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Abstract

The Pomeron Regge trajectory underlies the dynamics dependence of hadronic total cross sections and

diffractive reactions at high energies. The physics of the Pomeron is closely related to the gluon distribution

function and the gravitational form factor of the target hadron. The resulting Pomeron trajectory αP (t, µ)

not only depends on the momentum transfer squared t, but also on the physical scale µ of the amplitude, such

as the virtuality Q2 of the interacting photon in diffractive electroproduction. In this article we examine the

scale dependence of the nonperturbative gluon distribution in the nucleon and the pion which was derived in

a previous article [1] in the framework of holographic light-front QCD and the Veneziano model. We argue

that the QCD evolution of the gluon distribution function g(x, µ) to large µ2 leads to a single, universal,

scale-dependent Pomeron which can explain not only the Q2 evolution of the proton structure function

F2(x,Q
2) at small x, but also the observed energy and Q2 dependence of high energy diffractive processes

involving virtual photons.
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I. INTRODUCTION

Despite the successful applications of perturbative quantum chromodynamics (pQCD) in de-

scribing hadronic physics at short distances, many complexities in the soft domain characterizing

small momentum-transfer scattering processes at high energies remain unsolved. In practice, either

phenomenological or model-dependent nonperturbative physics inputs are required in order to pre-

dict high energy scattering and diffractive processes in the small longitudinal light-front momentum

fraction x-domain.

In a previous article [1], we have studied the dynamics of gluons inside hadrons based on the

gauge/gravity correspondence [2], its light-front holographic mapping [3–5], and the generalized

Veneziano model [6–8]. Although an exact gravity dual to QCD has yet to be discovered, the

holographic light-front QCD (HLFQCD) framework captures many important nonperturbative

features of QCD, including color confinement [9], chiral symmetry breaking [10] and the power-

law falloff of the counting rules for hard scattering dynamics at large momentum transfer [11–13],

which can be derived in the gauge/gravity correspondence from the warped geometry of anti-de

Sitter (AdS) space [14]. More recent insights, based on superconformal quantum mechanics [15, 16]

and light-front quantization [17–19] have led to remarkable connections among the spectroscopy of

mesons, baryons and tetraquarks, as well as predicting a massless pion in the chiral limit [20–23].

This nonperturbative color-confining formalism, light-front holography, incorporates the underlying

conformality of QCD and describes an effective QCD coupling in the nonperturbative domain [24,

25].

In ref. [1] we used the soft Pomeron trajectory as a key ingredient to compute the gluonic

gravitational form factor (gGFF) and the intrinsic gluon distributions in the pion and nucleon.

The Pomeron trajectory was originally introduced [26, 27] to describe diffractive processes in terms

of Regge theory. The value of the Pomeron trajectory at zero momentum transfer, the Pomeron

intercept, plays a special role: It determines the energy dependence of total cross sections at large

energies [28, 29]. Since the work of [30, 31], it has been generally accepted that gluon exchange is the

essential dynamical mechanism underlying diffractive processes [32]; this provides the connection

between the soft Pomeron trajectory and intrinsic gluon distributions, as discussed in ref. [1].

The summation of gluon ladders derived from perturbative QCD introduces power-like energy

dependence to the diffractive cross sections [33–35], which in turn, has led to the introduction of

the Balitsky-Fadin-Kuraev-Lipatov (BFKL) “hard Pomeron”. Thus it has become conventional

to assume the existence of two separate Pomerons [36], a soft and a hard one, with very different
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intercepts.

By using the warped-space gauge/string framework for large-NC QCD-like theories, Brower,

Polchinski, Strassler and Tan derived a simultaneous description of both the BFKL hard regime

and the classic Regge soft domain [37]. Their model is consistent with some salient general features

which one would expect from the hard BFKL Pomeron at negative values of the momentum transfer

t = −Q2 and with a glueball spectrum at positive t. This model, however, did not solve the problem

of the large difference of intercept values of the soft and the BFKL pomeron. On a phenomenological

level, the question of a scale-dependent intercept was addressed in [38], where both the diffractive

photoproduction data up to LHC energies, as well as the specific small-x behavior of the proton

structure function F2(x,Q
2) have been described quantitatively by a scale-dependent Pomeron

intercept.

Our approach to the gluon distribution functions described in this article adds theoretical sup-

port to a single Pomeron with a scale-dependent intercept. It provides a natural way to compute

intrinsic nonperturbative quantities at the hadronic scale, which can then be evolved to higher

scales using the renormalization group equations (RGE) of pQCD. In this approach, the Pomeron

intercept determines the small-x behavior of the gluon distribution function of a hadron. Assuming

that the relations between the Regge parameters and the gluon distribution functions derived in [1]

are also valid at higher scales, where RGE contributions become important, we can then determine

the scale dependence of the Pomeron intercept, which, in turn, can be used to explain the observed

scale dependence of small-x diffractive processes. One can then address whether the soft Pomeron

intercept evolved to high scales agrees with the larger intercept of the BFKL Pomeron and how it

can be related to diffractive processes at LHC energies. We will examine these and other related

questions in this article within the HLFQCD framework and the Veneziano model, with the aim of

providing a unified model in which the soft Pomeron evolves to a BFKL Pomeron in high virtuality

processes.

This article is organized as follows: In Sec. II we extract a scale-dependent Pomeron intercept

from the nonperturbative gluon distribution obtained in [1] at the hadronic scale, which is then

continued to higher scales using pQCD evolution equations [39–41]. In Sec. III, we compare this

result with HERA measurements [42, 43] of the proton’s structure function. In Sec. IV we present

further evidence for a scale-dependent Pomeron intercept [38], mainly based on photoproduction

data at the LHC [44–47]. Sec. V contains a short summary and conclusions.
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II. THE POMERON INTERCEPT AND THE GLUON DISTRIBUTION IN THE HADRON

In previous articles [1, 5, 48–50] we have derived parton distributions from the underlying

hadronic form factors obtained in the generalized Veneziano model [6–8] within the HLFQCD

framework. In this approach, the form factors are expressed in terms of the Euler Beta function

B(u, v). By comparing with the generalized Veneziano model including currents [7, 8], we deduced

in [1] that the twist-τ Fock-state contribution to the gravitational form factor of a hadron is given

by

Aτ (t) =
1

Nτ
B
(
τ − 1, 2− αP (t)

)
, (1)

where αP (t) is the soft Pomeron of Donnachie and Landshoff [28]. It corresponds to a Regge

trajectory,

αP (t) = αP (0) + α′
P t, (2)

with intercept αP (0) ≃ 1.08 and slope α′
P ≃ 0.25GeV−2 [51]. The Euler Beta function has the

integral representation

B(u, v) = B(v, u) =
Γ(u)Γ(v)

Γ(u+ v)
=

∫ 1

0
dy yu−1(1− y)v−1, (3)

with ℜ(u) > 0 and ℜ(v) > 0. The normalization factor Nτ = B
(
τ − 1, 2 − αP (0)

)
follows the

convention given in [1].

Using Eq. (3), one can express the gravitational form factor as

Aτ (t) =
1

Nτ

∫ 1

0
dxw′(x)w(x)1−αP (t)

[
1− w(x)

]τ−2
, (4)

where the integrand can be identified with the generalized parton distribution at zero skewness ξ:

H(x, t) ≡ H(x, ξ = 0, t) via Aτ (t) =
∫ 1
0 dxHτ (x, t). Its forward limit gives the twist-τ component

of the gluon distribution function [1],

x gτ (x) =
1

Nτ
w′(x)w(x)1−αP (0)[1− w(x)]τ−2. (5)

The universal function w(x) is independent of the twist τ , the number of components of a given
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Fock state [5], and it satisfies the boundary conditions [5]:

w(0) = 0, w(1) = 0, w′(1) = 0, w′(x) > 0 for 0 ≤ x < 1, (6)

which largely determines its behavior. Physical constraints can be imposed on w(x) at small and

large x : At x → 0, w(x) ∼ x from Regge theory [52], and at x → 1, one can apply the inclusive-

exclusive counting rule [53, 54], gτ (x) ∼ (1−x)2τ−3, which fixes the additional condition w′(1) = 0.

A convenient parametrization of w(x), which fulfills all of these constraints (6) is

w(x) = x1−x e−b(1−x)2 , (7)

where b is a parameter determined from phenomenology, which is fixed by the first moment of the

nucleon unpolarized valence quark distribution. The value b = 0.48± 0.04 gives a good description

of the quark and gluon distributions [1, 49] for nucleons as well as for the pion.

The gluon distribution in a hadron is the sum of contributions from all Fock states which contain

a gluon component,

xg(x) =
∑
τ

cτxgτ (x), (8)

where the cτ ’s are expansion coefficients of the corresponding Fock states. In practice, one has

to truncate the expansion at some value of τ for phenomenological studies. It has been found in

our recent work, that the leading Fock components containing one dynamical gluon, |uudg⟩ for

the proton, with cτ=4 = 0.225± 0.014, and |ud̄g⟩ for the pion, with cτ=3 = 0.429± 0.007, provide

a satisfactory description of the gluon distributions in the proton and pion [1], using the same

universal function w(x) as for the proton and pion quark distributions. The coefficients cτ are

determined from the momentum sum rule using the previous results given in Refs. [1, 49].

The parton distribution functions, including the gluon distribution, are not direct observables

and are scale and renormalization-scheme dependent. The gluon distribution given in Eq. (5)

should be understood as being determined at an initial nonperturbative scale µ0. We choose the

value µ0 = 1.057± 0.15GeV which is determined by matching the strong coupling αs(Q
2) between

its perturbative expansion in the high energy region and the HLFQCD expression of the effective

strong coupling in the low energy region [25, 55]. This value for µ0 is consistent with the Veneziano

model, which is a nonperturbative model applicable at the hadronic scale. Accordingly, the gluon

distribution corresponds to “intrinsic gluons”, which exist for a long time scale in the wave function
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of the hadronic eigenstate. It has a different physical origin from the “extrinsic gluons” originating

in the pQCD parton splitting process, such as triggered by an external hard collision.

Thus, in order to evaluate the full gluon distribution, which includes both intrinsic and extrinsic

contributions, one needs to take into account the gluons generated from splitting processes, such

as q → qg and g → gg, in the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution

equations of pQCD [39–41]. Following this standard procedure, the parton distributions at a

high scale µ are determined by the input distributions at a lower initial scale µ0, as long as

QCD perturbation theory remains valid within the chosen range of scale evolution. Since QCD

is flavor-blind, the gluon distribution only mixes with the flavor-singlet combination of the quark

distributions. At the input scale µ0 around 1GeV, we can neglect contributions from intrinsic

heavy quarks, and thus the flavor-singlet quark distribution at the initial scale corresponds to light

quarks. For the proton, we take the quark distributions obtained in Refs. [5, 49] and for the pion,

the flavor-singlet twist-2 and twist-4 Fock state contributions obtained in ref. [9], although the flavor

separation is not uniquely determined in this case [1]. The numerical results are computed with

the hoppet toolkit [56] at next-to-next-to-leading order, with the dominant uncertainty arising

from the choice of the initial scale µ0 = 1.06±0.15GeV. As shown in ref. [1], the result agrees well

with the full gluon distribution extracted from global analyses [57–59] for the proton and [60, 61]

for the pion. In Fig. 1, we show the leading-twist τ = 4 intrinsic gluon distribution in the proton

at the hadronic scale µ0, obtained from (5), together with the evolved predictions at µ = 2GeV

and 10GeV.

10−4 10−3 10−2 10−1 100

x

10−1

100

101

x
g

(x
,µ

)

µ = µ0

µ = 2 GeV

µ = 10 GeV

FIG. 1. Gluon distribution function in the nucleon xg(x) at µ = 2 GeV (blue), and µ = 10 GeV (magenta)
using DGLAP evolution from the initial hadronic scale µ0 (black). The uncertainty band stems from the
initial scale uncertainty µ0 = 1.06± 0.15GeV.
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FIG. 2. The gluon density x g(x, µ) in the proton at the scale µ = 10 GeV. Magenta: numerical result
from the DGLAP evolution of the intrinsic gluon distribution in [1], black: leading terms of its Laurent
expansion in the in the interval 10−4 ≤ x ≤ 1.6× 10−4 (indicated by an arrow). From the functional form
(10) it follows that 1−αP (0, µ) is the slope of the linear approximation in the log-log plot. The uncertainty
band corresponds to the initial scale uncertainty.

Since Eq. (5) describes the gluon distribution in the full range of x, it is plausible to assume that

it will maintain its functional form when continued to higher scales, including its scale dependence.

Thus we write

x g(x, µ) =
∑
τ

1

N τ
(µ)cτ (µ)w

′(x, µ)[1− w(x, µ)]τ(µ)−2w(x, µ)1−αP (0,µ), (9)

where the scale-dependence in µ can arise from several sources: the normalization Nτ (µ), the

Fock expansion coefficient cτ (µ), the rescaling function w(x, µ), a scale-dependent effective twist

τ(µ), and a scale-dependent Pomeron intercept αP (0, µ). At first sight, it appears intractable to

disentangle the scale dependencies arising from these different origins, but fortunately, the small-

x behavior is determined exclusively by the intercept αP (0, µ), and therefore the latter can be

extracted unambiguously.

Making a Laurent expansion of log
(
x g(x, µ)

)
, Eq. (9), in powers of 1/ log x,

log
(
x g(x, µ)

)
=

(
1− αP (0, µ)

)
log x+B(µ) +O(1/ log x), (10)

we obtain the Regge intercept from the expression 1 − αP (0, µ), the factor of the leading log x

term in (10). The next term B(µ) does not enter explicitly into our analysis. Therefore, the

normalization of the gluon component of the gravitational form factor does not affect our result

for 1 − αP (0, µ). The independence of our analysis on B(µ) also implies the independence of our
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results on the specific form of the universal function w(x), since w(x) → x in the limit x→ 0.

As a specific example of the procedure used to extract the scale dependence or the Pomeron

Regge intercept, the numerical results for log
(
x g(x, µ)

)
obtained in ref. [1] from the pQCD evolu-

tion of the intrinsic gluon distribution is compared in Fig. 2 with the first two terms of its small-x

Laurent expansion (10) at the value µ = 10 GeV. The value of the Pomeron effective intercept

at a given scale µ, namely 1 − αP (0, µ), is the slope of the linear approximation in the log-log

plot in Fig 2. The value of the second term in (10), B(µ), is also determined numerically from

the perturbative evolution of gluon distributions. Its actual value has, however, no relevance for

the present analysis. In Table I we specify the values of 1 − αP (0, µ) at different evolution scales

obtained from the expansion (10) in the range 0.0001 ≤ x ≤ 0.00016. We also list in Table I the

gluon component of the proton and pion gravitational form factors, Ag(t = 0, µ),

Ag(0, µ) =

∫ 1

0
dxxg(x, µ), (11)

for the leading twist τ = 4 and τ = 3 respectively, which is the momentum fraction carried by the

gluon at the scale µ. The uncertainty in the choice of the starting point of the evolution mainly

affects the x-independent term B(µ) in the expansion (10); this has minimal affect on the leading

term linear in log x and is thus not relevant for the present analysis.

TABLE I. The values of the gluon component of the proton and pion gravitational form factors, Ag
p(0, µ)

and Ag
π(0, µ), and the effective Pomeron intercept 1 − αP (0, µ) are indicated for different scales. The first

row corresponds to the initial hadronic scale µ0 = 1.06± 0.15GeV.

µ (GeV) Ag
p(0, µ) Ag

π(0, µ) 1− αP (0, µ)

µ0 0.225± 0.014 0.429± 0.007 -0.08

2 0.318± 0.020 0.464± 0.009 −0.097± 0.018
5 0.372± 0.015 0.481± 0.006 −0.234± 0.018
10 0.390± 0.012 0.482± 0.005 −0.292± 0.017
20 0.402± 0.010 0.482± 0.004 −0.336± 0.016
50 0.413± 0.008 0.482± 0.003 −0.381± 0.015
100 0.419± 0.007 0.482± 0.002 −0.407± 0.015

III. SCALE DEPENDENCE OF DIFFRACTIVE PROCESSES

Diffractive processes, in which the scattered particle keeps its quantum numbers, are dynam-

ically described in Regge theory [62] by the exchange of particles with the quantum numbers of
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the vacuum, i.e., by the Pomeron with trajectory αP (t). According to the optical theorem, the

total inclusive cross section σtot of the reaction is proportional to the imaginary part of the elastic

forward scattering amplitude, and therefore its high energy dependence is determined by the value

of the Pomeron trajectory at zero momentum transfer αP (0),

σtot ∼ sαP (0)−1, (12)

where s is the center of mass (CM) energy square of the colliding particles. The high energy

behavior of inclusive hadron cross sections is well described by a hypercritical Pomeron [28], with

intercept αP (0) = 1.08. We note that the resulting high energy behavior is ultimately incompatible

with general principles of quantum field theory [63], and therefore unitarity corrections (Regge cuts)

are necessary in order to modify the behavior at extremely high energies.

The lepton-hadron scattering process at the lowest order of the electromagnetic fine structure

constant αem ≈ 1/137 can be viewed as the interaction of a virtual photon γ∗ and the hadron

h, as illustrated in Fig. 3. In such processes, the amplitude depends on the photon virtuality,

Q2 = −p2γ∗ , in addition to the total energy squared s of the photon-hadron system. This allows

one to introduce the dimensionless quantity xbj , the Bjorken variable [64],

xbj =
Q2

W 2 +Q2 −M2
h

, (13)

where s = (pγ∗+ph)
2 =W 2 andM2

h = p2h. In deep inelastic scattering (DIS), one identifies xbj with

the longitudinal light-front variable x = k+

P+ at leading twist. The x dependence of electromagnetic

scattering processes is a principal source of information about the inner structure and dynamics of

hadrons.

It is conventional to extract from the electron-hadron scattering cross section the structure

functions of the hadron. One of them, F2(x,Q
2), can be directly related to the total γ∗h transverse

cross section

σγ
∗h

T ≈ 4π2αem

Q2
F2(x,Q

2). (14)

In the region of 3.5 ≤ Q2 < 150GeV2 and x ≤ 0.001, the structure function can be fitted by a

single power [42, 43],

F2(x,Q
2) = c x−λP (Q2), (15)
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e0

e

�⇤

X

h

FIG. 3. The reaction e + h → e′ +X can be viewed as the total inclusive cross section of a hadron h and
an off-shell photon with virtuality Q2 = −(pe′ − pe)

2 = −p2γ∗ .

where

λP (Q
2) = 0.0481 log

(
Q2

Λ2

)
, (16)

with Λ = 0.292GeV. The relation (15) corresponds to an energy behavior of the total cross section

σγ
∗h

T ∼ sλP (Q2), (17)

where the power of s is definitely much greater than the value expected from a simple Regge picture:

From Eq. (16) it follows, for example, that λP (3.5GeV2) ≈ 0.18 and λP (150GeV2) ≈ 0.33.

In QCD, the simple two-gluon exchange between two color neutral hadrons yields a constant

cross section. In contrast, the exchange of a gluon ladder leads to short-distance power behavior.

At the lowest order in the strong coupling αs one obtains [33–35]

αP (0)− 1 =
12αs

π
log 2 ≃ 2.65αs, (18)

but the next-to-leading order corrections are very large [65, 66]. One can therefore apparently

conclude that the gluon-ladder approximation in pQCD yields a Pomeron trajectory with an in-

tercept much greater than the one obtained from hadron phenomenology. Motivated by this result

and the Q2 dependence of electromagnetic diffractive processes, Donnachie and Landshoff [36]

introduced a perturbative BFKL-Pomeron with an intercept αBFKL(0) = 1.42, in addition to
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the“nonperturbative” Pomeron with intercept αP (0) ≈ 1.08. By following this procedure, the

full structure function at small x, its specific heavy flavor contributions, as well as the electropro-

duction of vector mesons, could be well described [29].

As noted above, the energy dependence of the measured total virtual-photon-proton cross section

increases with Q2 as sλP (Q2). This increase could be directly explained by a Q2-dependent Pomeron

intercept,

αP (0, Q)− 1 = λP (Q
2). (19)

The analysis of the gluon distribution obtained in ref. [1] directly supports such a concept. As

emphasized above, the perturbative evolution of the intrinsic gluon distribution, together with

the flavor-singlet quark distribution at the initial scale, provides a good description of the full

gluon distribution without any additional input. There is no sign of an additional independent

contribution from perturbative QCD. This makes the conventional assumption of two Pomerons, a

soft one due to the intrinsic gluon distribution and a hard one due to perturbative contributions, less

convincing. We therefore postulate that there is only a single Pomeron αP (t, µ), which manifests

itself at hadronic scales µ ≃ 1 GeV as the soft Pomeron with an intercept at t = 0 about 1.08,

but that the intercept is shifted by short-distance QCD interactions to larger values. Such a

scale-dependent Pomeron intercept is fully compatible with the fundamental principles of Regge

theory [38].

In Fig. 4 we show the values of αP (0, µ)−1 deduced from the fit (10) to the small x behaviour of

the gluon distribution functions of the proton and the pion at µ = 1.06, 2, 5, 10, 20, 50 and 100GeV;

the full circles refer to the proton, the open ones to the pion. A logarithmic fit for the proton values

at µ = 1.06, 3, 5, 10 and 20GeV leads to

αP (0, µ)− 1 = C log

(
µ

µ0

)
+ 0.08, (20)

with C = 0.089 ± 0.003 for µ0 = 1.06 ± 0.15GeV. The result is displayed as a red solid line in

Fig. 4; the dashed red line is the extrapolation up to µ = 100 GeV .

Measurements [67, 68] of the proton structure function F2(x,Q
2) cover the Q range up to

12.5GeV. The blue curve in Fig. 4 is the fit (16) to the proton structure function F2(x,Q
2) given

in ref. [42]. In order to compare the result of this paper with the parametrization [42] of the

x-dependence of the structure function F2(x,Q
2), Eq. (16), one has to relate the renormalization
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−

1

FIG. 4. The Pomeron intercept αP (0, µ)− 1 extracted from the gluon distribution functions of the proton
and the pion compared with the measured proton structure function. Black circles: values extracted with
the Laurent expansion (10) from Eq. (5) at µ = 1.06, 2, 5, 10, 20, 50, and 100 GeV for the proton and empty
circles for the pion; red curve: linear fit from the points between µ = 1.06 and µ = 20 GeV (the dashed part
is the extrapolation to µ = 100 GeV); blue curve : λP (Q

2) from the fit (16) of the proton structure function
F2(x,Q

2) [42] with the subtraction point ΛQ shifted to 0.461 GeV, such that λP (1.06
2) = 0.08. The blue

band represents the experimental uncertainty.

scale µ in the gluon distribution function x g(x, µ) to the photon virtuality Q. This is done by

introducing a “hadronic scale” Q0 for the photon virtuality such that λ(Q2
0) = 1.08. This leads to

the relation Q = 0.633µ. It should be noted, that the logarithmic slope of λ(Q2), the measure for

the scale dependence of the Pomeron intercept, is not affected by this choice.

As can be observed in Fig. 4, there is good agreement between the energy dependence of the

intercept derived from the evolution of the intrinsic gluon distribution of the proton and the results

derived from the total proton structure function F2. This agreement is not unexpected, since for

small x-values and Q-values above the hadronic scale, the structure function is dominated by the

gluon distribution. Yet, since the theoretical value for the gluon distribution at high scales was

obtained by the evolution of the intrinsic gluon distribution from the hadronic scale, this result

strongly supports the assumption that there are not two Pomerons, but only one, where the values

of its intercept (and presumably of its slope) are modified at large photon virtuality by pQCD

interactions.

One would expect that the intercept derived from the gluon distribution function of the pion

has the same value as that derived from the gluon distribution function of the nucleon. We will

discuss this in Sec. IV.
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pomeron pomeron
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a) b)

FIG. 5. Diffractive γ∗-hadron scattering (a) and diffractive electroproduction of vector mesons (b). The
photon dissociates into a quark-antiquark pair; the lifetime of this pair is long compared to the interaction
time. The scale is set by the decay width of the q − q̄ pair.

IV. FURTHER ARGUMENTS FOR A SINGLE POMERON

In this section we review earlier arguments for a single, but scale-dependent, Pomeron trajectory.

We note that a Pomeron with scale-dependent parameters has been discussed qualitatively on the

basis of holographic models in refs. [37, 69]. More recently, a quantitative investigation has been

performed in ref. [38].

The scale dependence of diffractive cross sections can also be observed in diffractive production

of vector mesons.1 In such processes, the photon dissociates into a quark-antiquark pair, which

interacts with the hadron by Pomeron exchange, as illustrated in Fig. 5 (b). The dissociation

time at high energies can be shown [70] to be much larger than the interaction time. The scale

dependence can enter here through both the photon virtuality and the quark-pair mass. In the

case of photoproduction of ρ mesons, the intercept is identical to the hadronic one: αP (0) ≈ 1.08.

The intercept increases to about 1.2 at Q2 = 30GeV2; for the photoproduction of J/ψ mesons,

it is around 1.17 and for Υ mesons, it is around 1.25 [67, 68]. Another possibility for observing

the scale dependence of diffractive processes is to identify the heavy-flavor contributions to the

structure function F2(x,Q
2), which increase faster with energy than the light-flavor contributions;

see e.g. ref. [71].

1 In photoproduction processes the minimum value of momentum transfer is given by t ≤ tm =

− 2M4
V

s

(
1 +O

(
M2

V
s

))
where MV is the mass of the produced meson and

√
s the center of mass energy. For

high energy processes the value of tm is very close to zero. Henceforth we always refer to αP (tm, µ) when dis-
cussing the intercept of vector meson production processes.
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As mentioned above, in the usual Regge approach the scale dependence of diffractive processes

is explained by the presence of two Pomerons with different intercepts [36]: one at 1.08 and one

around 1.42. If this is the case, the contribution of the Pomeron with the larger intercept would

become more dominant with increasing energy; therefore the slope of the energy dependence would

increase with increasing energy leading to a convex dependence of the cross section on energy. Such

a behavior could not be excluded by measurements at the DESY storage ring [67, 68]; however,

the photoproduction data at the LHC tends to exclude this behavior, favoring a global description

by a single Pomeron with a scale-dependent intercept.

The integrated cross section for the reaction γ+p→ J/ψ+p has been measured for total center

of mass energies W up to 7 TeV. Within the range covered by the HERA data [67, 68] there is no

indication of a convex energy dependence and a straight linear fit corresponding to an intercept

of αP (0, µ) − 1 = 0.17 can describes the data well. Including the new photoproduction data at

the LHC [44–46] a fit with two separate Pomerons is practically excluded, whereas the behavior

described by a single Pomeron with a scale dependent intercept is valid up to the TeV region. A

similar situation prevails for the photoproduction of Υ mesons [47]. In these two cases the hard

scale is not introduced by the virtuality of the photon, but by the masses of the produced heavy

quarks.

For the total inclusive cross section γ∗+p→ X one can directly use the photon virtuality as the

scale, although a more precise identification is more complex. In ref. [38] a connection was derived

between the transverse size of the scattered object and the relevant scale for the Pomeron intercept.

Following this the intercept values was obtained as 1.17 for J/ψ photoproduction and 1.25 for Υ

production, in fair agreement with the data. This dependence of the Pomeron parameters on the

size of the scattered objects could also explain the difference of the Pomeron intercept between the

proton and the pion which follows from the gluon distribution function (see Fig. 4) . One could

indeed expect, that the effective scale for a pion is higher than that for a proton, since the pion is

the smaller object. At very high scales, corresponding to high virtuality processes, this difference

is supposed to vanish, which is supported by the theoretical results shown in Fig. 4.

In order to obtain information about the scale dependence of the Regge slope one has to study

the t-dependent generalized gluon distribution. One can make, however, some general remarks.

Since the Regge trajectory for time-like t values in the resonance region can be fixed by observable

resonances, the linear slope in this region must be approximately independent on the scale. In order

to have at t = 0 a value determined by the scale, the trajectory can therefore be nonlinear for all t

values. In Fig. 6 a plausible scenario for Pomeron trajectories at different scales is presented. In the
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FIG. 6. Scenario for Regge trajectories at different scales, from [38]. The solid line is the proposed
trajectory for diffractive scattering of light hadrons or photoproduction of ρ mesons; the dashed line is the
trajectory for diffractive photoproduction of J/ψ mesons, and the dotted line that of Υ mesons. The scale
is set by the transverse extension of the meson wave function. These trajectories are in agreement with
experiments up to LHC energies.

hadronic region (t ≳ 1.5GeV2) the trajectory is fixed by its hadronic resonances, whereas in the

scattering and production region (t < 0) it can depend on the scale, fixed, e.g., by the transverse

extension of the electroproduced object or the virtuality of the scattered photon.

As can be seen from Fig. 6, the increase of the intercept can reduce the trajectory slope for

increasing scales. Such a decrease with increasing scale has been obtained qualitatively in the

gauge/gravity dual model in ref. [37]. It is also in accordance with the two-Pomeron approach [29,

36], where the hard Pomeron has a significantly smaller slope than the soft one. In ref. [38] the

scale dependence of the Pomeron slope has been quantified. It has also been shown that at large

space-like momentum transfer t, the trajectory αP (t) of the Pomeron approaches asymptotically a

negative integer in order to analytically match the power-law behavior of the scattering amplitude

at fixed t/s; i.e., at fixed CM angles [72].

For the analysis of the Pomeron intercept, only the gluon distribution function (5) at t = 0

enters. The same procedure, however, could also be applied to obtain the generalized gluon distri-

bution function and Pomeron trajectory for non-vanishing momentum transfer t [5]. In this case

the full Pomeron trajectory αP (t, µ) enters, and we are confronted with the problem of maintain-

ing the scale invariance of the gravitational form factor at all t values. The full gravitational form

factor is an observable quantity, although the gluon and the quark components are individually

scale dependent; only their sum is scale and renormalization scheme independent. In ref. [1], the
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scale dependence of the gluon gravitational form factor is encoded in its Fock state normalization,

cτ (µ), which is equal to the gluon longitudinal momentum using our normalization conventions.

It is compensated by the scale dependence of the longitudinal momentum of the quarks by the

momentum sum rule. We will not study here the delicate cancellations which are required between

the quark and gluon components in order to maintain the scale invariance of the full gravitational

form factor, but which are needed in order to compute the scale dependence of the Pomeron slope

in terms of the scale-dependence of the Pomeron intercept.

V. SUMMARY AND CONCLUSION

We have studied the scale dependence µ of the Pomeron trajectory αP (t, µ), which controls

small-x diffractive processes, relating it to the evolution of the intrinsic gluon gravitational form

factor obtained in ref. [1] in the framework of holographic light-from QCD, together with the

constraints imposed by the Veneziano model. Our analysis assumes that the functional form of the

gluon gravitational form factor is not modified by perturbative QCD evolution from the hadronic

initial scale, where it is normally defined, to higher virtuality scales. This assumption is based

on the observation that the application of pQCD evolution to the intrinsic gluon contribution

indeed yields the full gluon distribution at all scales [1]; thus no additional perturbative Pomeron

needs to be introduced. This assumption is also consistent with the observed scale dependence

of diffractive processes, since the evolution of the gluon distribution leads to a scale-dependent

Pomeron intercept. This critical observation quantitatively explains the Q2 dependence of the

proton structure function F2(x,Q
2) with a single (unified) scale-dependent Pomeron exchange,

and it also constitutes a basis for the observed scale dependence of diffractive electroproduction

of vector mesons. Thus the nonperturbative “soft” Pomeron with an intercept 1.08 [28] and the

perturbative “hard” BFKL Pomeron [33–35] merge into a single Pomeron with a scale-dependent

intercept. This scale dependence may seem unconventional, but it is perfectly compatible with the

foundations of Regge theory [38], and it is conceptually satisfying.

The results presented in this article illuminate the essential scale dependence of the Pomeron

trajectory underlying high energy, high virtuality processes, which in turn, provides a unified

framework for describing both the hard BFKL and soft Pomeron regimes.
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