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Abstract

We calculate the spin-averaged generalized parton distributions (GPDs) of sea quarks in the
proton at zero skewness from nonlocal covariant chiral effective theory, including one-loop con-
tributions from intermediate states with pseudoscalar mesons and octet and decuplet baryons.
A relativistic regulator is generated from the nonlocal Lagrangian where a gauge link is introduced
to guarantee local gauge invariance, with additional diagrams from the expansion of the gauge link
ensuring conservation of electric charge and strangeness. Flavor asymmetries for sea quarks at zero
and finite momentum transfer, as well as strange form factors, are obtained from the calculated

GPDs, and results compared with phenomenological extractions and lattice QCD.



I. INTRODUCTION

Reconstructing the three-dimensional structure of the nucleon and other hadrons in terms
of their fundamental quark and gluon (or parton) constituents is one of the defining prob-
lems in modern nuclear physics, and one which is a major driver of experimental programs
at facilities such as Jefferson Lab and the future Electron-Ion Collider (EIC) [1, 2]. A cen-
tral element of this endeavor is the extraction of generalized parton distributions (GPDs),
which, as Fourier transforms of nonforward (and nondiagonal) matrix elements of nonlocal
operators, contain rich information on the partonic structure of the nucleon. GPDs interpo-
late between exclusive form factors, when integrated over parton momentum fraction x, and
parton distribution functions (PDFs) in the forward limit, and contain considerably more

information about the nucleon’s internal structure than do PDFs or form factors alone (for

reviews of GPDs see, e.g., Refs. [3, 4]).

The mapping of nucleon GPDs requires a comprehensive program of experimental studies
of hard exclusive processes, such as deeply-virtual Compton scattering (DVCS) and hard
exclusive meson production (HEMP), over a broad kinematic range. While theoretical tools
have been developed to formally factorize GPDs from the process-dependent, hard scat-
tering amplitudes [5-7|, the reconstructed of the full functional dependence of the GPDs,
including their flavor and spin dependence, from limited experimental data is a formidable
challenge [8]. Experimental data were obtained at the HERA collider by the H1 [9, 10] and
ZEUS [11, 12] collaborations and by the HERMES [13-15] fixed target experiment, as well
as by COMPASS at CERN [16, 17]. A rich program of DVCS and HEMP measurements is
also underway at Jefferson Lab with the 12 GeV energy upgraded, high-luminosity CEBAF

accelerator [18-21].

In addition to the experimental efforts, considerable progress has also been made on
the theoretical front. Because of the complex, nonperturbative properties of QCD, it is
extremely challenging to calculate GPDs from first principles. Since parton distributions
and other light-cone correlation functions are defined in Minkowski space, it has also been
very difficult to simulate GPDs on the Euclidean lattice. Recent breakthroughs, however,
have enabled the x dependence of PDFs to be inferred from matrix elements of nonlocal
operators on the lattice, in the form of quasi-parton distributions using the large momentum

effective theory [22], pseudo-PDF's [23], and lattice good cross sections [24, 25].
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As with PDFs, the simulation of GPDs on the lattice is still at a relatively early stage
of development. Much of the work on GPDs has focused on finding effective ways to
parametrize their dependence on kinematic variables [26]. From more phenomenological
perspectives, characteristics of GPDs have been studied within nonperturbative approaches,
such as the MIT and cloudy bag models [27, 28], the constituent quark model [29, 30], the
NJL model [31], the light-front quark model [32, 33], the color glass condensate model [34],
the chiral quark-soliton model [3, 35], and the Bethe-Salpeter approach [36, 37].

In addition to the phenomenological models, more systematic approaches using heavy
baryon and relativistic chiral effective field theory (EFT) have been widely used to study
hadron structure at small momentum transfer [38, 39]. Historically, most formulations of
EFT have been based on dimensional or infrared regularization. Recently, a nonlocal chi-
ral effective Lagrangian was proposed [40-42], which makes it possible to extend the range
of momentum transfers over which hadron properties can be described. The method is a
relativistic extension of finite range regularization, which has been applied extensively to
extrapolate lattice QCD calculations of quantities such as the vector meson mass, mag-
netic moments, magnetic and strange form factors, charge radii, and moments of PDFs and
GPDs [43-51] from unphysically large quark masses to the physical region. The nonlocal
interaction generates both the regulator which makes the loop integral convergent and the
momentum dependence of the form factors at tree level. The electromagnetic and strange
form factors of the nucleon obtained in this approach have been found to be in excellent
agreement with experiment up to values of the four-momentum transfer squared of ~ 1 GeV?
[41, 42]. Recently, the method has also been applied to calculate the d — @ flavor asymmetry
in the proton [52], the strange—antistrange PDF asymmetry s — 5 [53-56], and sea quark

Sivers function [57] in the proton.

In this paper we apply the nonlocal chiral effective theory for the first time to GPDs of
sea quarks in the proton. The study is timely, given the ongoing experimental program of
DVCS and HEMP measurements at Jefferson Lab, and plans for future studies of high-Q?
exclusive reactions at the EIC. We begin in Sec. II by introducing the local and nonlical
chiral Lagrangian, including a derivation of the currents which couple to the external vector
field. The one-loop nucleon — meson plus octet and decuplet baryon splitting functions
are derived in Sec. III from the full set of rainbow, Kroll-Ruderman, tadpole, and bub-

ble diagrams. Generalizing the one-dimensional splitting functions relevant for PDFs, the
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splitting functions for nonforward GPDs include dependence on the momentum transfer
squared, in addition to the dependence on the longitudinal momentum fraction variable.
Taking moments of the nonforward splitting functions and expanding in powers of the pseu-
doscalar meson mass, in Sec. IV we derive their nonanalytic behavior, which serves as a
model-independent constraint on phenomenological models. The convolution formalism is
discussed in Sec. V, where we present explicit expressions for the unpolarized electric (H)
and magnetic (E) GPDs in terms of the splitting functions and GPDs of the pseudoscalar
mesons and intermediate state baryons. Numerical results are presented in Sec. VI for the
nonperturbative sea quark contributions to the H and £ GPDs for light quark and strange
flavors, interpolating the corresponding constraints from the sea quark contributions to
PDFs and form factors. Finally, Sec. VII summarises our results and anticipates future
extensions of this analysis. Explicit formulas for splitting function integrals are compiled in

Appendix A.

II. THEORETICAL FRAMEWORK

In this section we begin with introducing the basic chiral Lagrangian which is used to
define the theoretical basis of our calculations, as well as its nonlocal generalization which
generates the ultraviolet regulator for loop integrals in a natural way that respects Lorentz
and gauge invariance. The nonlocal formulation relevant for forward PDFs was presented in
Refs. [55, 56]; here we generalize the formalism to the case of nonforward matrix elements

needed to compute GPDs.

A. Local chiral effective Lagrangian

We begin by introducing the lowest-order local Lagrangian of chiral SU(3),xSU(3)r
effective theory that describes the interaction of pseudoscalar mesons (¢) with octet (B)

and decuplet (7},) baryons [58, 59,

L =Tr[B(il) — Mp)B] — gTr [By"v5{u,, B}] — gTr [BY"v5[u, B]]

=ik . v N H_i‘ N y
£ T, (i7" Do = Moy )T* = 5 (T) 795 (wa) ! (T4

. 2
_ g[e”"“ Tjjm@W(uy)UBmk +He] + fZTr [D,U(D*U)', (1)



where Mp and My are the octet and decuplet masses, D, F', C and H are the baryon-meson
coupling constants, and f = 93 MeV is the pseudoscalar decay constant. The octet—decuplet
transition operator ©*" is given by

1
oM = g — (Z + 5)7“7”7 (2)

where Z is the decuplet off-shell parameter, chosen here to be 1/2 [60]. We define the
tensors ¥ = 1[y#,7"] = —io" and ¥ = L{y#" 4*}, and €7* is the antisymmetric tensor
in flavor space. The SU(3) baryon octet fields BY and decuplet fields /7% are represented
by the matrix

150, 1 +
ﬁZ + \/GA ) P
_ - 1y0, 1
= =0 _ 2
= = \/gA
and by symmetric tensors with components
TUL _ A++ 2 LAJF 7122 _ LAO 7222 _ A\
Y \/g ) \/§ ) )
T3 _ sz 7123 _ LE*O 7223 _ LE** (4)
3 ) 6 ) \/g )
183 _ LE*O 7233 _ LE*_
3 3
7333 _ O

respectively. The operator U is defined in terms of the matrix of pseudoscalar meson fields ¢,

U=u’ exp<z’\/?¢), (5)

where the matrix

\%7?0 + \/ién nt K+
¢ = T —\%WO +on K° (6)
- 570 2



represents the m, K and n mesons. The covariant derivatives of the octet and decuplet

baryon fields in Eq. (1) are given by [61, 62]

D,B=08,B+l,,B]— ¢<A0>u2 B, (7)
D, T7% = 9,T7" + (T, T,)7* — i(A%)vy, T7 (8)

[Tt 2

respectively, where U2 denotes an external singlet vector field, A\° is the unit matrix, and
(---) represents a trace in flavor space. For the covariant derivative of the decuplet field,

we employ the shorthand notation
(Fm Tl/)ijk = (Fuﬁ Tijk + (Fuﬂ Trflk + (Fuﬁ T:ijl- (9)
For the meson fields, the covariant derivarive is given by
DU = 9,U + (iUX* —iXU) vy, (10)

The mesons couple to the baryon fields through the vector and axial vector combinations

]_ Z a a a
r,= 3 (ud,u’ + uld,u) — 3 (uru + ufA*u) Y (11)
u, =i (ufdu — udul) + (WX u — urul) v, (12)
where vj; corresponds to an external octet vector field, and A* (a = 1,...,8) are the Gell-

Mann matrices.

While the unpolarized twist-two GPD H receives contributions for each quark flavor
from the lowest-order Lagrangian in Eq. (1), to compute the effects of meson loops on the
magnetic GPD E requires an additional contribution to the Lagrangian for the magnetic
interaction, which enters at a higher order. The magnetic Lagrangian for the octet, decuplet
and octet-decuplet transition interaction is given by [41, 42, 63—65]

1 >, v >, v D, v +

Lons = 37 (T [Bo™ { £t BY] + 2T [Bo™ [FL, B]] + 5T [Bo™ B] Tr [F] )

i o ~ _ .
+ mCle,uu (Eijk(Aq)ﬁBM”%(Ty)klm + P O)UT Vimy V5 B; )
B

) -

+ i T 0 i) (T (13)




where we adopt the notation ¢y, ¢ and c3 for the octet baryon interaction from Ref. [63] and
¢4 for the octet-decuplet transition, which corresponds to the constant pz in Refs. [41, 42],
and following Refs. [41, 42] denote by FJ the coupling for the decuplet interaction. In
Eq. (13) the electromagnetic interaction with the individual quark flavors is introduced by
the field strength tensor

Ff = (uTFgVAqu +uFLAul), (14)

N | —

where Ff, = 0,v] — 9,vf for the external field v interacting with the quark flavor ¢ =
u,d,s with unit charge, and the matrix A, is the diagonal quark flavor matrix defined as
Ay = diag{dqu, dqd, 0¢s }. At this order, the magnetic Lagrangian L., generates the follow-
ing quark flavor decomposition for the proton anomalous magnetic moment, given by the

proton’s Pauli form factor Fj(t) at t =0,

FY(0) = 1+ s+ 05, (15a)
FY(0) = cs, (15b)
FPO0) = ¢ — ¢5 + c5. (15¢)

Since at tree level there is no strange quark contribution to the proton, we take c3 = co —¢;.
Furthermore, from SU(3) symmetry one also obtains relationships between the octet and

decuplet constants [41, 42],

Cy = 461, (16&)
FI' = ¢; + 3c,. (16b)

Within the flavor SU(3) framework, the magnetic moments of the octet and decuplet
baryons, and the transition moments between the octet and decuplet baryons, can be ex-
pressed in terms of quark magnetic moments, f,. For example, for the proton and neutron

one would have p, = % oy — % pa and p, = % Jhd — % [Ly, Tespectively, while for the A™* baryon

HA++ = 3y

If we include the higher order magnetic Lagrangian L,,,s in Eq. (13), for consistency in
the power counting we also need to consider the next-to-leading order Lagrangian for the

baryon-meson interaction. Generalizing Eq. (1), and using the notation from Ref. [66], we
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therefore include the additional baryon contribution involving two derivatives [66]
i _ _ _
o = 50" (b T [Buy] T [, B) 4 bao Tr [ B[y w, ), BY] + by Tr [ B[y ), B]] ). (17)

where the values of coefficients have been determined to be by = 1.36 GeV~!, by =
1.24 GeV™', and b;; = 0.46 GeV~! [66]. Expanding the Lagrangians £ in Eq. (1) and
L', in Eq. (17), the lowest order baryon-meson interaction involving the proton can then
be written as
(D+ F) <7u 0 _ (D—3F) _
— 2, + V2 pyrysn d 7T+> — ——p Y sp 0
2F P V5P Oy Py s Oy \/ﬁf Py Ysp Ol
D—-F D+ 3F) _
( ) ( )p 7“'75A a,uKO
2f Vi2f

_~  (—92pOVFAT 0 _ “QVHEAD 9+ _ A+t 9 -
+\/ﬁf< 2pO"FA O, V250 A, 0,m +v6p0O Ao,

PO O, K" + V2Ot 0,K° + He)

£int =

+ (V257"955F 0K + prs =" 0K ) -

+ %ﬂpvﬂp[(ﬁ@m‘ — 7 0m) + 2(KT0, K~ — K 9,K") + (K°0,K° — KO@MKO)}

iﬁo-li”p<2(b10 + b11)8u7r+8y7r_ + (4b11 + bg)aMK+ayK_ —+ 2(b10 - bll)(()MKO(")l,l_(()) .

+f2

(18)

For the interactions with the external field v, from the Lagrangian £ in Eq. (1) one can

obtain the vector current

JI = %Tr [Bv“ [u/\“uT + uf X%, B] + gTr [Bv“% {u)\auT — ul A\, BH

+ gTr [B"}/'u”}/g) [uX‘uT — ufAu, B] ]

1—
+ 5 T,y " (uX*u’ + u'\u, T,) + g [T,0""(uXu’ — u'\*u)B + H.c.]
2
+ fZTr (0" U (UTiA* —iX*UT) + (UiA* — iA*U)o"UT). (19)

For the SU(3) flavor singlet case, the current coupling to the external field v}, can be written
Ji = () Tr[By*B] + (\°) T, v"*" T,. (20)

The magnetic current coupling to the external field vf can be obtained from the magnetic



Lagrangian in Eq. (13),

Oy
Somag = 1M <C1Tng“ {uthgu +uru’, B} + e;TrBo™ [ufAgu + ulu', B]
Bghv T 1 FT T \abc _uo a v\ ebc
+ c3TrBo" B Tr(u' Aju + ulju )) ~ 5 a (( )T (\)(TY) >

i
- 4M4 (079" — 3”9“”)<6ijk(/\ )i BLovsT™ + 6”'“(/\ Ve T ot o y5 BY" ) (21)
B
which satisfies current conservation, 9,,J}', ., = 0. The quark flavor currents can be written

in terms of the SU(3) singlet (a = 0) and octet (a = 3,8), and quark magnetic currents,

1 1

J{Z’ = g,]él + §J§L 2\/§JM + ijmag, (22&)
1 1 1

Jh = gJé‘ — —J?’f + mjg + JZmag’ (22b)
1

(]5 = §J6L — \/gju + Jsﬂmag (22C>

Using Egs. (19), (20) and (22), the quark flavor currents can be written more explicitly in

the form

_ — — 1
JE = 2pyFp + nytn 4+ AyPA + 22+7“E+ + 207"20 2f2 pYHp (7T T+ 2KTK™ )

+ 3L T PEALT 4+ 2R PRAY + DoAY 4 2577 et 4 PNSEED L
+i(r o't —atotnT) +i (K- O'KY — KT9"K ™)
i(D+F) _ i(D + 3F) _ i(D—-F
ALY \/§f )m“”ysmﬁ + iD 1 3F) NGoT, >m“’y5AK+ Co At ) 27 )
(\/_p O ATt 1 1 V2O AL 1t 4 O SO K 4 Hec. )

Pyt KT

\/_f
117 -t (Cl +02) +, - G—a = _uv
+ 4MB(9,,(pU p) {402(1 2f2K K~ ) o T ]—i— 2, 0, (nc*n)
3ca —2¢1 % c Nohs0) 4 2 5 (35 gt C2 0 g0
+—6MB 0, (Ao A)+2\/§M38V(Aa E)+M 0, (X2 Y )+2MB(‘9,,(ZU )

c X * *
+ {p(%%N“ — A0 + (1A% — 1AL — T (n D — s D)
4v/3Mp

\/g A * * 1_0 * *
— 5 A5t 0 — s 20) + 52 (WX On — 7“75&0)]

Fy
6Mr

0, |:3Z:+O'MVA++Q + QZIO‘“’AJFO‘ + ZZJ““AOO‘ + QE:FU’“’E*“‘ + EZOJWE*OQ

Y

(23a)



— — _ 1 .
‘]cllL = py'p + 2ntn + 28 AFET + 207”20 + AYHPA + 2—fz oY p (7T+7T_ — KOKO)
R Af BN 5 S 25 e

—i(rO*rT —ntotnT) + i(FOG“KO — KOG"FO)

i(D+F) _ + D -F) + 70
——psn T — ————py T K
V2f V2f
C
e <\/§ FOWAT 1 £ FOAY 1t 4 O KO ¢ H.c.)
V6 f
1 _w I —o c1+c _ c o
+ 4MB81,(pcr“ P) [(02 - cl)(2 — FK K0> + (1]6—22)7r+7r } + M—QB&,(no“ n)
3¢y — 2¢¢ X C2 =— _ Co =0 0 Ccy — 0
222G (Aot A) + —2-0,(5 oy + 0,(5 o0y — a,(Aa"'s
6 Mg ( ) Mg ( ) 2Mp ( ) 2v/3Mp ( )
iC4 _ _ [r—— o .
- & |Brrs A — 75 A%) + A(75A% — APy AL) — B (37557 — AT
WETT [p(v Y5 Vs AL ) + (s YEysAD) (Vs Y5 557)
\/g_ * * 1_0 * *
— 5 Ay Ok — P o0) — 32 (WY O — 7“752,,0)}
T
— L0, [, 0M A + 2B AR + BT AR 4 25 e 4 T s,
T
(23b)
_ _ _ 1 .
Jh =T Apst £ TR0 4 AP + 2F 'p (2KTK + K'K°)
+ S et SO G(KTOPK T — KoK ) —i(K 9K — K°9'K)
i(D—F)_ i(D—F)_ i(D+3F) _
4 AT T p e S RO L DT T pna YO et AT 0T sk A KCF
NGT; Y s T NeoT, Py s
1C
_ 5O Y Kt 2 pem st KO 4 H.c.)
\/ﬁf (p 1% p 1%
1 o _ —0 c1 + 3¢ _
+ W&,(})O’“ p) {QCQKJFK + (2 — 1)K KO} + (16—]\432)81,(/\0# A)
(co—c1) ., =+ (ca—c1) 4 = (=), =0
2 g (et ty + 22 g (g 2 T (B oy
+ TP (X' o )+ 2, (X o )+ 20, (X0 )
Z‘C4 v | =0 %0 *0 5 *— *—
i DO G S RN 3D SR EVIRE) S LR 31
NEIT { (Vs Vs X3) (Vs Vs EsT)
A T yins 7“7527)} )
F2T T _urys—a 0 0a T _prosta
- ay[za gsre 4 0 gmya T Gy ] (23¢)
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for the u, d and s quark flavors, respectively. As in Ref. [55], terms involving the doubly-
strange =%~ and Z*%~ hyperons and the triply-strange 2~ baryon do not couple directly to

proton states and not included here.

B. Nonlocal chiral Lagrangian

In this section we outline the generalization of the effective local chiral Lagrangian to the
case of nonlocal interactions. Taking the traces in Egs. (1), (13) and (17) in Sec. ITA, we

can write the local Lagrangian density in the form

£l (z) = B(x)(iv" P, — Mp)B(x) + % [P(2)7"75 B(2) Dud(x) + Hee ]

T (@) (970 D — Mry™) Ty () + S22 [5(2) 0™ T, () Do) + H.c]

+%@@ﬂ%@ﬂ@+”$fmmwmwkmwgmﬂmw+%m@wwﬂ
+ D a0 (0)2,0(0)(2,0) (2)
22 a v
Cm%rg mag
b e ple)a () El)ol0) (o) + {5 Bla)o™ Bla) Fufo)
+ ﬁé(w)v“’%T”(x)FM(w) — ZJTIT Ta(x)OWTO‘(x)FW(x) +een (24)

where the dependence on the space-time coordinate x is shown explicitly, and for the inter-
action part we show only those terms that contribute to the proton GPDs. The covariant

derivatives in Eq. (24) are given by

9,B(x) = 9, — icy ,(x)] B(z), (250)
2, (x) = 9, — ich o, (a)] T* (x), (25b)
Dub(x) = [0, — ie! ()] B(). (25¢)

where 7, is the electromagnetic gauge field, and e}, ef. and e‘é denote, respectively, the
quark flavor charges of the octet and decuplet baryons, B and T, and meson ¢. In the case
of the proton, for instance, one has the flavor charges e, = Qeg = 2, e, = 0, while for the
37* hyperon e¥, = 2e$, = 2, edEJr = 0, and similarly for the other baryons. For the pion

and kaon, the flavor charges are e, = —efr+ =1, e, =0 for all ¢, and e%, = —ef = 1,
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eiﬁ = 0, with the values for other mesons obtained by charge conjugation. The coefficients

CBos Crgy Cygty Clyts CR™, Ch, C7% and C;r:;g in Eq. (24) are given explicitly in Table I

for the various processes discussed in this work.

Following Ref. [55], we sketch here the derivation of the nonlocal Lagrangian from
Eq. (24). Details of the methodology used here can be found in Refs. [41, 42, 67-70]. The

nonlocal analog of the local Lagrangian (24) can be written as

Lm0 (1) = B(x)(i" D, — Mp)B(z) + T () (i7" Do, — Mry" )T, (2)

+ p(x) [%7“753@) + %@‘“’T,,(x)] _@M/d4a Gi(z,x +a)F(a)p(z + a) + H.e.
i;ﬁ’g’* pla)y"pl) / d'a Gi(x,x + a)F(a)p(z + a) 2, / d'b Gi(x + b, 2)F(b)o! (x + b)
o

%ﬁ(x)a“”p(x) Dy / d*a Gi(z,x + a)F(a)p(z + a) D, / d'b G4(z + b, 2)F(b)¢'(z + b)
mag - ~YMag C;lag

', v ZC >, v
+ g B0 B(a) Fu(w) + By aT" (0) Fuule) = 47

mag

C T
t e ]\ZZ 72 p(x)o™ p(x) / da / d*b Flu(2) Gz + b,z + a)F(a)F(b) ¢(x + a)¢' (z + b)
+ .@H(ﬁ(x)(@”gbyf(x) + e (26)

+

+

Tolx)o" T (x)F(x)

where the gauge link gg is introduced for local gauge invariance,

T

Gfa,s) = oxp | -iey [zt )] 1)

and F'(a) is the meson-baryon vertex form factor in coordinate space. Note that both the
nonlocal Lagrangian in Eq. (26) and the local Lagrangian in Eq. (24) are invariant under

the gauge transformations,

B(z) — B'(z) = B(z) exp [ie}; 0(x)], (28a)
Ty(x) = T (x) = T(x) exp [ief 0(x)], (28Db)
¢(x) = ¢/(z) = ¢(x) exp [ief ()], (28¢)

for the baryon and meson fields, and

() = A" (x) = " (x) + 0"0() (28d)
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for the electromagnetic field, where 6(x) is an auxiliary function.

The gauge link (27) can next be expanded in powers of the charge egﬁ,

1
Gi(x +b,x 4 a) = exp —z’e%(a—b)“/ dt&fu(m+at—|—b(1—t))]
0

=1+ 0G5 + ---

)

using a change of variables z# — x* 4+ a*t + b* (1 — t),

1
59; = — z’ei (a—b)’“‘/ dt fng#(x—l—at%—b(l —t)).
0

(29)

(30)

TABLE I. Coupling constants Cgg and Crg for the pB¢ and pT'¢ interactions, respectively, and

C(bd)f and C/

for the ppo¢! coupling, and the tree level magnetic moments C’glag, Cr}n a8 Cgl%g

Pt
and C’g‘(;g, respectively, for all the allowed flavor channels.

B p n DIRS >0 - A AX°
Cglag %Cl + C —%Cl %Cl + Co %Cl %Cl — C9 —%Cl \/L:;)Cl
T AT AT A’ A~ hIhns >0 )N
omes | 2py g 0 iy Lp 0 _1py

BT pAT A° DIRID s 3033+0 AX*0 bID S
Cgl;g —%04 —%04 %64 #504 %64 0
B¢ pm® nnwt YSTK° SOKT AKT
Cpy | 3(D+F) H(D+F) 5(D~F) §(D~F) —5(D+3F)
To Al Atra0 Attg— >t KO SOK+
1 1 1 1 1

Cro | —7C —C 7€ N P
oot | wrm KK’ KtK-
Cooi 2 2 1

st 4B+ biy) 4(biy — bio)  8biy + 2by
Odr::;g —5(01 + CQ) 0 —C9
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This allows the nonlocal Lagrangian £™°"°¢) in Eq. (26) to be further decomposed into free
and interacting parts, with the latter consisting of purely hadronic (,cﬁlr;‘;“b“)), electromag-
netic (L5, and gauge link (£2°"°7) contributions. The hadronic and electromagnetic

interaction parts of £M°"°) are obtained from the first term in Eq. (29), and given by

(nonloc) o x C’B C v 4CL a T a c
e (x)—p(){ 2 0sB() + L2 T()]/d F(a) 8,6(c + a) + He.
+ Zg’;f z)vp(x /d4 /d4b F(a ) [¢(x + a)8,0' (z 4+ b) — Ouo(z + a)¢' (z + b)]
ZC(/M)T cr’“’ 4 4 T+ a " T +a e
+ S pla) /d /de [0,z + @)0u6' (& + b) — Bz + a)0! ( + b)]
(31)
and
L0099 (7) = ey B(a)1* B(x) Fy(w) + b Tu(w)1"* T, (z) fa(x)
Fiel [0"(x)6 (z) — B(x)0" 6 (x)] ()
ie}pla) | B2 mrea) + 2 00T o >} [t F@ e+ o) + e
e C +
¢2f¢;¢ p(x)y"p(x /d4 /d4b F(a)F(b) ¢(z + a)d' (z + b)), ()
(W x)atp( 4 4 T +a f(x x
= pa)pla) [ [ F@F®) 0o + 00,6/ (2 + b)7, (o)
+ B B(a)o" Bla)Fyula) + fM B 28T () Fuola) = {1 Tal0) T(0) Ey )
C’mag
I P / d'a / &' F(a)F(b) 6(x + a)' (x + b) Fy (x), (32)

respectively. The second term in Eq. (29), which explicitly depends on the gauge link, gives

rise to an additional contribution to the Lagrangian density that can be expanded as

nonloc . _ C C v
(o) = —iehplo) | 2 97(0) + 1 071,

X /1 dt /d4a F(a)a" 0,(¢(x + a),(x + at)) + H.c.

+€¢2(;";¢T o)pla / dt/d4 /d4bF b) (a — by
x [¢(z + a)9,0 (z + b) — 0,0(x + a) o' (x + b)] A, (x+at +b(1—1t). (33)
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Finally, the quark current for the nonlocal theory can be written as a sum of two terms,
from the usual electromagnetic current obtained from Eq. (32) with minimal substitution,

J¥ s and from the additional term associated with the gauge link, §J¥,

5 fd4 nonloc) (y) 5 fd4 nonloc) (y)

Bl = LI E ) gy < I B )
where, explicitly,
T (@) = € By B(a) + e Tulah™ Ty w) + i€l [°6(0)6 () — 0(2)06 (z)]

— e} (/d4aF( ) p(x) [% 7“753(:5)4—%@“”@(%)} o(xr+a) + H.c.>

- oo [0 P@F®) parpa) o + )0 4

+ % / d'a F(a) , (p(x)o" p(x)) - SAHZ / d'a F(a) 8, (Ta(2)o" T(x))

+ T (3, (e 25T (0)) — 8 ()T (o)

2]\; a; / d‘a / a4 F(a)F(b) 0, (p(x)o™p(x)d(z + a)é'(x + b)), (35)

5]“ @e(b/ dt/d4aF

X0, <]5(a: — at) [CT YPysB(z — at) + % T, (x — at)]) oz + af) +H.c.

e¢2 o / dt / d'a / d'b F(a) F(b) (a — b)"

X {6p<p(x —at — bt)y’p(z — at — bt)¢ (z + (a — b)f))ng (z — (a— b))

-0 ( (x —at — bt)y*p(x — at — bt)¢' (x — (a — bt ))qb(:v + (a — b)t)}, (36)

with ¢ = 1—t. Compared with the local theory, Egs. (18) and (23), the nonlocal formulation
in Eqs. (31)-(36) includes the regulator function F'(a). In the limit where F(a) — 6™ (a),
which corresponds to taking the momentum space form factor to unity, the local limit can be
obtained from the nonlocal result. In the next section we will apply the nonlocal interaction
derived here to compute the hadronic splitting functions for protons transitioning to baryons

and pseudoscalar mesons.
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III. NONFORWARD SPLITTING FUNCTIONS

The GPDs for a quark flavor ¢ in a proton with initial momentum p and final momentum
p' are defined by the Fourier transform of the matrix elements of the quark bilocal field
operators 1, as

i, A,

/_oo gi TN g (GAN)h g (=3 A0) p) = a(p') [RH (2, ) + =57

Ei(x, &, t) |u(p),
(37)

where n,, is the light-cone vector projection of the “plus” component of momenta and A is a
dimensionless parameter. From Lorentz invariance, the Dirac (H?) and Pauli (E?) GPDs are
typically written as functions of the light-cone momentum fraction x of the proton carried

by the initial quark with momentum £, and the skewness parameter £, which are defined as

kt AT
p— _q p— —_—
p=h =i (38)
where
1
P = §(p+p) A=yp —p, (39)

are the average initial and final proton momenta and momentum difference, respectively.
The GPDs are also functions of the hadronic four-momentum transfer squared, t = A%. The
dependence of the GPDs on the fourth variable, typically taken to be the four-momentum

transfer squared from the incident lepton, Q?, is suppressed.

Integrating the H? and E? GPDs over z, one obtains the Dirac and Pauli form factors

for a given quark flavor ¢, respectively,

Ff’(t):/_ d H(z, €. 1), F§(t>:/_ de B9(z, &, 1), (40)

1 1

and summing over the quark flavors gives the nucleon Dirac, F}, and Pauli, F¥, form

factors,

=D e Fh(D) (41)

q

The combination of these form factors can generate the usual Sachs electric and magnetic
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form factors as

Gp(t)=F'(t) + 5 (), Gut) =F'(1) + I (1). (42)

4M?

In our calculation, we set £ = 0 and calculate the GPDs in the AT = 0 frame [71], in which

the hadron momenta are parametrized as
H + p- 1 /h + p- 1
p = <P aP ) _§AL>7 p- = <P aP ) §AJ_>7 (43)

where the momentum transfer A# is purely in the transverse direction.
In the application of our nonlocal EFT framework to GPDs, we need to compute the
nonforward splitting functions defined by the matrix elements of the hadronic level currents

derived in the previous section. The electromagnetic vertex is given by

1ot A,
2M

NGPING) = o) R0 + G Ou) = [ERTw, )
where the integrand f“(k) depends on the internal meson momentum, k. Defining the light-
cone momentum fraction of the target nucleon carried by the interacting hadron, y = k*/P™,
the Dirac-like splitting function f(y,t) and Pauli-like splitting function g(y, t) are related to
the vertex by

iotVA,

2M

W) [ ) + 5 ol 0 ute) = [T (- ) =T @)

One can easily verify that the integral of the splitting functions over y leads to the corre-
sponding form factors in (44).

The diagrams that are relevant for the calculation of the one-meson loop contributions to
GPDs are shown in Fig. 1. In the following we outline the calculation of the corresponding
splitting functions, beginning with the diagrams involving only octet baryons [Fig. 1(a)-1(1)],
and then presenting results for contributions with intermediate decuplet baryons. Since the
final results, after integration, for the latter are rather lengthy, we collect the complete

expressions for these in Appendix A.
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FIG. 1. One-loop diagrams for the proton to pseudoscalar meson (dashed lines) and octet baryon
(solid lines) or decuplet baryon (double solid lines) splitting functions: (a)—(c) octet baryon
rainbow diagrams, (d)—(g) octet baryon Kroll-Ruderman diagrams, (h)—(j) tadpole diagrams,
(k)—(1) bubble diagrams, (m)—(o) decuplet baryon rainbow diagrams, (p)—(q) octet-decuplet
transition rainbow diagrams, (r)—(u) decuplet baryon Kroll-Ruderman diagrams. The crossed
circles (®) represent the interaction with external vector field from the minimal substitution, filled
circles (®) denote additional gauge link interaction with the external field, black squares (W) repre-
sent the magnetic interaction in Eq. (13), and gray squares (M) denote the interaction in Eq. (17).
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A. Octet baryon intermediate states

Starting with the octet baryon rainbow diagram in Fig. 1(a), in which the external field

couples to the meson, the contribution of this diagram to the matrix element I'* in Eq. (45)

is given by
Chy [ Ak ~ i
It =ap ﬂ/ F A)— 2kT
(a) U(p) f2 (271')4 (% + A)’Yf) (k + )D¢(k T A) k
i ip—k+Mp) o~ k+
Fk)oly — — 46
S R R GL] Ct=d LG R
— row ZJ+VAV rbow

= 0l | 155 00+ g o ) u), (a7)

where the propagator factors Dy(k) and Dp(p) are defined as
Dy(k) = k* —m} + i, Dg(p) = p* — M3 + i, (48)

and my is the meson mass. The function F regulates the ultraviolet divergence in the loop
integration, and for simplicity is chosen to be a function of the meson momentum only (see
Sec. VI below). After simplifying the combinations of Dirac v matrices in Eq. (46), the

“Dirac” fﬂ?w) (y,t) and “Pauli” gé%’m (y,t) splitting functions can be written as

02 d4k5 _Z'F(rbw) _ _ kJr
(rbw) B¢ ¢B
t) = FR)F(k+A)oly — —
185700 = 5 | oyt 7 MmO+ 3= )
(49a)
o) () 1) = C%(;S/ d*k —iGEJEW) F(k)F(k+ A)(S( k*)
Yo WU TP | @n) Dalp — WDolk+ A)Dy(R) )
(49Db)
where the trace factors in the numerator of the integrand are given by
row 1 T T
Fip™ = Eykz (4k - P+ 4MMp +yt) — y (2(k - p)*> — MMp (2k - A+ yt))
+k-p(2k-p +yt), (50a)
G = —2yM (2yM* My + (M + 2yM)(K* — 2k - ), (50Db)

with Mg = M + M3.

For the baryon rainbow diagram in Fig. 1(b), the photon couples to the intermediate
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octet baryon through an electric vertex. The contribution of this diagram to the nonforward

matrix element I'" is given by

L Chy [~ i i =+ Mp) L i(p— Kk + M)
=100 5 [ e T S ba =8 ) Dalp— b
<k F() (5 =) ulp) 61)

Using a similar projection as in Eq. (47), the splitting functions fg;w)( y,t) and g(rbw (y,t)

are obtained as

C3, [ dik —iFg ket
(rbw) B¢ B¢ -
15700 =5 [ G mar it mmm L0 R) 6
Chy [ d* —iGuh) - ot
(rbw) _ Y'B¢ B¢ _h
RS o b e e e R G N

where the trace factors in the integrand are given by

Py = —k-p (4k -+ yMpAp) + K (4k - P+ Mp(Mp — 2yM))
1 —
—5yMp(yMpt+20pk-p) — K, (532)
2M Mg

G — (2(k-A)2+yt(4k-p+k-p’—k‘2—yMMB))a (53b)

The diagram in Fig. 1(c) involves the magnetic photon-baryon interaction. The contri-

bution of this diagram to I'* can be written as

. CF d*k ~ i — b+ Mp)iot' A i(p— F+ Mg)
riy =) 5 e e
2] @2m)t Dp(p' —k)  2Mp  Dp(p—k) Dy(k)
~ kT
Xk F(k)0(y = ) (o). (54)
The splitting functions f (thwmag) () 1) and g (tbwmag) (\, 1) in this case are given by

2 a4k _iF(rbw mag) Lt
(rbw mag) Be B¢ 2
_ F v
Too W)= 55 /(27)4 Ds(p/ — k)Dp(p — k)Dy(k) (’M(y p+)’ (552)
02 d4k _Z-G(rbw mag) B o+
(rbw mag) B¢ B¢ 2
1) = Py o(y— "), (550
000 = 532 [ Gy Do —mm T W) 6
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where

1y _

Py = sz (206 A+ yt(2k - P = 12— y MM) ), (562)
oM _ _ _

Gl =~ (2T (k- A 4+ 25D (2M + W) th - P = 25 M* M1

—dthk-pk-p + th?(4k - P — Mp(Mp + 2yM) +k2)). (56b)

The magnetic coupling constant C5*® does not appear in the splitting functions, but rather

is included in the input GPDs.

For the Kroll-Ruderman diagrams in Figs. 1(d) and 1(e), the contributions to the matrix

element I'" is given by

. Chy [ A% i(f — F+ Mp) . . i(p—F+ Mp)
Uiy =100 15 [ (3 [k C ey et L > oy w
i~ ket
* D F (v =) ulo) (57)

The corresponding Kroll-Ruderman splitting functions fg;R) (y,t) and ggfbp”) (y,t) are then

defined as

KR

3, / d*k [—iFg;R” N _iFg;R”} 1~ ( Kt
f2 ) @m)t[Dp(p’ — k) Dp(p—k)]D

o2 A _iQKRD _iQKR2) _ N
000 =5 [ e+ et Pk a(y - 20). (ss)
f? (2m)* | Dp(p' — k)  Dgpp—k)| D pt

where the trace factors in the integrands are given by

Pt = k% — 2k - p/ + yMMp, (59a)

Fst? = k? — 2k - p + yM Mg, (59b)
MM,

GHY = +TB(2k A —yt), (59¢)
MM,

Gy =~ (2k- At yt). (59d)

The additional Kroll-Ruderman diagrams generated from the expansion of the gauge link
terms are shown in Fig. 1(f) and 1(g), and are important to ensure that the renormalized

charge of the proton (neutron) is 1 (0). The contribution of these two additional diagrams
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with intermediate octet baryons is expressed as

., C} d*k ~
Ll = alv) B¢/ F(k)

7 ) @y
i L) Sy 2 (Pl - 2) - Flb) (60

—2ikt i(p—k+Mp) k*

AP e B (B 8) = F) [y - £5) uto)

The respective splitting functions for these gauge link diagrams, § f g;R)(y, t) and 5t g B s (y7 t),

can be written as

(KR) 3y [ A% ~ 1 kt
01800 = [y PO o (0= )

{ OFS Y Pk —A)— F(k)  0Fg™ F(k) — F(k+ A)} (612)
Dp(p — k) —2k-A+t Dp(p—k) 2k-A+t ’
2
500 = 2 [ P 50~ 1)
[ i0G,'" F(k—A)—F(k) | i0Gy," F(k)— F(k+ Aﬂ (61b)
De(p/ — k) —2k-A+t Delp—k) 2k-A+t |
where the numerator factors are given by
SFSM = 2 (4lk - p)? = K2 (4k - P+ AMDp + yt)
+ MMy (2% A = yt) + 2k (2k-p+yt)), (62a)
5F G = =2 (40k - p)? — K (4k - P+ 4M N + y1)
—QMMB(Qk-A+yt)+2k-p(2k-p’+yt)), (62b)
6G"" = ~2My (M (2k - p' = 2yM?) — * (M + yM) + 2yMk '), (62¢)
6GHY = My (Mp(2k - p — 2yM?) — K2 (Mp + yM) +2yMk-p).  (62d)

The contribution to I'" from the tadpole diagram in Fig. 1(h) is given by a relatively

simple expression,

+ . nC d*t i L~ kT
Ly = u(@) fdf/(zﬁ)zl by F (k)5<y—F> u(p). (63)

The splitting function fétad) (y,t) in this case can be easily read off from Eq. (63), and is

22



given by

ta Gy [ AP Kt
100 =% [ ®a (- ). (64)
(t

There is no contribution to a Pauli-like splitting function g, ad) (y,t) from this diagram.

The related tadpole diagram that is associated with the gauge link in Fig. 1(i) makes a

contribution to the ' matrix element that can be written as

L Oy [~ okt - .
I} = alp )f«j /ﬁsz(/@)DM) _%_AH(F(k—A)—F(k))é(y——>u(p),

with the corresponding splitting function 0 f, (tad) (y,t) given by

318000 = "5 [ PO D gy (PO = ) = F) o v = ).

The tadpole diagram in Fig. 1(j) associated with the magnetic interaction makes a contri-

bution

L O Ak 0 iotA, i+
6 =) / o Do o Py ) ), (67)

which gives rise to a Pauli-like magnetic tadpole splitting function given by,

(tad mag) _ Coo d'k i~ k
i) = 5 [ S PR 8 (v = ) ule) (68)

The contributions of the bubble diagrams are illustrated in Figs. 1(k) and 1(1). For the
regular bubble diagram in Fig. 1(k), one has

Coo
2f?

Ly = —ulv) 57

i L kt
[ itk &) o+ AF0) 5o s o (o — ) )

As with the tadpole diagrams, this also generates only a Dirac-like splitting function,

f(ibUb) (y,t), which is expressed as

" iChp [ Ak y(4k-P+yt) - ~ K
Sy, 1) = ¢¢/ y( yt)

Flk+A)F(k)oly——). 70
i | @Dy My A W= 5).
Finally, for the bubble diagram derived from the Lagrangian L, in Eq. (17) and illustrated
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in Fig. 1(1), the contribution can be written as

N d*k i i kT
f = a(p ‘”/ oM Avk, F(k + A)F(k 2kt 5y — — :
(71)
and produces a Pauli-like magnetic bubble splitting function given by
/(bub) iCyy / d*k yM (4k - P+ yt) ~ ~ k*
t) = Fk+A)F(k)oly— —). 72
"0 = 55 | G b b FEF A F® (). (72)

B. Decuplet baryon intermediate states

The splitting functions for the diagrams involving decuplet baryons in the intermediate
state in Figs. 1(m)—1(u) are computed in a similar way, although because of the higher spin
of the decuplet baryons the expressions are typically somewhat more involved. Here we give
the basic expressions for the contributions from each diagram to the matrix element T'",
with the full results for the numerator trace factors in the decuplet splitting functions given

in Appendix A.

Beginning with the decuplet baryon rainbow diagram in Fig. 1(m), the contribution to
['* is expressed in a similar form to that for the octet baryon rainbow diagram Fig. 1(a) in

Eqs. (46)-(47),

l

+ _ C d*k s
F(m) = _u( ) f2¢ /( ) (k+A)A @A F(k—i‘A)m 2k+
8 D:(k) y- %Z_ T Sas(p = k) Ok, F (k) 6(y - ]lz—+) u(p) (73)
= a(p’) {7* <z(>rwa) (y,t) + icf;wAy gé:;?W) (v, t)} u(p), (74)

where the octet-decuplet transition operator ©*” is defined in Eq. (2), and the spin-3/2

projection operator S,z for a particle of momentum £ is given by

oY 2kaks | Yaks — s ka
YaYs , 2kaks | vaks =Yg ka

Sa k:_a
s(k) = —gap + =5 302 30y

(75)

The corresponding Dirac and Pauli decuplet rainbow splitting functions, f(rbw (y,t) and
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g((;,r}ow) (y,t), can be written as

(rbw) o C%d) d*k ZFQEI;)W) = - E
1500 =2 [ e mpam T A 0= 7). oo
e, o Cre [ d'k iGyr™ = = kT
00 = 7 | Gy By T A PRy 5). (o

respectively. The explicit expressions for the numerator factors F d();ow) and Gg]TDW) are given

in Egs. (A1) of Appendix A.

In Fig. 1(n), the photon couples to the decuplet baryon in the intermediate state with an
electric vertex. The contribution of this diagram is given by
C%¢

Ity =~ 7

&'k o i i o e
/ i MO E W) 5 g S
k-f—

Xm Spo(p — k) Ok, F (k) 5(34 - p—+> u(p),  (77)

where the corresponding splitting functions f}rgw)(y, t) and géfzw) (y,t) are

(rbw) d*k ZFI({;JW) ~ kt

fro 0 =" /(%)4 B =P L W), ()
wow), o Chy [ d% iGyy") N o

9" () = = / oy Bty —FD (o ~FDl F2(k)o(y - p—+). (78b)

The factors F} " ) and G rbw) in the numerators here are given in Eqs. (A2). For the magnetic

photon-decuplet baryon interaction in Fig. 1(0), the contribution to I't is expressed as

Sy — k)——0"P A,

CF 4 N i i
Ty =~ >/ 9 W D —F - My

(0) 72 (2 oMy
S =R Ok, P 0 (5= ) up), (19
P— f— My pt
where the corresponding splitting functions f (tbwmag) () 1) and g(rbwmag) (y,t) are given by
2 a4k iF(rbw mag) _ L+
fo ) (y, ) = —2 / 19 F2(k) 5(y - —), (80a)
f? ) @m)* Dr(p' — k)Dr(p — k) Dy (k) Pt
CQ d4]{} Z-G¢(rbw mag) ]{J+
(rbw mag) T¢ T¢ 2
t) = F*(k)oly — — 80b
00 = 5 | =i mam L0 ). s

25



and the factors F. (rbwmag and Ggfzwmag) are written out in Eqgs. (A3).

In Figs. 1(p) and 1(q), the photon couples to the octet-decuplet transition vertex, whose

contribution to the matrix element I't can be written as

Lo = iﬁg}pj a(p’) / (;:;4 F2(k)
x [—%’yspl, - ki_ MBA%?_ /_ v e = K) Ok,
+E75 mf%Nmep(p — k) O™k,
— kAGAVmSup(p/ - k)A”stmk%
+I<:A®A”m o )4&75]/)_ kl_ b
X D(Z(k) 5(y - ]IZ—I) u(p). (81)

The corresponding Dirac and Pauli splitting functions f (rbw mag) (y,t) and g (rbw mag) (y,t) are

in this case given by

CpeC 1 kT
(rbw mag) _ YBo“VT¢ -

af? ( Dy(k) pt
er mag 1) F(rbw mag 2)
) {D k)Dr(p — k) DT(p —k)Dp(p — kz)]’ (82a)
(rbw mag) . CB¢CT¢ d*k 1 kT
9BT ¢ (yu t) - 4f2 /(271_)4 F2(k) T (y - F)

G(rbw mag 1) G(rbw mag 2)
] | o
Dy(p —K)Dr(p— k) ' Dr(y/ — kDo — k)

with the four numerator factors Far ™% and GEN ™12 given in Eqs. (A4).

For the KR diagrams with decuplet baryon intermediate states in Fig. 1(r) and 1(s), the

contribution to I'" is given by the expression

02 dik ~
T = —2a(p) L F(k)
(1)+(s) (27)

f2
i i
X |k,0" ——n— S, () — k)iO"T — O ——n S (p— k) OE,
|: ﬁ/_%_MT P(p ) p_k_MT P(p )
l kTt
-— 83
* Do O = o) u) (83)
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where the corresponding KR splitting functions f}I;R) (y,t) and gr%R) (y,t) are given by

C3, [ A%k [ iFg Y EL™ - 1 K+

(KR) T¢ T T 2

) = + F(k 5(y—~—), (34a

de) v.9) f? /(27)4 [DT(p/_k) DT<p_k)} (k) (y p ) (842)

C2, / d*k { iGrg Y . G
@2m)* | Dr(y — k) | Dr(p— k)

KR
Foo (g, t) =

e ]ﬁQ(MD

(k)

and the numerator functions F' g;w mae 1) and G(Br}%w mael2) are in Egs. (Ab). Similarly, the
additional KR diagrams generated from the gauge link terms with decuplet intermediate

states are shown in Fig. 1(t) and 1(u), and their contribution can be written as

2 [
1—‘(t)-i-(u) = f;’;ﬂ(p ) /(27:;4
X {ky@””msap(p/ — k)0 (k — A)A_ngiTklAz(ﬁ(’“ —A) - F(k))
o 8,0 I (k) — F(k + ) Sl = s
x D:( b P 6(y - Z’%) ul(p). (85)

where the gauge link dependent KR splitting functions & f:(FI;R)(y, t) and ¢ Q%R) (y,t) are given
by

(KR) B C’]Q—'QS dk ~ 1 kt

x 9Py F(k) = Flk = ) L, oF To ) F(k) = F(k+A) (86a)
Dr(p — k) 2k-A—A2 Dr(p—k) 2k-A+ A2 ’

(KR)  CRy [ A%~ 1 ket
395000 =~ [ G P9 (0= 55)

[0GEY By~ Fk— &) 160G F(k) — F(k+ 4)
Dr(y — k) 2k-A—A2 | Dp(p—k) 2k A+ A2

. (86b)

The complete expressions for the numerator functions 5F}I;Rl’2

in Eq. (A6) of Appendix A.

) and (5G£FI;R1’2) are presented

27



IV. NONANALYTIC BEHAVIOR OF SPLITTING FUNCTIONS

While certain features of the hadronic splitting functions derived in the previous sec-
tion depend on short-distance physics that in the current framework is controlled by the
regulator function ﬁ, some aspects of their calculation are in fact model independent. In
particular, the moments of the splitting functions, which can be expanded as a series in
the pseudoscalar meson mass, mg, contain terms that do not depend on the regularization
method [55, 72-74]. These are the coefficients of the leading nonanalytic (LNA) terms, that
are determined by the low-energy properties of the nucleon, such as the hadronic couplings
and masses. Since the LNA behavior is derived solely from the long-distance characteristics
of the chiral effective theory, understanding these can place constraints on models of the

splitting functions consistent with the symmetries of QCD.

To explore the LNA terms further, we define the lowest moments of the splitting functions

f®(y,t) and g™ (y,t) for the diagram in Fig. 1(“x”), where “x” = “a”, ... “u”, as
(9 1
FOt) = / dy f¥(y,1), (87a)
0
1
0 = [ dygiw.o) (57H)
0

which correspond to the Dirac and Pauli electromagnetic form factors of the nucleon, re-
spectively. Taking the values at zero four-momentum transfer squared, t = 0, we expand
the form factors Fl();) (t=0) in my, keeping only the nonanalytic (NA) terms in mj, from

which the LNA behavior can be extracted.

For the rainbow diagram in Fig. 1(a), the NA contributions can be written as

2
Fl(a)(())‘ = 3C50 (m — 2A%) long—l—ZABRBlogM (88a)
NA (dmf)2 V¢ ? Ap+ Rp]’
2
FM0) = 1Cks (MAp +2A% + 2R%) logm?
2 Wl T g VTP T IRE TR 0
Ap — Rp
— (M +4Ap)Rp log Z2——2 | 88b
(0 + 40) R log T2 2] (ssh)

where Rp = /A% — mi . It Ap <my, Rp will be an imaginary number and the log term
will become an arctangent, according to its definition [55]. The NA terms of Fl(a) are the

same as those reported in Eq. (62) of Ref. [55] if one sums the NA contributions from the
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on-shell and § terms of Eqgs. (114) and (117) of [55].

For the baryon rainbow diagram in Fig. 1(b), the NA behavior is given by

FP0) = 3056 [ DALY log m? + 225 Ry log ~2— 18 89
i )’NA_ (4r f)2 (mg = 285) logmg + 28nRplog T =gl (892)
402 Ap—R

(b) _ B¢ 2 A2 2 B B
) (0)‘NA = i) {(m¢ 2A%) logmy, + 2ApRp log Aot R RB:|' (89Db)

Note that the NA terms of Fl(b)(O) are identical to those of Fl(a)(O). For the diagram in
Fig. 1(c), there is no NA term for F\(0), while the NA part of F\”(0) can be written as
Chy

() — 2 2 2
F;7(0) G f) [(m¢ — 2A%) logm3 4+ 2ApRp

(90)

lo —AB_RB]
gAB+RB '

For the KR diagrams in Figs. 1(d) and 1(e), the NA contributions to the Dirac form

factor is given by

F9"O0) = 2Ch, Ri; og 28— Tt5.
NA (47Tf)2 M AB + RB

(91)

There is no NA contribution from these two diagrams to the Pauli form factor. For the

tadpole diagrams in Fig. 1(h) and 1(j), the NA terms contain only the LNA contributions,

Cyot
Jall ‘ _ _Seet 20,2 9
(0) LNA (47 f)? M 206 M (92)
mag
() Pt 2 2
F ‘ = O 2]
2 (O) LNA (47Tf)2 md) 0og m(j)v (93)

for the Dirac an Pauli form factors, respectively. For the bubble diagram in Fig. 1(k), the
NA behavior also reflects the simple LNA form for the Dirac form factor,

(k) — 1 2 4
1 (0) LNA (47Tf)2 md) Ogm¢7 (9 )

and is in fact identical to the LNA contributions from the tadpole diagram, Eq. (92), as
required by gauge invariance. The bubble diagram with the magnetic interaction in Fig. 1(1)

gives rise to a contribution to the Pauli form factor given by

C’
) 2l 2 2
L = — Mm? logms.

> (0) LNA (4m f)? Mg 108 Mo (95)
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Note that the mass dimensions of the couplings C’(; St here are inverse mass, in contrast to
all the other couplings which are dimensionless (see Table I in Sec. II above). As discussed
in Ref. [55], the additional diagrams in Fig. 1(f), 1(g) and 1(i) generated from the gauge

link yield no NA terms for either the Dirac or Pauli form factors.

The NA terms for the splitting functions involving intermediate decuplet baryon states

can be obtained in a similar manner. For the rainbow diagram Fig. 1(m), the NA behavior

is given by
2072 Ar—R
Fm) ‘ _ T 2 _9A2)] 2 9 1 T — Br
! <0) NA (47Tf)2 (m(b T> o8 m¢ + TRT 08 AT + RT 7 (96&)
F<m>(0)‘ __ G (11m2 + 4MAg — 6A2) logm? — 4M Ry log Ar = R (96b)
2 NA 3(4mf)? ¢ T ¢ Ar + Ry

The NA behavior for the decuplet baryon coupling rainbow diagram in Fig. 1(n) can be

analogously written as

NA (4w f)2 |V ¢ Ar+ Ry |’
8C? Ar — R
(n) T 2 2 2 T T
F. ’ =— —2A%) 1 2A log ———|. b
5 (0) “ ETE {(md) 7)logm3 + 2Ar Ry log At RT:| (97b)

As in the octet case, the NA term for the Dirac form factor contribution from Fig. 1(n) is
identical to that from Fig. 1(m). For the additional magnetic interaction decuplet baryon

rainbow diagram in Fig. 1(0), the contribution to the F; form factor is given by

10 C3
(0) _ T 2 2 2
B0) =3 (Arf)? [(m¢ — 2A%) logm, + 2A7 Ry

Ar — Ry

log ————|, 98
OgAT-i—RT (%8)

while there is no NA term for the Dirac F} form factor.

For the magnetic octet-decuplet baryon transition diagrams in Fig. 1(p) and 1(q), the

combined NA contribution to the Pauli form factor can be written as

(0)+(a) _ CBsCry | o 2 2 2 2
FPH () N (AT [(8m¢ — 5A% — 6ApAr — 5AT) log my,
6m?2 — Ar(Ap + 5A A —
LR r(Ap T) log 27 Ry
AB — AT AT + RT
6m2 — Ap(Ar + 5A Ap — R
e I
Ap —Ar Ap+ Rp
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with again no NA contributions to Fj(0). Finally, for the KR diagrams with decuplet
intermediate states in Fig. 1(r) and 1(s) the NA behavior of the Dirac and Pauli form

factors is given by

4C? Ar — R
F(r)JF(S) ‘ — T¢ 2 2 2 1 2 2 3 1 T T 1
| (0) “ SN Ar (m} A7) log mj + 2R} log ARyl (100a)
16C2 - R
(1)+(s) _ T¢ 2 A2 2 T
F} (o)‘NA = M ) lAT (3m2 — 2A7%) logm? + 2R} log —AT RT} (100b)

As for the octet baryon case, the additional diagrams derived from the gauge link for the
decuplet baryons do not give rise to any NA terms. Our results for the LNA terms of the
various loop diagrams are consistent with the results for the Dirac form factor discussed in

Ref. [55).

V. CONVOLUTION FORMALISM

Having derived the full set of splitting functions for the diagrams in Fig. 1 involving
the SU(3) octet and decuplet baryon intermediate states, in this section we discuss the
calculation of the GPDs in the proton arising from these contributions. We derive expressions
for the GPDs in terms of convolutions of the splitting functions and GPDs of quarks in the
various hadronic configurations. Using flavor symmetry constraints, we discuss relations for

the GPDs in the hadronic configurations among the various SU(3) baryons.

A. GPDs as convolutions

The n-th Mellin moments of the generalized quark distributions H?(x, &, t) and E?(x, &, t)

are defined as

1 n—1
HM (1) = /ld:cx” Hiz e, )= Y ( Vi) + (- 20)"C00)| L (101a)
- 1=0, even
1 n—1 )
B = [ dea s = 3 (<2 BY0 - (<20"C)| L (om)
- 1=0, even

where A (1), B{(t) and C{"(t) are the generalized Compton form factors of rank n. The

generalized form factors can be related to the matrix elements of local twist-2 operators
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(9}““1"'“"*1} between nucleon states,

n—1
NIOP AN = a)| Y AP P i
1=0, even

n—1
_ﬁ Z Btgn)z (t) AVOJ/{MA“1 cee A“i P‘ui+1 Ce Plln—1}

=0, even

A{N ce A“n—l} u(p)) (102)

n even

1 n
+37 cim(t)

where the symmetric and traceless operators are defined as
o .
@é/ml pn-1} — -1 by U (I T, Uy, (103)

=
with D = %(B—ﬁ) The braces {- - - } represent symmetrization over the indices ppy - - - fin,

and subtraction of traces.

In an effective field theory, these quark operators are matched to hadronic operators with

the corresponding set of quantum numbers [74],

Oé“’“"'“"‘l} _ ZQ§n_l) O}Wlmun_l}, (104)
J

where the subscript j labels different types of hadronic operators. The coefficients Qg-"*l)
can be defined through the n-th moments of the generalized parton distributions in the
hadronic configuration j (see Sec. VB below). Matrix elements of the hadronic operators
Oj{“ mi#n1d can be used to define the moments of the Dirac-like and Pauli-like hadronic

splitting functions f; and g;, respectively, introduced in Eq. (45),

1
i = / dyy™ Y f(y, 1), (105a)

1

1
g = / dyy™Vg;(y. 1), (105Db)

1

where y is the light-cone momentum fraction of the nucleon carried by the hadronic state j.
Taking the matrix elements of the matched operators in Eq. (104) between nucleon states
with unequal initial and final momenta, and contracting both sides with light-cone vector

NNy, -+ Ny, ,, We then arrive at a relation for the GPD moments in terms of the moments
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of the hadronic splitting functions,

HY a(p i) + 2ME@”*( Pmo A, ulp)
_ZQ" 2 [ (p)pu(p) + 2M ( ) a(p)nuot Ay, u(p) |- (106)

Since Eq. (106) is valid for all moments n, we deduce that the corresponding convolution
relation exists also for the GPDs as a function of x. Specializing to the case of zero skew-
ness, & = 0, we can write the contributions to the H? and EY GPDs from the hadronic

configurations in the form
H(z,t) = H(2,6=0,t) = > [f; ® ¢}](2,1)
J

=3 [ [ azde - 0. (07

Ez,t) = E9(z,£=0,t) = Z [9; ® ¢¢] (2, 1t)

=3 [ [ dxie-vaangen. aom

where we define ¢} (r,t) = g;(z,£=0,t) — ¢;(x,£=0,t) as the GPD of the valence quark ¢ in
the hadronic configuration j evaluated at zero skewness. Since the total H? and EY GPDs
can each receive contributions from both Dirac-like and Pauli-like GPDs of the hadronic
configurations, the sum over j in Eqs. (107) includes both electric and magnetic couplings,
q; — Hj or EJ. Note also that crossing symmetry, ¢;(—z,{ =0,t) = —g;(z,§ =0,t), in
direct analogy to that for forward (t = 0) parton distributions, has been used to write the

integrals in Eqs. (107) over the interval 0 to 1.

To illustrate the application of Eqgs. (107) to chiral loop contributions to sea quark GPDs
in the proton, in this paper we focus on the asymmetries between the GPDs for d and @
quarks, and between the s and § quark flavors. Assuming that the intermediate state octet
and decuplet baryons are flavor symmetric, with mesons ¢ the only source of antiquarks,
the convolution form for the antiquark electric and magnetic GPDs in the proton involves

contributions only from the diagrams in Fig. 1(a), (k), (1) and (m). Specifically, for the H?
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and E9 GPDs at zero skewness, we have

Hi(,t) =Y [< F) o iy Hg;} (z,1), (108a)
¢BT

Eiw,t) = 3 (o83 + ol + gi™) @ HY| (2,0), (108b)
¢BT

where Hj 7 is the electric GPD for quark flavor ¢ in the meson ¢. The splitting functions
f¢§§w and g(rbw for Fig. 1(a) are given in Egs. (49a) and (49b), respectively, the decuplet
thw) ) for Fig. 1(m) are given in Eqs. (76a) and (76b),

recoil splitting functions f¢ and g¢T
"(bub) for Figs. 1(k) and (1) are given in Egs. (70)

respectively, and the functions f¢ and 9¢
and (72), respectively.
The convolution form for the quark GPDs received contributions from all other diagrams

in Fig. 1, and so has a more complicated structure,

Ho(x,t) = Zo Hi(a,t) + Y [(f(“’w + fiY +f¢§b”b)) ® HY
BT

+ fTr;W ®Hq + fT¢ ®Hq(KR + 5f e ®Hq(KR)
4 f (rbw mag) ®Eq + f(rbwmag ®Eq + f(rbwmag ® E%T

(tad) tad) (tad) tad
+ Ve HIFY + 5fY @ HY )}( 1),

(109a)

Bz t) = Zy Ed(x,t) + Z [ gJEW) +g(rbw) +g(bUb)) ® Hj
#BT
g @ HYy + ghs? @ HESY 1+ agi™ @ mitY
Ry g(Km @ HIO® | 558 g pratkm)
+ g(rbwmag) ® EL + (T rbw mag) ® EL + gl%wmag) ® Fi,.

i gétadmag) ® Egi;‘ad)] (.T, t), (109b)

where H{ and Ej are the quark GPDs of the bare proton, and Z, is the wave function
renormalization constant associated with the dressing of the bare proton by the meson
loops in Fig. 1. As shorthand, in Egs. (109) we use the notation f;(y) = f;(1 —y) and
gj(y) = g;(1 —y) for the electric and magnetic splitting functions involving couplings to

baryons. Note that both the electric and magnetic operators contribute to HY(z,t) and
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E%(z,t) at zero and finite momentum transfer. At zero momentum transfer, however, there
is no contribution from the magnetic term to the matrix element, even though the GPD

E%(z,0) itself is nonzero.

The expressions for the quark and antiquark GPDs in Egs. (108) and (109) form the basis
for our calculations of the meson loop contributions to the GPD flavor asymmetries. For
the case of u and d quarks, the intermediate states include the nucleon and A baryons and
7 mesons. For the strange quark, on the other hand, the intermediate states that contribute
are the hyperons A, ¥ and ¥* and K mesons. To compute the quark and antiquark GPDs
numerically, we require information on the GPDs for the various hadronic configurations

that contribute in Eqs. (108)—(109), which we turn to next.

B. GPDs of hadronic configurations

The twist-two operators associated with the PDFs of the hadronic configurations have
been discussed in detail in Refs. [54, 56]. For GPDs at finite momentum transfer ¢, the
operators are somewhat more complicated, and we consider first the intermediate octet

baryons as the hadronic configuration as an example. The relevant operator here can be

written as
n—1
05731.--%—1 _ Z ;( (n)i qy. [B’Y {(uT)\qu + U/\quT)v BH
i=0,even
+ BT B [(ul A+ udgu), B]]

+ agn)l Tr [ny“B} Tr [(uT/\ U+ uA uT)} > AP AR PR Plin-t

S

1=0,even

+ 85 T [Ba’“’ [(u"Aqu + udgu'), B] ]

4MB< o' Tr [Bo™ { (uAgu + uhgu'), B}]

+ ng)z Tr [ } Tr [ T/\qu + u/\quT)] ) AYAML Lo AMEPRitL L PHn-l
+ M(a(g”nzev’m r [B{( (uf Agu + udu’ ), B}]

+ B8 uen T [B [(uAgu + udul), B]]

+ U(n) n=even Tr [BB] Tr [(UT)\QU + UAQUT)] ) ARAM - At (11())
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Contracting both sides of Eq. (110) with the light-front unit vectors n,n,, ---n,, , then
gives
1 _
= §a(”) Tr [Bit { (u'Aqu + urgu'), B}]
1 _
+ §ﬁ(”) Tr [ Bt [(u"Au + udgul), B]]

KL Pn—1
(RO -nun_quB

+ %a(”) Tr [BitB] Tr [(u'Agu + ugul)]

. (n)
10mag

8Mp
Bk
8Mp

. (n
Zar(nzzg

8Mp

+

Tr [Bn,o™ A, { (u"A\u + uru'), B}]

+ Tr [Bn,o™ A, [(utAgu + udgu'), B]]

+

Tr [Bn,o" A, B] Tt [(ufAju + uul)],  (111)

where for shorthand we define by X™ and XI(;Qg, where X = «, [ or o, the following

combinations,
n—1 '
X0 = 3 (-2 X (20| (112a)
1=0,even —even
n—1 '
X= 3 (-2erxy— (caorx| (1120)
1=0,even

The n-th moments of the GPDs in octet baryons can then be related to the coefficients X
and Xrg?a?g. By expanding the matrices in Eq. (111), one can derive relations between the
quark GPDs of different flavors in the octet baryons. Since such relations are independent of
the momentum transfer and structure of the y-matrices of the operator, the relations between
the Dirac-like GPDs HY(x,t) will be the same as those for PDFs obtained in Refs. [54, 56].
In the following, we therefore focus on the derivation of the relations for the spin-flip GPDs,

E%(x,t), and examine whether the relations between the different flavors are the same as

those for the PDFs.
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For the magnetic operator, the contraction with the light-front unit vectors gives

(n)

Ry == Moy 105§agun t= ,ii]\r;f Tr [BnHUMVAV {<UT/\qu + U/\quT>’ B}}
+ i Tr [Bn, o™ A, [(ufAu + ulu'), B]]
4Mp
ioka
+ 4M3g Tr [Bn,o™ A, B] Tr [(u"Aqu + ulgu')]
(n)
ZQmag
— T WO A (A T
2M ( q ) «
(n)
meag v abc +
— oMy T AT Tr[)\q]
Wr(na)g DJ kl
4]\/[ [Eijk(A;r>ilB7]nA75nuTu7 "

—€in( A )a Bl AT ™ | + Hee. (113)

The coefficients {amag, @nag, amag, Gmag, pmgg, wmag} are related to the n-th magnetic mo-

ments of the quark distributions in the corresponding hadronic configurations. With the
simplification of the flavor matrices, the contracted magnetic operator can be rewritten in
the form

Ce ML Hn—1
nﬂnﬂl nMn 1quag

1 (n—1)

- QBma)g OBmag + QTm;; OTmag + QBTmag OBTmag + Qqsw O¢¢T mag» (114>

mag

where the hadronic operators are given by

7 _

OB mae = —— Bn,a" A, B, 115
B mag QMB TLMO' ( a’)

OTmag = _ﬁTanuaijuTaa (115b)

V3
OBT mag — T m

Ot mas = —5 M NP Bn,o"™ A, B ¢p'. (115d)

(BAvsn, T" — Bitys A, T"), (115c¢)

The coefficients Q\" i mag ) of each of the operators are defined in terms of the Mellin moments
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of the corresponding distribution functions in the intermediate hadron states,

1

Qg;i)gZ/ dz "™ Eg(,t), (116a)
—1
1

Q= [ e B, (116b)
-1
1

leTrlnag / dx xn_l E%T(x7 t)a (116C)
—1

ot g = d " E 116d

where the GPDs correspond to those appearing in the convolution expressions on the right-

hand-sides of Egs. (109).

The moments U~ D p—b)

Bmag: DB mag a01d S](Snm; of the u, d and s quark GPDs in the octet baryons

can be expressed in terms of the coefficients amag, ﬁmag and amag, as listed in Table II. Solving

for the coefficients, one can write these as linear combinations of the quark GPD moments

TABLE II. Moments le;;)g of the u, d and s quark GPDs in octet baryons arising from the
magnetic interaction.

B Uy DY S s

P | ally + B + o T Aty — B + oo
n O'I(I?a)g amag + Bmag r(ﬁgg afﬁgg — ﬁr(:a)g + gr(ggg
St | g+ Bl + Ot | sty — Bl + Tl olide

0 g + Ot g + Ohig ol

X Ozmag 5mag H?Qg Canag + Bmag Er?a?g o Ergg

A Lotig + ot Lofis + o Sl + ol
A0 Lol — ot 0
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in the proton,

n 1 n— n— n—
o = 5 (Ufiat) + S0t ) = Dl (117a)
n 1 n—1 n—1
B = 5 (Ulieat) = Stad). (117b)
oy = Dt (117¢)

Furthermore, assuming the strangeness in the bare nucleon state to be zero, we have

o) = gm ) (118)

mag mag mag*

In particular, for n = 1 the relation Eq. (118) is consistent with the Lagrangian for the

magnetic interaction, Eq. (13), where ¢3 = ¢y — ¢;.

The moments of the GPDs in the decuplet baryons, QE[? ;;é, for u, d and s quarks can be

expressed in terms of the coefficients GI(HTQg and pfﬁgg, which are listed in Table III. Solving

TABLE III. Moments Qg? g;; of the u, d and s quark GPDs in decuplet baryons arising from the
magnetic interaction.

T | Ul Dl ST s
A0 + plras Pl Pl
At 2000 + s | 200+ o | P
A | 100 + ol | 2050 + Pl | P

A~ pgﬁgg Gl(ﬁa)g + pgfgg pfffgg
S| 2600, + plids P 105 + Pl
20 | 1050 + plrs | L0Ss + plig | 105 + plrag
£ Pl 2000 + Pl | 5093 + Pl
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for the coefficients fofgg and pﬁgg in terms of the GPD moments in the A" baryon, one has

n— n— 3 n— n—
o), = 3(D(A+ D st ”) = (Ug+ b _ gl ”), (119a)
iy = SUY. (119b)

Proceeding in analogy with the nucleon case, we assume no strange quark contribution in
the undressed A baryons, which enables the decuplet coefficients to be written in terms of
the v and d quark GPD moments in the AT,

n n—1 3 (n-1 n
Oy =3D3 ) = SULTY ol =0, (120)

This is also consistent with the effective Lagrangian of Eq. (13), where only one term for
the decuplet magnetic interaction is included.

1)

mag’

The moments of quark GPDs for the octet-decuplet transition, QgT_ can be expressed

in terms of the coefficient wSQg defined in Eq. (113), and are given in Table IV for the allowed

TABLE IV. Moments Qg{gag of the u, d and s quark distributions arising from the magnetic
interactions for the octet-decuplet transition.

BT | Ufimg | Ditms | Srmes
pAT ﬁi Wr(r?a),g — ﬁi Wr(r?a%g 0
nA° ﬁ wﬁZQg - #5 wr(flgg 0
SrEr| ol Wl 0 55 Wit
On0 | Lwll | el |-l
DRI 0 Ll |—5ks wiie
A0 —\/Lﬂ wﬁiﬁg \/Lﬂ wﬁiﬁg 0
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TABLE V. Moments ng%lila « of the u, d and s quark GPDs arising from the magnetic interactions
involving the BB¢¢ tadpole vertex. For short-hand we define Fi" ) = mag + Bmag

| e i, s
atn~  KTK- | ntro KK | KK’  K*K-

po| MY AR | Ay e | e
no| -0 ™ |y Bide | —By ™
sl et p0 | e | e
0 0 Lot 0 Lo, Lol —Lali
| —p, ™ W i ipm o _ip®
A 0 Lol 0 —Lag | Laliy Lot

AT | & al, G e -7 e ~5v3 e NG e G e

configurations. One can write wgfa)g in terms of the proton-A™ transition GPD moments as

n n—1
Wi =3v2U'Y = —3v2D0Y, (121)

with relations for the other octet-decuplet transitions in Table IV.

The moments of the distributions generated by the tadpole vertex are listed in Table V,
where the corresponding moments Qg;?ln)lag of the u, d and s quark GPDs are expressed
in terms of the amag and ﬁmag coefficients in Eq. (117). Note that combinations involving
KK mesons do not contribute to the u-quark moments, while those involving KT K~ do
not contribute to the d-quark moments, and contributions from 77~ configurations to the

s-quark moments also vanish.

Since the above relations for the GPD moments are valid for all values of n, one can

derive from the moments explicit relations between the input valence GPDs for different
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quark flavors in various hadrons. Focusing still on the magnetic GPD FE9, we relate the
valence GPDs in the octet baryons to the GPDs in the proton, denoted by £? = El(x,t) =
Ei(x,§ = 0,t), using the results from Table II,

E' = E¢ E? = E", ES = E*, (122a)
L= B Ei =B 5y =B (122b)
dy = ;(E“ + E*), Bl = B, 50 = B (122¢)

B = E° EL = E Ei = E% (122d)

EY = %(E“ +4E* + E*), E{ = FEY, B = %(2E“ — B4+ 2E%), (122¢)

Elso= %(E“ —2EY+ E), Ejwo=—Ejw, Ejn=0. (122f)

For the GPDs in the SU(3) decuplet baryons, using the relations in Table III these can be
written in terms of the GPDs in the A™ baryon, which we denote by E} = E}.(z,t) =

EZJr(an = Oat)a

E%..=Ex + E4 — B3, Ej+v = B3, Ej+s = EX, (123a)
EY, = EY, B4, = FY, B0 = B3, (123b)
L. =FEY%, EL. = EX4, 5. = B9, (123c)
Lo = EX, EL, = E%, I (123d)
EY._ = EX, Ei._ =FEX, Ej._ = E%. (123e)

Interestingly, the relations between the E? GPDs between different flavors in the SU(3)
octet and decuplet baryon configurations are identical to those for the PDFs derived in

Refs. [54, 56]. Similar relations will therefore follow also for the electric H? GPDs.
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For the octet-decuplet transition GPDs, from Table IV one can write each of the transition

GPDs in terms of the u-quark GPD for the p—A™ transition,

u o u d _ [ S _

nA0 T EpA+7 EnAO - T HpAts EnAO - 07

u _ _u Ed =0 s . u

DI Vi pAT) Ttys+— Y Yyt HpAto

u _ 1 u Ed _ 1 u s _

»oy«0 — 2 pA+7 Yoy*0 — 2 pA"'" »oy«0 —

u o d _ u s _ u
EE*Z**_ O? EE*E**_ pAT EE*E**_ —HpAts
Eu _ \/§ u Ed o \/§ u Es o O

A0 — T 9 pATt> AY*0 9 pAT> AY*0 — Y-

(124a)
(124b)

(124c)

(124d)

(124e)

Finally, for the GPDs associated with the tadpoles, the distributions can be expressed in

terms of GPDs in the proton. For the case of the nucleon, from Table V we have

Eu(tad) _

ta—

u(tad)
Eygvg-=

Eu(tad) -
KK’

| —

(Eu . Ed), Ed(tad) _

nta—

S N

(r-m),  E

S N =

d(tad
) E(a—gz
KoK

N | —

(5~ BY)

(E? - E7),

B =, (125a)
s(tad 1 s u

Bl =5 (B — E"), (125b)
s(tad) 1 s d

Bl = 5(E — E%),  (125¢)

he tadpole GPDs for the other baryons can also be derived from the relations in Table V.

Tuarning now to the Dirac-like HJ(x,t) GPDs for the various hadronic configurations j,

we observe that these have the same relationships as for PDFs [54, 56]. Taking the strange

quark flavor as an example, for the strange GPDs in octet baryons we have

$i=Hjy=Hy =H"
1
HS = ~(2H" — H + 2H*

while for the strange GPDs in decuplet baryons,
s __ s s _ d
o+ = Hyeo = Hy.o = Hy,

with the strange GPDs in all other baryons vanishing.

For the strange GPDs associated with the tadpole diagram, we find

Hs(tad) o

s — Z(HY - H®),  H') =H!-H"

KK

DN | —
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The strange electric GPDs for the KR diagrams are related to the magnetic GPDs, which

for the octet baryons are given by

1 ~ -
s(KR) s(KR) d s
HE+ = HEO = ﬁ (H —H ), (129&)
1 ~ ~ ~
7 — ) 7 ¥ £ 129b
A 3F+D( ) (129b)

and for the decuplet baryons by
1~ - -
HESP = a0 - op (" =20 + H*), (130)

where H? = H Uz, = 0,t) are the corresponding spin-dependent GPDs in the proton.
Finally, for the antiquark GPDs in pions and kaons that enter in the convolution formulas,

we have the relations

S =Hyo,=HY =H' = H" =2H% =2HY%,. (131)

In our numerical calculations, we will assume valence quark dominance for the undressed
states, so that for the proton H®* = E® = 0. The decuplet and transition GPDs H}, E} and
E§A+ can be related to the proton GPDs H? and EY using SU(3) flavor symmetry, which
constrains the coefficients according to Hr(ﬂg = a&iﬁg +3ﬁ§§2g. Since HY and E? have the same

flavor symmetry, the decuplet GPDs can then be written as

4 2

HY =2H% = SH" = ng, (132)
4 2

EY% =2F% = gEu — 5Ed. (133)

Similarly, the constraint wﬁ?a)g = 4a£ﬁlgg leads to the relations for the transition GPDs,

’ V2w

par = —Epae = 5= (E" = 2E7). (134)
With these relations, all the GPDs used in the calculation in the next section can be ex-
pressed in terms of the GPDs in the proton. Note that because the magnetic coefficients

Ci" (j = B, T, BT) are not included in the splitting functions, the GPDs E(z,t = 0) need

to be normalized to their magnetic moments with unit charge obtained from ¢; and cs.
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VI. NUMERICAL RESULTS FOR SEA QUARK GPDS

In this section we present the numerical results of our calculation of the meson loop
contributions to the sea quark GPDs of the proton. We begin firstly by summarizing the
inputs used in the calculation, followed by discussions of the results for the light antiquark

contributions and the strange quark contributions to the GPDs.

A. Theoretical inputs

For the meson—baryon couplings in our numerical calculations we use the values D = 0.76
and F' = 0.5 for the octet baryon couplings (with g4 = D + F = 1.26), and C = —2D for
the octet-decuplet transition coupling under the assumption of SU(6) symmetry. The loop

integrals are regularized using a covariant regulator of dipole form,

2

F(k) = (AAQ%_T]?) , (135)

with A a mass parameter. From previous analyses of nucleon electromagnetic and strange
from factors, we take A = 1.0(1) GeV [41, 42]. The parameters ¢; and ¢, are determined by
fitting to the nucleon anomalous magnetic moments, and we find ¢; = 1.40 and ¢, = 0.54
reproduce the empirical values p, = 2.79 uy and p, = —1.91 py in units of the nucleon
magneton, uy = eh/2M.

For the valence quark GPDs in the proton, we follow Diehl et al. [75] and parametrize

the GPDs as products of forward distributions and ¢-dependent exponential factors,

Hi(z,t) = q,(v) exp [t fq(x)L (136a)
E(z,t) = eq(z) exp [t fy(z)], (136b)
H(z,t) = Agy(z) exp [t fq(x)] (136¢)

Here the unpolarized g, (z), helicity-flip e,(z), and helicity-dependent Ag,(x) PDFs for the
valence quarks are taken from the parametrizations in Refs. [75-77]. The profile functions
fy(x) and fq(x) parameterize the z dependence of the average impact parameter of the
corresponding quark distribution, which can be seen after performing a Fourier transform

to coordinate space [75].
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The valence quark GPD in the pion is parametrized as a simple factorized product of a

pion valence PDF and a t-dependent elastic form factor,
Hi(z,t) = q;(z) I (1), (137)

where ¢7 () is the pion valence quark PDF. For illustration purposes we use the parametriza-
tion of ¢ from Ref. [78], while more recent analyses have studied the large-x behavior in
the presence of next-to-leading-log threshold resummation effects [79]. For the pion elastic

electromagnetic from factor Fy(¢) we use a monopole form,

1

B =18

(138)

The cutoff parameter A, is tuned to be 0.79 GeV, corresponding to the average of the charge
radii for the pion and kaon [80] (since we use the same inputs for all the meson valence quark
GPDs). The valence quark GPDs in other hadronic configurations are obtained through the
SU(3) symmetry relations in Sec. V B. With the calculated splitting functions and the valence
quark distributions as input, we can proceed to evaluate the GPDs of the sea quarks from

the convolution expressions (108)—(109).

B. Light antiquark GPDs

The electric H? and magnetic F? GPDs for the light antiquarks in the proton arising
from the meson loop diagrams in Fig. 1 are presented in Fig. 2 as a function of the parton
momentum fraction 2 and momentum transfer —t, for the § = @ and d flavors at the input
scale Qg = 1 GeV. For @ quarks, the function x H" is positive and peaks at = &~ 0.1, roughly
independent of the value of ¢t. For any fixed z value, xH" falls off monotonically with
increasing values of —¢. In contrast, the magnetic x E* distribution is negative, peaking in
absolute value at slightly smaller x compared with x H%, and again decreasing in magnitude
with increasing —t at fixed . For the d quarks, the shape of the zH 4 GPD is similar to that
of the zH® distribution, although at any given z and ¢ the GPD for the d is larger. This
flavor asymmetry stems from the fact that the contribution to H? comes from both the octet

and decuplet intermediate states, while only the decuplet intermediate states contribute to

the H* GPD.
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FIG. 2. Electric and magnetic GPDs for light antiquarks: (a) zH", (b) zE", (c) tH?, and
(d) zE?, versus parton momentum fraction x and four-momentum transfer squared —t, for cutoff
mass A =1 GeV at a scale Qg =1 GeV.

The shapes of the magnetic E7 GPDs reflect the important role played by the orbital
angular momentum of the meson in the intermediate state. For octet baryons, the meson
orbital angular momentum tends to be +1, resulting in positive values of E“. For @ quarks,
on the other hand, since the intermediate baryons can only be decuplets, the orbital angular
momentum of the meson tends to be —1, resulting in negative values for £%. The absolute
value of zE? is also much larger than zE®. Note that the d-function term in the splitting
functions does not contribute to the H? and E?7 GPDs, although it does contribute to the
lowest moment of these functions.

Turning now to the light flavor asymmetry of the GPDs, in Fig. 3 we show the distribu-
tions H9™ and zE* versus x and —t. Both asymmetries are observed to be positive for
all x values, with a peak at x =~ 0.1 that decreases with increasing four-momentum transfer
squared. At the peak, the magnitude of the magnetic GPD asymmetry 2E9® is about 4

times larger than the electric asymmetry xH -,

To more clearly illustrate the shape and magnitude of the d — % asymmetry, in Fig. 4 we
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FIG. 3. Light antiquark flavor asymmetry for (a) the electric zH4 % and (b) magnetic
zE%% GPDs, versus parton momentum fraction z and four-momentum transfer squared —t, for
A =1 GeV.

plot the xH4" and zE?~" distributions at ¢ = 0, with the error bands corresponding to the
10% uncertainty on the cutoff parameter A that was set to 1 GeV. The calculated electric
asymmetry is compared with a recent parametrization of the z(d — @) PDF from the JAM
global QCD analysis of world data [81] at a scale @@ = m. = 1.3 GeV. The numerical results
are in good agreement with the phenomenological parametrization of z(d — @), which is
driven mostly by the Drell-Yan proton-proton and proton-deuteron scattering data [82, 83],
and has a maximum of ~ 0.3 — 0.4 at x ~ 0.05 — 0.10. Within our framework, for a cutoff
parameter A = 1.0(1) GeV we find for the integrated values fol dz H&"(x,0) = 0.11(2)
and fol dz e H%(2,0) = 0.009(2). The magnetic GPD asymmetry zE4" at ¢t = 0 has a
similar shape, but is ~ 4 times larger than *H 4=t at the peak. After integrating over zx,
we find [ de B4%(z,0) = 1.1(2) and [, dzzE%"(z,0) = 0.034(6). A large magnitude
for the magnetic asymmetry augurs well for future efforts to determine this asymmetry

experimentally.

The zH% " and zE4* GPD asymmetries at finite ¢ are also shown in Fig. 4, for —t =
0.25 GeV2. As expected from the 3-dimensional plots in Fig. 3, the distributions are sup-
pressed at larger —t values, with the magnitudes of the functions about half as large as those
at t = 0. The peaks in both functions also shift to slightly larger x values with increasing

four-momentum transfer squared.
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FIG. 4. Light antiquark asymmetries for the electric z H%~¢ (red bands) and magnetic B4 (blue
bands) GPDs versus parton momentum fraction x at four-momentum transfer squared of ¢t = 0
[(a), (b)] and t = —0.25 GeV? [(c), (d)], for cutoff parameter A = 1.0(1) GeV. The asymmetries
are shown at the input scale Q9 = 1 GeV, except for the electric asymmetry at ¢ = 0, which is
compared with the x(d—u) PDF asymmetry from the JAM global QCD analysis [81] (yellow band)
evolved to the scale Q = m..

C. Strange quark GPDs

The kaon loop contributions to the strange quark GPDs are shown in Fig. 5. Compared
with the GPDs for the light antiquarks, the strange GPDs are smaller in magnitude, but
display some interesting features. As for the light antiquark GPDs, the signs of the electric
GPDs H?® and H® are both positive. While the shapes of the s and 5 distributions are
expected to be almost identical perturbatively [84], the kaon loop contributions to these can
be quite different due to their different origins. Assuming the SU(3) symmetric relations for
the GPDs in the hadronic intermediate states discussed in Sec. V B, the 5 antiquark GPD
arises from diagrams with a direct coupling to the kaon, as in Fig. 1(a), while contribu-

tions to the s quark GPD come from couplings to the intermediate state hyperons, such as
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FIG. 5. Electric and magnetic GPDs for the strange and antistrange quarks: (a) xH?, (b) xE*,
(c) zH?, and (d) xE® versus the parton momentum fraction z and four-momentum transfer
squared —t, for A =1 GeV, at the scale Qo =1 GeV.

in Fig. 1(b) [85, 86].

As evident from Fig. 5, at small values of x the strange H® GPD is larger than the
antistrange H?®, while for larger x values, x = 0.5, the antistrange contribution exceeds the
strange. However, the z integrals of H* and H® at zero momentum transfer can be shown
to be identical with the inclusion of the J-function term, as is necessary for the requirement
of zero net strangeness in the nucleon. Since the ¢t dependence of H? is different from that
of H®, at finite values of ¢ the lowest moments of the strange and antistrange GPDs need
not be the same, which corresponds to nonzero values of the strange electric form factor at
—t > 0. The behaviors of the magnetic GPDs E* and E® are, on the other hand, rather
different. While the sign of EF is the same as that of E4 because of the positive orbital
angular momentum of the meson, the strange GPD E* changes sign with x, from negative

at small x values to positive at x 2 0.3.

In Fig. 6 we show the strange-antistrange asymmetries tH* % and xFE*~° versus x and

—t, for a fixed value of A = 1 GeV. At nonzero values of z, the xtH® GPD is generally
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FIG. 6. The strange quark asymmetry for (a) the electric xtH*~% and (b) magnetic zE*~% GPDs,
versus momentum fraction z and four-momentum transfer squared —¢, for A = 1 GeV.

larger than x H®, with a maximal asymmetry at x &~ 0.2 —0.3. Unlike the individual s and 5
contributions, for a given value of z the asymmetry xH*° does not decrease monotonously
with —t, and in fact increases at higher —t in some cases. For the magnetic asymmetry
xE*~%, the change of sign with z is driven by the behavior of the strange contribution, xE*.
Generally, the s — 5 asymmetry is much smaller than the d — % asymmetry in the nucleon
for both the electric and magnetic GPDs.

In analogy with the d — @ asymmetry in Fig. 4 above, in Fig. 7 we show the xH*"*
and zE£° % asymmetries at t = 0 and —t = 0.25 GeV? for varying cutoff parameters
between A = 0.9 GeV and 1.1 GeV. The change in sign of zH** is evident, with the
asymmetry being positive at small z, before turning negative at x 2 0.5. The calcu-
lated asymmetry is compared with recent PDF parametrizations of x(s — 5) from the
JAM [81] and NNPDF [87] global QCD analyses, which show very large uncertainties rel-
ative to the magnitude of the computed result. For the lowest nonzero moment, we find
fol de e H* 5(x,0) = 0.000952; for A = 1.0(1) GeV, which is comparable with other recent
estimates of the strange asymmetry [54, 56, 88]. For the magnetic asymmetry zE* %, the
situation is reversed, with the asymmetry trending negative at small x and becoming pos-
itive at larger = values, z 2 0.3. For comparison, the analogous integrated magnetic GPD

(12

asymmetry is fol dzxE*5(2,0) = 0.0009(;)) for the z-weighted moment, while for the low-

est moment, which corresponds to the strange quark contribution to the proton’s magnetic
moment, we find fol doe B575(2,0) = ps = —0.03383.

At nonzero values of ¢, the strange asymmetry is not as strongly suppressed as the non-
strange d — @ asymmetry. At —t = 0.25 GeV?, for instance, as also shown in Fig. 7, the

magnetic GPD asymmetry zE*~*(x,t) is only slightly smaller in magnitude than that at
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FIG. 7. Strange quark asymmetry for the z H*~% (red bands) and 2 E*~* (blue bands) GPDs versus
r at squared momentum transfers ¢t = 0 [(a), (b)] and —t = 0.25 GeV? [(c), (d)], with the bands
corresponding to cutoff mass A = 1.0(1) GeV. The asymmetries are shown at Qg = 1 GeV, except

for the strange electric asymmetry at ¢ = 0, which is compared with PDF parametrizations of
z(s — §) from JAM [81] (yellow band) and NNPDF [87] (green band) evolved to @ = m,.

t = 0, while for electric GPD asymmetry the peak value of the magnitude of x H¥ %(z,t) at
—t = 0.25 GeV? is even larger than that at ¢t = 0.

A more direct representation of the z-integrated strange GPD asymmetries is given in
Fig. 8, where the strange quark contributions to the proton’s electric and magnetic form
factors as in Eqs. (40)—(42) are plotted versus t. The uncertainty bands for the computed

.1 (t) form factors correspond to the results with A = 1.0(1) GeV, and the form factors are
compared with recent lattice simulations at the physical pion mass [89]. While the strange
electric form factor in Fig. 8(a) at ¢ = 0 is normalized to zero, at finite momentum transfer

G%(t) is positive and saturates at around +0.004 over the range —t < 1 GeVZ2. The strange
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FIG. 8. Strange quark contributions to the (a) electric G§, and (b) magnetic G3, form factors of
the proton versus four-momentum transfer squared —t, with the uncertainty band corresponding
to cutoff values A = 1.0(1) GeV, compared with the lattice simulation from Ref. [89].

charge radius can be evaluated from the slope of the electric form factor at ¢t = 0,

S\2 __ dGSE (t)
(rp)” = 06— L (139)

The value found in the present calculation, (r§)? ~ —0.003 fm?, is very similar to that

reported from the lattice simulation in Ref. [90].

The strange magnetic form factor G%,(t) is shown in Fig. 8(b) as a function of ¢, also
compared with the lattice calculation from Ref. [89]. As for G%(t), the absolute value of the
strange magnetic form factor increases with increasing values of the cutoff A, and decreases
with —t, consistent with the lattice simulations from Ref. [89]. The strange magnetic moment
G5,(0), defined as

dGy, (1)

dt |,

(rin)* =6 (140)

is estimated to be (r3,)? = —0.023(7) fm? for A = 1.0(1) GeV. Our results are also consistent
with the direct calculation of the strange form factors with a nonlocal chiral Lagrangian

from Ref. [42].
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VII. SUMMARY

This paper has presented a detailed account of unpolarized GPDs of sea quark and
antiquarks in the proton arising from pseudoscalar meson loops whose interactions with
octet and decuplet baryons are described within a nonlocal chiral effective theory with a
finite range regularization. We have restricted this initial study to the special case of zero
skewness, £ = 0, although the calculation can be straightforwardly extended to the & > 0
case. Within the convolution formulation, the dependence of the electric H? = H9(z,£=0,t)
and magnetic £7 = E9(x,£=0,t) sea quark GPDs on the parton momentum fraction z and
four-momentum transfer squared ¢ has been computed from the derived nonforward hadronic
splitting functions and input GPDs of hadronic configurations constrained by SU(3) flavor

symmetry.

For all light and strange quark flavors the electric, spin-nonflip GPDs H? are positive. For
the magnetic spin-flip GPDs, the E4 and E° distributions are positive, while the E* GPD
is negative. The strange magnetic GPD E?, on the other hand, displays nontrivial  depen-
dence with changes of sign as a function of x. The electric and magnetic sea quark flavor
asymmetries for the light quarks consequently remain positive across all x values, decreasing
in magnitude with increasing —t. Interestingly, the magnetic asymmetry E4 is some four
times greater than the corresponding electric asymmetry H 4=t which presents opportuni-
ties for phenomenological studies of this function with future experiments. The shape of
the electric asymmetry is constrained at ¢ = 0 by Drell-Yan and other measurements, and

is quite comparable with the d — 4 PDF asymmetry from global QCD analysis [81].

For the strange quark GPDs, both the electric and magnetic s — s asymmetries are
significantly smaller than for the nonstrange case, and change sign with x. The integral of
xH?*~% favors positive values, and has a magnitude at finite ¢ that may be even larger than the
value at ¢ = 0. The results are also qualitatively consistent with current phenomenological
determinations from global QCD analyses, although within rather large uncertainties. The
electric and magnetic s — 5 GPD asymmetries, integrated over x, are also broadly consistent
with the strange electromagnetic form factors as a function of ¢, obtained from recent lattice
QCD simulations [89] as well as from direct calculations within nonlocal chiral effective

theory [42].

While the present analysis has been performed at zero skewness, ¢ = 0, in future it will
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be important to extend the GPD calculations to nonzero skewness. Such calculations will
naturally be rather more complicated, but should provide further insights into the three-
dimensional structure of the nucleon. The current analysis can also be easily extended to
the case of spin-dependent GPDs of sea quarks in the proton, where we know from similar
studies of helicity PDFs [91] that chiral loops play a somewhat different role for polarized
and unpolarized distributions. Experimentally, while facilities such as Jefferson Lab are
expected to provide information on GPDs in the valence quark region at larger values of z,
distributions of sea quarks will be ideally suited for study at the future Electron-Ion Col-

lider [92].
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Appendix A: Splitting function integrals

In this appendix, we list the compelte set of formulas for the numerators appearing in
the integrals of the splitting function for the intermediate decuplet states. Starting with the

rainbow diagram in Fig. 1(m), the functions F (z(é,?w) and Gf;]TDW) in Egs. (76) are given by

rbw Yy
Fd()T ) — —m{zlk.p/{;.p' [4/{-P—2M(2M+3MT)+(1+Z/)4

FAM (k- p)2(Ap — M) + 4(k - p)? [M(QM + My) + t}
+2k -/ [SMPTT + (1+y)M(Ar — M)t + 3M7t — 4M2k2}

— 2% - p [SM* My + (1 + 11y) MMyt — 3Myt + AMK? = yt(5M° + 1)

+ MM p | 4K (AM? — 3(1 — y)t) — yt(4M? + 5t)]

—12yMMa Art + 4(1 — 2y) M2kt + 3y tz}, (Ala)

rbw M R _
G((; ) = ??MQ {4/€-p[/€-p/ (yM+MT) +/<:~p(2MT+MT)]
T
44k P [3M2T(MT — 9M) + (M — 3MT)I<:2]
ok [(3 4 y) MM — 3M3y} Y 2%k p [yM(5M2 + 1) — M ((1+ 11y) M2 — t)]

— My [k2 (3t — 4(1 + 3y)M?) + yM>*(4M> + 5t + 12M (M7 — 2M))

~3MMyyt| — ME(SyM? — 1) } (A1D)

For the electric part of the photon coupling to the decuplet baryon in Fig. 1(n), the
functions F}i;w) and ngw) in Egs. (78) are given by
Ry = @{16 k-pk-p (k-A)? +16k - P[((k )+ (k- p)?) (Mr(3Mr — 2M))
—kepk-p (2M(Mp — 2M) + 3(2 + y) M2 — 2y tQ)}
+16 (k- A)2 M2M;, + 48yM2(k - P)*k?
Ak -pk-pf [4MT(4M — 3Mp) Mo — 2t (SM My + 3M2) + 6yt MrAq
2t Mo+ 6y(3M — Mp)M2Mp + 2Mp(4M + OMp)k? — 2(1 + y)th? + y%?}
+4((k - p)* + (k- p)?)
X [MTMQT (9My — 8M) — 2yt M (2M — 3My) — 3yM2MpAg — 4MMTI<:2]
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k- P[Qyt (2M? + 3My My )k? — 126 MM pk? — 12M2M p(3M — My)k?

— 322 (3M?2 + M) MpAg + 2yt(2M? — TM My + 6M2) M

— y?2(2M — 3My) My + 12y M M2M o Ag — 12M2K* + 492t Mk

+ 3y My (yt — AMMyp)(M + MT)k;?}
A8y M M2 Mpk? — 2yt M (8M> My — 3ME)K? + (2t — 2k%)t(2M — 3My)2 Mo
+ 2yt (AMP My — 3M2(5M? + 3MZ — 2M M) )k + 24M M2 (M — 2My) My k?
— 22 Mt(8M?(M — 2My) + 3M2(2M + My)) My

+2(1 — y)t(2M + 3Mp)*k* + 24 MMZ(3M + 2MT)k4}, (A2a)
i — M 32k -pk-p (k-A)?>Mp+8k-Pl(k-A)2(2M + 3Mp)k>
o = 9raE| T pk-p' (k-A)*Mp+8k-P|(k-A)*(2M + 3Mr)

—3((k-p')* + (k- p)*)(2M + Mr)M7rAr
— 2k phk - o/ (My(3My My — 6M? — t) + yt(3M + 2MT))]
—2(k-A)? [(8M2MT — 3M2(2M + My)) k2
+ (SM° + (3Mr (M + 2M) — 16M?) My) M7 |
4k -pk-p [3yt(4M2 — My (M + 2Mp)) My — yt* My — t My M
P MESM My + 3M2) + yt(4M + 3Mr)k? + t(SM + OMp )k — y2Mt2]
+2((k - )2 + (k- p)?)t [y(mM2 — 3Mp(3M + My)) My
+(2M — 3Mp) Mo+ (1 +y) (2M + 3MT)k2]
—2(k - P) t[ — 6y M(AM? + 2M My + M2) M Aq
+y(2M — 3My) (8M? — AM My — 3M2) My, — yt(2My + Mp)(2M — My) My
+ (4k* — yt)(My + 2M7)k* + 2y M (AM? + 3(M + Mq)Mr)k?
+y(24M° + 3202 My — OMF)K? + 2(SM* + 2M2 My — 21M M3 — 15M5) 12|
+t [QyMMT (AM? — OMEN 1)K + 202 M*(SM> M — 3M2)K?
— yt(AM? — OM2)Mpk? + (2Mrk® — y2Mt)(2M — 3Mp)2 M o
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For the magnetic photon-decuplet baryon diagram in Fig. 1(0), the functions

Frl({zl):)w mag)

and Gg,fgw m28) in Eqs. (80) are given by

Fj(};)w mag) _

G(rbw mag) _
18¢ M3

T¢

I {Sk k- p (k- A)? My + 8k - P[(k; LA ((3My + 2M)K?

— M (Mg +2M)My) + k-ph-p yt (5My + 2(1 +y)M)}

12>k - A)? [<4M3 + (3(M — 2My) My — 2M?) MT>M2T

+ My (—AM? + MMy + 12M2) K — (2k2 + yt) (3My + 2M) kﬂ
+2 ((k; )+ (k ~p)2) t[ — y (2M? + 5M My — 9M2) My

— (2M — 3My) Mo + (3Myp + 2M) K? + 20> M? (M — 2M)]

k- pk -p't[ — y (AM? + 2M My — 5M2) My + y*Mp + yt My
— 2 M (3M — 2My) My + (2M — My) M,

oy (3My + 2M) K? — (5Myp + 2M) K? — QyQMkﬂ

— 2k - PL12MEMk® + y*t (AM? — 2M My — 3M3) My

—y (M — 2My) (AM? + 6M My — 3M2) M. + yt (2M — 3My) My,
—y(2k* — t) (3Mr + 2M) k* — 8y* M°k* + y (15M M7 + 12M3. — 16M*M7) k*
22 M2 (~8M® + OMMZ + M) | + ¢4y M (5My — 2M) M7 12
+yt (4M* — 9M}) M7k* — A(yM? — M Mr) (3Mr + 2M) k*

+ 202 M? (M2 — 4AM?) k? — AM (2M — 3My) My Mpk?

2 (t — 2M?)M (4M? — 8M My + 3M2) MQT] } (A3a)

{3% pk-p(k-A)k-P+16(k-p)? (k- p)° [%2 + 3M My

AN Ar A (y — 1)t] +38 ((k pPkp +kep(k -p')3) [WTAT

—2 (k2 4+ M) + (1 y)t| +8( (k- p) + (k) ) M(Mr — 2M1)

48k P [4(/<; . P)? (2M2(2k? + AM?) — M2M(9M + My))
+k-pk-p't(2(6My — M) My + 2(1 + y)k* + 2y (5M? + 4M My — 2M7)
+ Ay M2 — yt) + ((k; )+ (k -p)2> t(—2(1 + y) M?

+ Mrp ((1+y)M + 3My) )] +2(k - A)? [2M2 (8M My — AM? — 3M3) Mo

o8



203 (MG = AMAR| + 2 (k- 9)° + (k- p)?) ¢ (SMNTp + OMF) 2
+yM (12M? — 6 M My — 13M37) My — yt (2M — 3Myz) M7

+AM (M — 2Myp) Mo + 2yM (3My + AM) k2 + 4> M3 (2M — MT)}

4k -pk-pt [12yMHTk2 4y M2 (3M — 2Myp) My

+yM (16M? — 4AM My — 5M2) My — 2 (M? — 5M My + 3M2) My

— 22M My — yt (AM — My) My — tMo + 2k* + (12M?

22 M My + OM2)E? + 4> M2k? — tk2] 9% Pt [zyt (4M — 3Myp) MaAg
— 8tMMrk? — 2y*tM (4M?* — 2M My — 3M7F) My + 4yM (4M°

+ (3MpAg — 5M?) My) My + 4 (6M? — AMMZ — 9M32) Mk?

+12 (2M? + AM My + 3M7) k* + 4yM (3My + 2M) k* + 16y M*k?

—yt (4M* + 10M My + 3M3) k> + 4yM (6 My + 5M) (2M* — M7) k?
+dy2MP (SMP — M2 (Mg + 9M)) ] + t[8yM3 (3My + 2M) k*

+2(2M — 3My) (2M? — M> My — 3M3) Myk? — t (2M — 3My)? Mpk?

— 2yt MMy (AM My — OM2) k? — 22 (tM? — 2M*) (4M? — 8M My + 3M2) M,
+(2k% — 1) (3My + 2M)* k* + 8yM?® (2M? + My (M — 5My)) Mk?

+4 (AM* + 6M° My — 12M M3 — 9M7) k* + 4y* M* (4M> — M) k:Z] } (A3b)

For the magnetic octet-decuplet transition diagrams in Figs. 1(p) and 1(q), the numerator

functions Fﬁ:w maE12) and Ggfzwmagl’m in Eqs. (82) are expressed as
1 — —
Fp e — 8k p (k- A) [k (3Mr + Arp) — k- pM |
BT 12M%MB p( ) p ( T+ TB) b p

+8k - ph-p | (M + Mp) * + (MpAr + M = 303 + 1) My

+yt (Mg — My — yM) } Ak p)? [(2M — 3Myp) My (2My — Ap)
+2(3My + 2M) lﬂ 4 Ak - p)? [MTMBMT +2(2My — Ap) k?]

kA [ (3My + 2M) K* — (2M Ay My + 3Mp Ay My + 2M My Agp) /ﬂ
4k -t [yMT (2MAg + (M — 3Mg) My) — (3My + 2M) k2

S y2M2 (2M — MT)] k- pt [y%MB + 22 M (3My + M) Mg

29



2y MMMy + 2y (My + 2M) k2 — 22 ME? + 2ATBk2]
+t [4yM (MM p — 207 My) K — (2K — y2t) (2M — 3My) MMy
+ 2y M My (AM — 3Myz) M My + 2y* M (Mg (3Myp + 2M) + 4M M) k?

+2(3Myp + 2M) kﬂ } (Ada)

Girvmasl) —Lz{mk pk-p (k- A)? 4+ 8(k-p)k - p' [2/&‘ —4M* + (y - 3)t
6t M2My

—9Mp (3Myp + M) — 5MMT} Y 8kop(k-p) [ k4 3Mp My + 5M?

+MMrp + (14 y)t] +8(k - p)? [ — k> 4+ 3M My + MHB]

L8 (k- )’ M (M — 2M) — 4(k - A)? [ (4M — 3My) MM My

+ (My (3My + 2M) + 4M My) k;2] 4k -pk-pit [MT (Mp + 5A7)

4y (My (M — 3Myz) — M (8Myp + M)) + (1 + y)k? + 42 M? — yt}

4 (k- )t [ (2M — 3My) My + yM (2M — MT)] — 4k -p)Qt[(y 32

3y — 1)MBMT} — 4k - Pyt (M (3Myp + 2M) + 4M M) &

— 6k - A My Agph® — 2k - p't [yt (2M — 3Myz) My + 2 (2MAg + MA7p) k2

+y My (2M (5Mp + 3M) My — 3M2N 5 — AM2Ap) + 4> M3 (M — 2M)}

2k - pt [4y2M2 (3My + M) My + yMy (2M — 3Myp) M pMy + yt MMy

+ 2P MM+ (AMNM g — 2MyMrp) K + dyMMok? — 42 M2 + ytkﬂ

+1 [SMMTMBMTH 4 4y MMy (AM — 3My) M My + SM Mk

+4y? M2 (Mp (3My + 2M) + AMMy) K — dyM? (Myp My + 2M M) K2

+2ytM (M p + Mr) k* + 2y*tM (2M — 3My) MMy

_ 3thTATBk2] } (A4b)
F](;wamagZ) = m{%‘ kA [k‘ p’Mg—Fk-p (ATB + 3MT) ]

+ 8k -pk-p/[(MT—l—MB) k2 + My (MpAg + M* — 3M2 + 1)
oyt (My — My —yM) | +4 (k- p')? [MeMpMr +2 (2My — Ap) K|

—4(k - p)? [ (2M — 3Myz) My (2My — Ap) + 2 (3My + 2M) k?}
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— 4k - A (3Mr +2M) k' — (2M Ar My + 3MyAqMy + 2M MyAp) k|
+ 4k - pt [yMT (2MAp + (M — 3Mg) My) — (3Myp + 2M) k?

S y2M2(2M — MT)] ok 't [y%MB + 22 M (3Myp + M) My

2y MM My + 2y (My + 2M) K2 — 22 ME? + QATBk:Q]

+t [4yM (MyMp — 2MpAr) K2 — (2K — 12t) (2M — 3My) M My

+ 2y M My (4M — 3My) MpMp + 2y*> M (Mg (3My + 2M) + 4M Mr) k?

+2 (3Mp + 2M) kﬂ } (A4c)
(rbw mag 2) M / 2 "2 2 2
=—— " 16k . A . 2|2k —AM -
Gy 6tM%MB{ 6k -pk-p' (k-A) +8(k-p)°k p[ k + (y — 3)t

—9Mp (3Myp + M) — 5MMT} 8k (k- p) [ — k2 4 3Myg My + 5M?
S+ MMop+(1+ y)t] 48k ) [ k24 3M My + MMB]

8 (k- p)* M (My — 2M) — 4k - A)? [ (AM — 3My) MM My

+ (My (3My + 2M) + 4M My) k2] 4k pk-pt|[Mp (Mg + 5A7)

4y (M (M — 3Myz) — M (8Myp + M)) + (1 + y)k? + 42 M? — yt}

(k- )t (y — B2

— 3y — 1)MBMT} — 4k - Pyt (Mg (3Myp + 2M) + 4M M) K

4k -p)Qt[(ZM — 3My) My + yM (2M — My) |
6k - AtMpArgk? — 2k - pt [yt (2M — 3My) My + (AMAr + 2MArp) k2
+y My (2M (5Mp + 3M) My — 3M2M 5 — AM2Ap) + 42 M3 (My — 2M)}
ok it [4y2M2 (3Myp + M) M + yMyp (2M — 3My) MMy + ytM g My
+ MM + (AM My — 2N 7 Myp) K + AyMMok? — 42 MK + ytkﬂ
+t [SMMTHBHTICQ + 4y M2 My (AM — 3My) M My + SM Mok
+4y* M? (Mp (3Mr + 2M) + AM My) k* — dyM? (MrpMr + 2M Mp) k?

+2ytM (M p + Mr) k* + 2y*tM (2M — 3My) MMy

— 3thTATBk2] }, (A4d)

where we define Ay = My — Mg and My = My + Mg.

Finally, for the KR diagrams with decuplet baryon intermediate states in Fig. 1(r) and
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1(s), the numerator functions F}I;Rl’m and G(TI;RM) in Eqgs. (84) are expressed as

1
FERD _ {—4k-p’[2k-Py+3k‘p’—k’P]
To T 12M2
4ok [W +5yM My + 6(1 + y)M* — 3MpAr + (y — o) f}
+2k - p|(y — 1) (2M? — MMy) + 3MF| — SMM7#?
+(y? — y)t(2M? — MMy) +y (3tM} — 8M°Nr) } (A5a)

xr1y) M
Gry = m{% p' k- A(4M +5My) — k- A[M (4k* — 6M7)

+6Myp (K2 — M2) + 4M2MT] — kit [2MT 12 (2 —y?) M+ 3yMT]

+t [M (2k% — ByMZ) + 3Mrk? +y (1 4 y) M* My — 2(y — 2)M?) } } (A5b)

1
FEKR2) _ {—4k-p[2yk~P+3k-p—k~p’}
T 1202
42k -p[4k2 +5yM My + 6(1+y)M* — 3MrAr + (y — v°) t}
+2k -3/ (y = 1) (2M* — MMy) + 3M3| — SMMrk?
+ (y* — y)t(2M* — MMy) +y (3tM7 — 8M*Mr)) } (Abc)

kr2) M
Gy _m{ —2k~pk~A(4M+5MT)+k~A[M(4k;2—6M%)

+6Myp (K2 — M2) + 4M2MT] — kpt [QMT +2(2y — 1) M + 3yMT}

+t [M (2k% — ByMZ) + 3Mrk? +y (1 4 y) M* My — 2(y — 2)M?) } } (A5d)

For the additional gauge link generated KR diagrams in Fig. 1(t) and 1(t), the functions
5F:(FI;R1’2) and 5G§,,I;R1’2) in Eqs. (86) are given by

SFUSHD — 12?5\4%{ — 16k pk -/ k- P+ 4k ph-p [2M(2M + 3My) — (1+ )]
—4(k-p)? (MMrp 4 2M* +t) — A(k - p)*M (My — 2M)
+k-P(16M*K* — 12t M7) + k- A (16M°My — 4tM?)
4ok plt [Gyw + (11y — 5)M My — yt] 4ok - pt [zyM2

— (14 MMy + 129 MMz (M — B2) + 2 (3t — 2(y — 24) M2
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3Gy =

SRR

3G

+ (12k% — yt) MMT] — 8 (2k% + yt) M° My — 3yt2M%}, (A6Ga)
yM
3M?2
+k- P (12M7p M7 — 8ME* — 12Mrk?)

{4k~p’[k~p’(2M—i—3MT)+k~p(yM+MT)}

Yok pf [th 4 My — (11y + 4) M2 My — 2(3y + Q)Mﬂ
+2k - py (M*Mr — 2M?) + AM*M7k?* — 12y M* M7 Mr
+2y (2k* —t) M? +tM (3yM7 — 2k%) +y (12k* +t) M? My — 3tMpk?

+8yM* M } : (A6b)

Y 6k -pk-p k- P+4k-pk-p (6MMy+AM? — yt —t)
12M2

—4(k - p)? (MMg +2M* +t) — 4 (k- p')* M (Mg — 2M)

+4k - P (AM?K* = 3tM7) — k- A (16 M° My — 4tM?)

4% - pt [@MQ + (11y — 5)M My — yt] VoK -t [QyM2 1+ y)MMT}
+t[12yMMT (Mp My — k) +2 (yt — 2(y — 2)k%) M? + (12k* — yt) MMT]

— 8 (2k* + yt) M°Mry — 3yt2M%}, (A6c)

?)y]\]\j%{zm p[k o' (uM +3r) + k- p(2M + 3My) |
Y4k P [3MTM% —(2M + 3MT)/<:2]

+2k-p [th +tMp — (4 + 11y) M* My — 2(2 + 3y)M3]

+2k - p'y (M? My — 2MP) + AM>Mpk?® — 12y M> M2 My + 2y(2k% — t) M?

+tM (3yM; — 2k*) + y(12k* + t) M* My — 3tMrk* + SyMWT}, (A6d)
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