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1 Introduction

Parton distribution functions (PDFs) f(x) [1] provide an efficient way to describe hadron
structure. At present, PDFs are the objects of both intensive experimental research and
lattice QCD calculations. In fact, it is believed that the lattice studies may provide infor-
mation about interesting PDFs that are difficult or impossible to investigate in accelerator
experiments. Among such PDFs, one may list two twist-4 gluon functions proposed recently
in Refs. [2, 3].

One of them, introduced in Ref. [2] and denoted there as F (x), describes the mo-
mentum distribution of the “gluon condensate”. The x-integral of F (x) corresponds to the
matrix element 〈P |Fµν(0)Fµν(0)|P 〉 of the local operator that may be related to the gluon
contribution into the proton mass. The x-integral of another twist-4 gluon PDF F̃ (x) in-
troduced in Ref. [3] corresponds to the matrix element 〈P |Fµν(0)G̃µν(0)|P 〉 that gives the
nucleon “topological charge”.

A rather intriguing question raised in Ref. [4] is whether twist-4 gluon PDFs have
singular δ(x) “zero-mode” contributions, similar to those that have been found [5] in calcu-
lations of one-loop perturbative QCD corrections for the twist-3 quark PDFs. For F (x), this
question was originally investigated in Ref. [2]. However, the matrix element of the bilocal
operator Fµν(z)Fµν(0) in the calculation of Ref. [2] was taken between gluon states with
nonzero virtuality. This is a risky exercise because it violates gauge invariance. Indeed, as
shown in our paper [6], the calculations with virtual external gluon lines in Feynman and
light-cone gauges give different results, both of which are incorrect.
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To perform the calculation in a gauge-invariant way, one needs to do the calculations
using on-shell external gluons. However, there is a complication that both the tree-level and
one-loop matrix elements of the Fµν(0)Fµν(z) operator for on-shell gluon states vanish. To
escape this problem, we took a nonforward matrix element, i.e. considered the generalized
parton distribution (GPD) corresponding to the same bilocal operator Fµν(0)Fµν(z).

In the case of the “topological charge” PDF, the forward matrix element of Fµν(0)F̃µν(z)

operator vanishes, even if the external gluons are off-shell. Hence, the use of a nonforward
kinematics is mandatory. The calculation of the relevant GPD at one-loop level was done
in Ref. [3], but still using off-shell gluons.

Our goal in the present paper is to perform a one-loop calculation for the matrix element
of the Fµν(0)F̃µν(z) operator between on-shell gluon states. As expected, our calculations
performed both in Feynman and light-cone gauges have produced the same result, which,
however, is different from the result given in Ref. [3].

The content of the paper is organized as follows. In Section 2, we discuss the definition
of the F̃ (x) PDF and introduce the GPD related to a nonforward matrix element involving
on-shell gluons. In Section 3, we present diagram-by diagram results for all contributing
one-loop diagrams. In Section 4, we write down the total result and discuss its structure.
In Section 5, we give a summary of the paper and discuss further steps in the study of
twist-4 gluon PDFs. The table of basic integrals that appear in our calculations is given in
the Appendix.

2 PDF for topological charge

The gluon PDF F̃ (x) corresponding to the momentum distribution of the topological charge
is defined through a matrix element of twist-4 bilocal bilocal combination of gluon fields

F̃ (x) = P+

∫ 1

−1

dz−

2π
eixP

+z−
〈
P
∣∣∣Fµν(0)W [0, z−]F̃µν

(
z−
)∣∣∣P〉 (2.1)

switched between the nucleon states with momentum P . As usual, F̃µν = 1
2εµναβF

αβ ,
and εµναβ is the Levi-Civita tensor. The summation over the gluon colors and division by
their number Ng = N2

c − 1 is assumed. Also, the summation over the hadron polarizations
is implied. The gluon fields F (0) and F̃ (z−) are connected by the straight-line gauge
link W [0, z−] in the “minus” direction specified by the light-cone vector n. The “plus”-
components for an arbitrary vector a are obtained by a scalar product with n, i.e., a+ = n·a .

The nucleon topological charge Q is given by the matrix element of the local operator
Fµν(0)F̃µν (0), or, equivalently, by the x-integral of F̃ (x)

Q =
〈
P
∣∣∣Fµν(0)F̃µν (0)

∣∣∣P〉 =

∫ 1

−1
dxF (x) . (2.2)

In QCD, PDFs have also a dependence on the factorization scale µ. The latter emerges
as an ultraviolet cut-off in the perturbative corrections to the relevant operator on the light
cone. To calculate such corrections in momentum representation, one needs to consider the
matrix element (2.1) between the parton states. In the present paper, we will study the case
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of gluon external states |g(p, ε)〉, where p is the gluon momentum and ε is its polarization.
At the tree-level, we deal with the following forward matrix element

p+
∫

dz−

2π
eixp

+z−
〈
g(p, ε∗2)

∣∣∣Fµν(0)W [0, z]F̃µν
(
z−
)∣∣∣ g(p, ε1)

〉(0)
=

1

4
n · p (pµε∗ν2 − pνε

∗µ
2 )εαβµν(pαεβ1 − p

βεα1 )
[
δ(n · p− xn · p) + δ(n · p+ xn · p)

]
= εαβµνp

µε∗ν2 p
αεβ1

[
δ(1− x) + δ(1 + x)

]
= 0 . (2.3)

We took here different gluon polarizations ε1 and ε2 for the initial and final states. Still,
the tree-level matrix element vanishes because the momentum vector p enters twice in the
convolution with the Levi-Civita tensor. Moreover, this happens no matter if the gluons
are on-shell or not. To get a nonzero result in the εαβµν . . . convolution, we need another
vector instead of one of the “p” factors. To this end, we shall consider the function defined
by a non-forward matrix element

F (x, ξ, q2) =
P+

Ng

∫
dz−

2π
eixP

+z−〈
g(p+ q, ε∗2)

∣∣∣∣F a,µν (−z−2
)
W
[
−z

2
,
z

2

]
F̃a,µν

(
z−

2

)∣∣∣∣ g(p, ε1)

〉
, (2.4)

where P = p+(p+q)
2 . In general, the skewness is defined by ξ ≡ − q+

2P+ , so that n · p =

(1 + ξ)n · P . However, in the present work, we take ξ = 0. The gluons both in the initial
and final states are on-shell, i.e.,

p2 = 0, (p+ q)2 = 0, p · ε1 = 0, (p+ q) · ε∗2 = 0 . (2.5)

It is convenient to take also n · ε1 = n · ε2 = 0. The tree-level result is now given by

F (0)(x, q2) =
1

2
n · P

(
(p+ q)µε∗ν2 − (p+ q)νε∗µ2

)
εαβµν (pαεβ1 − p

βεα1 )

×
[
δ(n · P − xn · P ) + δ(n · P + xn · P )

]
=

1

2
εαβµν(pαεβ1 − p

βεα1 )(qµε∗ν2 − qνε
∗µ
2 )
[
δ(1− x) + δ(1 + x)

]
=− 2ε(p, q, ε1, ε

∗
2)
[
δ(1− x) + δ(1 + x)

]
≡Π(p, q, ε1, ε

∗
2)
[
δ(1− x) + δ(1 + x)

]
. (2.6)

where we have denoted F (x, ξ = 0, q2) = F (x, q2),

ε(p, q, r, s) ≡ εαβγδpαqβrγsδ , (2.7)

and

Π(p, q, ε1, ε
∗
2) = −2ε(p, q, ε1, ε

∗
2). (2.8)
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3 One-loop corrections

Our goal is to investigate the structure of this matrix element at the one-loop level. To
be on safe side, we have performed our calculations both in the light-cone gauge and in
Feynman gauge. The gluon propagator in the light cone gauge is given by −iDµν(k)/k2,
where

Dµν(k) = gµν − kµnν + kνnµ

n · k
. (3.1)

In Feynman gauge, we have

Dµν(k) = gµν . (3.2)

To handle ultraviolet and collinear divergences, we use the dimensional regularization, defin-
ing the dimension d of space-time by d = 4− 2ε.

Below, we discuss the results calculations in Feynman gauge. The relevant diagrams
are shown in Fig. 1.

We will express the results for particular diagrams in terms of basic integrals

Slmn =

∫
ddk

(2π)d
δ

(
x− n · k

n · P

)
1

Dl
1D

m
2 D

n
3

, (3.3)

V µ
lmn =

∫
ddk

(2π)d
δ

(
x− n · k

n · P

)
kµ

Dl
1D

m
2 D

n
3

, (3.4)

Tµνlmn =

∫
ddk

(2π)d
δ

(
x− n · k

n · P

)
kµkν

Dl
1D

m
2 D

n
3

, (3.5)

where D1 = k2, D2 = (p− k)2, D3 = (k + q)2.

3.1 Box diagram

For the “box” diagram shown in Fig. (1a), we have

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= 2iεαµνρ

[
(2V α

011 − V α
101 + V α

110 − 2q2V α
111)q

µεν1ε
∗ρ
2

+ 4pµqνερ1(−2Tαβ111ε
∗
2,β + V α

111p · ε∗2) + 4pµqνε∗ρ2 (2Tαβ111ε1,β + V α
111q · ε1)

]
(3.6)

Using explicit expressions for the basic integrals and simplifying, we obtain

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= −δ(x)
g2CA
8π2

(
µ2eγE

−q2

)ε
Γ2(1− ε)Γ(ε)

Γ(2− 2ε)
q2ε(n, q, ε1, ε

∗
2)

− δ′(x)
g2CAq

2

16π2

(
µ2eγE

−q2

)ε
Γ2(2− ε)Γ(−1 + ε)

Γ(4− 2ε)
ε(n, q, ε1, ε

∗
2)

+ θ(x)θ(1− x)
g2CA
8π2

[
2n · p ε(p, q, ε1, ε∗2)

(
− 4(1− x)1−2εΓ(1− ε)2Γ(ε)

Γ(2− 2ε)

(
µ2eγE

−q2

)ε
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a) b) b0)

d0)d)

c)

e) f)

<latexit sha1_base64="0p94W1uBD/BPNWf8a8/GwnnHvMo=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSRS1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0MDjvlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HCKNgRv8eVl0ryoeJeV6n21XLvJ4yjAMZzAGXhwBTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifPzLhjSc=</latexit>

g)
<latexit sha1_base64="oKOgepg7uCKJHqDHa5dy4CshwTs=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZRL2VXinosevFY0X5Au5Rsmt2GJtklyQpl6U/w4kERr/4ib/4b03YP2vpg4PHeDDPzgoQzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo5TRWiTxDxWnQBrypmkTcMMp51EUSwCTtvB6Hbqt5+o0iyWj2acUF/gSLKQEWys9BCdnvfLFbfqzoCWiZeTCuRo9MtfvUFMUkGlIRxr3fXcxPgZVoYRTielXqppgskIR7RrqcSCaj+bnTpBJ1YZoDBWtqRBM/X3RIaF1mMR2E6BzVAvelPxP6+bmvDaz5hMUkMlmS8KU45MjKZ/owFTlBg+tgQTxeytiAyxwsTYdEo2BG/x5WXSuqh6l9Xafa1Sv8njKMIRHMMZeHAFdbiDBjSBQATP8ApvDndenHfnY95acPKZQ/gD5/MHk3GNWA==</latexit>

g0)
<latexit sha1_base64="uDaZKvxuliBxHUVV5+S3wksaAz0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOol7ArQT0GvXiMaB6QhDA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqj26nffEKleSQfzTjGbkgHkgecUWOlh+Hpea9YcsvuDGSZeBkpQYZar/jV6UcsCVEaJqjWbc+NTTelynAmcFLoJBpjykZ0gG1LJQ1Rd9PZqRNyYpU+CSJlSxoyU39PpDTUehz6tjOkZqgXvan4n9dOTHDdTbmME4OSzRcFiSAmItO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt8eZk0LsreZblyXylVb7I48nAEx3AGHlxBFe6gBnVgMIBneIU3RzgvzrvzMW/NOdnMIfyB8/kDlPeNWQ==</latexit>

h0)
<latexit sha1_base64="Eq3a2RTY1Bvxw4EkmyYyVlm4k+M=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSLopSRS1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0MDzvlcpuxZ2BLBMvJ2XIUe+Vvrr9mKURSsME1brjuYnxM6oMZwInxW6qMaFsRAfYsVTSCLWfzS6dkFOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HCKNgRv8eVl0ryoeJeV6n21XLvJ4yjAMZzAGXhwBTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifPzRmjSg=</latexit>

h)

Figure 1. One-loop diagrams (mirror diagram e′ is not shown).

+ x

(
−1

ε
+

1

εIR
− ln

µ2

µ2IR
+

(1− x)−1−2εIRΓ(−εIR)2Γ(1 + εIR)

Γ(−2εIR)

))
+

(1− x)−2εΓ2(1− ε)Γ(ε)

Γ(2− 2ε)

(
µ2eγE

−q2

)ε(
q2(1− 2ε)ε(n, q, ε1, ε

∗
2)

+ 2
[
ε(n, p, q, ε1)q · ε∗2 + ε(n, p, q, ε∗2)q · ε1

](
1− 2x(1− ε)

)]
(3.7)

Note that, in addition to the ε(p, q, ε1, ε2) structure, there are other ones. Let us show
that the other structures can be reduced to ε(p, q, ε1, ε2). Indeed, if the vectors p, q, ε1, ε2
are linearly independent in the d = 4 space-time, the vector n can be expressed in terms of
the other 4 vectors as

nµ = a1p
µ + a2(p+ q)µ + a3ε

µ
1 + a4ε

µ
2 , (3.8)

Contracting above equation with p, p+ q and n respectively, we have

n · p = −a2
q2

2
− a4q · ε2, (3.9)

n · p+ n · q = −a1
q2

2
+ a3q · ε1, (3.10)
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0 = a1n · p+ a2(n · p+ n · q). (3.11)

In the zero-skewness case, we have n · q = 0, hence a1 + a2 = 0 and also

ε(n, p, q, ε1)q · ε∗2 + ε(n, p, q, ε∗2)q · ε1 = 2n · p ε(p, q, ε1, ε∗2) (3.12)

Similarly, for the ε(n, q, ε1, ε∗2) structure, we have

ε(n, q, ε1, ε
∗
2) = (a1 + a2)ε(p, q, ε1, ε

∗
2) = 0 (3.13)

As a result, the terms proportional to δ(x) and δ′(x) vanish, and the remaining terms may
be written as

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

= θ(x)θ(1− x)
g2CA
4π2

ε(p, q, ε1, ε
∗
2)

×
[
x

(
−1

ε
+

1

εIR
− ln

µ2

µ2IR
+

(
µ2IRe

γE

−q2

)εIR (1− x)−1−2εIRΓ2(−εIR)Γ(1 + εIR)

Γ(−2εIR)

)
− 2(1− x)−2εΓ2(1− ε)Γ(ε)

Γ(2− 2ε)

(
µ2eγE

−q2

)ε
(1− 2xε)

]
. (3.14)

Thus, box diagram has both ultraviolet (UV) and infrared (IR) singular contributions,
reflected by the UV poles 1/ε and IR poles 1/εIR.

3.2 Bremsstrahlung diagrams

For the diagram (1d), containing insertion into the gluon link, we have

2i

n · P (1− x)
εαµνρ(p+ q)µε∗ρ2

[
n · P (1 + x)εν1V

α
110 − 2nνε1βT

αβ
110

]
=− αsCA

2π
ε(p, q, ε1, ε

∗
2)

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)[
x(1 + x)

1− x
θ(x)θ(1− x)

]
+

(3.15)

For the mirror diagram (1d′), we have

− 2i

n · P (1− x)
εαµνρp

µεν1

[
n · P (1 + x)ε∗ρ2 (V α

011 + qαS011)

− 2nρ
(
ε∗2,β

(
Tαβ011 + qαV β

011

)
− p · ε∗2 (V α

011 + qαS011)
)]

=− αsCA
2π

ε(p, q, ε1, ε
∗
2)

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)[
x(1 + x)

1− x
θ(x)θ(1− x)

]
+

. (3.16)

Thus, the final expressions for contributions of diagrams (1d) and (1d′) coincide, and their
combined contribution is given by

F̃(1d)+(1d′) (x, p, q, ε1, ε2)
∣∣∣
x≥0

=− αsCA
π

ε(p, q, ε1, ε
∗
2)

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
×
[
x(1 + x)

1− x
θ(x)θ(1− x)

]
+

. (3.17)
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Note, that these diagrams contain the ∼ 1/(1− x) “bremsstrahlung” or soft-gluon ex-
change term. The singularity for x = 1 comes here in regularized by the “plus” prescription.
In fact, the diagram (1a) also has the ∼ 1/(1− x) contribution, but it is not accompanied
by the “plus” prescription. Namely, it comes from the term containing (1− x)−1−2εIR .

To combine the contributions of the diagrams (1a), (1d) and (1d′), we write the ex-
pression for the diagram (1a) as a sum of a term having the plus-prescription for x = 1

and a δ(1− x) term. Expanding in ε, εIR, and neglecting the terms vanishing when ε = 0,
εIR = 0, we obtain

F̃(1a) (x, p, q, ε1, ε2)
∣∣∣
x≥0

=
αs
π
CAε(p, q, ε1, ε

∗
2)

{
θ(x)θ(1− x)

×
[
− 2 + x

ε
+
x(1 + x)

1− x

[
− 1

εIR
+ ln

µ2

µ2IR

]
− 2

1− x
ln

µ2

−q2(1− x)2
− 4(1− x)

]}
+

+
αs
π
CAε(p, q, ε1, ε

∗
2)δ(1− x)

×
[

1

ε2IR
+

1

εIR
ln
µ2IR
−q2

+
1

2
ln2 µ

2
IR

−q2
− π2

12
− 2− 5

2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)]
(3.18)

Note that the combination proportional to the IR factor
[
− 1
εIR

+ ln µ2

µ2IR

]
in the second line

of Eq. (3.18) cancels the IR part of the bremsstrahlung contribution (3.17).

3.3 Other vertex diagrams

The remaining vertex diagrams (1b), (1b′) , (1c), (1e), (1e′) and (1f) vanish in Feynman
gauge. In particular, for the diagram shown in Fig. (1b), we have

6iεαµνρV
α
110p

µεν1ε
∗ρ
2 = 0 , (3.19)

since V α
110 ∼ pα according to Eq. (A.4). For the diagram (1b′), the result is

6iεαµνρε
ν
1ε
∗ρ
2 (pµV α

011 + qµV α
011 − pαqµS011) . (3.20)

It also vanishes after we use V α
011 = −((1 − x)qα − xpα)S011 (see Eqs. (A.2), (A.5)). For

the diagram (1c), the result is identically zero. The contributions of the diagrams (1e)

2i

n · P (1− x)
εαβµνn

αpβεµ1 ε
∗ν
2 S010 (3.21)

and (1e′)

2i

n · P (1− x)
εαβµνn

α(p+ q)βεµ1 ε
∗ν
2 S010 (3.22)

are proportional to the function

S010 =

∫
ddk

(2π)dk2
δ

(
x− 1− n · k

n · P

)
. (3.23)
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For n2 = 0, it reduces to

S010 = δ(x− 1)

∫
ddk

(2π)dk2
, (3.24)

i.e., to the integral containing just one propagator. Such integrals are treated as zero in
the dimensional regularization. Finally, the contributions of the four-gluon vertex diagram
(1f) is identically zero.

3.4 Self-energy-type diagrams

Finally, we should include the contributions of the diagrams of self-energy type. They
have both UV and IR logarithmic divergences. We will present here the results for x > 0,
understanding that one should complement them by the {x → −x} contributions in the
final result. In particular, the diagram (1g) is given by

− iδ(1− x)ε(p, q, ε1, ε
∗
2)g

2CA

∫
ddk

(2π)d
3

k2(p− k)2
(3.25)

which produces

δ(1− x)ε(p, q, ε1, ε
∗
2)
αsCA
π

3

4

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
(3.26)

in the MS scheme. Its mirror-conjugate diagram (1g′) gives the same contribution

δ(1− x)ε(p, q, ε1, ε
∗
2)
αsCA
π

3

4

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
. (3.27)

The self-energy corrections (1h), (1h′) to the external gluon lines produce

ZgF̃
(0)(x) = −2ε(p, q, ε1, ε

∗
2)δ(1− x)

αs
π

(
5

12
CA −

1

3
TFnf

)(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
. (3.28)

4 Total result

Combining the contributions from all diagrams, we get the total result, which, including
the tree-level contribution, reads

F (x, q2;µ2, µ2IR) =Π(p, q, ε1, ε
∗
2)

×

{
1 +

αs
π
CA

{
θ(x)θ(1− x)

[
1

1− x

(
1

ε
+ ln

µ2

−q2(1− x)2

)
+ 2(1− x)

]}
+

+
αs
4π
β0δ(1− x)

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
− αs

π
CAδ(1− x)

(
1

2ε2IR
+

1

2εIR
ln
µ2IR
−q2

+
1

4
ln2 µ

2
IR

−q2
− π2

24
− 1

)}
+ {x→ −x} . (4.1)
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The coefficient accompanying the 1/ε pole (multiplied by the αs/2π factor) gives the evo-
lution kernel

P F̃gg(x) =
β0
2
δ(1− x) + CA

[
2

1− x

]
+

+ {x→ −x} (4.2)

for F̃ (x). It has two ingredients. The ∼ β0 term corresponds to the anomalous dimension
of the local operator Fµν(0)F̃µν(0). The “plus-prescription” term, displayed in the second
line of Eq. (4.1), is specific for the nonlocal case. Note that it does not contain the IR
poles εIR and the IR scale µIR. As already mentioned, the terms ∼

[
−1/εIR + lnµ2/µ2IR

]
present in the box and bremsstrahlung diagrams, cancel each other. As a result, the IR
cutoff in this term is provided by the momentum transfer q2, just like in the case of the
“gluon condensate” PDF F (x) discussed in our recent paper [6]. (A similar observation was
made in the studies of the quark GPDs [7], [8]).

Another observation is that the kernel P F̃gg(x), coincides with that for the “gluon conden-
sate” PDF F (x), despite the difference in the structure of the relevant nonlocal operators.
However, our expression differs from that obtained in Ref. [3]. The calculations there
have been performed using external gluons with nonzero virtualities, which violates gauge
invariance. In the present paper, we use massless on-shell external gluons. While we give
diagram-by-diagram results in Feynman gauge, we have also performed calculations in the
light-cone gauge, and obtained the same final result.

The UV finite “Sudakov” term, shown in the 4th line of Eq. (4.1), is an artifact of the
IR regularization by a finite momentum transfer q. Recall that, to maintain the necessary
strict gauge invariance in our calculations, we have chosen to take zero-virtuality initial and
final momenta p1, p2. Next, to get a non-vanishing result for the overall kinematical factor
Π(q, ε1, ε2) (see Eq. (2.6)), we have imposed a nonzero momentum transfer q2 = (p2− p1)2.
As a result, the box diagram (1a) is formally in the Sudakov kinematics −q2 � |p21| ∼ |p22|,
which is signalized by double logarithms in the Sudakov term. Because of its purely IR
nature, we may absorb the “Sudakov” term into a “bare” PDF. In other words, since it does
not contain the UV parameter µ, the “Sudakov” term does not affect the relation between
the functions F̃ (1)(x, q2;µ2) at different evolution scales µ. Similarly, calculating the matrix
element 〈p2|Fµν (−z/2)W [−z/2, z/2] F̃µν(z/2|p1〉 for z2 6= 0 (i.e., off the light cone, which
is necessary for lattice calculations of F̃ (x, µ2)), one would get the same Sudakov terms,
that would cancel in the matching condition between off-the-light-cone and on-the-light-
cone versions of the PDF.

Finally, we would like to mention that we do not have δ(x) terms in our one-loop result
which could be identified as a “zero-mode” contribution.

5 Summary and outlook

In this paper, we have presented the results of one-loop corrections in the 2-gluon sector to
the “topological charge” PDF F̃ (x) introduced in Ref. [3]. Just like in our paper [6] about
the “gluon condensate” PDF F (x), to get a nonzero contribution for the gluon matrix
element at the tree level and maintain gauge invariance, we took a nonforward matrix
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element between on-shell massless gluons, i.e. we have considered a GPD reducing to F̃ (x)

in the forward limit. Ref. [3] also deals with a GPD, however, the calculation was done for
off-shell gluons, which violates gauge invariance.

We have performed our calculations with on-shell external gluons both in Feynman
and light-cone gauges, and obtained the same result. Our Feynman-gauge calculation is
described in the present paper on the diagram-by-diagram level. It gives a result differing
from that of Ref. [3], thus demonstrating once more the importance of doing the calculations
of gluon matrix elements in a strict compliance with the gauge invariance requirements.

In Ref. [4], it was suggested that some twist-4 gluon PDFs may have δ(x) zero-modes,
similar to those observed in one-loop perturbative QCD expressions for the twist-3 quark
PDFs (see, e.g., [5]). However, our one-loop expressions for the twist-4 gluon PDF F̃ (x) do
not contain such terms.

It should emphasized that our calculation deals with the matrix elements of the twist-4
bilocal operator Fµν (−z/2) F̃µν(z/2 (we skip the link factor W here and below) between
two external gluon states. In the OPE language, this means that we are picking out the
Fµν (uz) F̃µν(vz) terms in the expansion of the original operator product Fµν

(
− z

2

)
F̃µν( z2).

However, one can easily imagine twist-4 nonlocal operators built from three and even four
gluon fields (like zαzβFαµ (uz)Fµν(vz)F̃νβ(wz), etc.). To pick out coefficient functions
corresponding to such operators, one should consider matrix elements of Fµν

(
− z

2

)
F̃µν( z2)

between three and four external gluons. In the momentum representation, such a procedure
of calculating mixing between different types of gluon operators involves some element of
guessing and uncertainty about whether all possible combinations have been taken into
account.

Another way to approach this problem is to calculate corrections in the operator form,
without making projections on external states at all, like it was done in Refs. [9–12] for
the “twist-2” quark and gluon bilocal operators outside the light cone. This gives a possible
direction for future studies of the twist-4 gluon PDFs. A natural first step would be a
coordinate-space formulation of the results obtained using the momentum-space techniques
in the present paper and in Ref. [6].
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A Table of integrals

S001 ∼0, (A.1)

S011 =
i

16π2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
θ(0 < x < 1), (A.2)

S101 =
i

16π2

(
µ2eγE

−q2

)ε
Γ(1− ε)2

Γ(2− 2ε)
Γ(ε)δ(x), (A.3)
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V µ
110 =

i

16π2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
xpµθ(0 < x < 1), (A.4)

V µ
011 =− i

16π2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
((1− x)qµ − xpµ)θ(0 < x < 1), (A.5)

V µ
101 =− i

16π2

(
µ2eγE

−q2

)ε [
Γ(ε)

Γ(2− ε)Γ(1− ε)
Γ(3− 2ε)

qµδ(x)

+
1

2

q2

n · P
Γ(2− ε)2

Γ(4− 2ε)
Γ(−1 + ε)nµδ′(x)

]
, (A.6)

V µ
111 =− i

16π2q2

(
µ2eγE

−q2

)εIR [Γ(1− εIR)Γ(−εIR)

Γ(1− 2εIR)
(1− x)−2εIRqµ

− Γ(−εIR)2

Γ(−2εIR)
x(1− x)−1−2εIRpµ

]
θ(0 < x < 1), (A.7)

Tµν110 ∼
i

16π2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
x2pµpνθ(0 < x < 1), (A.8)

Tµν011 ∼
i

16π2

(
1

ε
− 1

εIR
+ ln

µ2

µ2IR

)
[(1− x)qµ − xpµ][(1− x)qν − xpν ]θ(0 < x < 1), (A.9)

Tµν111 =
i

16π2

{
gµν

2
(1− x)1−2ε

Γ(1− ε)2

Γ(2− 2ε)
Γ(ε)

(
µ2eγE

−q2

)ε
+

1

q2
Γ(1 + εIR)(

µ2eγE

−q2
)εIR
[
(1− x)1−2εIR

Γ(2− εIR)Γ(−εIR)

Γ(2− 2εIR)
qµqν

− x(1− x)−2εIR
Γ(1− εIR)Γ(−εIR)

Γ(1− 2εIR)
(qµpν + pµqν)

+ x2(1− x)−1−2εIR
Γ(−εIR)2

Γ(−2εIR)
pµpν

]}
θ(x)θ(1− x). (A.10)

Note: The sign ∼ means that, in addition to the explicitly written terms, the contri-
bution also contains

∫
ddk/k2 terms which are treated as zero.
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