy-sensitive

dimension has a large slope and a large helicity-correlated central value meanwhile its random

fluctuation is suppressed and close to the monitor resolution level, the evaluation of the

systematic uncertainty for beam correction may require further examinations.

5.6 Systematic Uncertainty

The PREX-2 beam correction result is the sum of beam position helicity-correlated differ-

ences multiplied by the slopes calculated from Lagrange multiplier method in eigenvector

basis

Acorr =
∑
i

wi

[
A(i)

meas −
∑
µ

β(i)
µ ∆M (i)

µ

]
, (5.111)

where i is the index of data set and the weighting factor wi is based on the statistical error

of asymmetry measurements σi:

wi =
1

σ2
i

/( N∑
k

1

σ2
k

)
. (5.112)

The systematic uncertainty of grand averaged beam asymmetry correction is

δ(Abeam) =
∑
i

wi

[ 12⊕
µ=1

δβµ∆M (i)
µ

]
, (5.113)

where δβµ is the precision of the slope calibration technique and is assumed to be universal

and run independent. Discussed in Section 5.4 and Section 5.5, the precision of the slope

calibration (δβµ)/βµ is known better than 3 %. This conclusion is supported by the ratio of

the RMS values of residual sensitivity over the nominal sensitivity in Table 5.2 and the ratio

of the RMS values of the slopes difference between regression and Lagrange multiplier over

the nominal Lagrange multipliers slope in Table 5.5.

Table 5.6 summarizes the corrections made by each eigenvector. The first two columns

“Mean” and “Std. Err.” are the grand averaged mean and standard error weighted by the

statistical uncertainty in the Lagrange multiplier technique. The grand weighted standard
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error 〈σk〉 for Eigenvector-k is calculated as follow:

〈σk〉 =

√∑
i

σ2
k(i)

σ4
stat(i)

/
(∑

i

1

σ2
stat(i)

)
, (5.114)

where σstat(i) and σk(i) is the statistical uncertainty in the Lagrange multiplier technique

and the standard error in the correction attributed to Eigenvector-k for the i-th minirun.

σk(i) is calculated from fluctuations in each correction normalized by the number of patterns

in each minirun, that is:

σk(i) =
RMSk(i)√

Ni

, (5.115)

where Ni is the number of patterns in the i-th minirun.

Rank Mean (ppb) Std. Err. (ppb) RMS (ppm)

0 -22.334 16.46 191.61

1 22.500 10.5 88.89

2 -70.444 36.45 257.49

3 -2.842 4.46 36.02

4 9.697 5.7 40.81

5 1.267 0.95 7.16

6 -0.013 1.33 12.75

7 1.055 1.46 11.06

8 0.259 0.61 5.09

9 0.242 0.42 3.09

10 0.176 0.54 5.2

11 0.061 0.39 3.65

Total -60.375

Table 5.6: Weighted Averages of asymmetry correction from each eigenvector. The ranking

was sorted by eigenvalues in descending order.

Assuming 3 % precision is universal for all eigenvector slopes calculation, the beam

correction uncertainty can be calculated from the grand weighted averaged corrections from

each eigenvector independently (the first column in Table 5.6),

δ(Abeam) =

√∑
µ

〈βµ∆Mµ〉2 · (0.03)2 = 2.3 ppb. (5.116)
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Taking significant figures of the final asymmetry result into account, the systematic

uncertainty of beam correction was determined to be 2.5 ppb:

Abeam = −60.4± 2.5 ppb. (5.117)

The following discussion is to justify the systematic uncertainty assigned to beam cor-

rection. To validate the systematic uncertainty, the difference in the corrected asymmetry

between any two correction techniques are calculated and weighted by the fluctuation of

the difference to obtain its grand average. Concretely, the corrected asymmetry difference

between Method-I and Method-II in i-th minirun is:

∆Ai = AIi − AIIi , (5.118)

and the slug average 〈∆A〉 is calculated as the average over miniruns in this slug:

〈∆A〉 =
1

N

N∑
i

∆Ai, (5.119)

of which the standard error of 〈∆A〉 is characterized by the fluctuation of the differences

σ(〈∆A〉) =

√∑N
i (AIi − AIIi )2

N
. (5.120)

Note that because of the weighting scheme, the value 〈∆A〉 is different from direct subtraction

between grand averages by different techniques, i.e 〈AI〉 − 〈AII〉.

〈∆A〉 (ppb) σ(∆A)(ppb) χ2/ndf Prob.

dit vs reg 5bpm -4.39 2.68 128.8/95 0.01

dit vs lagr all 2.17 3.51 86.4/95 0.72

dit vs reg all -0.47 3.83 88.9/95 0.66

reg 5bpm vs reg all 5.76 2.61 106.1/95 0.21

lagr all vs reg all -1.03 1.21 91.2/95 0.59

Table 5.7: Summary of ∆As between different beam correction techniques

Grand averages of comparisons among beam correction techniques are summarized in

Table 5.7 and Figure 5.12. The grand averages for each comparison are weighted by σ(〈∆A〉)
defined in Equation (5.120). The four techniques included are beam modulation with 5 BPM

(dit), regression with 5 BPMs (reg 5bpm), regression with 12 BPMs (reg all) and Lagrange

multiplier with 12 BPMs (lagr all). The significant difference, in terms of both central value
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and standard error, between “dit” and “reg 5bpm” demonstrates the effect of correlated

instrumental noise in regression with 5 BPMs. Meanwhile, phase space resolution of beam

modulation analysis is limited by the number of available BPMs. The comparison between

“dit” with “lagr all” or “reg all” confirms this limitation by showing relatively large σ(∆A) of

≈ 3 ppb with 〈∆A〉 consistent within 1-σ. The difference between “reg 5bpm” and “reg all”

reveals BPM instrumental effects from both independent random noise and electronic cross-

talk. The discrepancy between “lagr all” and “reg all” is consistent within 1-σ and places a

lower bound on the systematic uncertainty of Lagrange multiplier method. In conclusion, the

results in Table 5.7 validate the systematic uncertainty assigned to beam correction should

be bounded within 2 ppb ∼ 3 ppb, which is comparable to the independent conclusion in

Equation (5.116).

A relevant quantity to discuss is the event-to-event systematic noise left in the corrected

detector asymmetry

σsyst =
(⊕

µ

δβµσ∆Mµ

)
⊕
(⊕

µ

βµδ∆Mµ

)
, (5.121)

determined by the deviation of the calculated slope from the true value δβµ, the instrumental

resolution of the BPM δ∆M and beam fluctuation observed by it σ∆M .

Instrumental uncorrelated resolution of BPM 0.3 um is quoted from the bottom ranked

eigenvector. Based on Table 5.5, residual noise sourced from the BPM resolution can be

calculated:

σBPM =

√∑
µ

β2
µ · (0.3 µm)2 = 13 ppm, (5.122)

where the unit of βµ should be ppm/um.

And assume the calculated slope is apart from its true value by 3 %, the residual beam

noise can be estimated from Table 5.5

σresidual =

√∑
µ

〈βµσ∆Mµ〉2 · (0.03)2 = 10 ppm. (5.123)

Based on Equation (5.121), the estimated systematic noise σsyst can be calculated by

adding Equation 5.122 and Equation 5.123 in quadrature under a square root:

σsyst =
√
σ2

BPM + σ2
residual = 16 ppm. (5.124)

The random fluctuation in the PREX-2 corrected asymmetry is known to be 93 ppm and

is dominated by counting statistics. The ‘dilution’ introduced by the estimated systematic

noise σsyst can be estimated as √
932

932 − 162
− 1 = 1.5 %, (5.125)
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which is negligible. It should be pointed out that σsyst is already included in the random

fluctuation of the corrected asymmetry and does not represent an additional systematic

uncertainty.

As a summary for the discussion in this section, a correction of −60.4 ppb for beam

fluctuations is applied to the raw detected asymmetry. Based on the studies in Section 5.4.4

and Section 5.5.3 , the systematic uncertainty of this correction is assigned to be 2.5 ppb:

Abeam = −60.4± 2.5 ppb.

The comparison among different beam correction techniques provides a justification for

the assigned systematic uncertainty. Effects of the BPM instrumental resolution and the

uncertainties of the correction slopes are evaluated and turn out to be negligible for the

corrected asymmetry.
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Figure 5.12: Slug averages of ∆As between different beam correction techniques
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Chapter 6

Physics Results

This chapter discusses the physics results and implications from the PREX-2 data. Cor-

rections to the measured asymmetry for the beam polarization, backgrounds, e.g. from the

diamond foils and inelastic scattering, the detector non-linearity and others are performed

and their systematic uncertainties are summarized in Section 6.1. The weak charge radius

and the neutron radius of 208Pb, therefore the weak skin and the neutron skin, are deduced

in Section 6.2 from the final parity-violating asymmetry result. The physics impacts and

implications of the neutron skin thickness are discussed in Section 6.3.
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6.1 Parity-Violating Asymmetry

Correction Absolute [ppb] Relative [%]

Beam asymmetry -60.4 ± 3.0 11.0 ± 0.5

Charge correction 20.7 ± 0.2 3.8 ± 0.0

Beam polarization 56.8 ± 5.2 10.3 ± 1.0

Target diamond foils 0.7 ± 1.4 0.1 ± 0.3

Spectrometer rescattering 0.0 ± 0.1 0.0 ± 0.0

Inelastic contributions 0.0 ± 0.1 0.0 ± 0.0

Transverse asymmetry 0.0 ± 0.3 0.0 ± 0.1

Detector nonlinearity 0.0 ± 2.7 0.0 ± 0.5

Angle determination 0.0 ± 3.5 0.0 ± 0.6

Acceptance function 0.0 ± 2.9 0.0 ± 0.5

Total correction 17.7 ± 8.2 3.2 ± 1.5

Ameas
PV 550 ± 16 100.0 ± 2.9

Table 6.1: Corrections and systematic uncertainties to extract Ameas
PV listed on the bottom

row with its statistical uncertainty. Reused from [37]

The detected asymmetry Araw was corrected for the beam charge asymmetry ABCM =

20.7 ± 0.2 ppb using the beam current monitor. The beam-induced false asymmetry in

the normalized asymmetry was further corrected by the Lagrange multiplier regression as

discussed in Chapter 5. Note that the 2.5 ppb uncertainty assigned for beam correction in

Section 5.6 is further normalized by the 89.7 % beam polarization and turns into the 3.0 ppb

uncertainty in the “beam asymmetry” row of Table 6.1.

After completion of analysis, data was unblinded by subtraction with the blinding term

Ablind = −0.5313 ppb. The correction for the detectors’ non-linearity is zero by the construc-

tion of pedestals and assigned a systematic uncertainty of 0.5%. The corrected measured

asymmetry is defined as below

Acorr = Araw − ABCM − Abeam − Ablind. (6.1)

The corrected asymmetry Acorr must be further corrected for the beam polarization Pb and

the background dilutions fi and asymmetries Ai to obtain APV

Ameas
PV =

1

Pb

Acorr − Pb
∑

i fiAi
1−

∑
i fi

. (6.2)
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The average beam polarization result Pb was (89.7 ± 0.8)%. The determination of the

polarimeter target foil polarization was the largest contribution to the uncertainty (0.6%).

The largest background dilution fC = 6.3± 0.5 % was due to the diamond foils. The effect

of re-scattering from magnetized pole tips in the spectrometer was found to be negligible.

The correction for the residual transverse electron beam polarization component is negligible

and assigned a systematic uncertainty. Other background corrections are listed in Table 6.1.

The final corrected parity-violating asymmetry is

Ameas
PV = 550± 16 (stat)± 8 (syst) ppb. (6.3)

6.2 Weak Charge, Neutron Radius and Neutron Skin

To predict the parity-violating asymmetry in 208Pb theoretically, one has to make modest

assumptions on the model to describe the weak charge density distribution ρW (r). The model

and its parameters are chosen to calculate the parity-violating asymmetry as a function of

scattering angle A(θ), which includes the full Coulomb distortions [73] and reproduces the

measured parity-violating asymmetry Ameas
PV .

The direct comparison of the measured parity-violating asymmetry to the theoretical

predictions requires the spectrometer acceptance function ε(θ) characterizing the probability

for an electron to reach the integrating detector as a function of scattering angle θ. The

modeled parity-violating asymmetry A(θ) is convoluted with the cross-section dσ/dΩ and

the acceptance function ε(θ), which was generated through a Monte Carlo simulation to

match the observed distributions of the scattered momentum and angle. Explicitly, the

convolution of A(θ) with ε(θ) is shown below

〈A〉 =

∫
dθ sin θA(θ) dσ

dΩ
ε(θ)∫

dθ sin θ dσ
dΩ
ε(θ)

. (6.4)

Through Fourier transformation, the neutral weak charge form factor FW (q) was cal-

culated from the weak charge density distribution ρW (r) which reproduces Ameas
PV in the

theoretical calculation

FW (q) =
1

QW

∫
d3r

sin qr

qr
ρW (r), (6.5)

where QW = -117.9 ± 0.3 incorporates one-loop radiative corrections including γ-Z box

contributions as an overall constraint [74, 75, 76, 37].

The final result for FW with the acceptance function ε(θ) and the momentum transfer

〈Q2〉 = 0.00616 GeV2 is

FW (〈Q2〉) = 0.368± 0.013 (exp)± 0.001 (theo), (6.6)
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where the experimental uncertainty includes both statistical and systematic contributions.

To access the model uncertainty and the correlation between APV and the 208Pb weak

radius, the theoretical ρW (r) predictions from a large variety of non-relativistic and rela-

tivistic density functional models were fitted to the two-parameter Fermi function ρW (r, c, a)

[77, 78]

ρW (r, c, a) = ρ0
W

sinh(c/a)

cosh(r/a) + sinh(c/a)
, (6.7)

ρ0
W =

3QW

4πc(c2 + π2a2)
, (6.8)

where parameter c characterizes the nucleus size and parameter a is the surface thickness.

The interior weak density ρ0
W is normalized by the total nucleus weak charge QW defined as

QW =

∫
drρW (r) = −117.9± 0.3. (6.9)

Figure 6.1 shows the correlation between APV and the weak charge radius indicated by

a sampling of theoretical calculations along with the vertical green band highlighting the

PREX-2 Ameas
PV with its 1-σ experimental uncertainty. The red solid curve was fitted as a

polynomial function of APV

RW = 2.3462× 10−6A2
PV − 7.1705× 10−3APV + 9.02869. (6.10)

Table 6.3 show the surface thickness extracted from each mean field models and suggests a

range of uncertainty a = 0.605± 0.025 fm which is reflected as red dash lines in Figure 6.1.

The mean-square weak radius from Equation (6.7) is

R2
W =

1

QW

∫
d3r2ρW (r) =

3

5
c2 +

7

5
(πa)2, (6.11)

therefore the uncertainty of the surface thickness a is a small model uncertainty for RW .

The weak radius RW and its uncertainty were determined by projecting Ameas
PV to Rw

using Equation (6.10). The PREX-2 result for the weak radius is

RW = 5.795± 0.082 (exp)± 0.013 (theo) fm. (6.12)

And the weak skin thickness, defined as the difference between the weak radius and the

charge radius, can also be determined with the existing accurate charge radius Rch = 5.503

fm [79, 80]

RW −Rch = 0.292± 0.082 (exp)± 0.013 (theo) fm. (6.13)

Figure 6.2 illustrates the inferred radial dependence of the 208Pb charge, weak and total

baryon densities along with the RW and Rch landmarks for the weak skin.
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The neutron skin thickness is defined as the difference between the point neutron radius

and the point proton radius. The point neutron mean-square radius can be calculated from

the weak radius RW

R2
n =

QW

qnWN
R2
W −

qpWZ

qnWN
R2

ch − 〈r2
p〉 −

Z

N
〈r2
n〉+

Z +N

qnWN
〈r2
s〉. (6.14)

Recall that 〈r2
n〉 and 〈r2

p〉 are the mean-squared single neutron radius and the mean-squared

point proton radius. The nucleon strangeness radius is constrained 〈r2
s〉 = 0.02 ± 0.04 fm2

for Q2 < 0.11 GeV2 by experimental data [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]

and their global analysis [81, 82]. Meanwhile the electric charge radius relates with the point

proton radius [83]

R2
ch = R2

p + 〈r2
p〉+

N

Z
〈r2
n〉+

3

4M2
+ 〈r2〉so, (6.15)

where the Darwin contribution 3/(4M2) and spin-orbit current 〈r2〉so are small [47, 79].

Based on Equation (6.14) and (6.15), the neutron skin thickness can be approximately

calculated from the weak skin thickness

Rn −Rp ≈ (1 +
ZqpW
NqnW

)(RW −Rch) = 0.278± 0.078 (exp)± 0.012 (theo) fm, (6.16)

where the nucleon weak charges qnW = −0.9878 and qpW = 0.0721 include the radiative

corrections [84, 85], .

The interior weak density ρ0
W in Equation (6.8) can be extracted [86]

ρ0
W =

27QW

4π(5R2
W − 4π2a2)

√
15R2

W − 21π2a2

= −0.0798± 0.0038 (exp)± 0.0013 (theo) fm−3. (6.17)

With the interior electric charge density ρ0
ch = 0.06246 fm−3 inferred from Rch [86], the

interior baryon density ρ0
b determined from the PREX-2 data is

ρ0
b = ρ0

n + ρ0
p

=
1

qn
(ρ0
W − qpρ0

ch) + ρ0
ch

=
1

qn
ρ0
W + (1− qp

qn
)ρ0

ch

= 0.1482± 0.0040 fm−3, (6.18)

which is pointed out as the baryon density at r=0 in Figure 6.2. The nuclear saturation

density ρ0 can be extrapolated from the interior baryon density using the extrapolation factor

fex given by [86]

fex =
ρ0

ρ0
b

= 1.02± 0.03. (6.19)
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Following the calculation in [86] with the PREX-2 result, the extrapolated nuclear saturation

density is updated:

ρ0 = 0.1511± 0.0041± 0.0045 fm−3, (6.20)

where the first error is due to the uncertainty of ρ0
b and the second error is due to the

uncertainty of fex. The empirical value of the nuclear saturation density has been known

as 0.17 ± 0.03 fm−3 [87] and can be obtained using the Droplet Model [88] and the Liquid

Drop Model [89] of the nucleus. Notably the extrapolated saturation density is consistent

with ρ0 = 0.151± 0.001 fm−3 predicted by a relativistic energy density functional [90].

The PREX-1 results can be found in [47]

RW = 5.826± 0.183 fm, (6.21)

Rn −Rp = 0.302± 0.177 fm, (6.22)

which are consistent with the PREX-2 results. The combined PREX results are summa-

rized in Table 6.2.

208Pb Parameters Values

Weak Radius (RW ) 5.800± 0.075 fm

Neutron skin (Rn −Rp) 0.283± 0.071 fm

Interior weak Density (ρ0
W ) −0.0796± 0.0038 fm−3

Interior baryon Density (ρ0
b) 0.1480± 0.0038 fm−3

Table 6.2: Combined results for 208Pb from PREX-1 and PREX-2.

Model a[ 208Pb] (fm)

Big Apple [91] 0.6087

FSUgold [92] 0.6134

IUFSU [93] 0.6079

NL3 [94] 0.6096

SIII [95] 0.5792

SLY4 [96] 0.6040

TAMUc [97] 0.6351

TAMUb [97] 0.6210

TAMUa [97] 0.6125

Table 6.3: Surface thickness parameter a of the Fermi function fits to the weak charge

densities of 208Pb.
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Figure 6.1: Extraction of the weak radius (left vertical axis) or neutron skin (right vertical

axis) for the 208 Pb nucleus. Rch [25] is shown for comparison.
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6.3 Implications of the Physics Result

L (MeV)
20 40 60 80 100 120 140

npPb: R208

Dα + pvPb: A208

S.E. density functional  

ch R∆Fe: 
54

Ni-54

GW178017+NICER: hybrid parametric (68.3% C.L.) 

EFT+PREX: nonparametric (90% C.L.)  χAstro.+

GW170817: Polytropic (90% C.L.) 

Figure 6.3: Constraints on L from different observables and analyses. From top to bottom:

1) 208Pb neutron skin thickness [26]; 2) An EDF prediction constrained by the electric dipole

polarizability (αD) and the APV in 208Pb [27]. 3) Symmetry energy density functional fitted

to the PREX-2 result, HIC observables and others [28]; 4) Difference between the charge

radii of 54Ni and 54Fe [29, 30]; 5) Joint Bayesian analysis of GW170817, PSR J0030+0451,

and PSR J0740+6620 [31] ; 6) Combined analysis of astrophysical data with chiral effective

field theory (χEFT) and PREX with a nonparametric EOS [32, 33]; 7) Neutron star tidal

deformability of gravitational-wave event GW170817 [34, 35, 36].

Recently, the density dependency of the symmetry energy was deduced from the correlation

between the neutron skin thickness of 208Pb R208
skin and L established by a set of 16 covariant

energy density functionals [26]. The linear correlation presented in [26] is approximately

L = 521.5×R208
skin − 41.96. (6.23)

And note that the 16 models used also predict the binding energy per nucleon B/A and the

charge radius of 208Pb in good agreement with the experimental values.

Based on the PREX combined result Rn −Rp = (0.283± 0.071) fm, the Gaussian prob-

ability of L was also obtained

L = (106± 37) MeV, (6.24)

along with the symmetry energy at nuclear saturation density

Sv = (38.1± 4.7) MeV. (6.25)
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A purely electromagnetic method to constrain L has been introduced in [29] and proposed

L can be constrained from ∆Rch, the difference of the charge radii of mirror nuclei, e.g. 52Cr

and 52Ni. The correlation between ∆Rch and |N − Z| × L can be shown from the Skyrme

and CODF calculations in [29, 30]. And the 1-σ error band of the 54Ni-54Fe ∆Rch implies

a value of L in the range of 20-70 MeV, which is barely consistent with the lower bound of

Equation (6.24).

A systematic study on EDF models is carried out in [27] and calibrates several families

of EDFs to a large set of ground observables, such as binding energies and charge radii.

The result of [27] shows no single model is able to reproduce APV and αD within the 1-

σ experimental error bands simultaneously, which indicates a clear tension between the

PREX-2 result and the electric dipole polarizability αD in 208Pb. An averaged prediction

L = (77 ± 18) MeV is obtained from two calibrated EDFs constrained by APV and αD in
208Pb.

It is also pointed in [28] that most of the experimental observables probe the symmetry

energy at densities far from saturation density ρ0. For example, Pearson correlation analysis

of [98] indicates that αD constrains the symmetry energy most accurately at≈ 0.31ρ0. The fit

in [28] includes the PREX-2 result and the symmetry energy at ≈ 1.5ρ0 measured from pion

emission in heavy ion collisions (HIC), as well as other observables sensitive at 0.2ρ0−0.66ρ0,

and yields a new symmetry energy functional suggesting L = (59.6± 22.1) MeV.

A 90% highest-posterior density interval (HPDI) 11.5 < L < 64.8 MeV with a peak

likelihood at L = 23 MeV [36] was inferred from the tidal deformability of gravitational-

wave event GW170817 [34, 35]. Meanwhile a joint Bayesian analysis [31] of GW170817,

PSR J0030+0451, and PSR J0740+6620 yields L = 70+21
−18 MeV at 68.3% credible level. A

combined analysis constrained with astrophysical data, chiral effective field theory (χEFT)

and the PREX result yields L = 53+13
−15 MeV at 90% credible level [32, 33].

These recent analyses of the density dependence of the symmetry energy are summarized

in Figure 6.3. At the time of writing, the interpretation of the PREX-2 result and the

explanation for the tension between the result in [26] with others are still under debate,

partially due to the relatively larger uncertainty in (6.24).

Neutron stars are born with high temperatures in supernova explosions. Neutron stars

then rapidly cooled down primarily by neutrino emission. The direct URCA processing is

an enhanced-cooling mechanism in which the neutron beta decay is followed by the electron

capture

n→ p+ e− + νe,

p+ e− → n+ νe. (6.26)
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The direct URCA threshold density is the density where the equality of Fermi momenta of

neutrons, protons and electrons is satisfied

knF = kpF + keF , (6.27)

and at the onset of this enhanced cooling, the proton fraction is YP = Z/A ≈ 1/9. The

proton fraction of nuclear matter in beta equilibrium is sensitive to the symmetry energy

and its density dependence [99, 100]. A stiff symmetry energy imposes penalty for N − Z
imbalance and retains a large proton fraction therefore allows the onset of the direct URCA

process at lower central densities. Using the 1-σ lower values of the neutron skin thickness

R208
skin = 0.212 fm, the direct URCA threshold density and its corresponding mass can be

obtained [26]

ρ? ≈ 0.42 fm−3,

M? ≈ 1.45 M�. (6.28)

If the central values R208
skin = 0.283 fm were used instead, the direct URCA thresholds are

ρ? ≈ 0.24 fm−3,

M? ≈ 0.85 M�, (6.29)

where the central density triggering the direct URCA cooling is slightly above the nuclear

saturation density.

In the meantime, the strong correlation between the neutron skin thickness of 208Pb

and the tidal deformability of a 1.4 M� neutron star Λ1.4
? shown in [26] makes it possible to

compare the PREX-2 result directly with neutron star observables, such as PSR J0030+0451

reported by NICER [101, 102].

The PSR J0030+0451 result [101, 102] suggests an upper limit of R1.4
? ≤ 14.26 km and is

mapped to an upper limit of R208
skin ≤ 0.31 fm [26]. Meanwhile, the 1-σ lower limit of R208

skin ≥
0.21 fm places a lower limit of R1.4

? ≥ 13.25 km. The 1-σ confidence zone allowed by both

R1.4
? and R208

skin sets limits on the tidal deformability of a 1.4 M� neutron star

642 ≤ Λ1.4
? ≤ 955, (6.30)

which indicates some tension with revised limit of Λ1.4
? = 190+390

−120 ≤ 580 for the GW170817

discovery [103].

In the near feature, the Mainz Radius EXperiment (MREX) at Mainz Energy Recovery

Superconducting Accelerator (MESA) [104] proposed to measure the neutron radius in 208Pb

with 0.5 % experimental uncertainty (δRn/Rn ≈ 0.5%), an improvement with a factor of
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2 compared to PREX-2. Using the correlation in Equation (6.23), if MREX reproduces

the central value of the PREX result (L = 106 MeV), the MREX result will constrain L

with an experimental uncertainty of 15.6 MeV, which will exclude most of the observables

independent from 208Pb neutron skin in Figure 6.3. If the tension in Equation (6.30) is

confirmed from the next generation of the laboratory measurements of the neutron skin by

MREX and astronomical observations, e.g. from NICER and LIGO-Virgo-KAGRA, it may

be suggesting a phase transition in the stellar core, where the EOS is soft at intermediate

densities then is stiffened at high densities to support massive neutron matter.
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Appendix A

Pitts Definition and Slugs Information

Pitt Slug IHWP WIEN HRS Arm

1 1 OUT FLIP-RIGHT Both-arm

1 2 IN FLIP-RIGHT Both-arm

1 3 OUT FLIP-RIGHT Both-arm

1 4 OUT FLIP-RIGHT Both-arm

1 5 OUT FLIP-RIGHT Both-arm

1 6 OUT FLIP-RIGHT Both-arm

2 7 IN FLIP-RIGHT Both-arm

2 8 IN FLIP-RIGHT Left-arm

2 9 OUT FLIP-RIGHT Left-arm

2 10 IN FLIP-RIGHT Left-arm

2 11 OUT FLIP-RIGHT Left-arm

3 12 IN FLIP-RIGHT Both-arm

3 13 OUT FLIP-RIGHT Both-arm

3 14 IN FLIP-RIGHT Both-arm

3 15 OUT FLIP-RIGHT Both-arm

4 16 IN FLIP-RIGHT Both-arm

4 17 OUT FLIP-RIGHT Both-arm

4 18 IN FLIP-RIGHT Both-arm

4 19 OUT FLIP-RIGHT Both-arm

4 20 OUT FLIP-RIGHT Right-arm

5 21 IN FLIP-RIGHT Both-arm

5 22 OUT FLIP-RIGHT Both-arm

5 23 IN FLIP-RIGHT Both-arm
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5 24 OUT FLIP-RIGHT Both-arm

5 25 IN FLIP-RIGHT Both-arm

6 26 OUT FLIP-LEFT Both-arm

6 27 IN FLIP-LEFT Both-arm

6 28 OUT FLIP-LEFT Both-arm

6 29 IN FLIP-LEFT Both-arm

7 30 OUT FLIP-LEFT Both-arm

7 31 OUT FLIP-LEFT Left-arm

7 32 IN FLIP-LEFT Both-arm

7 33 OUT FLIP-LEFT Both-arm

7 34 IN FLIP-LEFT Both-arm

8 35 OUT FLIP-LEFT Both-arm

8 36 IN FLIP-LEFT Both-arm

8 37 OUT FLIP-LEFT Both-arm

8 38 IN FLIP-LEFT Both-arm

9 39 OUT FLIP-LEFT Both-arm

9 40 IN FLIP-LEFT Both-arm

9 41 OUT FLIP-LEFT Both-arm

9 42 IN FLIP-LEFT Both-arm

10 43 OUT FLIP-LEFT Both-arm

10 43 OUT FLIP-LEFT Left-arm

10 44 IN FLIP-LEFT Both-arm

11 45 IN FLIP-RIGHT Both-arm

11 46 OUT FLIP-RIGHT Both-arm

11 47 IN FLIP-RIGHT Both-arm

11 48 OUT FLIP-RIGHT Both-arm

12 49 IN FLIP-RIGHT Both-arm

12 50 OUT FLIP-RIGHT Both-arm

12 51 IN FLIP-RIGHT Both-arm

12 52 OUT FLIP-RIGHT Both-arm

13 53 IN FLIP-RIGHT Both-arm

13 54 OUT FLIP-RIGHT Both-arm

13 55 IN FLIP-RIGHT Both-arm

13 56 OUT FLIP-RIGHT Both-arm

14 57 IN FLIP-RIGHT Both-arm
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14 58 OUT FLIP-RIGHT Both-arm

14 59 IN FLIP-RIGHT Both-arm

15 60 IN FLIP-LEFT Both-arm

15 61 OUT FLIP-LEFT Both-arm

15 62 IN FLIP-LEFT Both-arm

15 63 OUT FLIP-LEFT Both-arm

16 64 IN FLIP-LEFT Both-arm

16 65 OUT FLIP-LEFT Both-arm

16 66 IN FLIP-LEFT Both-arm

16 67 OUT FLIP-LEFT Both-arm

17 68 IN FLIP-LEFT Both-arm

17 69 OUT FLIP-LEFT Both-arm

17 70 IN FLIP-LEFT Both-arm

17 71 OUT FLIP-LEFT Both-arm

18 72 IN FLIP-LEFT Both-arm

18 73 OUT FLIP-LEFT Both-arm

18 74 IN FLIP-LEFT Both-arm

18 74 IN FLIP-LEFT Left-arm

18 75 OUT FLIP-LEFT Both-arm

19 76 IN FLIP-LEFT Both-arm

19 77 OUT FLIP-LEFT Both-arm

19 78 IN FLIP-LEFT Both-arm

19 79 OUT FLIP-LEFT Both-arm

20 80 IN FLIP-LEFT Both-arm

20 81 OUT FLIP-LEFT Both-arm

20 82 IN FLIP-LEFT Both-arm

20 83 OUT FLIP-LEFT Both-arm

21 84 IN FLIP-LEFT Both-arm

21 85 OUT FLIP-LEFT Both-arm

21 86 IN FLIP-LEFT Both-arm

21 87 OUT FLIP-LEFT Both-arm

21 88 OUT FLIP-LEFT Both-arm

22 89 IN FLIP-LEFT Both-arm

22 90 OUT FLIP-LEFT Both-arm

22 91 IN FLIP-LEFT Both-arm
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22 92 OUT FLIP-LEFT Both-arm

23 93 IN FLIP-LEFT Both-arm

23 94 OUT FLIP-LEFT Both-arm

Table A.1: Pitts definition with slugs information.
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Appendix B

Residual Sensitivities Supercycle

History
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Figure B.1: History for the residual sensitivity of the left-arm main detector to Coil-1
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Figure B.2: History for the residual sensitivity of the left-arm main detector to Coil-2
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Figure B.3: History for the residual sensitivity of the left-arm main detector to Coil-3
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Figure B.4: History for the residual sensitivity of the left-arm main detector to Coil-4
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Figure B.5: History for the residual sensitivity of the left-arm main detector to Coil-5
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Figure B.6: History for the residual sensitivity of the left-arm main detector to Coil-6
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Figure B.7: History for the residual sensitivity of the left-arm main detector to Coil-7
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Figure B.8: History for the residual sensitivity of the right-arm main detector to Coil-1
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Figure B.9: History for the residual sensitivity of the right-arm main detector to Coil-2
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Figure B.10: History for the residual sensitivity of the right-arm main detector to Coil-3
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Figure B.11: History for the residual sensitivity of the right-arm main detector to Coil-4
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Figure B.12: History for the residual sensitivity of the right-arm main detector to Coil-5
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Figure B.13: History for the residual sensitivity of the right-arm main detector to Coil-6
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Figure B.14: History for the residual sensitivity of the right-arm main detector to Coil-7
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Appendix C

Eigenvectors Run History

Figure C.1: History of the Eigenvector-0 components
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Figure C.2: History of the Eigenvector-1 components

Figure C.3: History of the Eigenvector-2 components
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Figure C.4: History of the Eigenvector-3 components

Figure C.5: History of the Eigenvector-4 components
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Figure C.6: History of the Eigenvector-5 components

Figure C.7: History of the Eigenvector-6 components
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Figure C.8: History of the Eigenvector-7 components

Figure C.9: History of the Eigenvector-8 components
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Figure C.10: History of the Eigenvector-9 components

Figure C.11: History of the Eigenvector-10 components
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Figure C.12: History of the Eigenvector-11 components
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Appendix D

Lagrange Multiplier and Regression

Slopes Mini-run History
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Figure D.1: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-0.
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Figure D.2: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-1.
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Figure D.3: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-2.
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Figure D.4: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-3.
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Figure D.5: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-4.
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Figure D.6: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-5.
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Figure D.7: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-6.
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Figure D.8: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-7.
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Figure D.9: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-8.
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Figure D.10: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-9.

3 4 5 6 7 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

 Slug 

60−

40−

20−

0

20

40

60

80

 S
lo

pe
(p

pm
/u

m
)

 Slope: us_avg_evMon10 (ppm/um) Lagrange
Regression

htemp
Entries  4476

Mean    4.962

Std Dev     7.226

60− 40− 20− 0 20 40 60
 (lagr.us_avg_evMon10)*1e3 

0

100

200

300

400

500

htemp
Entries  4476

Mean    4.962

Std Dev     7.226

 Lagrange Slope(ppm/um)

3 4 5 6 7 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

 Slug

60−

40−

20−

0

20

40

60

80

S
lo

pe
(p

pm
/u

m
) 

 Difference in slopes : regression - Lagrange  Difference in slopes : regression - Lagrange 

60− 40− 20− 0 20 40 60 80
 (reg.us_avg_evMon10 - lagr.us_avg_evMon10)*1e3 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 (reg.us_avg_evMon10 - lagr.us_avg_evMon10)*1e3  {arm_flag==0 &&kGood==1}

htemp
Entries  4476

Mean  1.96−  

Std Dev     5.394

 (reg.us_avg_evMon10 - lagr.us_avg_evMon10)*1e3  {arm_flag==0 &&kGood==1}

Figure D.11: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-10.
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Figure D.12: History of the Lagrange Multiplier (Blue) and regression (Red) slope for the

upstream averaged asymmetry v.s. Eigenvector-11.
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jita, MN Harakeh, T Inomata, J Jänecke, et al. Excitation of Isovector Spin-Dipole
Resonances and Neutron Skin of Nuclei. Physical review letters, 82(16):3216, 1999.
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