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Abstract
We perform the first simultaneous global QCD analysis of spin-averaged and spin-dependent

parton distribution functions (PDFs), including single jet production data from unpolarized and

polarized hadron collisions. We critically assess the impact of SU(3) flavor symmetry and PDF

positivity assumptions on the quark and gluon helicity PDFs, and find strong bias from these

particularly on the gluon polarization. The simultaneous analysis allows for the first time extraction

of individual helicity aligned and antialigned PDFs with a consistent treatment of uncertainties.
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I. INTRODUCTION

Ever since the discovery by the European Muon Collaboration that only a small fraction

(. 10%− 30%) of the proton’s spin is derived from quarks [1], understanding the decompo-

sition of the proton spin into its fundamental components has challenged the hadron physics

community for over 3 decades. Some initial explanations focused on potentially large can-

cellations from gluonic contributions via the axial anomaly [2, 3], or from large negative

strange quark polarization, in violation of the Ellis-Jaffe sum rule [4], or from large higher

twist effects that could obscure a simple partonic interpretation [5].

Subsequent experiments at CERN, SLAC, DESY and Jefferson Lab involving polarized

inclusive or semi-inclusive deep-inelastic lepton-nucleon scattering over a broad range of

kinematics, as well as polarized proton-proton collisions at RHIC, have provided a sub-

stantive body of data that have largely confirmed the original conclusion of a small total

quark polarization [6–8]. Moreover, recent global QCD analyses, especially ones which do

not impose theoretical constraints from SU(3) flavor symmetry [9], have typically favored a

fairly small strange quark polarization, consistent with zero, effectively sidelining polarized

strangeness from playing a significant role in the proton spin puzzle.

The question of where are the missing pieces of the proton spin has inspired studies

of other possible sources, such as gluon helicity or quark and gluon orbital angular mo-

mentum [10, 11]. The latter can be related to moments of generalized parton distribu-

tions (GPDs) [12–14], the determination of which has motivated experimental programs of

high-energy exclusive reaction measurements, such as in deeply-virtual Compton scatter-

ing. While progress has been made on the theoretical side with improvements in lattice

QCD calculations of GPD moments and Compton form factors [15], the phenomenological

information about parton orbital angular momentum is relatively sparse, with experimental

programs still largely in their infancy [16].

In contrast, the extraction of gluon helicity has matured to a somewhat more advanced

stage, with jet production data available from polarized pp collisions at RHIC [17–24]. In-

clusive jet cross sections offer direct sensitivity to the gluon momentum fraction and helicity

distributions, without complications associated with final state hadronization [25]. In a

seminal 2014 analysis, de Florian et al. (DSSV) [26] used the RHIC jet production data to

extract the first clearly nonzero signal for a polarized gluon distribution in the proton for
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gluon momentum fractions x between x ≈ 0.05 and ≈ 0.2. While the determination of the

total gluon helicity in the proton is still subject to large extrapolation uncertainties in the

unmeasured small-x region, the establishment of a positive gluon polarization was a major

milestone in the developing story of the proton spin decomposition.

In parallel developments, the Jefferson Lab Angular Momentum (JAM) Collaboration

has recently pioneered advances in global QCD analysis with simultaneous Bayesian Monte

Carlo determination of different types of co-dependent distributions, such as PDFs and

fragmentation functions [9, 27, 28], as well as polarized and unpolarized PDFs [29]. The

studies found important correlations between the shapes of the inferred unpolarized [27,

28] and polarized [9] strange quark distributions and inputs assumed for fragmentation

functions, along with theoretical biases imposed on the analysis.

In this paper we use the JAM global QCD framework to study the gluon helicity dis-

tribution, and in particular the robustness of the extracted signal in view of theoretical

assumptions made in previous global analyses [26, 30]. Most common of these is the im-

position of SU(3) flavor symmetry in relating the octet and singlet axial charges, as well

as positivity constraints on the x dependence of the distributions [31, 32]. In addition, we

simultaneously determine both the spin-averaged and spin-dependent PDFs by fitting to

unpolarized and polarized lepton and hadron scattering data, including jet production cross

sections from unpolarized and polarized pp collisions (and pp̄ collisions for spin-averaged

scattering). The simultaneous analysis allows for the first time extraction of individual

helicity-aligned and antialigned PDFs with a consistent treatment of uncertainties.

We perform a careful study of various scenarios employing different theoretical assump-

tions, and find that indeed the sea quark and gluon helicity distributions can depend strongly

on the constraints imposed. In particular, without restricting PDFs to be positive and as-

suming SU(3) flavor symmetry for the axial vector charges, existing polarized data allow

solutions containing negative gluon polarization, in addition to the standard positive gluon

solutions found in previous analyses, giving equally acceptable descriptions of the data. In-

terestingly, a similar double solution was also found earlier by the COMPASS Collaboration

in an extraction of spin-dependent PDFs from their proton measurements combined with

world inclusive DIS data [33]. We conclude that further input from higher-precision mea-

surements of existing or possibly new observables over a range of kinematics is needed in

order to draw firmer conclusions about gluon polarization and its contribution to the proton
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spin budget.

The organization of this paper is as follows. In Sec. II we briefly summarize the theoreti-

cal foundations on which this work is based, including a discussion of collinear factorization,

Mellin space techniques, and PDF parametrizations. The data analysis framework is pre-

sented in Sec. III, with details about Bayesian inference, Monte Carlo sampling, and the

JAM multi-step strategy. Also included in Sec. III is a summary of the inputs used in the

analysis, surveying the experimental data sets fitted and the theoretical scenarios explored

in this work. The results of the global QCD fits are presented in Section IV, where we discuss

in detail the shapes of the spin-averaged and spin-dependent PDFs, focusing in particular

on the determination of the gluon helicity distribution. We also infer for the first time the

PDFs in the helicity-basis from the combined unpolarized and polarized PDF analysis with

a consistent treatment of PDF uncertainties. Finally, Sec. V summarizes the results and dis-

cusses the implications of our analysis. In Appendix A we provide a brief explanation about

the statistical tool using the area under the curve of the receiver operating characteristic

used to visualize the results in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we outline the main elements of the theoretical framework on which our

analysis is based, with a summary of the essential results from collinear QCD factorization,

the use of Mellin space techniques for the scale evolution, and the choice of parametrization

for the PDFs.

A. QCD factorization

For our QCD global analysis of spin-averaged and spin-dependent PDFs we consider

data on physical observables available from processes for which QCD factorization theo-

rems exist in leading power collinear factorization. These include unpolarized and polarized

inclusive deep-inelatic scattering (DIS) from protons (p) and deuterons (D) (and 3He for

polarized), Drell-Yan lepton-pair production in unpolarized pp and pD scattering, and in-

clusive jet production in unpolarized pp and pp̄ collisions, and in polarized pp collisions.

These are summarized in Table I, where we also indicate the relevant factorization between
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TABLE I. Processes studied in this global QCD analysis of spin-averaged (fi) and spin-dependent

(∆fi) PDFs, including relevant variables and schematic factorization representation. Here N rep-

resents a proton p or neutron n, with n extracted from either deuterium D or 3He data.

Reaction Variables Factorization

spin-averaged

`+N → `′ +X xB , Q2 HDIS
i ⊗ fi

inclusive DIS

p+N → `+ + `− +X xF , Q2 HDY
ij ⊗ fi ⊗ fj

Drell-Yan lepton-pair production

p+ p(p̄) → jet +X yjet, pTjet Hjet
ij ⊗ fi ⊗ fj

inclusive jet production

spin-dependent
→
` +

→
N → `′ +X xB , Q2 ∆HDIS

i ⊗∆fi

polarized inclusive DIS
→
p +

→
p → jet +X yjet, pTjet ∆Hjet

ij ⊗∆fi ⊗∆fj

polarized inclusive jet production

the short-distance partonic cross sections (∆)H describing the hard scattering in perturba-

tive QCD and the corresponding nonperturbative PDFs and kinematic variables involved.

The repeated indices i, j are summed over all parton flavors.

For DIS, the cross sections are usually given in terms of the Bjorken scaling variable

x
B
= Q2/2P · (`− `′), where P is the four-momenta of the nucleon and ` and `′ the four-

momenta of the incident and scattered leptons, and the four-momentum transfer squared

Q2 ≡ −(`− `′)2 ≈ 2 ` · `′ > 0. For the Drell-Yan process, the cross sections are functions of

the Feynman scaling variable, defined in terms of the longitudinal components of the lepton

pair, x
F
= 2(`+L+`

−
L)/

√
s, where s is the invariant mass squared of the hadronic collision, and

Q2 ≡ 2` · `′. For inclusive jet observables, the variables are the rapidity yjet and transverse

momentum of the jet pTjet in the hadronic center of mass frame.

For polarized observables the short distance cross sections ∆H represent the difference

between helicity dependent cross sections, ∆H = H++−H+−, where the “+” and “−” denote
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configurations with the parton and hadron helicities aligned and antialigned, respectively.

For polarized inclusive DIS, the labels “++”, “+−” represent the helicty configurations of

the initial state lepton and hadron, while for inclusive jet production these corresponds to

the the helicty configurations of the incident protons.

In our analysis we use the MS scheme for the renormalization group equations, with the

strong coupling αs(µ) solved numerically using the beta-function at two loops with αs(MZ) =

0.118 at the Z-boson mass scale µ = MZ . The spin-averaged and spin-dependent PDFs

are evolved at next-to-leading logarithmic accuracy using the DGLAP evolution equations

[34–36] by parametrizing only the light quark and gluon distributions at input scale, µ =

µ0 = 1.27 GeV. The heavy quark PDFs are generated perturbatively via the evolution

equations, and for the physical observables we use the zero-mass variable flavor scheme with

a charm quark mass mc = 1.28 GeV and bottom quark mass mb = 4.18 GeV. All short-

distance partonic cross sections are evaluated at next-to-leading order (NLO) accuracy in

perturbative QCD.

For the jet cross sections we utilize the NLO partonic cross sections from Jäger et al. [25],

along with the corrected expression from Refs. [37, 38] based on the small cone approximation

with the appropriate settings for the jet reconstruction algorithm. In practice we use the

cone [39] and kT -type algorithms [40, 41] to match with the corresponding experimental

data sets.

B. Mellin space techniques

To perform our numerical analysis we in practice require a fast evaluation of the ob-

servables and an efficient procedure to solve the evolution equations for the PDFs. For

the latter, we perform the evolution in Mellin space, which admits simple analytical so-

lutions [42]. For inclusive DIS, the cross section is a one-dimensional convolution of the

short-distance partonic cross sections and PDFs, which can be rendered as a Mellin integral,

[A ⊗ B](x) =
´ 1
x
(dz/z)A(z)B(x/z), with analytic expressions for the hard functions HDIS

i

and ∆HDIS
i in Mellin space available in the literature [43].

In contrast, the convolution structure for the Drell-Yan and inclusive jet production cross

sections involves a double convolution of the hard cross section and two nonperturbative

functions, which in general cannot be rendered as a true Mellin convolution. Instead, we
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utilize the Mellin grid approach developed by Stratmann and Vogelsang [44], in which the

double convolution is written in the form

Hij ⊗ fi ⊗ fj =

ˆ 1

xmin
1

dx1

ˆ 1

xmin
2

dx2 Hij(x1, x2) fi(x1) fj(x2)

=
1

(2πi)2

ˆ
dN1

ˆ
dN2 Fi(N1)Fj(N2)

[ ˆ 1

xmin
1

dx1

ˆ 1

xmin
2

dx2 Hij(x1, x2)x
−N1
1 x−N2

2

]
, (1)

where x1 and x2 denote the partonic fractions in hadrons 1 and 2, respectively. In the second

line of Eq. (1) we have replaced the x-space PDFs by their Mellin space representations,

f(x) = 1/(2πi)
´
dN x−NF (N). The factors inside the brackets are independent of the

PDFs, and can be calculated for all Mellin moments needed for the double inverse Mellin

transform. They contains all of the kinematic dependence of the process inside the hard

function Hij and the limits for the parton momentum fractions xmin
1,2 . The factors can then

be the precalculated and the grids stored as lookup tables when evaluating the Drell-Yan

lepton-pair and jet production observables.

C. PDF modeling

For the shape of the spin-averaged and spin-dependent PDFs at the input scale µ0, we

use a generic template function defined by

T(x;a, n) =
a0 x

a1(1− x)a2
(
1 + a3

√
x+ a4x

)
´ 1
0
dxxn+a1−1(1− x)a2

(
1 + a3

√
x+ a4x

) , (2)

where a = {a0, . . . , a4} is the set of free parameters for each PDF flavor. The template

function is normalized with respect to the n-th moment in order to numerically decorrelate

the overall normalization parameter a0 from the shape parameters a1, . . . , a4. The spin-

averaged PDFs fi = fi(x, µ
2
0) at the input scale are constructed according to

u = uv + 2ū, d = dv + 2d̄, (3a)

ū = S + ū0, d̄ = S + d̄0, (3b)

s = S + s0, s̄ = S + s̄0, (3c)

where each of the functions uv, dv, S, ū0, d̄0, s0 and s̄0, along with the gluon PDF g(x, µ2
0),

is modeled in terms of one template function in Eq. (2) for each distribution. The valence

PDFs uv = u−u and dv = d−d are isolated from the sea distributions in order to impose the
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quark number sum rules. To ensure integrability of the first moment of each valence PDF,

the corresponding a1 parameters are restricted to be in the range a1 > −1. The parameters

a3 and a4 are taken to be zero for s0, s̄0 and S, but are free to vary for all other distributions.

The strangeness number sum rule
´ 1
0
dx (s+ s̄) = 0 imposes an additional constraint, which

we use to fix the normalization of s0.

The light sea quark distributions ū, d̄, s and s̄ are modeled as combinations of a template

function S that dominates in the very small-x region, with a1 in the range −2 < a1 < −1,

and a template function for each of ū0, d̄0, s0 or s̄0 with −1 < a1 < 1, controlling the shape

at intermediate x values. The momentum sum rule is satisfied by adjusting the a0 parameter

of the gluon distribution.

For all template functions we restrict the (1 − x) exponent to be positive, a2 > 0, to

ensure that PDFs vanish in the limit x → 1. We choose the value n = 2 to normalize

the x-dependent factor of the shape functions, since the momentum sum rule requires the

existence of the second moment for each PDF flavor. Other choices with n > 2 are also

possible, and would be compensated by changes in the a0 parameters.

For the spin-dependent PDFs ∆fi = ∆fi(x, µ
2
0) at the input scale we follow a similar

strategy, but with a symmetric sea ansatz due to the paucity of empirical constrains on the

polarized sea quark distributions,

∆u = ∆uv + 2∆ū, (4a)

∆d = ∆dv + 2∆d̄, (4b)

∆ū = ∆d̄ = ∆s = ∆s̄ ≡ ∆q̄, (4c)

where the functions ∆uv and ∆dv are modeled in terms of a template function in Eq. (2).

The sea quark helicity distribution ∆q̄ is described by a combination of a template func-

tion that dominates at very small x, with the a1 parameter in the range a1 > −1, and a

second template function that controls the shape at intermediate x, with a1 > −0.5, as

in the unpolarized case. For modelling the gluon helicity distribution we also adopt two

template functions to allow sufficient flexibility for the fits. In contrast to the spin-averaged

case, we normalize the x-dependent factors for the spin-dependent template functions with

n = 1, since all helicity PDFs are required to have finite contributions to the nucleon spin

sum. While the normalizations a0 are in principle free parameters, as we discuss in Sec. III C

below, we consider several different scenarios with either SU(2) or SU(3) flavor symmetry im-
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posed, which provides additional constraints on the parameters. For all the spin-dependent

distributions, we fix the parameters a3 and a4 to zero.

In the next section, we present our data analysis framework for constraining the pa-

rameters of the spin-averaged and spin-dependent PDFs. An important consequence of our

simultaneous analysis will be the possibility to estimate consistently the uncertainty quan-

tification for the individual helicty-basis PDFs, defined in terms of the spin-averaged and

spin-dependent distributions as

f ↑ =
1

2

(
f +∆f

)
, (5a)

f ↓ =
1

2

(
f −∆f

)
, (5b)

for the helicity-aligned and antialigned distributions, respectively.

III. ANALYSIS FRAMEWORK

The analysis framework adopted in this paper is based on the Bayesian Monte Carlo

methodology developed in previous JAM analyses [27, 28, 45, 46]. We also discuss additional

constraints on the parameters arising from choices for the moments of the helicity PDFs

respecting SU(2) or SU(3) flavor symmetry, as well as from positivity constraints on the

PDFs (namely, both f ↑ and f ↓ being non-negative). Before embarking on those discussion,

however, we first review the experimental data sets that will be fitted in this analysis.

A. Experimental data sets

In the following we summarize the types and sources of experimental data for the observ-

ables listed in Table I, along with the kinematic cuts imposed in our analysis.

1. Inclusive DIS

The unpolarized fixed target inclusive DIS data included in our global fit are the recon-

structed F2 structure function data from BCDMS [47], SLAC [48], and NMC [49, 50], with

cuts W 2 =M2 +Q2(1− x
B
)/x

B
> 10 GeV2 and Q2 > m2

c , which are chosen to avoid power

corrections and nuclear off-shell effects that are known to be more important at large values
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of x
B

. With the same cuts, we also include the reduced proton neutral current and charged

current cross sections from the combined H1 and ZEUS analysis of HERA collider data [51].

The spin-dependent DIS datasets include all fixed target experiments from the EMC [52],

SMC [53, 54], COMPASS [33, 55, 56], SLAC [57–62] and HERMES [63, 64] Collaborations,

with identical cuts on W 2 and Q2 as for the unpolarized DIS data [9, 65]. Wherever possible,

we use directly the experimental cross section asymmetries ALL = (σ++−σ+−)/(σ+++σ+−)

rather than the reconstructed g1 structure function. This allows the consistent propagation

of uncertainties on spin-dependent PDFs stemming from uncertainties in the unpolarized

sector that enter through the denominators of the polarization asymmetries. A total of 2680

unpolarized and 365 polarized DIS data points are used in the analysis.

2. Drell-Yan lepton-pair production

In addition to inclusive DIS data, we also fit Drell-Yan inclusive lepton-pair production

data from pp and pD collisions, available from the Fermilab E866 experiment [66]. The data

are selected to exclude regions of invariant mass M`+`− of the lepton-pair in the vicinity of

the qq̄ resonances, such as the J/ψ, ψ′ and Υ states. Furthermore, following Alekhin et al.

[67], we also apply a cut of M`+`− > 6 GeV to avoid tension with DIS data [67], which leaves

250 data points available to be fitted.

3. Inclusive jet production

Inclusive jet production data are known for providing unique sensitivity to the gluonic

content of hadrons. For unpolarized beams, we use existing pp data from the D0 [68] and

CDF [69] Collaborations at the Tevatron. In addition, we include for the first time in a global

fit the jet production data in pp collisions from the STAR Collaboration at RHIC [17]. For

the latter, we include data from the 2003 and 2004 runs, and find that they can be described

well for jet transverse momenta pT > 8 GeV.

With polarized proton beams, we use double spin asymmetries ALL from the STAR

[17, 19–23] and PHENIX [24] Collaborations at RHIC. We restrict the data to the same pT
range as for the unpolarized jet cross sections in order to guarantee a faithful description of

the denominator in the asymmetries. For the renormalization and factorization scales µR
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and µF , respectively, we generally find best agreement for both unpolarized and polarized

collisions with a scale pT/2.

The treatment of systematic uncertainties of the jet data used in our analysis requires

particular attention. For the CDF data, uncertainties are provided that are only correlated

within each rapidity bin. These are treated separately, allowing an overall normalization to

move the entire data set uniformly. Furthermore, both D0 [68] and CDF [69] provide parton

to hadron correction factors obtained from Monte Carlo simulations [69], which translate

the parton level calculation to the hadron level, and these are incorporated in our analysis.

For the STAR jet data, an uncertainty in the relative luminosity measurement usually

results in a shift of the ALL data by an additive constant (fully correlated systemic uncer-

tainty) [19], while an uncertainty in the measurement of the polarization magnitude scales

the ALL data (normalization uncertainty). We implement these uncertainties in our analysis

as described in Sec. III B below. To avoid underestimating uncertainties, we treat weakly

correlated uncertainties as uncorrelated, in particular, for the STAR jet ALL data from the

2005 [19], 2009 [20] and 2013 [23] and 2015 [22] runs.

The global kinematic coverage of the unpolarized and polarized datasets is shown in

Fig. 1. Clearly, the range of kinematics spanned by the unpolarized data is significantly

greater than that of the polarized (by some 2 orders of magnitude at small x and 2 orders

of magnitude at high Q2). Importantly, however, the range covered by the polarized data

overlaps with the unpolarized, so that in this range a consistent analysis of spin-dependent

and spin-averaged PDFs can be achieved.

B. Bayesian inference

Our analysis framework is based on sampling the Bayesian posterior distribution using the

data resampling approach. The posterior distribution is given by a product of the likelihood

function L and a prior distribution π,

ρ(a,ν
∣∣ data) ∝ L(a,ν | data)π(a,ν), (6)

where we distinguish the PDF parameters a from the additional nuisance parameters ν (see

below). For the likelihood function we use a Gaussian of the form

L(a,ν | data) = exp

[
− 1

2

∑
e,i

(
de,i − te,i(a,ν)

αe,i

)2 ]
, (7)
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FIG. 1. Kinematic coverage of the unpolarized (upper panel) and polarized (lower panel) datasets

used in this analysis. The unpolarized datasets include fixed-target and HERA collider DIS data

(gray solid circles), Drell-Yan from pp and pD collisions at Fermilab (green solid circles), and jet

production from unpolarized pp scattering at Tevatron (red upward triangles) and pp scattering

at STAR (red stars). The polarized datasets include spin-dependent fixed-target DIS data (gray

solid circles), and jet production in polarized pp scattering at STAR and PHENIX from RHIC (red

stars). The variable x denotes the Bjorken scaling variable xB for DIS and the Feynman variable

xF for Drell-Yan and jet production, while the scale Q2 represents the four-momentum transfer

squared for DIS and DY, and transverse momentum squared for jets.
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where de,i is the i-th data point from experiment e with uncorrelated uncertainty αe,i, and te,i
is the corresponding theoretical value. Since the experimental data are distorted by detector

effects, we model such distortion with a multiplicative normalization parameter and additive

shifts within the quoted systematic uncertainties. Specifically, we compute each theoretical

value te,i according to

te,i(a,ν) =
∑
k

re,k βe,k,i +
1

Ne

t0e,i(a), (8)

with nuisance parameters ν = {re,k;Ne}, where k labels different types of systematic un-

certainties for the i-th data point of the experiment e. The theoretical calculation of the

observable t0e,i is obtained by convoluting the PDFs with the short-distance cross sections,

which is then multiplied by a nuisance parameter Ne. The additive shifts are controlled

by the nuisance parameters re,k, and weighted by a set of quoted point-by-point correlated

systematic uncertainties βe,k,i.

The prior distribution π(a,ν) includes flat priors for the PDF parameters ai ∈ [amin
i , amax

i ]

and δ functions to impose the valence quark number and momentum sum rules in the case

of unpolarized PDFs. The priors for the nuisance parameters are included as Gaussian

penalties. For the normalization parameters, the corresponding priors are modeled in a

Gaussian form using the quoted experimental normalization uncertainty, δNe. The full

prior distribution can then be explicitly written as

π(a,ν) = δ
(
auv
0 − SR(auv , uv)

)
δ
(
adv0 − SR(adv , dv)

)
δ
(
ag0 − SR(ag, g)

)
×

∏
i

θ
(
amin
i < ai < amax

i

) ∏
e

∏
k

exp
(
− 1

2
r2e,k

)
exp

(
− 1−Ne

2 δNe

)
, (9)

where “SR” represents instructions to adjust the a0 parameters in order to satisfy the ap-

propriate sum rules [70], and the δ functions are implemented analytically.

In adopting the data resampling approach to the construction of Monte Carlo samples for

the posterior distribution, we add Gaussian noise to each experimental data point, de,i →

de,i + Re,i αe,i, with statistically-independent normally distributed random numbers Re,i.

With a given set of distorted data, an optimization is performed in parameter space that

maximizes the posterior distribution ρ(a,ν | data+noise). The resulting parameters are

added to the list of Monte Carlo samples and the process is repeated O(1, 000) times in order
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to accumulate sufficient samples to compute statistical estimators for a given observable O

E[O] =
1

N

∑
k

O(ak), (10a)

V[O] =
1

N

∑
k

[
O(ak)− E[O]

]2
, (10b)

where N is the number of parameter samples drawn from the posterior distribution.

While in principle each optimization in the sampling procedure can be carried out with all

parameters open, in practice exploring a highly dimensional parameter space (which in our

case is ≈ 80, including 30 parameters for spin-averaged PDFs, 18 for spin-dependent PDFs,

and 33 normalizations) becomes inefficient due to local minima or vanishing gradients, and

only a handful of samples can be collected. This can be overcome by using the multi-step

methodology developed in Ref. [27], where the initial parameters for the optimization are

pre-tuned by using a restricted set of data for the posterior distribution. Fewer datasets

decreases the numerical expense of drawing parameter samples from the posterior via the

data resampling, and the procedure can be repeated in several steps with different datasets

added sequentially. The resulting samples from a given step become the input samples for

the next step, where additional datasets are added to the collection of datasets.

In addition, since the spin-dependent PDFs do not enter in unpolarized physical observ-

ables, our sequence of pre-tuning the PDFs parameters can be partitioned into three stages.

In the first stage only the unpolarized PDF parameters are tuned. In the second stage the

Monte Carlo parameters samples of the unpolarized PDFs are frozen and used to tune the

spin-dependent PDF parameters. The final stage uses the collection of pre-optmized input

parameters for all PDFs, and a final posterior sampling is performed with all parameters free

and all data sets included in the posterior distribution. A sketch of the multi-step strategy

for the parameter sampling is illustrated in Fig. 2. Finally, for our diagnostic metric for the

global agreement between data and theory, we use the reduced χ2, defined as

χ2
red ≡ χ2

Ndat

=
1

Ndat

∑
e,i

(
de,i − E[te,i]

αe,i

)2

, (11)

where the expectation value E[te,i] for the theoretical quantity te,i is estimated via Eq. (10a).
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FIG. 2. Schematic overview of the multi-step strategy for parameter sampling employed in the

current JAM analysis of spin-averaged (f) and spin-dependent (∆f) PDFs. Unpolarized data

include DIS, Drell-Yan (DY), and single jet production in pp and pp̄ collisions, while polarized

data include polarized DIS (∆DIS) and jet production in polarized pp collisions (∆jets).

C. Additional constraints

In contrast to the spin-averaged PDFs, where the valence number and momentum sum

rules can be imposed based on fundamental physical properties such as baryon number and

momentum conservation, no correspondings constraints are available for spin-dependent

PDFs. On the other hand, approximate sum rules for spin-dependent PDFs exist involving

the triplet and octet axial-vector charges, gA and a8, respectively,
ˆ 1

0

dx
[
∆u+ −∆d+

]
(x,Q2) = gA, (12a)

ˆ 1

0

dx
[
∆u+ +∆d+ − 2∆s+

]
(x,Q2) = a8, (12b)

where ∆q+ = ∆q + ∆q̄. These relations can be imposed as constraints if the values of

gA and a8 are known sufficiently accurately. In practice, however, the charges are inferred

from neutron beta-decays using SU(2) isospin symmetry, which gives gA = 1.269(3), and

from hyperon beta-decays, which under the assumption of SU(3) flavor symmetry gives

a8 = 0.586(31) [9]. While these constraints are typically imposed in global analyses of spin-

dependent PDFs [26, 30, 65], in our analysis we consider several scenarios where one or both
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of these are imposed or relaxed. Imposing Eqs. (12a) or (12b) amounts to extending the

priors in Eq. (9) according to

π(a,ν) → π(a,ν)× exp

(
− aexp3 − athy3

2 δaexp3

)
[SU(2)]

× exp

(
− aexp8 − athy8

2 δaexp8

)
, [SU(3)] (13)

where the theoretical values athy3,8 are computed using Eqs. (12) and the experimental values

aexp3,8 and δaexp3,8 are taken from Ref. [9].

In addition to the SU(2) and SU(3) flavor symmetry constraints on the axial-vector

charges, many global analyses also impose phenomenological positivity constraints on the

PDFs [26, 30], which requires that

∣∣∆q(x,Q2)
∣∣ ?

6 q(x,Q2), [positivity] (14)

for each PDF flavor q, or equivalently that all the helicity-basis PDFs remain positive,

f ↑/↓(x,Q2) > 0. The positivity constraints typically affect PDFs in the large-x region, where

the absolute magnitudes of the spin-dependent and spin-averaged PDFs become comparable,

and can be implemented by selecting the posterior samples that satisfy such criteria. On the

other hand, it has been recently argued [32], in contrast to earlier claims in the literature [31],

that there is no fundamental requirement for PDFs in the MS scheme to remain positive

definite.

Whether formally justified or not, it is important to assess the degree to which the

constraints (12) and (14) may bias the inference on the PDFs. To this effect, we consider

three scenarios, in which we impose either

(i) the SU(2) constraint in Eq. (12a);

(ii) the SU(3) constraint in Eq. (12b) in addition to (12a); or

(iii) the SU(3) + positivity constraints in Eq. (14) in addition to Eqs. (12a) and (12b).

In the next section we analyze in detail the effect on the global QCD analysis of each of

these assumptions.
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IV. SIMULTANEOUS ANALYSIS RESULTS

Using the theoretical framework and methodology outlined in Secs. II and III, in this

section we present the results of our global Monte Carlo analysis, simultaneously extracting

both the spin-averaged and spin-dependent PDFs. We begin with the discussion of the

spin-averaged PDFs, and in particular the impact of jet data from unpolarized pp collisions

at RHIC, obtained at similar kinematics as the polarized pp jet data that are expected to

constrain the spin-dependent gluon PDF, ∆g. We focus in particular on the determination

of ∆g in the context of the three scenarios discussed in the previous section, and critically

examine the discrimination between the two helicity-basis PDFs under these scenarios. A

summary of the fit results, including the χ2
red values for each type of dataset and for each of

the scenarios, is given in Table II. The χ2
red are computed from Eq. (11) using the average

of theory predictions from all replicas in the simultaneous fit.

TABLE II. Results for the simultaneous fits to unpolarized and polarized scattering data, with the

reduced χ2
red = χ2/Ndat for Ndat points for the SU(2), SU(3), and SU(3)+positivity scenarios.

Data Ndat

χ2
red

SU(2) SU(3) SU(3)+pos

Unpolarized DIS [47–51] 2680 1.20 1.20 1.20

Drell-Yan (pp, pD) [66] 250 1.06 1.06 1.10

Jets

D0 (pp) [68] 110 0.89 0.89 0.88

CDF (pp) [69] 76 1.11 1.11 1.11

STAR 2003 (pp) [17] 3 0.04 0.04 0.04

STAR 2004 (pp) [17] 9 1.06 1.06 1.06

Polarized DIS [33, 52–64] 365 0.92 0.92 0.96

Jets in polarized ~p~p

STAR [17, 19–23] 81 0.82 0.81 0.84

PHENIX [24] 2 0.38 0.38 0.38

Total 3563 1.14 1.14 1.15
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FIG. 3. Comparison with single jet production cross sections in pp̄ collisions from D0 [68] and

CDF [69], and in pp scattering from STAR [17]. Different pseudorapidity η bins are marked by

colors and scaled by factors for D0 and CDF for clarity. Note the extra factor 2π in the STAR

cross section data. The data (filled circles) are compared with fits (solid lines) obtained from the

average of all Monte Carlo replicas, with 1σ uncertainties (yellow bands). For STAR 2003 and

2004 data, ratios of data to average theory (filled circles) are shown in the bottom right panel.

A. Unpolarized PDFs

As indicated in Table II, good overall agreement is found between our fits and the unpo-

larized DIS (fixed target and HERA collider), Drell-Yan, and inclusive jet production data.

Since the focus of this work is primarily on jet observables (the full fit results for the inclu-

sive DIS and Drell-Yan data comparisons can be found in Ref. [70]), in Fig. 3 we show the

differential jet production cross sections, d2σ/ dη dpT , for pp̄ scattering from D0 and CDF

at the Tevatron and pp scattering from STAR at RHIC versus the jet transverse momentum

pT , in specific bins of the pseudorapidity η. The η bins are obtained using their absolute
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values for CDF and D0 data, and actual values for STAR. An excellent description of all

the jet data is obtained, with χ2
red ≈ 0.9− 1.1 for the D0 and CDF pp̄ data, and the STAR

2004 pp data. Since only 3 data points are available for the STAR 2003 run, a χ2
red ≈ 0 was

obtained for these points. The χ2
red values for the unpolarized data are, as may be expected,

almost independent of the scenario chosen for the spin PDF constraints, Eqs. (12) and (14).

To more graphically illustrate the comparison between data and theory for the STAR pp

data, which have not been used in any previous global QCD analysis, we also show in Fig. 3

the data/theory ratios, which our fit describes well within the ∼ 10% − 20% experimental

uncertainties. Note that the cross sections vary by some 7 orders of magnitude for the D0

and CDF data over the range of pT covered (pT . 600 GeV), and over 5 orders of magnitude

for the STAR data, which span a smaller range of pT values (pT . 40 GeV). In principle, the

data are available down to rather low pT values, pT ∼ few GeV. However, some tensions were

found when attempting to fit the STAR data with pT < 8 GeV and those with pT > 8 GeV,

so that a cut of pT > 8 GeV is made for this analysis. This will have some consequence for

the corresponding cut chosen for the polarized scattering data, as we discuss below.

The unpolarized PDFs extracted from the present analysis are shown in Fig. 4 for the

valence quark uv and dv, light antiquark d̄ + ū, and strange s + s̄ distributions, as well as

the gluon PDF, g, at a scale Q2 = 10 GeV2. Compared with PDFs from several other global

analyses [27, 74–76], the variation between the different PDF sets is relatively small for the

valence, light antiquark, and gluon PDFs, while a larger spread is observed for the strange

quark distributions. In particular, the magnitude of the strange s + s̄ PDFs is slightly

larger than the earlier JAM20 [28] (and also JAM19 [27], not shown in Fig. 4) analysis,

which found a stronger strange quark suppression due to the inclusion of semi-inclusive DIS

and single-inclusive e+e− annihilation data, especially for kaon production. We expect that

inclusion of the semi-inclusive DIS and e+e− annihilation data into the present analysis will

produce additional suppression of our strange quark PDF. Also, at higher x values (x & 0.5)

the upward shift in the strangeness PDF is an indirect effect associated with the sensitivity

of the jet data to the gluon PDF via the momentum sum rule. However, the detailed

structure of the strange quark PDFs does not affect the main goal of our analysis, which is

the determination of the spin-dependent gluon distribution.
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FIG. 4. Comparison of spin-averaged PDFs from the present JAM analysis with other PDF sets

from the previous JAM20 analysis [27], and from the NNPDF3.1 [74], CSKK [75], and MMHT14

[76] parametrizations, for the uv, dv, d̄+ ū, and s+ s̄ quark and gluon g flavors at Q2 = 10 GeV2.

Note that x times the PDF is shown.

B. Spin-dependent PDFs

As for the polarized case, we obtain an excellent description of the spin-dependent observ-

ables, including polarized lepton-nucleon DIS and jet production in polarized pp collisions.

For the former, we find a total χ2
red ≈ 0.9 (see Ref. [70] for the corresponding DIS data to

theory comparisons). For the latter, we show in Fig. 5 the inclusive polarization asymme-

tries, ALL, for the STAR and PHENIX data, for the SU(3) scenario, with χ2
red ≈ 0.8 for the

polarized pp jet production data. The two sets of bands represent solutions with ∆g > 0

and ∆g < 0, as we discuss below, with each giving very similar descriptions. Only the fits

to the STAR 2005 [19] and 2012 [21] data show noticeable deviations, with χ2
red ≈ 1.5 for

these sets, which is mostly due to the presence of some outliers in these spectra.
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FIG. 5. Double longitudinal spin asymmetries ALL in polarized pp collisions from STAR [17, 19–23]

and PHENIX [24] versus jet transverse momentum pT for bins in pseudorapidity η. The data

are compared with the JAM global QCD analysis using the SU(3) scenario in Eq. (12b) for the

“positive” gluon solutions ∆g > 0 (blue bands) and “negative” gluon solutions ∆g < 0 (green

bands) with 1σ uncertainties. The final panel (with the same data as for the penultimate STAR

2015 panel) shows the contributions from the gg (solid lines) and qg channels (dashed lines).

The fits to the jet ALL asymmetries are similar for the other scenarios, with χ2
red values

almost identical, as listed in Table II. As may be expected, the less restrictive SU(2) scenario

produces moderately wider uncertainty bands at the larger pT values, pT & 30 GeV, due

to the relatively larger uncertainties on the helicity PDFs in the absence of the SU(3) fla-
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1σ bands) and SU(3)+positivity (red 1σ bands) scenarios, as well as with the SU(2) scenario but

filtered to ensure ALL positivity at large x (dashed lines).

vor symmetry constraint. Conversely, the more restrictive SU(3)+positivity scenario yields

narrower error bands for pT & 30 GeV as a result of the significant suppression of the ∆g

solution space from the positivity constraints, as we discuss next.

To illustrate more explicitly the influence of theoretical assumptions on the PDFs and

their uncertainties, we compare in Fig. 6 the ∆u+, ∆d+, ∆s+ and ∆g distributions at

Q2 = 10 GeV2 for the different scenarios with SU(2), SU(3), or SU(3)+positivity constraints.

For the least constrained fit with only the SU(2) relation in Eq. (12a) imposed, the ∆u+ and

∆d+ PDFs are reasonably well determined, while the ∆s+ and ∆g distributions have very

large uncertainties and are consistent with zero. The imposition of the SU(3) relation in

Eq. (12b) has a dramatic effect on the polarized quark PDF uncertainties, especially for the

∆s+ distribution, but also on the nonstrange spin PDFs which have reduced uncertainties.

Interestingly, the uncertainty on the gluon polarization ∆g is not affected significantly and

remains large even with the inclusion of the polarized pp jet data and SU(3) constraint.
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Imposition of the positivity constraints in Eq. (14) further reduces the uncertainties on the

polarized quark PDFs, especially for the strange quark, and augments somewhat the shape

of the ∆d+ PDF in particular. The latter effect is induced by assuming a flavor symmetric

polarized sea, ∆ū = ∆d̄ = ∆s̄ = ∆s, so that changes in ∆s propagate to the ∆u+ and ∆d+

distributions. Since the absolute values of ∆d+ are smaller than those of ∆u+, the impact

on the polarized d quark is greater. The dependence of the strange helicity distribution

on theoretical assumptions, such as SU(3) symmetry and positivity, may be reduced with

additional experimental data on semi-inclusive DIS and single inclusive e+e− annihilation

data, which can provide independent combinations of the quark flavor PDFs [9, 28].

For the gluon helicity distribution, the addition of the positivity constraint has quite

a profound effect, reducing the uncertainty significantly and yielding a generally positive

shape which more closely resembles that obtained in some previous PDF analyses [26, 30].

Examining the solution space more closely, we observe that the ∆g solutions are extremely

non-Gaussian for the SU(2) and SU(3) scenarios, as Fig. 7 illustrates for the individual repli-

cas. In particular, our analysis identifies two distinct types of solutions for these scenarios,

one with ∆g mostly positive and one with ∆g mostly negative. Despite their dramatic dif-

ferences in sign and shape, however, the two ∆g solutions can describe the ALL data equally

well. This is illustrated in the STAR 2015 panel of Fig. 5, where for the ∆g > 0 solution the

asymmetry is given by a sum of (small) positive contributions from the gg and qg channels,

while for the ∆g < 0 solution the asymmetry results from a cancellation between large pos-

itive gg and large negative qg pieces. As is evident in Fig. 7, our analysis disfavors solutions

with ∆g = 0, as well as with small negative ∆g values, which would generally produce very

small ALL asymmetries, in contradiction with the data in Fig. 5.

Including the positivity constraint reduces the uncertainty on the gluon helicity distri-

bution at high values of x (x & 0.3) and eliminates the negative ∆g solutions observed in

Fig. 7. This occurs because in order to satisfy PDF positivity, the shape of the negative

∆g solution becomes distorted and consequently fails to describe the jet ALL data, giving

rather large χ2
red values [70].

In addition to the scenarios discussed above, we also note that some replicas give unphys-

ical values for the polarized DIS asymmetry at kinematics x ≈ 0.8 and momentum transfer

Q2 > 50 GeV2 that are outside the currently measured region, but which could be probed

at a future Electron-Ion Collider [71]. After removing these replicas, the result shown in
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FIG. 7. Monte Carlo replicas for the spin-dependent gluon PDF x∆g at Q2 = 10 GeV2 fitted

under various theory assumptions according to the SU(2) (yellow lines), SU(3) (blue lines) and

SU(3)+positivity (red lines) scenarios, with 300 replicas randomly selected from the total of 723,

647 and 639 for the three scenarios, respectively.

Fig. 6 for the SU(2) scenario indicates the main effect is observed at high x for the quark

distributions, while the effect on ∆g is negligible. Similarly for the other two scenarios,

the impact of imposing the observable positivity on ALL outside measured regions is only

marginal.

To further explore the robustness of our findings for ∆g, we also considered the scenario

whereby the SU(2) constraint is imposed together with PDF positivity. In this case the

resulting spin-dependent PDFs are found to be very similar to those from the SU(3) +

positivity scenario, indicating that the order of imposing the SU(3) flavor symmetry and the

positivity constraints does not change the observation of the two types of solutions for ∆g

in Fig. 7.
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from xmin = 0.0071 to 1, extracted from our global analysis under the different theoretical scenarios

of SU(2) (yellow), SU(3) (blue) and SU(3)+positivity (red historgrams) at a scale Q2 = 10 GeV2.

C. Truncated moments

Along with visualizing the x dependence of the spin-dependent PDFs, a complementary

way to assess the impact of the theoretical inputs on the quark and gluon helicities is to

consider the truncated moments of the PDFs, defined as
ˆ

∆q+ ≡
ˆ 1

xmin

dx∆q+,

ˆ
∆g ≡

ˆ 1

xmin

dx∆g, (15)

where xmin is the lower limit of the integral. We choose the lower limit to be the smallest

x value to which polarized data have sensitivity, xmin = 0.0071 (see Fig. 1). In Fig. 8 we

show the distribution of the quark and gluon truncated moments at a scale Q2 = 10 GeV2.

The distributions of the quark truncated moments for the SU(2) scenario are rather broad

(the SU(2) nonsinglet
´
∆u+ −

´
∆d+ is much more constrained though), and the gluon

truncated moment displays the clear gap between the positive and negative solutions seen

in Fig. 7. The reduction of the uncertainties with the imposition of SU(3) symmetry is quite

striking for the quark moments, but does not qualitatively alter the distribution of gluon

truncated moments, other than a slightly stronger peak in the positive ∆g solution space.
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With the positivity constraints imposed, on the other hand, the negative ∆g solution is

eliminated, with a prominent single peak around
´
∆g ≈ 0.4.

The central values and uncertainties of the truncated moments of all the quark and gluon

flavors are shown in Table III for the three different scenarios. For the gluon in the SU(2)

and SU(3) constraints scenarios we also include the individual contributions to the truncated

moment from the positive and negative ∆g solutions, along with the total. While the central

values of the polarized quark moments do not vary much across the scenarios, the values

of the gluon moments depend strongly on the theoretical assumptions. For the positive

∆g solutions, the truncated moments remain at ∼ 0.4, but together with the negative ∆g

solutions for the SU(2) and SU(3) scenarios, which yield ≈ −0.9, the combined moment

ranges from ≈ 0 to 0.25, with large uncertainty ≈ 0.5.

Compared with the results from the DSSV14 analysis [26], which gave
´
∆g = 0.20(5) for

xmin = 0.05, our positive ∆g solutions give values comparable to the DSSV14 result for all

scenarios, ranging from 0.20(13) for the least restrictive SU(2) case to 0.25(3) for the most

restrictive SU(3)+positivity case. Combining positive and negative ∆g solutions, however,

the gluon truncated moments over this range are 0.0(4) and 0.1(3) for the SU(2) and SU(3)

scenarios, in clear contrast to the DSSV14 result. This strong dependence on the theoretical

assumptions used in the analysis suggests that additional data with greater sensitivity to

the shape and sign of ∆g are needed before definitive, experiment-driven conclusions about

gluon polarization can be reached.

TABLE III. Truncated moments and uncertainties of the quark and gluon PDFs integrated from

xmin = 0.0071 to 1 at Q2 = 10 GeV2 for the SU(2), SU(3), and SU(3)+positivity scenarios. For

the SU(2) and SU(3) cases, the positive and negative
´
∆g contributions are also shown.

´́́
∆f SU(2) SU(3) SU(3)+pos

∆u+ 0.8(1) 0.80(1) 0.81(1)

∆d+ −0.4(1) −0.37(1) −0.38(2)

∆s+ 0.1(7) −0.08(3) −0.07(2)

∆g

0.0(6) 0.3(5)

0.39(9)∆g > 0 ∆g < 0 ∆g > 0 ∆g < 0

0.4(2) −0.8(2) 0.4(1) −0.9(2)
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distributions for f = u, d, s and g at Q2 = 10 GeV2, in the SU(2), SU(3), and SU(3)+positivity

scenarios.

D. Helicity-basis PDFs

Having obtained good agreement with both the unpolarized and polarized world data

sets (see Table II), we can now analyze the simultaneously extracted spin-averaged and

spin-dependent PDFs from the combined analysis. Using Eqs. (5), the distributions with

spins parallel (f ↑) and antiparallel (f ↓) to the proton spin can be extracted for the first time

with a consistent treatment of PDF uncertainties. In Fig. 9 we show the helicity-basis PDFs

for all the u, d, s and g flavors at Q2 = 10 GeV2 in the SU(2), SU(3), and SU(3)+positivity

scenarios.

For the SU(2) scenario, the u↑ and u↓ distributions, and to some degree the d↑ and d↓, are

distinguishable, while the strange and gluon helicity-basis distributions for the most part

cannot be distinguished. With the imposition of additional constraints, the uncertainties
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lines), SU(3) (blue lines), and SU(3)+positivity (red lines) constraint scenarios. The discrimination

between f↑ and f↓ improves as AUC → 1. For clarity the region between the lines has been shaded

(light green).

decrease and the helicity-basis PDFs f ↑ and f ↓ for each flavor become more clearly separated.

Imposing the SU(3) constraint reduces the uncertainties of the helicity-basis PDFs for all the

light quark flavors as a result of the extra constraint provided by a8 in Eq. (12b). Moreover,

the addition of positivity constraints restricts each helicity-basis PDF to remain positive,

and suppresses uncertainties in the high-x region.

The degree to which the different helicity-basis PDFs in Fig. 9 can be delineated can be

more accurately quantified by considering an “area under the curve” (AUC) plot. The AUC

is defined as the area under a receiver operating characteristic (ROC) curve [77, 78] (see

Appendix A for details), and is often used to visualize the discrimination power in binary

classification problems. The closer the AUC approaches 1, the better the discrimination

between the f ↑ and f ↓ distributions, and, conversely, the closer the AUC approaches 1/2,

the more difficult it is to discriminate.
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In Fig. 10 we show the AUC plot for the f ↑ and f ↓ helicity-basis PDFs for f = u, d, s, and

g at Q2 = 10 GeV2, for the SU(2), SU(3), and SU(3)+positivity scenarios. Firstly, we note

that the discrimination between the u↑ and u↓ PDFs is not affected significantly by the theory

inputs, which reflects that both the spin-averaged and spin-dependent u-quark distributions

are already well constrained empirically. The discrimination between d↑ and d↓, on the

other hand, receives discernible improvement from the SU(3) flavor symmetry constraint,

which produces a reduction of the uncertainty in the polarized ∆d PDF (see Fig. 6). For

the s-quark helicity-basis PDFs, imposing SU(3) symmetry makes a large improvement to

their discrimination in the data-sensitive region 0.01 . x . 0.5, driven by the significant

reduction of the uncertainty for the ∆s+ PDF.

The positivity constraints make almost no improvement to the discrimination between

the u↑ and u↓ or d↑ and d↓ distributions, given that the helicity-basis PDFs of both flavors are

already well separated, and the positivity constraints only reduce their uncertainties. For the

s-quark helicity PDFs, on the other hand, one may have expected that, given the significant

reduction of the ∆s+ uncertainty and the less well discriminated s↑ and s↓ PDFs in the SU(3)

scenario, the positivity constraints should discriminate between s↑ and s↓ more effectively.

However, because the spin-averaged strange distributions are less well constrained at high x,

the reduction of the ∆s+ uncertainty does not result in better discrimination between s↑

and s↓.

While the effects of the theory assumptions on the gluon distributions have been dis-

cussed extensively in the previous sections, we can obtain further information on their im-

pact through the AUC representation in Fig. 10. Starting with the SU(2) scenario, without

additional constraints the g↑ and g↓ distributions are barely distinguishable. After imposing

the SU(3) constraint the reduction of the ∆g uncertainties (see Fig. 7) discernibly improves

the discrimination power. Finally, with the positivity constraints added, the negative ∆g

solution is eliminated, and the individual helicity-basis PDFs can be clearly distinguished

in the experimentally measured region, 0.01 . x . 0.5. This further illustrates our main

conclusion, which is that theoretical inputs, especially SU(3) flavor symmetry and PDF posi-

tivity, can introduce significant bias into the extraction of PDFs that are not well constrained

by experimental data, such as the ∆s and ∆g spin distributions.
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V. CONCLUSION

We have performed the first simultaneous global QCD analysis of spin-averaged and spin-

dependent PDFs in the nucleon within the JAM multi-step Monte Carlo framework, focusing

in particular on the extraction of the gluon polarization. Good fits to the world unpolarized

and polarized DIS data, as well as Drell-Yan data and inclusive jet production cross sections

and asymmetries in hadronic collisions, were achieved, with a global reduced χ2
red ≈ 1.1. Our

study was the first time that unpolarized RHIC pp jet cross sections were included together

with the polarized pp jet data, along with the previous jet measurements in pp̄ collisions

at the Tevatron. While the direct impact of the unpolarized data on the spin-dependent

PDFs is not significant, a simultaneous description of both observables is needed in order to

delineate the kinematic domain of applicability of the collinear factorization framework.

Our study critically assessed the impact of theoretical assumptions on the determination

of the gluon polarization ∆g, including scenarios in which SU(2) or SU(3) flavor symmetry

is assumed for axial charges determined from neutron and hyperon beta-decays, as well as

the imposition of positivity on PDFs, which has been debated recently in the literature.

The least biased scenario involving only the SU(2) constraint produced relatively large PDF

uncertainties, especially for the polarized strange and gluon distributions. In particular,

we found two distinct types of solutions for the gluon polarization, of opposite sign, each

giving almost identical descriptions of experimental spin-dependent observables, including

the double polarization asymmetry ALL in inclusive jet production.

With the SU(3) flavor symmetry constraint, the uncertainties on ∆s were reduced signif-

icantly, although the ∆g distribution was largely unaffected. It was only with the further

addition of PDF positivity that the negative ∆g solution could be eliminated and results

resembling those found in earlier literature recovered. We identify this as a bias introduced

in the extraction of spin-dependent PDFs, and in the absence of a clear theoretical require-

ment for PDFs to be positive at all values of x, we conclude that data-driven analysis alone

does not constrain the gluon polarization to be uniquely positive.

Such a conclusion naturally has profound implications for our understanding of the proton

spin decomposition, and provides greater urgency to identifying other means to constrain the

gluon helicity, as well as the quark and gluon orbital angular momentum. Further data are

needed to obtain clarity on this issue, including new observables that are linearly sensitive
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to gluon helicity distributions. An example of this may be polarized semi-inclusive DIS

with the production of large transverse momentum hadrons, in which the gluon polarization

enters at the same order as the polarized quark contribution [79].

A novel new feature of our simultaneous analysis of polarized and unpolarized observables

is the ability to systematically extract the individual helicity-aligned and antialigned PDFs

with a consistent treatment of uncertainties. Our demonstration of the current empirical

situation using the AUC plot illustrates the impact of various theoretical assumptions on

our ability to discriminate between different helicity-basis PDFs. It confirms that, while

imposing SU(3) flavor symmetry improves the discrimination between the s↑ and s↓ PDFs,

the ability to separate clearly the g↑ and g↓ distributions requires additional assumptions

about PDF positivity. We anticipate that future high-precision data from existing and

planned facilities, including the Electron-Ion Collider [71], will elucidate the question of the

gluon polarization and the proton spin decomposition more definitely.
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Appendix A: Area Under the ROC Curve

The receiver operating characteristic (ROC) and the corresponding area under the ROC

curve (AUC) are often used in visualizing the discrimination in binary classification prob-

lems [77, 78]. In this appendix we will use a simple example to illustrate the application of

ROC and AUC plots for PDF discrimination.

Defining two normalized Gaussian distributions N1 and N2 in a common variable ω, with

central values µ1 and µ2 and widths σ1 = σ2, in Fig. 11 we examine how well these can be

discriminated from each other for varying µ1 − µ2. We consider the cumulative integration

values of N2 versus those of N1, defined as
ˆ ω

−∞
dω Ni(ω) =

ˆ ω

−∞

dω√
2πσi

exp

(
− (ω − µi)

2

2σ2
i

)
for ω ∈

(
−∞,∞

)
, (A1)

for i = 1, 2. When the two distributions N1 and N2 overlap entirely with each other, µ1 = µ2,

their cumulative integration values are of course identical, and these produce a diagonal line

in the ROC plot of
´ ω
−∞ dω N2 versus

´ ω
−∞ dω N1 in Fig. 11 (top row). In this case the AUC

value is exactly 1/2.

When the mean values of N1 and N2 differ, but not dramatically, µ1 . µ2 (middle row),

the distributions start to deviate from the each other, and the ROC bends away from the

diagonal since
´ ω
−∞ dω N2 reaches its maximum value slower than

´ ω
−∞ dω N1. The AUC

value here increases away from the minimum of 1/2.

Finally, when the mean values are clearly separated from each other, µ1 � µ2 (bottom

row of Fig. 11), the ROC deviates significantly from the diagonal and the AUC value ap-

proaches 1. Of course, if one had µ1 & µ2 or µ1 � µ2, the ROC would be curved downwards

and the AUC would deviate from 1/2 while approaching 0; in this case the 1−AUC would

usually be used in order to keep the figures intuitive.

For the binary classification problem in Sec. IV D, the goal is to evaluate the degree to

which the helicity-basis PDFs f ↑ and f ↓ can be discriminated from each other at every point

in the parton momentum fraction x. The AUC plot in Fig. 10 then represents the quality

of discrimination as a function of x for the different theoretical scenarios assuming SU(2)

symmetry, SU(3) symmetry, or SU(3) + PDF positivity.
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FIG. 11. Illustration of ROC and AUC plots for Gaussian distributions N1 and N2 (red solid

and blue dashed lines) to be discriminated from each other (left panels), and the corresponding

ROC curves (green lines) and AUC values (right panels) for different mean values µ1 and µ2:

(a) µ1 = µ2, (b) µ1 . µ2, (c) µ1 � µ2.
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