
Eur. Phys. J. Plus manuscript No.
(will be inserted by the editor)

Streaming readout for next generation electron scattering
experiments

Fabrizio Ameli1, Marco Battaglieri2,3, Vladimir V. Berdnikov4, Mariangela
Bondí3, Sergey Boyarinov2, Nathan Brei2, Andrea Celentano3, Laura
Cappelli5, Tommaso Chiarusi6, Raffaella De Vita3, Cristiano Fanelli7,8,
Vardan Gyurjyan2, David Lawrence2, Patrick Moran7, Paolo Musico3,
Carmelo Pellegrino5, Alessandro Pilloni9,10, Ben Raydo2, Carl Timmer2,
Maurizio Ungaro2, Simone Vallarino11

1 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma, Italy
2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
3Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy
4Catholic University of America, Washington, DC 20064, USA
5Istituto Nazionale di Fisica Nucleare, CNAF, 40127 Bologna, Italy
6Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna, Italy
7Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
8The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Massachusetts 02139-4307, USA
9Università degli Studi di Messina, Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della
Terra, 98166 Messina, Italy
10Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95123 Catania, Italy
11Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara, Italy
Draft : January 27, 2022

Abstract Current and future experiments at the high
intensity frontier are expected to produce an enormous
amount of data that needs to be collected and stored
for offline analysis. Thanks to the continuous progress
in computing and networking technology, it is now pos-
sible to replace the standard ‘triggered’ data acquisi-
tion systems with a new, simplified and outperform-
ing scheme. ‘Streaming readout’ (SRO) DAQ aims to
replace the hardware-based trigger with a much more
powerful and flexible software-based one, that consid-
ers the whole detector information for efficient real-time
data tagging and selection. Considering the crucial role
of DAQ in an experiment, validation with on-field tests
is required to demonstrate SRO performance. In this
paper we report results of the on-beam validation of the
Jefferson Lab SRO framework. We exposed different de-
tectors (PbWO-based electromagnetic calorimeters and
a plastic scintillator hodoscope) to the Hall-D electron-
positron secondary beam and to the Hall-B produc-
tion electron beam, with increasingly complex exper-
imental conditions. By comparing the data collected
with the SRO system against the traditional DAQ, we
demonstrate that the SRO performs as expected. Fur-
thermore, we provide evidence of its superiority in im-
plementing sophisticated AI-supported algorithms for
real-time data analysis and reconstruction.

Keywords Streaming readout data acquisition,
on-beam validation, PbWO calorimetry

1 Introduction

A new generation of electron scattering experiments
is underway at the world-leading QCD facilities such
as Brookhaven National Lab (BNL) and Jefferson Lab
(JLab). New projects include the Electron Ion Collider
(EIC) [1] at BNL, SOLID [2] and Moller [3] at JLab,
and upgrades of the existing detectors in the two labs,
sPHENIX [4] and CLAS12 [5], respectively.

All these experiments are characterized by mod-
ern detectors with millions of active readout channels
and by an unprecedented data rate produced by high-
luminosity operations of the accelerators. The ambi-
tious scientific program at the intensity frontier of nu-
clear physics calls for a data acquisition system (DAQ)
that can record the interesting events and filter out the
unnecessary background. Advances in data manipula-
tion algorithms, e.g. artificial intelligence (AI) and ma-
chine learning, open up new possibilities for (quasi-)real-
time data processing, by providing an efficient tool to
calibrate the detector while running and at the same
time intelligently select and reconstruct the final state
particles. To fully exploit this progress, it is necessary to
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leave the triggered DAQ paradigm and move towards a
more flexible software-based framework. In this scheme,
all data is streamed from the detector to a data cen-
ter where the entire detector’s information can be an-
alyzed and used for efficient data tagging and filtering.
This framework is called triggerless or streaming read-
out (SRO) DAQ.

2 Streaming Readout DAQ

Due to the improved performance of CPUs and com-
puter networks, the FPGA-based trigger scheme can
be partially replaced by SRO DAQ. By removing the
hardware trigger and performing the full online data
reconstruction, it provides precise selections of (com-
plicated) final states for further high level physics anal-
ysis. For example, see the current effort in preparation
of the high luminosity upgrade of LHC [6] at CERN. In
a triggerless data acquisition scheme, each channel that
exceeds a threshold (as implemented on the front-end
board) is labeled with a time-stamp and then trans-
ferred, regardless of the status of the other channels.
A powerful online CPU farm, connected by a fast net-
work link (usually optical fiber) to the front-end elec-
tronics, receives all data samples, reorganizes the infor-
mation ordering hits by time, includes calibration con-
stants, and finally applies algorithms to find specific
correlations between reconstructed hits (a.k.a. a soft-
ware trigger), keeping and storing only filtered events.
The advantages of this scheme come from the follow-
ing: using fully reconstructed hit data to define a high-
level event selection condition, implementing online al-
gorithms in a high-level programming language, and
gaining the ability to easily upgrade the system config-
uration and accommodate new requirements. Further-
more, the system can be scaled to match different ex-
perimental conditions (either unexpected or foreseen in
a planned upgrade) by simply adding more comput-
ing (CPUs) and/or data transfer (network switches) re-
sources. FPGAs (or similar fast front-end data concen-
trators) will still be used in a SRO DAQ system, not to
make decisions concerning which events to select, but to
handle “low-level” tasks such as adding timestamps or
canalizing the data. The pipeline can then be extended
to include calibrating and tagging events in the stream.
The following will review some examples of how SRO
can benefit current and future experiments at electron
machines.

2.1 Real Time Processing: Calibration, Selection, and
Tagging

A significant benefit of SRO systems is the ability to ac-
cess data from all detectors when making decisions on
what must be kept and what can be safely discarded
in an event. A natural extension of this concept is to
analyze the data as much as is reasonable during acqui-
sition in order to aid and expedite the physics analysis
downstream. Two techniques are particularly useful for
this. One is the generation of detector calibrations in
(quasi-)real time. The other is event tagging. It is with
these that SRO starts blurring the line between data
acquisition and offline analysis.

SRO systems must be designed to keep up with the
peak detector rates that are determined by the acceler-
ator’s full operating luminosity. In actual experiments,
accelerators do not operate continuously at full lumi-
nosity. Beam trips, fill depletion, configuration changes,
etc. all contribute to downtime. Writing the data stream
(after triggering and filtering) to a large, temporary
disk buffer will smooth out these fluctuations on a time
scale corresponding to the size of the buffer. Thus, there
is a minimal latency between when data is streamed
into the buffer and data is streamed out. This latency
can be utilized to obtain detector calibrations from the
streamed data before it is sent to storage. Furthermore,
with the calibrations available, full or partial recon-
struction of the data may be performed prior to storage,
further reducing the resource requirements downstream
while allowing events to be tagged as being of interest to
certain physics reactions. Figure 1 illustrates this con-
cept. The reconstruction/tagging stage shown in figure
can be implemented on a large HTC or HPC facility,
effectively making it part of the SRO data stream. By
way of a quantitative example: existing triggered sys-
tems at JLab produce experimental data at peak rates
of 1–10 GB/s with approximately a 60% efficiency of
the accelerator. A buffer that gives a 72hr latency would
need to be (10 GB/s) × 0.60 × (72 hr) = 1.6 PB. The
calibration and reconstruction/tagging processes can be
done asynchronously with each other while conceptu-
ally forming a single, chained stream with multiple data
reduction stages.

2.2 SRO examples

Here we consider two specific examples, the new EIC
and an upgraded CLAS12 detector at JLab, to discuss
benefits of an SRO scheme to the physics program of
the two experiments.
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Fig. 1 Streaming DAQ systems must keep up with the peak
rate of the accelerator. However, a large buffer can smooth
out fluctuations and downtimes so downstream consumers of
the stream need only keep up with the average rate. This
gives the added benefit of a time delay that can be used to
generate calibrations. Conceptually, this extends the stream
all the way into the offline reconstruction.

2.2.1 SRO for JLab CLAS12-HI-LUMI

The CEBAF Large Acceptance Spectrometer for opera-
tions at 12 GeV beam energy (CLAS12) is used to study
electro-induced nuclear and hadronic reactions. This
spectrometer provides efficient detection of charged and
neutral particles over a large fraction of the full solid
angle. Cherenkov counters, time-of-flight scintillators,
and electromagnetic calorimeters provide identification
of the scattered electron and of produced hadrons. Fast
triggering and high data-acquisition rates (event rate
up to 30 kHz, data rate up to 800 MB/s) allow opera-
tion at a luminosity of 1035 cm−2s−1. These capabilities
are being used in a broad program to study the struc-
ture and interactions of nucleons, nuclei, and mesons,
using polarized and unpolarized electron beam and tar-
gets, for beam energies up to 11GeV. The detector is
undergoing to an upgrade aiming to increase the op-
erational luminosity by a factor of two. In particular
the tracking system, currently based on Drift Cham-
bers, will be replaced by a faster tracker with higher
granularity such as GEMs, MicroMegas or the novel
µRwell detectors. The current trigger-based DAQ per-
formance can be increased, reaching an event rate close
to 100 kHz. For further performance improvement, a
full streaming DAQ is under consideration as part of
the detector upgrade. The new scheme should overcome
other present limitations, such as triggering on neutrals
(i.e. photons from π0 decay, by imposing a sharp cut on
the invariant mass), or triggering on kaons (after per-
forming a crude particle identification). Improvement
is also expected in trigger purity, currently constrained
by a significant hadronic background (mainly hadronic
showers initiated by pions). More sophisticated algo-
rithms, that make use of the shower distribution and
the combined information from the calorimeter and the
Cherenkov detector, will result in a cleaner selection of
the desired reaction channels. The data rate from the
CLAS12 detector in DAQ streaming mode is estimated
to be on the level of 50 GB/s, and a data reduction
factor 10 or higher is required to decrease the recorded

event rate to a level that is compatible with current
data storage technology.

2.2.2 SRO for BNL Electron Ion Collider (EIC)

The detectors planned for the future EIC at BNL will
be among the few major collider detectors to be built
from scratch in the 21st century. A truly modern EIC
detector design must be complemented with an inte-
grated readout scheme that supports the scientific op-
portunities of the machine, improves time-to-analysis,
and maximizes the scientific output. A fully SRO de-
sign delivers on these promises. In particular, the EIC
is expected to measure different reactions with an elec-
tron (at least) in the electromagnetic calorimeter. On-
line calibration to compensate for e.m. shower energy
leakage and gain variation, implementation of sophis-
ticated AI-supported clustering algorithms for better
reconstruction of nearby tracks, and improvement of
e.m.-hadron shower discrimination will result in a bet-
ter resolution, better electron/π0 discrimination, and
higher hadron background rejection. Moreover, the flex-
ibility of the SRO will allow setting dedicated ‘triggers’
to pin down rare processes, e.g. exclusive kaon-rich re-
actions, among the leading electromagnetic production.
The EIC Yellow Report [1] states that SRO is the cho-
sen option for the collider.

3 SRO validation and on-beam tests

Despite the conceptual simplicity of a triggerless DAQ,
a realistic implementation with the specific detector
readout is necessary to demonstrate the expected per-
formance. The sophisticated combination of suitable
front-end electronics, network facilities, and CPU-based
algorithms requires a significant effort to identify or de-
velop (if not available yet) the best option for each el-
ement, set up and test the whole scheme, and compare
the results with traditional approaches.

In the following, we will describe in detail the com-
ponents of Jefferson Lab’s SRO DAQ prototype (both
front-end and back-end) and the results obtained from
on-beam tests during an opportunistic measurement
campaign performed at the lab in 2020. This proto-
type is designed to serve as a template for future SRO
systems.

3.1 Detector setup

On-beam tests were performed with two setups of in-
creasing complexity. In the first experiment, a 3 × 3

PbWO4 matrix was placed downstream of a secondary
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Fig. 2 The PbWO4 EIC EM calorimeter prototype (on the
left) installed in the Hall-D downstream of the Pair Spec-
trometer (PS).

electron/positron beam generated by the primary pho-
ton beam in Hall-D. Leptons were identified and their
energy measured by a Pair Spectrometer tagger (PS) [7,
8]. This enabled a precise determination of the energy
and a quantitative comparison between SRO and trig-
gered clustering algorithms. In the second experiment,
we measured the inclusive π0 electroproduction with
the Hall-B CLAS12-FT detector. Detailed Geant4 sim-
ulations of the FT provided a realistic estimate of the
detector acceptance and efficiency. The π0 mass was
used as a reference to identify the channel and provide
a quantitative comparison to the expected rates.

3.1.1 Hall-D

On-beam tests used an EIC calorimeter prototype con-
sisting of a 3× 3 matrix of PbWO4 crystals. Each crys-
tal, 2.05 cm×2.05 cm×20 cm in size (corresponding to
∼ 22X0) was read out by a 19 mm diameter photomul-
tiplier tube (R4125) with a custom HV base and active
divider.

The prototype was installed in Hall-D downstream
of the pair spectrometer (PS), as shown in Figure 2.
Electron-positron pairs are produced by the primary
photon beam interacting with 750 µm beryllium con-
verter. Lepton pairs are deflected in a 1.5 T dipole mag-
net and detected using two layers of scintillation coun-
ters positioned symmetrically around the photon beam
line. Each arm consists of 8 coarse counters and 145
high-granularity counters. The high-granularity hodoscope
is used to measure the lepton momentum; the position

of each counter corresponds to the specific energy. Each
detector arm covers the lepton momentum range 3–
6.2GeV/c. The energy resolution of the PS is estimated
to be better than 0.6%. The position of the prototype
was surveyed and aligned with respect to the beam line
and the center of the pair spectrometer magnet, such
that the lepton beam’s spot is focused on the center
row of the prototype, perpendicular to the front face of
the crystals.

3.1.2 Hall-B

The JLab SRO DAQ system, which is also expected to
be used in upcoming CLAS12 high luminosity opera-
tions, was validated on one of the two electromagnetic
calorimeters present in CLAS12. The EM calorimeter
provides the trigger for most, if not all, of the pro-
cesses of interest in electron machines by tagging the
scattered electron. In CLAS12 there are two different
calorimeters: the FT-Cal and the FD-Cal. The FT-Cal
covers polar angles (with respect to the beam axis)
2.5◦ < θ < 5.0◦, and azimuthal angles 0◦ < ϕ < 360◦.
The FT-Cal, located 1.85 m downstream the produc-
tion target, is made of PbWO4 crystals read by APDs
for a total of 332 channels. The FD-Cal, a sampling
calorimeter made of lead and plastic scintillator bars
and read by PMTs, covers the region 5.0◦ < θ < 35.0◦.
It is split into six identical sectors, each covering ∼ 60◦

in ϕ, for a total of ∼ 3000 channels.
The limited number of channels, the compactness, and
the full coverage of the azimuthal angle range together
make the FT-Cal an ideal detector for testing the SRO
DAQ. Moreover, the FT-Cal is part of a larger system
(the CLAS12 Forward Tagger or FT) consisting of a
scintillator-tile hodoscope (FT-Hodo) and a MicroMega
tracker (FT-TRK) located upstream of the calorime-
ter. The FT-Hodo, composed of 232 plastic scintillator
tails, is used to distinguish neutrals from charged par-
ticles and, in turn, identifies photons. The FT-TRK,
consisting of two layers of MicroMega detectors, allows
a precise determination of the electron coordinates. Fig-
ure 3 shows the detector with the different components.
The whole FT is a small-scale detector that provides
charged/neutral particle detection and identification,
representing a simple but complete template of the en-
tire CLAS12. For the aforementioned reasons we fo-
cused our tests on the FT-Cal. A detailed description
of the detector, including on-beam performance, is re-
ported in Ref. [9].
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Fig. 3 The CLAS12 Forward Tagger (FT) with details of the
PbWO calorimeter (FT-Cal), the plastic scintillator tile ho-
doscope (FT-Hodo) and the MicroMega tracker (FT-TRK).

4 JLab SRO DAQ

On-beam tests were performed using different combina-
tions of front-end electronic boards (INFN-WaveBoard
and JLab fADC250), the CEBAF Online Data Acquisi-
tion framework (CODA), the Triggerless Data Acquisi-
tion System (TriDAS) (for the back-end) and the high-
level analysis framework JANA2.

4.1 Front-end electronics

4.1.1 The INFN WaveBoard digitizer

The WaveBoard is a 12-channel digitizer designed for
High Energy Physics experiments. Its main features are
an extremely performant sampling architecture at a low
cost per channel (compared to equivalent commercial
boards), a versatile front-end which can be interfaced
to different sensors, a flexible timing system with high
resolution, a memory buffer large enough for tempo-
rary data storage, and self-triggering algorithms based
on waveform analysis. Fig. 4 displays the multi-channel
digitizer board.

The firmware of the digitizer board supports an
auto-triggering mechanism particularly suited to the
streaming readout environment: digitized waveforms,

Fig. 4 The multi-channel digitizer board.

whose amplitude is greater than a programmable thresh-
old, are stored in a fast FIFO, timestamped, and for-
warded to the DAQ via a GbE link for the physics event
search. A triggered system can be accommodated as
well through dedicated firmware.

Data digitization is performed by 6 dual true differ-
ential ADCs from Texas Instruments. The ADC family
members are pin to pin compatible, offering resolutions
from 12 to 14 bits and sampling frequencies from 65 to
250 MHz.

The board is able to power the input sensors in-
dividually with a High Voltage (HV) of up to 100 V,
provided by a dedicated HV linear regulator.

To align the system to an external time reference, a
clock and a timing signal can be received by the Wave-
Board on two dedicated U.FL connectors. The timing
signal is fed directly to the FPGA and can be either
a slow reference (e.g. a Pulse Per Second signal) or a
digital timing protocol (e.g. NMEA, IRIG, etc.). This
signal imposes the same phase to timing on different
boards.

Data collection and manipulation is accomplished
by a commercial System On Module (SoM) mezzanine
board from Trenz Electronics, based on a Xilinx Zynq-
7000 SoC. The SoM is hosted by the board via proper
connectors. The Zynq-ARM processor runs a Linux dis-
tribution, making it substantially simpler to interface
with the board. Physics data, stored in DDR memory
by the auto-triggering algorithms implemented in the
programmable logic, are transmitted over the GbE link
using a TCP/IP protocol. Thanks to a Direct Memory



6

Address (DMA) architecture, the available data rate
can be as high as 900Mbit/s.

4.1.2 The JLab fADC250 digitizer and VTP board

The FADC250 (Fig. 5) is a similar digitizer (250 MHz
sampling rate, 16 channels) designed at JLab and used
in many experiments for general purpose triggered read-
out of detectors. The firmware has been adapted for
streaming readout by utilizing the VXS serial links,
which were previously used for trigger outputs. The
FADC250 supports a total output bandwidth of up to
20Gbit/s, though we currently utilize 10Gbit/s. The
FADC250 firmware detects pulses using a software-defined
threshold. When a threshold crossing is found, the pulses
are integrated in a programmably-sized window, a pedestal
is subtracted, and a gain is applied. The result is a cal-
ibrated charge and time for the found pulse, which is
sent over the VXS interface to the next stage (VTP).
When running in this mode, the FADC250 supports up
to 30 MHz of hits per channel.

Fig. 5 JLab FADC250 Board. A VME/VXS style, 16 chan-
nels, 250 MHz 12bit ADCs. Readout can be over VME
(200 MB/s) or through VXS serial links (up to 20Gbit/s).

The VTP board (Fig. 6) is another custom JLab de-
sign that is used in conjunction with FADC250 modules
when fast readout is needed. This is a fairly generic and
flexible module (with several firmware implementations
to match the requirements of different experiments)
whose conversion to streaming readout was a simple
and natural extension. The resources on the VTP pro-
vide reasonable serial connectivity between the VXS
and the optical links, as well as significant buffering
capability. See Fig. 7 for the board schematic.

The VTP collects streaming data from up to 16
FADC250 modules, storing the streams in DDR3 mem-

Fig. 6 VXS Trigger Processor (VTP) Board. This connects
to all VXS front-end cards in a crate to perform readout
and/or trigger functions. It provides multiple optical inter-
faces for sharing information between other VTP modules
and for streaming data to the network.

Fig. 7 VXS Trigger Processor (VTP) Diagram. Streaming
data is collected over VXS from up to 16 payload front-end
cards using up to 4 serial lanes at up to 8.5Gbit/s per lane.
This data is then buffered in DDR3 memory (connected to
the XC7V550T) while the XC7Z030 streams it over Ethernet
using up to 4 fully hardware accelerated 10Gbit/s TCP/IP
Ethernet interfaces.

ory. FADC250 hits are packaged into 65 µs frames and
sent over 10Gbps Ethernet using the TCP protocol.
Each frame contains data from up to 8 FADC250 mod-
ules. Currently, up to two 10Gbit/s Ethernet links can
run together to support up to 16 FADC250 modules.
The 10Gbit/s TCP link can sustain up to 8Gbit/s
of TCP data without creating significant backpressure.
When the data rate is too high and creates TCP back-
pressure, the streaming data is allowed to back up into
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the DDR3 memory before any is dropped. If this back-
pressure is sustained, the VTP will drop data frames.
When data is dropped, it will be a complete 65 µs
frame that is lost; each frame contains a frame counter
and timestamp so that the receiving end will know
that this happened. To support high data rates without
loss, ‘hot’ channels should be distributed over multiple
VTPs, and additional 10Gbit/s Ethernet links should
be enabled. Currently, when running with 16 FADC250
modules (256 channels) and two 10Gbit/s Ethernet
links, the rate limit is around 150 MHz for hits (or
about 2 MHz for average hits per channel), which is an
extremely large value.

In the future we plan to expand this setup to pro-
vide more FADC250 data types and to enable other
JLab VXS modules to use the same streaming readout
concept, thereby providing a low-cost upgrade oppor-
tunity for future JLab experiments.

4.2 Run Control: CODA

The CEBAF Online Data Acquisition system (CODA)
was designed to work with trigger-based readout sys-
tems. The key component is the Event Builder: it col-
lects data from 100+ Readout Controllers (ROCs) and
VXS Trigger Boards (VTPs), and builds events based
on event number. Another important component is the
Trigger Supervisor (TS), which synchronizes all compo-
nents using clock, sync, trigger and busy signals. ROCs
are reading front-end electronics over a VME bus, and
VTPs are forming trigger decisions and reporting some
trigger-related information. A detailed description of
CODA can be found in [10].

To use the available front-end electronics in stream-
ing mode, the role of the TS was reduced to clock dis-
tribution, and the Event Builder was replaced with a
new SRO component and back-end software capable of
gluing ROC information based on timestamp instead
of event number. ROCs are not sending any data in
that mode, rather they merely do initial configuration
settings over the VME bus. All front-end electronics
readout is performed by VTP boards over serial lines
rather then the VME bus, which increases the band-
width limit from about 2 to 20Gbit/s for each of three
participating electronics crates, with the possibility for
a further increase to 40 Gbps if needed. New firmware
was developed for VTPs to implement streaming mode.

Finally, an intermediate software layer, called SRO
Translator, was introduced between the VTPs and Tri-
DAS. It runs in online mode on its own server. It re-
arranges and reformats the data streaming from the
VTPs so that the data can be ingested by TriDAS. The

SRO Translator and TriDAS communicate via TCP
sockets over the network.

4.3 Triggerless Data Acquisition System (TriDAS)

The Triggerless Data Acquisition System (TriDAS) [11,
12] is a streaming readout software framework origi-
nally designed and implemented for the astrophysical
neutrino detector prototype NEMO [13]. NEMO is a
very large detector, distributed across a cubic kilome-
ter beneath the Mediterranean Sea, and was deployed
in stages over several years. A key requirement of Tri-
DAS was to support data taking from the beginning,
and to scale with the detector installation.

To fulfill this ambitious requirement, TriDAS lever-
ages a modular design, which turned out to meet the
needs of a beam-based experiment with minimal de-
velopment effort. TriDAS is made of various software
components implemented in C++11, each dedicated to a
specific task in the data-processing chain. The HitMan-

Fig. 8 The DAQ model, from the used CLAS12 subdetectors
and front-end electronics to the TriDAS elements.

agers (HMs) represent the first data aggregation stage.
They receive data streams from a predefined number
of CODA translators, topologically corresponding to a
sector of the detector. Each HM divides the collected
data into a sequence of time-ordered bunches of data,
called Sector Time Slices (STS), with an adjustable
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width set to 50 ms. Sharing a common time reference,
all HMs arrange their STSs according to the same in-
tervals of time, which are referred to as Time Slices
(TS).

The TriggerCPUs (TCPUs) receive the STSes as-
sembled by all HMs corresponding to the same TS and
apply the event building and the classification/selection
algorithms to the data. Time slices are processed in
parallel by multiple threads of the same TCPU and by
multiple TCPU processes running on a CPU farm. The
Level 1 events (L1) consist of all data within a pro-
grammable time window around a hit whose energy ex-
ceeded a certain threshold. Considering the typical sizes
of the coincidence time window (O(100 ns)) and the
TST (O(10 ms)), events spanning two adjacent STSes
are neglected. Level 1 events identified within a TS are
then fed to the L2 classification/selection algorithms
that are implemented in separate binaries and specified
in the run configuration file.

A token-based mechanism is at the core of the Tri-
DAS SuperVisor (TSV) load balancing. Each TCPU
thread owns a token that is given to the TSV on com-
pletion of the TS processing. The TSV maintains a pool
of “free to use” TCPU threads which are then matched
to the new time slices that are continuously assembled
by the HMs.

The Event Manager (EM) collects the selected L2
events and then writes them to the so called Post Trig-
ger (PT) file.

The user interacts with the system via the TriDAS
System Controller (TSC). For the CLAS12 tests, a sim-
ple interface was custom-built around the TSC.

4.4 High level data processing (JANA2)

One requirement of SRO systems is to be able to filter
the data stream so that only the small portion relevant
to the physics being measured is ultimately stored. The
JANA2 reconstruction framework was integrated with
TriDAS for this purpose. The solution took the form of
a TriDAS plugin which utilizes JANA2. That TriDAS
plugin loads multiple JANA2 plugins, each of which
provides a different trigger while sharing any underly-
ing algorithms (e.g. calorimeter clustering). Each plugin
reports its own TriggerDecision back to TriDAS. The
TriggerDecision contains a 16 bit tag to identify which
plugin produced it and a 16 bit value to record details
of the trigger decision. Each plugin is free to assign its
own meaning to the 16 bit value, with the constraint
that nonzero values indicate TriDAS should keep the
event. At least one nonzero trigger value is considered
sufficient for keeping an event. All TriggerDecision ob-
jects are stored alongside each recorded event, allowing

later analysis of which triggers were active and their
specifics for a given event.

An important design feature of the JANA2 frame-
work is its on-demand algorithm execution. This can
significantly reduce the amount of computation required
to implement a sophisticated online trigger system. An
algorithm in JANA2 (referred to as a “factory” in the
framework’s parlance) operates by taking certain data
objects as inputs and producing one or more data ob-
jects as an output. A user-defined processor activates an
algorithm by simply requesting the type of data objects
that the factory produces. Thus, for a given event, if a
certain type of data object is never requested, then the
corresponding algorithm that produces it is never run.
This allows the user to organize the requests for data
objects such that the least expensive algorithms are run
first. If a keep/no-keep decision can be made based on
their output, no further algorithms need to be run for
that event. Figure 9 illustrates a flow chart of this. Hav-
ing this fine-grained control built-in at the event level
helps the end user optimize the system based on the
specifics of their data, hardware, and trigger complex-
ity.
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Fig. 9 Example of a configuration supported in JANA2
where event-by-event decisions are made by applying succes-
sively more expensive algorithms. As soon as a keep/no-keep
decision is made, TriDAS is informed and additional algo-
rithms need not be run, reducing the overall compute require-
ment for the online trigger(filter).

4.5 AI algorithms for SRO

The adoption of AI in nuclear and particle physics is
accelerating and will be an essential part of future ex-
periments such as the EIC [14].
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AI encompasses all of the concepts related to the
integration of intelligence into machines; unsupervised
learning, in particular, is a family of algorithms capable
of learning patterns from untagged data, i.e. without a
training phase. This has been explored for the first time
in near real-time reconstruction of clusters detected in
the Forward Tagger calorimeter (FT-Cal) using TriDAS
and JANA2.

A clustering algorithm inspired by the Hierarchical
Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [15] has been implemented in the
form of a plugin within the JANA2 framework. Such
an algorithm is characterized by the following features:
(i) it can be easily ported to other experiments; (ii)

it formally does not depend on cuts during the clus-
ter formation process, making it less sensitive to vari-
ations in experimental conditions during data-taking;
(iii) it is able to cope with a large number of hits; (iv)
it excels when dealing with challenging topologies and
arbitrarily shaped clusters, varying cluster sizes and,
remarkably, noise (i.e. hits identified as noise are not
clustered); (v) it supports calculating the probability
that a hit belongs to a cluster or is an outlier.

The last two features are desirable in many experi-
ments and are not provided by simpler algorithms such
as k-means [16], which is a semi-supervised approach
that has also been implemented in the JANA2 frame-
work during these studies.1

HDBSCAN permits considering all of the hit-level
information in the detector (e.g. spatial, time, and en-
ergy) and looking at the density of hits in that space of
parameters. To do this, the algorithm leverages a met-
ric called “mutual reachability” distance [15]. This met-
ric combines the density at each point (hit) with the
relative distance between two points, and is typically
expressed as

dmreach-k(a, b) = max {corek(a), corek(b), d(a, b)} , (1)

where a and b are two points, d(a, b) is their metric
distance, and corek is the core distance at each point,
which depends on a hyperparameter k, and represents
the distance to the kth neighboring point. More details
can be found in [17]. This step is followed by finding the
minimum spanning tree of the points, based off of the
connecting edges for each pair of points with weights re-
lated to the mutual reachability. The spanning tree can
be converted to a hierarchy which is eventually used to
extract the clusters (see Fig. 10). In the figure, the pa-
rameter λ is the inverse of the introduced distance. An-
1In its standard implementation, k-means has as hyperpa-
rameter the number of iterations to run and the number of
clusters k; in our implementation of k-means, we first deter-
mine the seeds of the clusters and then start clustering.

core distance

core distance

core distance
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b

c

k=6

Fig. 10 Illustrative example of mutual reachability (top)
for the points a and b, following Eq. (1). HDBSCAN con-
denses the tree upwards via density based notions, defining a
maximum lambda boundary (bottom). The horizontal lines
indicate the lambda value boundaries of clusters. Image taken
from [17].

other hyperparameter is the minimum cluster size Nsize,
with which we can now walk through the hierarchy and,
at each split, ask if one of the new clusters created by
the split has fewer points than the minimum cluster
size. As shown in Fig. 10, we select clusters from the
condensed tree with larger persistence, i.e. with longer
lifetime as measured by λ. Recent improvements in the
HDBSCAN algorithm can be found in [18].

This approach is very effective in suppressing single
tower noise. Hits are associated with clusters along with
their probability of membership and their probability of
being an outlier. These become new features that can
later be used for refining the selection of physics events.

Before the SRO tests began, these AI-based ap-
proaches were initially developed and tested with well
understood and characterized minimum-bias triggered
uncalibrated events collected in the FT-CAL of CLAS12,
as shown in Fig. 11.

Diphoton invariant mass spectra obtained with the
AI-based approaches have been benchmarked against
the spectrum obtained with the standard clustering al-
gorithm to test the tuning of the hyperparameters (Fig.
11 shows only one particular case). For HDBSCAN we
also extend the clustering to the entire information avail-
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Fig. 11 Diphoton invariant mass spectra. Top: standard
clustering algorithm (benchmark) and k-means, shown with
different configurations of the hyperparameters. Bottom: the
same with HDBSCAN.

able in the calorimeter (4D: x, y, t, E). Loose selection
criteria with fiducial cuts is applied consistently in all
cases in Fig. 11 to produce the corresponding dipho-
ton invariant mass spectra. With this simple and clean
dataset, the π0 yields obtained with the different meth-
ods are comparable, but k-means retained more back-
ground at lower mass value. As expected, the runtime
of k-means is comparable to the standard algorithm,
while HDBSCAN is 30% slower on average due to its
more complex calculations. On the other hand, HDB-
SCAN is a more suitable clustering strategy for more
complex data, as it handles high multiplicity, noise, and
complex topologies. No cuts on the membership proba-
bilities or outlier scores of the hits have been applied in
the HDBSCAN case — this is a promising opportunity
that is left for future studies. In Sec. 5.2.3, we will run
the AI-based clustering algorithms on data taken dur-
ing the SRO tests and provide a detailed description of
the accomplished analysis.

5 On-beam test results

5.1 Hall-D

Tests were performed parasitically during GlueX high-
luminosity runs with a 350 nA photon beam. The pro-
totype was irradiated with a 4.7GeV secondary elec-
tron beam centered with respect to the matrix central
crystal. Figure 12 shows a sketch of the experimental
setup.
Two different DAQ setups were used: triggered mode
(integrated into GlueX data acquisition), and streaming
readout. Tests with triggered DAQ were performed by
applying the same methodology described in Ref. [19].
The signal amplitude from each PMT was recorded by
an FADC whenever a lepton hit a PS hodoscope tile.
For SRO tests, each PMT signal was digitized by the
WaveBoard and streamed to TRIDAS software, where
a threshold equivalent to ∼ 2GeV, defined a L1 event.

Fig. 12 Schematic of the prototype tests installed in the
Hall-D beamline behind the pair spectrometer

5.1.1 Data analysis and results

To validate the performance of the SRO DAQ chain, we
compared the energy resolution obtained in triggered
and SRO mode. The SRO data analysis was performed
within the JANA2 framework, where a dedicated clus-
tering algorithm was implemented. Fig. 13 shows the
energy spectrum of the nine channels. The effect of the
L1 threshold is clearly visible for the central crystal.

The selection algorithm identified events with a large
energy deposited in the central crystals (assumed to
be the EM shower seed) and summed all hits in the
other channels within a time window of 100 ns. A cut
on the energy-weighted x-y hit position was used to
exclude events hitting the side crystals after a rough
inter-channel energy calibration (the procedure is the
same as described later for triggered mode). The clus-
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Fig. 13 Response of the nine channels of the calorimeter
collected in SRO mode. The beam was centered on the central
crystal.

ter energy distribution is shown in Fig. 14. The energy
resolution, obtained by fitting the distribution with a
Gaussian curve, is (2.40± 0.05)%.
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Fig. 14 Reconstructed cluster energy for the SRO configu-
ration.

The energy resolution in triggered mode was ob-
tained after applying the calibration procedure described
in [19]. In particular, calibration coefficients were ob-
tained by minimizing the difference between the total
energy deposited in the 3 × 3 matrix and the electron
energy measured by the Pair Spectrometer.
The cluster energy spectrum for the triggered configu-

ration, calculated as the sum of energy deposited in the
nine channels, is shown in Fig. 15.
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Fig. 15 Reconstructed cluster energy for the triggered con-
figuration.

The resulting energy resolution (Gaussian fit) is (2.37±
0.05)%, in good agreement with results obtained for the
SRO DAQ configuration.

5.2 Hall-B

Tests were performed parasitically during two CLAS12
production runs using a 100 nA electron beam acceler-
ated at 10GeV by the CEBAF on a 125 µm lead target
for Run-1, and a 40 cm gaseous deuterium target for
Run-2.

An SRO system based on FADC250, VTP, TriDAS
and JANA2 was used to read out the FT-CAL and FT-
HODO.2 The TriDAS time coincidence window was set
to 200 ns and the TST to 50 ms. The energy threshold
of the L1 trigger was set to 2GeV. Several L2 trigger
conditions were used in parallel to tag events: one event
over ten, minimum bias, and one or more clusters based
on both standard and AI algorithms. Minimum-bias
triggered data, accumulated in Run-1, was used to iden-
tify a clean physics channel consisting of inclusive π0

production, and corresponding results were compared
with detailed Monte Carlo simulations. In the follow-
ing sections we report more details about the π0 yield
estimate and data analysis.

2During Run-1, only the FT-CAL was used
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5.2.1 Inclusive π0 electroproduction model

The dominant contribution to the inclusive π0 cross sec-
tion is given by the real and virtual photoproduction of
a single π0. Real photons can be produced by brems-
strahlung inside the lead target. The expected yield of
events is given by [20]

Yreal,Pb = Ne
NAXPb0

A

T 2
Pb
2

∫ Ebeam

kmin

σ(k)γp→π0p
dk

k
, (2)

where Ne is the number of electrons scattered, TPb the
thickness of the target in units of radiation length, XPb0
the radiation length times density of lead, and NA the
Avogadro number. For incoherent scattering onto nu-
cleons, A = 1 g/mol. The cross section is parametrized
with the model from [21]. We consider kmin = 2GeV.
The contribution from virtual photons depends on an
unknown form factor, function of the photon virtuality.
However, it can be approximated by [20]

Yvirtual,Pb ≃ 2teq
TPb

Yreal,Pb (3)

with teq ≃ 1.7 × 10−2. This contribution is about two
times larger than the former.

The yields of pions generated by the interaction of
the beam with the two exit aluminum foils can be cal-
culated with the same formulae, replacing Pb → Al.
Moreover, the target can radiate additional real pho-
tons that interact with the lead target. For 80µm of
thickness, this contributes to about

Yrad,Al = Ne
NAXAl0

A
TPbTAl

∫ Ebeam

kmin

f(k)σ(k)dk (4)

with

f(k) =
4

3

(
1

k
− 1

Ebeam

)
+

k

E2
beam

(5)

with
We provide the cross sections averaged over the pho-

ton energy profile, in a fiducial region 2◦ < θ < 6◦:

1

logEbeam/kmin

∫ Ebeam

kmin

σ(k)fid
dk

k
= 182nb (6a)[∫ Ebeam

kmin

f(k)dk

]−1 ∫ Eb

kmin

f(k)σ(k)fiddk = 177nb (6b)

Subleading contributions can also be considered. The
expected largest one is given by γp → π0π0 p. As re-
cently measured in [22], the 2π0 invariant mass is dom-
inated by the f2(1270) resonance. Using the model from
Ref. [23], we estimate that the yields of events having
at least one of the pions in the FT acceptance is one
order of magnitude smaller than the single π0 events,
and can be safely neglected.

5.2.2 CLAS12-FT simulations

To provide a realistic estimate of expected π0 yield, the
detector acceptance and reconstruction efficiency was
evaluated by detailed Monte Carlo simulations. The ge-
ometry, materials and the detector response were sim-
ulated using GEMC, the CLAS12 Geant4 Monte Carlo
package [24].

The geometry was implemented using a database of
Geant4 volumes and imported from the CAD engineer-
ing model.

The target volumes implemented in the simulations,
shown in Fig. 16(top) are:

– a foam scattering chamber with a 50 µm aluminum
window;

– a 29 cm long cell containing liquid Helium;
– the lead target, 110 µm thick.

The FT consists of three subsystems:

– a tracker (FT-Trk), composed of 4 MicroMega lay-
ers;

– a hodoscope (FT-Hodo), with eight sectors, each
containing two layers of scintillators;

– a calorimeter (FT-Cal) containing an array of 332
crystals.

The three subsystems are shown in Fig. 16-Bottom. The
response of FT-Cal crystals is modeled within the sim-
ulation as follows. The time window of the calorimeter
is set to 132 ns, and all Geant4 steps within the same
paddles and time window are collected in one hit. The
digitization routines are called at the end of each event,
after the Geant4 navigation has propagated all tracks
and GEMC has collected all the steps into hits. The
deposited energy is converted first to the charge pro-
duced at the end of the electronics chain composed by
an avalanche photodiode (APD) and preamplifier, and
then to an ADC. The first conversion is based on the
measured charge for cosmic rays that deposit a known
energy in the crystals, while the second one is based
on the FADC conversion factor. A smearing on the fi-
nal ADC values is added, accounting for the Poisson
distribution of photoelectrons produced by the photo-
sensor, the Gaussian noise of the photosensor and of
the preamplifier. All parameters—the number of pho-
toelectrons perMeV of energy deposited, and the RMS
width of the APD noise and of the preamplifier input
noise—have been tuned to the experimental data.

The π0 → γγ events were generated in a fiducial
region 2◦ < θ < 6◦ and in a photon energy range
2 < Eγ < 10GeV at Pb target position accordingly
with the theoretical distribution and then were passed
to GEMC using the LUND data format which encodes
the particle IDs, vertices and momenta for each event.
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Fig. 16 Top: the lead target and scattering chamber im-
plementation in GEMC. Bottom: details of the implementa-
tion of the three Forward Tracker subsystems. As seen by the
beam (incident from the left): the disks form the FT-Trk; the
FT-Hodo scintillators just behind the tracker; the FT-Cal.
The hardware mount support.

The output of the GEMC simulations was analyzed by
applying the same clustering algorithms used for ex-
perimental data. The simulation shows that the overall
efficiency is 1.4%, providing an expected π0-event yield
of 1800 ± 200 for Ne = 1.8×1014.3 Figure 17-Left shows
the reconstructed invariant mass peak centered at the
expected π0 mass and 3.6MeV width, corresponding to
an energy resolution of 2.9%.
Pions produced by the interaction of the beam/photons
with the two downstream aluminum foils were also sim-
ulated, and the corresponding expected yield was found
to be 420 ± 100. The reconstructed π0 mass distribu-
tion, showed in Fig. 17-Right, has a lower mean value,
as a result of the assumption that the vertex was lo-
cated at the lead target position when calculating the
invariant mass. The resulting π0 mass peaks associated
to Pb and Al production, are separated by ∼ 17MeV.

3This value corresponds to the accumulated charge during
Hall-B tests.
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Fig. 17 Left: γγ-invariant mass spectrum of π0 produced
by the interaction of the beam with Pb target. Right: γγ-
invariant mass spectrum of π0 produced by the Al target. In
both cases, the mean value and width of the distribution was
determined via Gaussian fit (red line).

5.2.3 Data analysis and results

The offline data reconstruction is performed by apply-
ing the same full suite of reconstruction algorithms used
in the online analysis, which are implemented in the
JANA2 framework and described in Sec. 4.4. The main
task is reconstructing the clusters from the raw infor-
mation associated with the particles detected in the
calorimeter. This raw information includes the charge
and time for each channel of the detector with a sig-
nal above the front-end threshold. The first step in this
reconstruction pipeline is to determine the energy and
time of the individual crystal hits. The recorded charge
of each hit is converted into energy by applying the
proper calibration constant, which is determined from
a calibration run performed in standard triggered mode.
Details on the calibration procedure are reported in [9].
It is worth noting that the calibration run was per-
formed several weeks before the SRO tests, and that
significant radiation damage induced on the crystals
was not accounted for.

As mentioned in Sec. 4.5, one of the nice features of
an unsupervised clustering algorithm like HDBSCAN
(compared to standard clustering algorithms) is the
ability to cluster hits without using cuts on time, spa-
tial or energy information, but rather looking at their
correlations. Therefore, the effect of energy miscalibra-
tions does not impact the HDBSCAN clustering per-
formance, but only affects the reconstructed cluster en-
ergy. Also, because AI-based algorithms such as HDB-
SCAN are capable of performing with large hit multi-
plicities and in presence of substantial noise, they are
particularly desirable in high luminosity experiments
that will operate in SRO mode. Fig. 18 shows a compar-
ison of the diphoton invariant mass spectrum obtained
with raw data (uncalibrated), utilizing both the stan-
dard and the HDBSCAN clustering algorithms. Both
spectra are obtained by applying loose fiducial cuts on



14

the reconstructed events, a minimum cluster size of 3
hits, and a minimum cluster energy (dominated by a
threshold on hit energies). Remarkably, the unsuper-

Fig. 18 Diphoton invariant mass spectrum from the two
highest energy clusters obtained with the unsupervised clus-
tering (red) as compared to the standard clustering (black)
algorithms.

vised clustering provided a π0 yield consistent with the
cut-based standard clustering, but with significantly
improved signal-to-background ratio in the region sen-
sitive to the π0 peak. The standard clustering algorithm
utilizes cuts to aggregate hits around the seed of a clus-
ter, and suffers when dealing with data that is not prop-
erly calibrated. In the near future we plan to further
characterize the performance of this unsupervised ap-
proach: preliminary results during our tests have shown
a longer runtime of ∼30% relative to the standard clus-
tering algorithm when run in a single thread. This clus-
tering technique seems a promising alternative to tra-
ditional cut-based approaches, particularly when de-
ployed online on data that is not fully calibrated, and
is capable of rejecting noise hits and dealing with com-
plicated topologies of clusters and higher multiplicities.
This comes at the cost of introducing the 2 hyperpa-
rameters described in Sec. 4.5, which can be tuned with
dedicated studies. These results show that the AI-based
algorithms are robust and provide an efficient event se-
lection on raw data where miscalibrations are expected.
In the following, we describe the data analysis per-
formed using the standard clustering algorithm in more
detail. After correcting for the time walk effect, the re-
constructed hits were sorted by energy. A cluster was
identified starting from the seed and adding adjacent
crystals with a signal above 50MeV and within a time
window of 10 ns. Once a cluster was identified, the en-
ergy, time and position were computed according to the
procedure described in Ref. [25]. Fig. 19 shows the dis-
tribution of the number of clusters per event: the largest

bucket corresponds to one cluster, and only about 8%

of the events have two or more. The analysis aimed
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Fig. 19 Distribution of number of clusters per event.

at identifying the π0 → γγ decays only considers two-
cluster events. It uses following selection cuts:

– two clusters appear within a time window of 10 ns
from each other;

– both clusters have energy above 500MeV;
– the sum of the two clusters’ energy is less than

8GeV;
– the number of crystals involved in each cluster is

greater than 3;
– the opening angle between the two clusters is greater

than 2◦;
– the polar angle of both clusters falls within 2.5◦ <

θ < 4.5◦.

Fig. 20 shows the reconstructed γγ-invariant mass
spectrum. It is characterized by two peaks centered at
114.1± 2.7MeV and 129.6± 2.1MeV respectively. The
presence of the two peaks and the relative distance are
in agreement with the Monte Carlo simulation results
reported in Sec. 5.2.2. We interpreted the higher-mass
peak as being due to π0 production from the lead tar-
get, and the other peak as being due to π0-production
from downstream materials (e.g. aluminum windows).
The two peaks are centered at lower mass values, rela-
tive to the expected values, due to the aforementioned
miscalibration. To determine the π0 production yield,
the γγ-invariant mass spectrum was fit with two Gaus-
sian functions plus a quadratic polynomial function for
the background. The number of events in the first and
second peak, determined by integrating the respective
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Fig. 20 Distribution of γγ invariant mass. The two peaks
were fit with Gaussian functions (red dashed lines) plus a
quadratic polynomial function for the background (blue line).
The green line represents the overall fit. As discussed in
Fig. 17, the lower mass peak corresponds to the Al window,
the larger mass peak to the Pb target.

Gaussian function from −3 to 3σ, were found to be
966 ± 164 and 1378 ± 275, respectively. The latter is
in agreement within 30% of the theoretical expectation
for generated π0 by the interaction of the beam with
the lead target via real and virtual photoproduction
mechanisms. The former exceeds the expected yield re-
lated to the production from the two Al windows by a
factor ∼ 4. This discrepancy could be due to the pres-
ence of other materials placed near the two Al windows
(e.g. glue, mechanical support) contributing to the π0

production and consequently increasing the measured
yield.

5.2.4 JLAB SRO-DAQ performance

During the Run-2 tests, a study of SRO DAQ perfor-
mance was conducted. From the front-end, a data rate
of about 800 MB/s per uplink was measured with no
data frame dropping (100% livetime). Since the setup
consisted of 3 VXS crates with 6 fiber uplinks, the total
data rate reached up to 4 GB/s.
To study the performance of the back-end, the front-
end thresholds and TriDAS parameters (i.e. the num-
ber of instances of HMs and TCPUs) were varied. Dur-
ing tests, the memory occupancy and the CPU load per
TriDAS process were checked against the data through-
put. An uneven distribution of data sources was found
to have a significant impact on TriDAS performance.
This is not a surprise, since the system was originally
designed for a neutrino telescope, where all detection

elements produce almost the same data throughput,
providing a well distributed and balanced load to the
HM. The best performance was achieved with a single
memory assignment to fulfill the requirements of ev-
ery instantiated HM. However, throughput homogene-
ity is not guaranteed in CLAS12 streams. The topol-
ogy of the physics events created sizeable gradients in
the throughput across different sectors of the FT-CAL
and FT-HODO detectors. The first version of the Tri-
DAS implementation, which is not yet optimized, han-
dles this problem by dimensioning all memory buffers
according to the maximum size necessary to accommo-
date the largest data stream. This of course biases the
measured memory occupancy.
The front-end thresholds were varied to provide a data
throughput ranging from a few tens of Mbit/s up to al-
most 100Mbit/s. The HM processes were instantiated
on one Linux server with 48 cores, 1 GHz each and
64 GB RAM. The number of HM instances per run
were raised from 5 HMs, 10 HMs and 20 HMs. The de-
tector was subdivided in 5, 10 and 20 sectors, accord-
ingly. The CPU load increased almost linearly with the
number of HM instances, 500%, 850% and 1600%, re-
spectively. This is implicit in the multi-threaded design
of TriDAS. Meanwhile, the HM memory occupancy re-
mained almost constant at about 12–1 GB per run. This
is consistent with the 500 kB/channel/timeslice buffer
size, and the fact that the number of HMs is inversely
proportional to the number of served channels per HM,
which is the total number of FT+Hodo channels, i.e. a
constant on the order of ∼ 500.
Ten instances of TCPUs, each capable of handling 5
timeslices at time, run on two CPU servers. As men-
tioned in Sec. 4.3, the TCPU implements different trigger-
level algorithms. The Level 1 performance was found
to be strongly affected by hit sorting in the considered
timeslice. The profiling of this nonlinear performance
was reported in [11]. The Level 2 trigger was not al-
ways used, in order to determine the impact of running
TriDAS with or without the JANA algorithms. The
CPU load per TCPU instance ranged from 400% with-
out any JANA trigger, to 800% including the standard
clustering, the 1 : 10 scaler and the minimum bias selec-
tion algorithms, and, up to 1600% when processing the
AI clustering. Generally the memory usage remained
within 20–24 GB. However, it doubled when running
the AI algorithm, indicating the need for optimization.
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6 Future work

6.1 The ERSAP SRO framework

The Environment for Real-time Streaming, Acquisition
and Processing (ERSAP) framework is an effort at JLab
to develop streaming readout and data processing sys-
tems that will satisfy future experiments at the labora-
tory which are currently in various stages of planning.
The goal is to develop a common framework for build-
ing both streaming data acquisition and data stream
processing pipelines. The new experiments are eager to
take advantage of SRO technologies, due to the well-
known intrinsic limitations of the triggered readout sys-
tems. The ERSAP framework organizes a data stream
processing application into a network of interconnected
actors which communicate via message-passing and ex-
ecute user-defined algorithms referred to as ‘engines’.
The framework abstracts these engines as micro-services
and provides them with a run-time environment. This
includes handling the network programming, data se-
rialization, and general IO. ERSAP also provides tools
for engine configuration and scaling, potentially free-
ing the user from having to write multi-threaded code.
The only requirement ERSAP imposes is that the user-
defined engines must adhere to a simple data-in/data-
out interface.

A key goal for ERSAP is to be flexible enough to
allow data processing applications to evolve. It should
encourage the implementation of new ideas and tech-
nologies while preserving the integrity of existing data
pipelines. To this end, it provides three basic compo-
nents: a reactive Actor micro-service, a communication
channel between Actors (which serves as a data-stream
pipe or conveyer belt), and finally an application orches-
trator. During operation, a stream of data-quanta will
flow through the directed graph of reactive microser-
vices, and the network itself will define the higher-level
application logic.

One basic difference between ERSAP and other frame-
works is that, rather than moving instructions between
Actors, the data is moved instead. An incoming data-
quantum triggers the execution of an actor (in other
words, the actor reacts to the incoming message). Com-
munications between actors is restricted to message pass-
ing, and the channels between actors are specified ex-
ternally to the actors themselves. A key consequence of
this design is that actors are programmatically indepen-
dent, i.e. they can be built and deployed as stand-alone
processes.

ERSAP is a framework that uses an independent,
reactive actor model and a flow-based programming
paradigm. It encourages a functional decomposition of

the overall data processing application into small single-
function artifacts called micro-services. These artifacts
should be easy to understand, develop, deploy and de-
bug. Because they are programmatically independent,
they can be readily scaled and individually optimized,
unlike the components of a monolithic application. An-
other important advantage is fault tolerance: individ-
ual actors are allowed to crash and be automatically
restarted without bringing down the entire pipeline.

6.2 GEMC SRO

The GEMC simulation framework has been updated to
collect hits from multiple events based on the Time at
the Readout Electronics (TRE) of each Geant4 step, as
provided by the digitization routine. The data is orga-
nized and collected in the same data structures used by
the VTP, called Frames.

During digitization, the TRE is calculated for each
Geant4 step by taking into account the track navigation
in the various material, the response of the detector,
and the propagation delays due to the hardware and
cables. A dedicated GRunAction class handles:

– creating the VTP frame buffers
– linking the distribution of hits from various events

to frame buffer ids using the TRE
– flushing the buffers to disk

The digitized data identifier is converted into hard-
ware addresses (organized by crate/slot/channel) using
the detector translation tables. Each VTP frame refers
to the corresponding hardware crate, uniquely identi-
fied by absolute time t and the frame duration ∆tf
using the formula id = floor(t)/∆tf . The frame data
includes:

– the Frame Payload, which contains the collection of
hits, represented as a vector of unsigned int, and
also includes the hardware address.

– the Frame Header, which contains the payload prop-
erties and time of frame.

The distribution of Geant4 events into frames is
summarized in Fig. 21.

The GEMC output is available in various formats,
which are identical in content: text (ASCII), EVIO (the
Jefferson Lab data acquisition format) [26], ROOT and
VTPSRO, the binary format used for the CLAS12 SRO.
GEMC was used to produce both event-based output
and a frame-based streaming readout output that em-
ulates the JLab SRO front-end.
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Fig. 21 Hits from a Geant4 event can end on different frames
depending on the digitization time, propagation time, etc.
Many Geant4 events can have hits in the same Frame. When
no more Geant4 event can fill a frame, that frame is written
out to disk.

7 Summary

Streaming readout is a powerful and flexible option in
data acquisition adopted by many current and future
experiments, which would be particularly beneficial for
electron machines at the intensity frontier (e.g. JLab
and the EIC). Despite its many advantages and the
simplicity (in principle) of implementation, the supe-
riority of streaming readout in real applications still
needs to be proven. In this paper we reported results of
on-beam tests of the first Jefferson Lab implementation
of a full SRO DAQ system, including front-end elec-
tronics (JLab-FADC250 and INFN-WaveBoard digitiz-
ers), back-end software (TriDAS) and high-level anal-
ysis framework (JANA2). Tests were performed at the
lab with two different experimental setups. In the first,
we exposed the EIC PbWO4 crystal EM calorimeter
prototype to the Hall-D Pair Spectrometer test beam
for a direct comparison of triggered and SRO perfor-
mance. Results showed that the SRO performed as ex-
pected, providing a calorimeter energy resolution com-
patible with data collected using a traditional triggered
DAQ. The second setup included the Hall-B CLAS12
Forward Tagger calorimeter and hodoscope to measure
a physics channel, inclusive π0 hadroproduction, dur-
ing a standard high-intensity electron-beam production
run. Results were compared to the expected yield cal-
culated with a realistic theoretical model of the reac-
tion making use of a sophisticated Geant4 simulation

to determine the detector efficiency. The good agree-
ment between prediction and measurement provided
a significant validation of the SRO DAQ performance
during a realistic electron scattering experiment. Fur-
thermore, the implementation in the framework of AI-
supported real-time tagging and selection algorithms,
demonstrating how the SRO DAQ provides new capa-
bilities well beyond the standard triggered DAQ. Based
on these positive results, the current framework is be-
ing upgraded to a microservice architecture (ERSAP)
to build a common framework for both streaming read-
out and offline data processing.
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