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Abstract of the Dissertation

Measurements of the Beam Normal
Asymmetry using Polarized Elastic Electron

Scattering off Various Spin-0 Nuclei at 1 GeV

by

Ryan Richards

Doctor of Philosophy

in

Physics

Stony Brook University

2021

In this first part of this thesis, I report on the 1 GeV beam nor-
mal asymmetry measurements (AT ) on various spin-0 nuclei during
PREX-II. In a QED framework, this P-even, T-odd observable is
a direct probe of the imaginary part of the two-photon exchange
amplitude, since time reversal symmetry dictates AT must vanish
in the one-photon approximation. At ultrarelativistic energies, the
beam normal asymmetry is sensitive to the hadronic structure of
the target nucleus. Calculations of the two-photon exchange am-
plitude are challenging since one has to consider all intermediate
hadronic states in the calculation. The treatment of the states are
both model and kinematics dependent. Therefore direct measure-
ments of the beam normal asymmetry can test theory models.

For experiments which measure the parity-violating asymmetry
APV , the beam normal asymmetry can enter as a false asymmetry
for APV when the beam is not 100% longitudinally polarized. For
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fixed target experiments, APV , which is sensitive to the ratio of
weak neutral current amplitude and electromagnetic amplitude is
on the order of 10−7 − 10−4. Under the same experimental con-
ditions AT is on the order 10−6 − 10−4, often bigger than APV .
Therefore, we must correct for a nonzero AT to extract an accu-
rate APV . In the second part of the thesis, I address how we make
the AT corrections.

Finally in the third part of this thesis, I addresses the PREX-II
acceptance function, which represents the probability as a function
of kinematic parameters that an electron that reached the detector,
scattered from 208Pb. The acceptance function is critical input not
only to interpret APV measurement, but also to accurate evaluate
AT corrections.
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Chapter 1

Introduction

1.1 Elastic Electron Scattering

1.1.1 Elastic Electron Scattering through Photon Ex-

change

Protons and neutrons are the building blocks of atomic nuclei. The internal
structure of the nucleons determine their fundamental properties which di-
rectly affects the properties of nuclei. Understanding how the nucleus is built
in terms of its constituents, quarks and gluons, remain both an important and
challenging question in nuclear physics. One of the first nuclear properties was
discovered by Rutherford: that the size of the nucleus is on the order of a few
femtometers. With a wide range of nuclei with different mass numbers A(sum
of protons Z and neutrons N), one can use electron scattering to probe novel
properties of the nucleus such as the nuclear charge distribution ρp of protons.

The nuclear charge distributions are measured by electron scattering through
electromagnetic probes (one-photon exchange). The underlying theory is de-
scribed by Quantum Electrodynamics (QED) which describes how light in-
teracts with charged particles. Measuring nuclear charge distributions using
elastic electron scattering off nuclei was a technique mastered by Hofstadter in
1950s. In elastic electron scattering, the final state nucleus remains the same,
but with finite recoil. Electron scattering can be represented pictorially using
a Feynman diagram. The incident and outgoing electrons have 4-momenta k
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= (E,k) and k’ = (E’,k′). The incident and final state nucleus 4-momenta are
P and P’ respectively. The 4-momentum of the exchanged photon is

q = k − k′ = P − P ′. (1.1)

The lowest order Feynman diagram corresponding the electron scattering
is shown in Figure 1.1.

Figure 1.1: Lowest order Feynman diagram for elastic electron scattering off
nucleus

For a fixed target experiment, one can measure the scattered electron’s
scattering angle θ momentum E’ such that the 4-momentum of the photon
is fixed. The Lorentz invariant of the photon is q2 = −4EE ′ sin2 θ which is
negative. From the uncertainty principle, the virtual photon’s wavelength is
inversely proportional to q. This means that the scattering can be thought of
as point-like scattering off a Coulomb potential. The distribution of the scat-
tered electrons defines the cross-section, which is the probability of interaction
between the electron and nucleus.

The cross-section depends on the kinematics, which of course fixes the Q2.
Calculating the cross section involves calculating the amplitude since the cross
section dσ is given by [1]

dσ =
M2

F
dQ, (1.2)

where F is the incident flux, dQ is the integration factor which enforces energy
conservation, and M is the invariant amplitude. The invariant amplitude M
for electron-nucleus scattering is given pictorally by Figure 1.1. All scattering
processes amount to calculating M.

In QED, the incoming and outgoing electrons are described by four com-
ponent Dirac spinors (spin up and spin down)

u(k)eikx. (1.3)

2



For the photon-electron vertex, the interaction is given by −ieγµ where
γµ is the Dirac matrix which satisfies the following anticommutation relation
{γµ, γν} = 2ηµν . Using the Feynman rules for QED, the overlap between the
initial and final state electrons is expressed by

− ie[ū(k′)γµu(k)]. (1.4)

so that scattering off a point-like nucleus of charge Ze, the amplitude is given
by

M = Ze2[ū(k′)γµu(k)]
gµν

q2
[ū(p)γνu(p′)] (1.5)

where gµν

q2
is the photon propagator. For relativistic electron energies, equation

1.5 can be can evaluated explicitly [2] leading to the differential Mott cross
section,

(
dσ

dΩ
)Mott =

Z2α2

4E2 sin4 θ
cos2 θ, α =

e2

4πεo
. (1.6)

Equation 1.6 is only valid if the nucleus was point-like and spinless. For
an extended object, the Mott cross section is modified by introducing a form
factor which accounts for the phase differences between different contributions
to the scattered wave from different points in the charge distribution which
can be derived within the first Born approximation using plane waves [2]. The
scattering amplitude M is given by the matrix element < ψf |V (r)|ψi > with

V (r) = Ze

∫
ρ(r′)

4π|r − r′|
d3r′. (1.7)

and ψi,f are the initial and final state wavefunctions. Within this framework,
the scattering amplitude can be separated into a point-like amplitude modified
by an extended object

M =Mpt

∫
ρ(r′)eiq·r

′
d3r′ =MptF (q). (1.8)

The integral in equation 1.8 defines the form factor as the Fourier transform
of the charge distribution so that the differential cross section is given by

dσ

dΩ
=
dσ

dΩMott
|F (q2)|2. (1.9)

One can also note that since the wavelength goes as 1/q, if the wavelength
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Figure 1.2: Three dimensional charge distributions and their corresponding
form factors. Figure from [2]

is larger that the size of the charge distribution, r, F(0) is equal to one. This
means that the scattering is point-like. In the opposite limit, the elastic cross
section tends to 0. That’s because in the large q limit, the virtual photon’s
wavelength is short enough to resolve the internal structure of the nucleus.
This is the deep inelastic regime. The exact form factor depends on the details
of the charge distribution. Typical charge distributions and form factors are
shown in Figure 1.2.

1.1.2 Elastic Electron Scattering through Zo Exchange

In addition to elastic scattering through electromagnetic interactions, the elec-
trons and nucleus can interact via the weak force. The weak force is responsible
for the radioactive decay of subatomic particles by changing quark flavor. It
was initially proposed by Enrico Fermi to explain β decay, in which a neutron
in the nucleus decays into a proton, emitting an electron-neutrino pair. Moti-
vated by QED, Fermi treated the interaction as a contact interaction with no
mediating particle. Just as in QED, the weak force was believed to obey the
parity or spatial inversion symmetry where (x,y,z)→(-x,-y,-z). It wasn’t until
1956 that the parity-violation in weak interactions was proposed a solution to
the τ+ −Θ+ puzzle. The τ+ −Θ+ puzzle was a paradox where identical par-
ticles of the same mass and decay lifetime, which we now know are positively
charged kaons, decayed into two decay modes, the τ+ mode and Θ+ mode.
The τ+ mode decayed into two pions while Θ+ mode decayed into three pions.
Yang and Lee remedied this paradox by proposing that parity was violated.
Yang and Lee proposed that the particles were indeed the same but under-
went decay modes where parity wasn’t conserved [1, 3]. It was in 1956 that
parity-violation in weak interactions was experimentally confirmed in Wu et.
al’s cobalt-60 experiment.
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Studies beyond the evidence of Wu describe the weak force being mediated
by massive charged W± (MW = 80.397 ± 0.012 GeV/c) bosons and an un-
charged Zo boson ( MZo = 91.1876 ± 0.0021 GeV). The weak force is weaker
(GF ∼ 10−5) than the electromagnetic (coupling α = 1/137) but occurs be-
tween all particles [1]. The weak and electromagnetic interactions are unified
through the electroweak interaction where the weak Z boson and photon arise
through a mixing of the interactions through θW , the weak mixing angle, which
has been measured as sin2 θW ≈ 0.231. Interactions via Zo exchange between
the electron and the nucleus can be represented as a Feynman diagram similar
to Figure 1.1 by replacing γ with Zo. However, the weak interaction between
the electron and proton interaction is suppressed relative to the same inter-
action between the electron and neutron. That’s because the weak charge of
the neutron (QW,n = -1) is larger than the weak charge of the proton ( QW,p

= 1-sin2 θW ≈ 0.076). This fact makes accessing neutron information through
weak probes an interesting option.

Following the similar prescription in the electromagnetic case, one can de-
fine an equivalent weak form factor in the same formalism with the appropriate
modifications. Before going through the steps, one must first define the con-
cept of helicity. The helicity of a particle refers to its spin projection onto its
momentum direction i.e.,

H =
S · p̂
|S||p|

(1.10)

for a particle of spin S . If the spin of the particle is aligned along its momentum
direction,the particle is said to have positive helicity. If the spin and momen-
tum are anti-aligned, the particle has negative helicity. Generally speaking,
the helicity of a particle is not an instrinsic property since one can always
move to a frame where the helicity changes. However, for massless particles
or relativistic particles, this is an instrinsic property and can be associated
with chirality or handedness. In this limit, particles with positive helicity are
right-handed while negative helicity particles are left-handed.

As mentioned previously, chirality is associated with the handedness of the
particle. In more abstract terms, chirality refers to how a particle (expressed
as spinor) transforms under the left/right chiral projection operator defined as

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), (1.11)

where the chiral operator γ5 is given by γ0γ1γ2γ3 [1]. While charged W bosons

1sin2 θW = 1 - ( MW

MZo
)2
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only couple to left handed particles, the Zo boson couple to both left-and
right-handed particles with different strengths. For left-handed fermions, the
couplings cL = T3 − qf sin2 θW , and for right cR = −qf sin2 θW . Here qf is
electric charge and T3 is third component of the weak isospin. For left-handed
electrons T3 is -1/2 while for right-handed electrons it’s zero [2]. As done for the
electromagnetic case (equations 1.4,1.5), the weak neutral current amplitude
is given by

jµ = ū(k′)[−igγµ1

2
(cv − γ5cA)]u(k) (1.12)

with cv = cL + cR and cA = cL − cR. The interaction vertex consists of
a vector like interaction and helicity dependent axial interaction(γ5). The
neutral current amplitude is

MW =
GF

2
jµN

gµν

q2 +M2
Z

jνe . (1.13)

The middle expression is the Zo propagator2 and jµN is the weak current for
the nucleus.

We can also compute the scattering amplitude in the first-Born approxi-
mation with potential

V±(r) = VC(r)± γ5A(r) (1.14)

where the ± accounts for the scattering potential seen by the differential he-
licity states. As done in the electromagnetic case, we can define a weak form
factor FW (like equation 1.8) by introducing an analogous weak charge density
ρW normalized to 1 as

QW =

∫
(1− 4 sin2 θW )Zρp(r

′)−NρN(r′)d3r′. (1.15)

From Equation 1.16, measurements of the weak form factor gives access to
neutron density information.

1.2 Parity-Violating Electron Scattering

Starting from Equation 1.15, elastic electron scattering through Zo exchange
with the nucleus can give access to neutron density information. Our existing

2In general, the propagator for a massive particle X goes as 1
q2+M2

X
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knowledge came from using hadronic probes in experiments such as elastic
electron-proton scattering [4–6], pion photon production [7] and anti-proton
scattering [8, 9]. At low Q2, the interpretation of these measurements suffer
from theoretical uncertainties from strong interactions. That is because in the-
ory of strong interactions, the coupling constant is large where perturbation
theory is not valid and a model dependent interpretation is needed. By using
parity violation electron scattering (PVES), one can access the neutron infor-
mation in a model-independent way. Two experiments PREX-II and CREX
measured the parity-violating asymmetry using the electroweak interaction to
extract the neutron distribution at low Q2.

To extract the neutron information involves measuring an observable that
isolates the weak amplitude which is suppressed relative to the photon am-
plitude. This can be done by measuring the parity-violating asymmetry APV
using longitudinally polarized electrons. APV is defined as the fractional dif-
ference in cross sections

APV =
dσ+
dΩ
− dσ−

dΩ
dσ+
dΩ

+ dσ−
dΩ

=
|M+|2 − |M−|2

|M+|2 + |M−|2
, M± = Mγ ±MZ,±. (1.16)

which reduces to

APV =
M+ −M−

Mγ

≈ Q2

αM2
Z

. (1.17)

in the low Q2 limit and scales as the ratio of propagators. For fixed target
experiments such as PREX-II/CREX, APV ∼ 10−7 − 10−6. In terms of the
form factors( see equations 1.8 and 1.17), APV in the Born approximation is

APV ≈
Q2

4πα
√

2M2
Z

Fn(Q2)

Fp(Q2)
. (1.18)

Parity-violating asymmetry is schematically shown in Figure 1.3. A lon-
gitudinally polarized beam is incident on an unpolarized target. Figure 1.3,
shows the interaction in the COM off a proton target. The only changing pa-
rameter is the sign of the longitudinal polarization. We measure the fractional
difference between two states.

Parity-violating electron scattering has become a precision tool over the
years since the first experiment of its type, E122 in 1978. A broad program
of experiments use PVES as method of studying nuclear structure and study-
ing for physics beyond the Standard Model highlighting the interplay between
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Figure 1.3: Parity Violating Experiment. Figure from [10]

probing hadron structure and electroweak physics. Figure 1.4 shows the pre-
cision of such experiments where the x-axis is the predicted asymmetry APV
while the uncertainty on APV is on the y-axis. Two such experiments as men-
tioned are PREX-II and CREX, which measure the APV off 208Pb and 48Ca
nuclei respectively. Achieving such precision, however, requires very good con-
trol over systematic errors. One of which is the is the beam normal asymmetry
or transverse asymmetry which arises due to residual transverse polarization.
The beam normal asymmetry is the subject of this thesis.

Figure 1.4: History of precision parity-violating electron scattering experi-
ments. Figure from [3]

1.3 Introduction to the Vector Analyzing Power

A transverse component of the beam polarization couples to what is known
as the vector analyzing power An. When scattering from nuclei using trans-
versely polarized electrons, the scattering amplitude develops an azimuthal
dependence due to the interaction between the electron’s spin with the ef-
fective magnetic field produced by the target nucleus in the electron’s rest
frame. The azimuthal dependence is quantified by measuring the beam nor-
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mal asymmetry AT , defined as the fractional difference in scattering cross
sections between transversely polarized electrons parallel and anti-parallel to
the normal scattering plane:

AT ≡
dσ↑ − dσ↓
dσ↑ + dσ↓

= AnSe ·
ke × k′

e

|ke × k′
e|
. (1.19)

The physics of An is described by quantum electrodynamics (QED). Under
symmetry considerations, AT is parity-conserving but T-odd. Under time
reversal, the amplitude picks up a phase but also becomes complex conjugated.
As a result, An vanishes in the 1γ exchange approximation and is a direct
probes of 2γ exchange amplitudes3. Because of the complex conjugation of
the amplitude, the vector analyzing power is sensitive to the imaginary part of
the 2γ exchange amplitude (see Figure 1.5). The analyzing power is sensitive
to the interference between the 1 and 2γ exchange amplitudes as

Figure 1.5: Feynman Diagrams for AT . The Figure from [11].

An =
Mγ ImMγγ

|Mγ|2
. (1.20)

The leading order contribution to order α is given by Equation 1.20. In
addition, the size of the analyzing power depends on both the nuclear charge Z
and is Lorentz suppressed due to the fact that relativistic electrons are polar-
ized transverse to the scattering plane. This means that An scales naively as
Zαm

E
where E is the beam energy. For fixed target experiments, this observ-

able is on the order of ∼ 10−6 − 10−5 thus making it comparable to or larger

3The 1γ exchange amplitude is purely real and doesn’t have an imaginary part
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that APV . Therefore direct AT measurements are important to quantify to
size of the asymmetry as it is a potential systematic error to parity-violating
asymmetry measurements.

1.3.1 Experimental Motivations

1.3.1.1 Experimental Evidence for Two Photon Exchange

Unlike the analyzing power which deals with the imaginary part of 2γ ex-
change, the first experimental evidence was sensitive to the real part. In
2000, the first measurement of the proton’s electric to magnetic form fac-
tor (GE/GM) using the polarization transfer technique [12] deviated from the
measurements using Rosenbluth separation at Q2 above (1GeV/c)2 (see Figure
1.6)[13, 14].

Figure 1.6: Measurements of the electric to magnetic form factor ratio on the
proton. The Rosenbluth measurements are given by the hollow blue squares
while the polarization measurements are given by the solid red circles. Figure
from [14]

Within the Born approximation, the Rosenbluth cross section is measured
as a function of the photon polarization ε at fixed Q2 as

dσB = ε
τ
G2
E +G2

M , τ = Q2

M2
p
, ε = 1 + 2(1 + τ) tan2(θ/2)
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while the polarization measurements extract the ratio by taking the ratio of
the transverse and longitudinal polarization of recoiling proton via4

Pt
Pl

= −
√

2ε
τ(1+ε)

GE
GM

.

This discrepancy between the two techniques have forced physicists to go
beyond the Born approximation into the world of two photon exchange physics.
Normally, within the Born approximation, diagrams including more than one
photon are treated as radiative corrections developed by Mo and Tsai [15].
Within this scheme, corrections to the cross section account for particles ex-
changing a second virtual photon (self-energy,vertex-energy and two-photon
exchange) and for real photon emission (Bremsstrahlung). The dominant cor-
rection is the virtual photon correction which can be as large as 30% of the
uncorrected cross section [16].

The problem with the Mo and Tsai treatment of radiative corrections is
that it ignores the effect of hadron structure from the second exchanged photon
i.e., the photon emission is soft. Figure 1.7 shows the difference between the
two-photon exchange (real part) correction within the hard photon limit and
the soft-photon limit.

Figure 1.7: Difference between the size of the radiative corrections calculated
using different treatment of the two-exchange exchange. The calculations in-
volving two-photon exchange not neglecting hadron structure was done by
Blunden et. al. The figure shows the ε dependence of the difference for fixed
Q2. The disagreement by as much as 6%. The differences are largest for
backward angle scattering. The figure is from [17]

To resolve the Rosenbluth discrepancy involves a correction linear in ε that
decreased in the backward angle limit. The correction, sensitive to real part of

4The limit where ε→ 0 is backward angle scattering.
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the two-photon exchange amplitude has been shown to have this dependence
[17, 19, 20] is given by

δγγ =
2 Re(MγMγγ)

|Mγ|2
(1.21)

The Rosenbluth data was corrected for the two-photon exchange since the
Rosenbluth cross section not measured as a ratio as in the polarization tech-
nique and seems to be in good agreement with the polarization transfer mea-
surements (see Figure 1.8). However, the two-photon calculations are not
complete and haven’t been tested over a large kinematic range. Even though
the discrepancy has been resolved at high Q2, two-photon exchange described
within the hard-photon exchange treatment hasn’t been investigated at low
Q2.

(a) Form factor ratio without δγγ (b) Form factor ratio with δγγ

Figure 1.8: The proton electric to magnetic form factor ratio as a function of
Q2. The two-photon exchange correction brings the Rosenbluth measurements
(red circles) closer to the polarization transfer (blue diamonds) measurements.
The uncertainties in the two-photon exchange correction is determined by how
the correction is known at large Q2 and the measurement’s extraction. The
figures and analysis is found in [20].

1.3.1.2 Experimental Inputs of Two-Photon Exchange

To properly benchmark theoretical models of two-photon exchange requires
measuring observables that provide direct access to the two-photon exchange
process one of which includes the vector analyzing power, the subject of this
thesis.

The transverse asymmetry belongs to a more general group of observables
called single spin asymmetries. When measuring single spin asymmetries one
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can also have scattering of an unpolarized beam on a polarized target. In
this case, the target is polarized parallel or anti-parallel to the polarization
vector and is also known as the target spin asymmetry. Compared to their
counterparts i.e., the transverse asymmetry, theory has predicted target spin
asymmetries to be larger (∼ 10−3) than the transverse asymmetry at similar
kinematics [21]. However, there has been only one reported measurement of a
target spin asymmetry [22].

In addition to the single spin asymmetries, the real part of the two-photon
exchange amplitude is accessible through cross section measurements involving
positrons. Under charge conjugation, the electron-photon vertex in equation
1.4 undergoes a sign change. That way by measuring the ratio of the positron-
proton and electron-proton cross section is given by

σe+p

σe−p
= 1− 2[δγγ − δMT ] (1.22)

where δγγ is given by equation 1.21 and δMT is the Mo-Tsai treatment of two-
photon exchange. This observable is a direct measure of the hadronic structure
dependent correction to form factor measurements. Initial measurements of
the ratio provided experimental constraints on the two-photon exchange to
the Rosenbluth separation technique. The data showed that the two-photon
exchange correction was then a 1% for Q2 between 0.01 GeV −2 and 5 GeV −2

[23–26]. This is shown in Figure 1.9(a).
The data was reexamined once the form factor measurement discrepancy

was found. A reanalysis of the data without the low-precision high Q2 data
shows an ε dependence of the ratio σe+p

σe−p
which gives a 3% ε dependence on

the electron-proton data for low Q2 (Figure 1.9b) [23]. However, since the
average Q2 of the data is 0.5 GeV −2, one cannot make a full correction to
explain the Rosenbluth discrepancy at Q2 larger than 2 GeV −2. One percent
precision measurements of σe+p

σe−p
were proposed at Jefferson Lab [27] and by the

OLYMPUS collaboration [28].
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(a) σe+p

σe−p vs Q2 (b) σe+p

σe−p vs ε, Q2 < 2 GeV −2

Figure 1.9: Measurements of the ratio of positron-proton to electron-proton
cross section. (a) Measurements vs Q2. The different colors indicate different
measurements. The data was fit was a constant (dashed line). The fact the
constant is roughly about 1 indicates a very correction implies a weak ε de-
pendent correction (b) The ε dependence of the ratio from later analysis. The
low Q2 data shows the ε dependence. The slope of the fit is on the order of
6%. The figures are from [29]

1.3.2 Theoretical Modeling

As discussed in section 3.1, the physics of the analyzing power is sensitive to
the imaginary part of the two-photon exchange amplitude. One can write the
amplitude MT for electrons scattering off a spin 0 nucleus as [31]

MT =
e2

Q2
ū(k′)meA1 + A2γµP

µu(k) (1.23)

where the amplitudes A1 and A2 are the helicity-flip and non-flip amplitudes
respectively. In the 1γ approximation, A1 vanishes and consists of the sum of
the 1γ and 2γ exchange amplitudes. The non-flip amplitude A2 is related to
the form factor as A2 = 2ZFN(Q2). The vector analyzing power defined by
Equation 1.23 is given by

An =
me√
s

tan(
θCM

2
)

ImA1

ZFN(Q2)
(1.24)

with
√
s being the center of mass energy. Since the amplitude A1 consists of

the sum of 1 and 2γ exchange, the imaginary part of A1 consists of only the
imaginary part of Mγγ.

The imaginary part of the two-photon exchange amplitude is modeled by
treating the interaction as Doubly Virtual Compton Scattering (VVCS) [32].

14



In this case, the two photon exchange is treated as Compton scattering off the
nucleus with two virtual photons within using the hard photon treatment (see
Figure 1.10). Using the formalism described in [32], the imaginary part of the
Mγγ can be expressed as integral over the intermediate electron states

ImMγγ = e4

∫
|k1|2d|k1|dΩk1

2Ek1(2π)3
¯u(k′)γµ(γ · k1 +me)γν(k)

1

Q2
1Q

2
2

Wµν(w,Q
2
1, Q

2
2)

(1.25)

Figure 1.10: Compton-like Feynman diagrams for the two-photon exchange
process. The blob represents all the intermediate states both elastic (ground)
and inelastic (excited) states of the nucleus. k1 is the momentum of the inter-
mediate state electrons and q1 = k−k1 and q2 = k1−k′ are the four-momentum
carried by the virtual photon. Figure from [12].

where k1 is the four-momentum of the intermediate state electron, dΩk1 is
the solid angle, Wµν is the hadronic tensor and w is the invariant mass of the
intermediate hadronic state. Theoretical predictions of the analyzing power
are challenging due to the fact that one must sum over all states kinematically
allowed by the virtual photons. In practice, calculations depend on how one
calculates Wµν within a kinematic range. The hadronic tensor Wµν is the
absorptive part of the VVCS tensor for all possible on-shell intermediate states
X.

For the ground state, X = N where N is the nucleon or nucleus. In this
case, exact calculations are done using on-shell electromagnetic form factors.
However, for the excited states such as X = πN and ππN, theory calculations
rely on experimental inputs from Compton scattering. These calculations are
both model and kinematics dependent. Model calculations for the proton case
are summarized as in Table 1.1 as done in [12] as an example. As evident from
Table 1.1, one can have different models for the same kinematics. Therefore
the analyzing power suffers from large model dependent uncertainties.
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Model Q2 or E Input
Dianescu & Musolf [34] < 1 GeV Effective Field Calculation
Pasquini & Vander-
haeghan [21]

< 3 GeV
MAID electroproduction
amplitudes

Afanasev & Merenkov
[35]

Q2 → 0, E > 1 GeV
Photoproduction cross scec-
tions

Gorcthein [32]
Q2 < 0.5 (GeV/c)2, E = 6-
45 GeV

Photoproduction cross sec-
tions

Gorchtein & Guichon
& Vanderhaeghan [36]

Q2 > 1 GeV −2 Generalized Parton Distri-
butions

Table 1.1: Model calculations of the vector analyzing power

1.3.3 Measuring the Vector Analyzing Power

As evident from Table 1.1, measuring observables that are sensitive to two-
photon exchange physics is crucial for benchmarking theoretical models. To
measure An involves setting the beam polarization transverse to the scattering
plane and measuring the fractional difference in cross sections between with
spins parallel and anti-parallel normal to the scattering plane (see Figure 1.11).
The beam normal asymmetry is then given by [33]

AT = AnSe sin(φ− φs) (1.26)

where φ is the azimuthal angle of the scattering plane (defined relative to
the horizontal) and φs is the azimuthal angle of the spin vector. Equation 1.28
contains two contributions from both the vertical and horizontal transverse
polarization

AT = An(PV cosφ+ PH sinφ), PV = Se sinφs, PH = Se cosφs. (1.27)

We see that φs = 0 corresponds to horizontal polarization while φs = 90 is
vertically.

A table of existing An measurements given at different kinematics on var-
ious nuclei are given in Table 1.2. The measurements and their associated
model calculations will be discussed in section 1.34.
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Figure 1.11: AT schematic, here φ = φe. Figure from [33]

Expt Tgt Eb (GeV) θe Q2 (GeV/c)2 An(ppm)

SAMPLE 1H 0.192 146o 0.10 -15.4±5.4

A4 1H 0.569 35o 0.11 -8.59 ±1.16

A4 1H 0.855 35o 0.23 -8.52 ±2.47

HAPPEX 1H 3.03 6o 0.009 -6.80 ±1.54

HAPPEX 4He 3.03 6o 0.077 -13.97 ±1.45

G0 1He 3.03 20.2o 0.15 -4.06 ±1.17

G0 1He 3.03 25.9o 0.25 -4.82 ±2.11

G0 1He 0.362 108o 0.22 -176.5 ±9.4

G0 1H 0.687 108o 0.63 -21.0 ±24

PREX 12C 1.06 5o 0.0098 -6.49 ±0.38

PREX 208Pb 1.06 5o 0.0088 0.28 ±0.25

Qweak 1H 1.06 7.9o 0.02480 -5.19 ±0.11

Qweak 12C 1.158 7.7o 0.02437 -10.68 ±1.07

Qweak 27Al 1.158 7.7o 0.02437 -12.16 ±0.85

Table 1.2: Existing An measurements given in units of 10−6 (ppm)
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1.3.4 Model Calculations

1.3.4.1 Elastic Scattering off the Proton

Table 1.1 provided a list of model calculations for the vector analyzing power
at various kinematics. As previously stated, depending on which kinematic
regime you are in, there may be more than one calculation. As a result, di-
rect measurements provide useful inputs to these models. The first published
calculation came from Afanasev and Merenkov (A&M) [39] at high momen-
tum transfers for a proton target. They related the intermediate states to
the proton’s form factors (F1,2), while the inelastic states were modeled with
the proton’s structures functions W1,2 with an additional Compton form fac-
tor dependence. Their model predicted a few ppm negative vector analyzing
power. The analyzing power was large at backward angle and were dominated
by inelastic states at higher energies. The analyzing power decreases at higher
energies decreases due to Lorentz suppression. However, this model failed to
predict the first measurement of the analyzing power on the proton was done
by the SAMPLE collaboration [38] (see Figure 1.12a).

A different calculation done by Dianescu and Musolf (D&M) [34] was able
to reproduce the SAMPLE results within an effective field theory framework
(pionic degrees of freedom are integrated out) where they computed the ana-
lyzing power up to second order in E/M, where E is the beam energy and M is
the proton mass (Figure 1.12b). The kinematics of the SAMPLE experiment
are carried out near pion threshold (E = 280 MeV). As a result, model cal-
culations should involve pionic degrees of freedom such as the Afanasev and
Merenkov model [39]. However, no model using intermediate pion states has
been able to explain the SAMPLE result.
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(a) Afanasev and Merenkov (b) Dianescu and Musolf

Figure 1.12: Comparison of the SAMPLE result and model predictions from
A&M [39] and D&M [34]. (a) Plots the dependence of An as a function of lab
scattering angle θcm at fixed beam energies. The figure considers the only the
nucleon intermediate state. (b) An vs beam energy for scattering angle 146.1o.
The pionic states are integrated out. The dashed line is the lead order result
while the red line is the full calculation. The data point is from the SAMPLE
experiment with E = 192 MeV and θCM = 146.1o. Figures a is taken from [39]
and b is taken from [34]

Additional calculations of An were done by Pasquini and Vanderhaeghan
(P&V) at energies below 2 GeV [21]. In their model, they use unitarity to
relate express the hadronic tensor to pion electroproduction amplitudes from
MAID [37], considering the elastic and single pion intermediate states. This
model wasn’t able to predict the SAMPLE result but was able to partially
explain the forward angle A4 measurement and the backward angle G0 and
A4 measurements shown in Figure 1.13.
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(a) A4 forward angle (b) An at backward angles

Figure 1.13: Model predictions compared to the experimental results. (a) A4
forward angle An measurements. The dash double dotted line is the D&M
calculation. The other lines are from the calculations from P&V. The dotted
dashed line is the ground state contribution while the dashed line is the inelas-
tic contribution. The sum of those two lines are shown by the solid line. The
P&V model can describe the higher energy data point. At these kinematics,
the amplitude is dominated by inelastic states [21]. (b) An backward angle
measurements. The blue square is from SAMPLE. The black and red circle
are from G0 experiment. The blue triangle is from A4. The theory predictions
are from P&V and dominated by inelastic states. The lines reflect the different
θCM .

1.3.4.2 Elastic Scattering off A > 1 Nuclei

Theoretical calculations of An for complex nuclei (A > 1) are less devel-
oped. The first An measurements on nuclear targets 4He, 12C and 208Pb were
reported by the HAPPEX/PREX collaborations [40] at very forward angle
(≈ 6o) and beam energies of 1-3 GeV. The QWeak collaboration has recently
reported on An measurements on 12C and 27Al [41].

From the theory side, two different approaches have been applied to extend
An calculations beyond nucleon scattering. The first approach taken by Cooper
and Horowitz addresses Coulomb distortions in the case of scattering from a
heavy nucleus of charge Z [30]. Their calculation involves numerically solving
the Dirac equation for an electron moving in the Coulomb field of a heavy
nucleus to all orders in photon exchange. However, they only consider the
ground state of the nucleus while neglecting intermediate excited states. The
other approach uses the optical theorem considering only inelastic intermediate
states in the integral (equation 1.25). The framework developed by Afanasev
and Merenkov [35] in the case of the proton has been extended to complex
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nuclei by Howoritz and Gorchtein [31]. Afanasev and Merenkov relate the
imaginary part of Mγγ to the virtual photoabsorption cross section σγ∗N(w,Q2)
for nucleon scattering, which in the very forward limit (Q2 → 0), can be
approximated with the real photoabsorption cross section σγN(w). Horowitz
and Gorchtein approximate the photoabsorption cross section for nuclei by
scaling the real photoabsorption cross section for a single nucleon by the atomic
number A. The Q2 dependence was taken into account by including the charge
form factor for the nucleus and assuming the Q2 dependence of the Compton
cross section has the same exponential falloff for nuclei as it is for the proton.
The rate of the falloff is given by the Compton slope parameter B, which was
taken as 8 GeV −2 for all nuclei.

This model lead to simple scaling for the analyzing power at low Q2 and
very forward angle given by

An =
A

Z
Ân

√
Q2 (1.28)

with Ân being a constant. The reported results from the HAPPEX/PREX
collaborations show that this model works light nuclei but disagrees for 208Pb
(see Figure 1.14a). The disagreement between data and theory led to the be-
lief that Coulomb distortions play a role in heavy nuclei such as lead because
of the large Z. Additional measurements at intermediate Z would shine light
on this speculation. This is shown in Figure 1.14b. Only recently have the-
ory calculations treated both Coulomb distortions and the integral over the
inelastics within the same framework. In Koshchii et. al [42], they numerically
solve the Dirac equation, including the contribution from the inelastics in the
form of an optical potential. Also in this new model, the A dependence of the
Compton slope is made explicit using experimental data.

Dedicated An measurements took place during PREX-II (1 GeV) and
CREX (2 GeV) highlighted by the first measurement on a intermediate Z
nuclei 40Ca during PREX-II. The 40Ca measurement would provide insight on
the Z dependence. Additional An measurements were done on 12C and 208Pb.
CREX measurements on the same targets provide additional insight to the
energy dependence. In addition, CREX measured An on 48Ca which together
with the (CREX) 40Ca measurement gives insight on A/Z dependence.

The analysis of PREX-II measurements are the subject of Chapter 4.
In chapter 6, I compare the PREX-II measurements with the Horowitz and
Gorchtein model and Koshchii et.al model.
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(a) HAPPEX/PREX An Measurements (b) Percent Deviation An

Figure 1.14: An measurements of 1H, 4He, 12C and 208Pb vs theory predictions
as a function of Q. (a) shows that light Z nuclei agree with model predictions
fairly well but 208Pb doesn’t. (b) shows the percent deviation between theory
and data normalized to theory as function of Z. The figure implies some Z
dependent effect may not be considered in the calculation.

1.3.5 An as a false asymmetry to PVES

The analyzing power becomes a false asymmetry in parity violating electron
scattering measurements if the electron beam has residual transverse polariza-
tion and if the apparatus is not perfectly symmetric in the azimuthal accep-
tance. This means that the measured asymmetry is given by

Am(φ) = PLAPV + PTAn sin(φ− φS). (1.29)

Here PL and PT are the longitudinal and transverse beam polarization
respectively. If the measured An are non-zero, then one must correct for this
by adding a systematic correction and/or assigning an uncertainty. As an
example, for PREX-II if the 208Pb measurement is consistent with the model
prediction (equation 1.30), i.e., An = -5 ppm, for a 5% residual transverse
beam polarization, the false asymmetry is modulated by

AnPT = (−5ppm)× 0.05 = −0.25ppm. (1.30)

Then equation 1.30 would need to be added to the LHS of equation 1.31 to
correct for it. In the case of perfect azimuthal symmetry in the detector plane
then this contribution would be zero since the scattering left/right symmetric
leading to cancellation. This is shown in equation 1.31∫ 2π

0

sin(φ− φS)dφ = 0. (1.31)
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Realistically, we don’t have perfect azimuthal symmetry. In the case were
equation 1.31 is non-zero e.g., 0.01, then the false asymmetry is given by the
product of equations 1.30 and 1.31

AnPT × 0.01 = −0.0025ppm. (1.32)

Equation 1.27 are the AT contributions needed to correct Equation 1.29
for. Equation 1.29 serves as the starting point of Chapter 5 of this thesis.
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Chapter 2

Experimental Overview

PREX-II measured the parity-violating asymmetry in the elastic scattering of
longitudinally polarized electrons off a 208Pb nucleus. Its sister experiment
CREX also measured the parity-violating asymmetry off a 48Ca nucleus. Both
experiments took place at a central angle of about 5o. The beam energy and
current for PREX-II (CREX) were 950 MeV (2.2 GeV) and 70 (150) µA re-
spectively. PREX-II and CREX both took place in Hall A at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab). Due to the setup of
the experiments, both PREX-II and CREX took dedicated runs to measure the
transverse asymmetry using 100% transversely polarized electrons to quantify
a potential source of systematic error. The transverse asymmetries were mea-
sured on various targets highlighted by the first measurements on intermediate
Z nuclei, 40Ca at PREX-II and CREX kinematics and 48Ca for CREX. I will
report on the 1 GeV measurements in this thesis. This chapter addresses the
experimental setup.

2.1 Accelerator

At the heart of both experiments is Jefferson Lab’s Continuous Electron Beam
Accelerator Facility (CEBAF). Before 2012, CEBAF ran what was the 6 GeV
configuration. In the 6 GeV era, the CEBAF accelerator was able to deliver
continuous wave (cw) beam up to 200 µA and 6 GeV energy to three experi-
mental halls (A,B and C). Within the last few years, CEBAF has since been
upgraded to accommodate the 12 GeV era, highlighted by the building of a
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Figure 2.1: CEBAF schematic for 12 GeV upgrade [43]

new experimental hall (Hall D) as shown in Figure 2.1.
The CEBAF accelerator consists of two linear accelerators (linacs) linked

by recirculation arcs. The electrons are generated in the injector by illuminat-
ing a strained gallium arsenide (GaAs) photocathode with laser light. Once
the beam is generated, it is injected in the north linac where it enters recircu-
lating beam lines. As the beam passes through the beam lines, the electrons
gain about 1.1 GeV per linac. The beam then gets injected into the south linac
where it gains an additional 1.1 GeV in energy. From there, the beam can be
sent into the experimental halls (Hall A, B, C) or fed back to the north linac
through additional recirculation arcs. The accelerator can provide up to five
pass meaning the beam recirculates five times to achieve a total beam energy
of 11 GeV.

2.2 Injector at Jefferson Lab

2.2.1 Polarized Source

The electron beam is generated in the injector which consists of a laser table
and a GaAs photocathode. By strained, we mean a thin layer (∼ 100 nm)
of GaAs is grown on GaAsP( gallium arsenide phosphide). The electrons are
ejected from a strained GaAs photocathode when hit with circularly polarized
laser light. The electron’s spin orientation depends on the polarization of
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the incident photon which means the beam helicity is defined by the laser’s
polarization. Each hall has its own laser setup so that the electron beam going
into each hall can be independently controlled. The laser table is schematically
shown in Figure 2.2.

Figure 2.2: Schematic of the laser setup in the injector. The circularly polar-
izaed light was prepared by the Pockels cell which then illumates a strained
GaAs photocathode. Figure is from [44].

On the laser table were 780 nm wavelength lasers that passed through
different optical elements to acquire circular polarization. The circularly po-
larized light was created by using a Pockels cell which acts a voltage-controlled
λ
4

waveplate. The Pockels cell is fed a randomized helicity signal which applies
either a positive or negative high voltage, the sign of which causes either a
±λ

4
retardation to the photon polarization therefore producing left- or right

circularly polarized light.
The circularly light when incident on the GaAs photocathode produces

left or right handed electrons. Gallium arsenide has a degenerate P3/2 valence
band. In an unstrained GaAs crystal when left-handed circularly polarized
light ( -1 helicity) is incident upon it, the electrons in the P3/2 m = -1/2
and -3/2 levels are promoted to the conduction band S1/2 m = 1/2 and -1/2
levels respectively. This promotion happens with equal probability resulting
in about a polarized electron beam of ∼ 50 %. However, in strained GaAs,
the degeneracy between the m = ± 3/2 and ± 1/2 levels is lifted by inducing
an energy gap (3/2 states have larger energy than 1/2 states). In this case,
the electrons at P3/2 level are promoted to the conduction rather than the
P1/2 electrons which would theoretically produce 100% polarized left-handed
electrons (see Figure 2.3). In practice, the beam polarization is ∼ 80-90 %. If
we consider right-handed circularly polarized light, the promotion is from the
P3/2 m = -3/2 to the S1/2 m = -1/2.
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Figure 2.3: Diagram of the band structure and energy gap for strained GaAs.
The arrow represents the allowed transition for left-handed photons. Figure
taken from Ref [45]

2.2.2 Helicity Controls

At the heart of PREX-II/CREX is helicity control. Experimentally, one would
like to be able to reverse the beam helicity without changing any other beam
parameters. There are different ways to reverse the beam helicity. These
methods include both fast helicity reversal (Pockels cell) and slow helicity
reversal (insertable half-wave plate).

As stated in Section 2.2.1, the helicity of the electron beam is correlated
with the polarization of the laser light. The laser polarization is prepared by
Pockels cell which is fed a helicity signal in which positve and negative high
voltages are applied producing left-handed or right-handed circularly polarized
light. When the light is incident on the photocathode produces consecutive
windows of left- or right-handed electrons. The rate at which the laser polar-
ization is changed is known as the helicity flip rate which is 240 Hz (4.17 msec)
for PREX-II transverse running and 120 Hz (8.33 msec) for CREX transverse
running. Each period of constant helicity is known as a helicity window with
the helicity For 120 (240) Hz running, the helicity patterns are organized in
a quartet (octet) pattern as +–+(+–++–+) or -++-(-++–++-). These pat-
terns are formed at multiples of 60Hz to suppress 60Hz electronics noise. The
signal is integrated over the multiplet at 30Hz (see Figure 2.4). The first
window of multiplet pattern was chosen pseudorandomly. The consecutive
window is chosen to have opposite helicity.

The helicity flipping was controlled by the Pockels cell. As shown in Figure
2.4, there is a 100 us delay to allow the Pockels cell to settle thus allowing the
helicity window to stabilize. This stabilization period was not included in
the parity DAQ. For each multiplet, the detector signal was integrated thus
allowing us to compute the asymmetry at the multiplet level.

In addition to the fast helicity reversal by the Pockels cell, an insertable
half-wave plate (IHWP) was periodically inserted upstream of the Pockels
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Figure 2.4: Octet pattern structure for 240 Hz running. The integrating gate
is 30 Hz [46]

cell as shown in Figure 2.2. The IHWP was intended to rotate the linear
polarization state incident on the Pockels cell by 90o, reversing the circular
polarization created by the Pockels cell, therefore changing the helicity of the
electron beam. The insertion and retraction of the IHWP was done on a
longer time on the order of once or twice a day. The IHWP changes the sign
of the measured asymmetry relative to the high voltage applied to the Pockels
cell and the polarity signal sent to each data acquisition system. This can
provide some systematic cancellation of helicity correlated beam asymmetries
(HBCAs). HBCAs refer to any difference in beam between left and right
handed polarization states. For example, the charge asymmetry AI can arise
from the difference in the beam charge between the two helicity states. Another
example is the beam false asymmetries Abeam which arise from position, angle
and energies differences incident on target for different helicity states.

2.3 Hall A Beamline

2.3.1 Beam Monitors

To account for HCBAs, requires monitoring the beam parameters during the
run. The measured asymmetry requires us to know the total number of elec-
trons in each helicity state. This is defined as

A =
D+ −D−

D+ −D−
=
δD

2D
(2.1)

where D is the integrated detector signal. The detector signal, however, de-
pends on the beam parameters which fluctuate therefore affecting the amount
of the electrons that make the main detector. One example is through the
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charge asymmetry AI which arises when the total charge on target differs be-
tween helicity windows. The integrated flux is proportional to the total charge
on target so careful calibrations between the detector signal and the beam cur-
rent are performed such that the calibrated detector signal D is normalized to
the beam current. To first order, we can separate out the part that sensitive
to charge differences i.e.,

A =
δD

2D
− δI

2I
. (2.2)

The second term in Equation 2.2 is the charge asymmetry. During the
run, the charge asymmetry was minimized using a feedback loop. The charge
asymmetry is computed every 7.5 seconds, which is then fed back to the Pockels
cell. The high voltages on the Pockels cell are adjusted to minimize the charge
asymmetry. The beam charge was measured using beam current monitors (see
Section 2.3.1.1).

The measured asymmetry also depends on the beam energy E and scatter-
ing angle θ which creates a false asymmetry if the beam fluctuates in a helicity
correlated way. To account for this, we modify equation 2.2 by subtracting
out the beam false asymmetry Abeam

A =
δD

2D
− δI

I
−
∑
i

ci∆xi (2.3)

where ∆xi = (E, x, y, θx, θy) and ci are the detector responses due to
changes in the beam parameters. In practice, the beam parameters are moni-
tored using beam position monitors which are located at different points along
the beamline in Hall A (see section 3.2.2.2).

2.3.1.1 Beam Current Monitors (BCMs)

The experiment used two beam current monitors (BCMs) located about 25 m
upstream the target. In the data stream, they are referred to as upstream and
downstream. The BCMs are resonant radio-frequency (RF) cavities. These
cavities are cyclindrical waveguides, tuned to the frequency of the beam (1497
MHz). This implies that the output voltages are proportional to the beam
current [47].

The BCMs are calibrated using an additional monitor called the Unser
monitor. The Unser monitor is designed to provide an absolute reference for
beam current since its calibration is known. Despite its known calibration, the
output signal from the Unser drifts (∼ µA) due to changes in temperature and
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the surrounding magnetic environment. Therefore, the Unser cannot be used
to continuously monitor beam current. However, calibrating the main BCMs
against the Unser removes this drift. As a result, the main BCMs can be used
as continuous current monitors [47].

2.3.1.2 Beam Position Monitors (BPMs)

The position and angle of the beam are measured by two beam position mon-
itors (BPMs) located 7.524m and 1.286m upstream of the target. The energy
fluctuations are monitored by three BPMs including BPM12 which is located
in the most dispersive point in the arc. As the beam is bent along the arc,
the position difference along the dispersive bend, parallel to horizontal plane
is measured which in turn is a measurement of the energy difference.

BPMs consist of four wire antennas denoted as X+, X-, Y+ and Y-. The
antennas are symmetrically placed ± 45o with respect to the horizontal axis.
The wire signal is proportional to the intensity and inversely proportional to
the distance from the beam to wire. The signals are read out in the data
stream. The beam position is calculated as

x′ = κ
X +−X−
X + +X−

, y′ = κ
Y +−Y−
Y + +Y−

. (2.4)

The constant κ is the wire calibration constant, which is distance between
the center of the stripline axis to the base of the antennas, κ = 18.76 mm. The
x’ and y’ positions are rotated such that x is the horizontal beam position and
y is vertical in the Hall. The x and y positions in the Hall is given by [48].

x = sin(45o)x′ + cos(45o)y′, y = cos(45o)x− sin(45o) (2.5)

2.3.2 Raster

The beam size for JLab is on the order of a few hundred microns. This can
cause target damage at high currents. To accommodate the heat load on
the target, the beam gets rastered to deposit power over a large area. The
raster consists of a pair of horizontal and vertical dipoles driven by ∼ 25 kHz
frequency (X and Y) triangular wave which sweeps the beam over a rectangular
area on the target [49]. For the lead and carbon targets, the raster was 4 mm
x 6 mm. While for the calcium targets, the raster was 2 mm x 2 mm. The
raster size was confirmed using spot++, a program that allows us to check the
spot size at the target.
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2.3.3 Beam Modulation

Beam modulation or ”dithering” is a technique used which measures the detec-
tor response due to changes in beam parameters (energy, position and angle)
by steering the beam.

Figure 2.5: Full picture of the Hall A Beam including the BCMs. Figure from
[48]

The beam modulation system consists of six air-core coils upstream (three
in X and 3 in Y) of the dispersive arc which was were used for both the position
and angle modulation. The energy modulation was done by using the energy
vernier in the accelerator’s south linac. The beam is modulated in 15 Hz
cycles with ∼ 100 micron amplitude. The 15 Hz was chosen to suppress 60 Hz
electronics noise while the modulation amplitude is larger than natural beam
fluctuations (∼ 10 microns) which ensures the modulation covers the phase
space of the jitter. The sine wave was generated with a VM1-4145 function
generator. The VM1-4145 is connected to trim cards which are read out by the
parity DAQ. The waveform phase represents each integrating period. There
are 8(16) phases per period for 120 (240) Hz running.

In one dithering cycle, each coil is activated in sequence for about 3.3
seconds. There are 10 minute pauses between dithering cycles. During a
cycle, the coils displace the beam by about less than 600 microns [50].

2.4 Polarimetry

Both PREX-II and CREX required polarimetry measurements at 1% accu-
racy. In Hall A, the beam polarization is measured independently by two
polarimeters, the Compton and the Møller.
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2.4.1 Compton Polarimetry

The Compton polarimeter measures the beam polarization by use of Compton
scattering. The beam polarization is extracted by the measuring the asym-
metry for different beam helicities scattering off a circularly polarized photon
beam. The asymmetry is defined as the fractional difference between scatter-
ing photon signals S between positive and negative helicity electrons.

Aexp =
S+ − S−
S+ + S−

= PePγAth (2.6)

Here Pγ is the photon polarization and Ath is the theoretical Compton
asymmetry for 100% photon and electron polarization. Ath is a well known
function of the photon energy. It is negative at lower photon energies including
a zero crossing point at the nominal photon energy. It is positive for higher
photon energies up to a point called the Compton edge. The Compton edge
is defined as the maximally allowed photon energy given the kinematics. The
photon energy corresponds to energy lost by electron in the scattering, allowing
one to measure the polarization either by using the photon energy and/or by
measuring the detected electron position after a dispersive magnetic element
[3].

The Compton apparatus is shown in Figure 2.6. At the entrance of the Hall,
the electron beam is bent by two magnetic dipoles of the Compton chichane
to a parallel path where the electrons scatter off of circularly polarized laser
photons in the Fabry-Perot cavity. The initial photon polarization is linear so
a quarter wave plate was placed outside the cavity. The backscattered photons
are measured by a photon detector. The signals from the photon detector are
used to extract the beam polarization. A third dipole separates the scattered
electrons (about 1 in every 109) from the unscattered electrons. The scattered
electrons can detected with an electron detector. A fourth dipole diverts the
remaining part of the beam to the target [51].

Figure 2.6: A drawing of the Compton polarimeter. One can directly see the
electron beam path as it goes through the Compton chicane [52].
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2.4.2 Møller Polarimetry

Downstream of the Compton polarimeter is the Møller polarimeter. The
Møller polarimeter measures the beam polarization making used of Møller
scattering off of polarized electrons in a ferromagnetic foil. Unlike the Comp-
ton, Møller measurements are invasive and can not be done concurrent with
production running. Dedicated Møller measurements were taken at various
points throughout the run. Similarly to the Compton, one can measure Møller
asymmetry defined as the fractional difference in the number of electrons be-
tween positive and negative helicity states is given by

AMoll =
N+ −N−

N+ +N−
= PtPb〈Azz〉. (2.7)

Here zz〉 is the longitudinal analyzing power average over the detector accep-
tance. The analyzing power is a function of center of mass (CM) scattering an-
gle θCM and is maximal 7

9
at θCM = 90o for a beam traveling in the z-direction.

The target and beam polarization is given by Pt and Pb respectively.
The Møller polarimeter is schematically shown in Figure 2.7. The Møller

target is an iron foil target which acts as a polarized electron target when fully
magnetized out of plane by a 4T superconducting magnet. The spectrometer
consists of four quadrupoles (of which only three were used) to focus and select
the Møller electrons and a dipole to bend the electrons. The fourth quadrupole
was added for the 12 GeV upgrade. Twin detectors are located downstream
the dipole which are symmetrically placed on both sides of the beamline [53].
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Figure 2.7: (a) Side View of the Møller Polarimeter (b) Top View of Møller
Polarimeter [53].

2.5 Targets

The PREX-II and CREX experiments used two target ladders that moved
independently of each other. One was the optics ladder, which had targets to
commission to the spectrometer, while the other was the production ladder,
containing the main production targets. The optics ladder was positioned
45o above the horizontal and was water cooled. The production ladder was
positioned horizontally and moved linearly with the direction of perpendicular
to beam line. Unlike the optics ladder, the production ladder was cooled with
circulating 14 K He gas. Both ladders were designed to move within the same
xy plane and aim at the same z location in the beamline [54]. The ladders were
housed in an aluminum chamber. The main part was 33 cm long and about
61 cm in diameter [55]. 10−5 Torr vacuum was maintained inside the chamber
which was secured by radiation hard metal seals [56]. The target chamber is
shown in Figure 2.8.
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Figure 2.8: Beam view of the Target chamber that houses the target ladders.
Figure from [55]

The optics ladder was designed to have five positions in the beam, four
of which housed the different targets in the optics ladder. The production
ladder was designed to have 18 positions in the beam for each target in the
production ladder. The targets on each ladder is given in Table 2.1.

Optics Ladder
Carbon Hole ∼ 0.1 g/cm2

Watercell
thin C foil 0.1 ± 0.05 g/cm2

thin natural Pb 0.05 ± 0.01 g/cm2

thin 40Ca 0.05 ± 0.01 g/cm2

Production Ladder
Carbon Hole ∼ 0.1 g/cm2

(9X) 208Pb/Diamond 0.5 mm
208Pb/Graphite 0.5 mm
48Ca (tilted) 1 ± 0.1 g/cm2

40Ca 1 ± 0.1 g/cm2

thick C 0.5 ± 0.1 g/cm2

Pb/Diamond 0.5 mm
Pb/Graphite 0.5 mm

Table 2.1: Targets required for PREX/CREX physics and optics calibrations.
Tables reproduced from [56]
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2.5.1 Production Ladder

The production ladder as shown in Figure 2.9 consists of targets used the
transverse asymmetry measurements. The main production targets for PREX-
II were the 208Pb targets which were based of the design of PREX-I. Each 208Pb
target was about half a millimeter thick, one inch square sandwiched between
two diamond foils of a quarter millimeter thickness. A thin layer of Apiezon L
vacuum grease was applied between the diamond and lead to improve contact.
The compound target was clamped with spring-like washers to further ensure
contact to account for changes in beam temperature [56].

Figure 2.9: Targets on Production Ladder. The Ca48 target which is not
shown was located where the halo (empty target) slot for CREX. Figure from
[57]

Because the lead target was sandwiched by diamond foils, it was important
to measure the transverse asymmetry on carbon. The diamond foils diluted
the measured asymmetry on the lead targets. For the AT measurement, the
carbon target was a 1% radiator. In addition, a carbon hole target was used
to check the raster size and center the beam on target.

The 40Ca target was a 1.1 g/cm2 thick target of 99.93% isotopic purity.
The 48Ca target used during CREX, consisted of a stack of three 48Ca foils,
whose total thickness was about 1.1 g/cm2. The 48Ca target had about an 8%
contamination due to 40Ca.
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2.5.2 Optics Ladder

The main targets of interest on the optics ladder were the thin carbon target
(0.2% radiator) and the water cell target. The thin carbon target was used to
calibrate the spectrometer so that we can accurately reconstruct the interac-
tion at the target (angle and momentum). The water cell target consisted of 5
mm of water surrounded by 0.05 mm thick stainless steel walls. The purpose
of this target was to measure the relative difference in momentum between the
hydrogen and oxygen to get an absolute spectrometer angle calibration.

2.6 Septum Magnet

PREX-II and CREX were designed at a 5o scattering angle with the same
fixed target position. The Hall A High Resolution Spectrometers only have
a minimum opening angle of 12.5o. This motivated the use of an additional
magnet, the septum, to horizontally (in-plane) bend the scattered electrons
into the aperture of the spectrometers. The septum magnet was located be-
tween the target chamber and the first quadrupole of the spectrometer. The
septum is shown Figure 2.10.

(a) Septum Coils (b) Septum Diagram

Figure 2.10: (a) Septum coils. The coils are symmetrical placed left/right with
respect to the beamline. Photo credit to Dr. C. Gal. (b) Septum Magnet [3]
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2.7 Acceptance Defining Collimator

At the entrance of the Q1 of the HRS, an acceptance defining collimator was
placed in the aperture of the Q1. The collimator which was made of 8 cm thick
tungsten defined the angular acceptance of the experiment [58]. The collimator
was 9 cm in height and was designed to accept the scattered electrons with
scattering angles of roughly about 3o to 8o [58]. The Q1 collimator is shown
in Figure 2.11.

For PREX-II/CREX, the symmetry of the apparatus is very important.
The collimators were surveyed and designed to be installed within ± 1 mm
in both the horizontal and transverse directions to be preserve left/right and
up/down symmetry [56].

Figure 2.11: Beam’s eye view of the Q1 collimators. Photo credit by Dr.C Gal

2.8 High Resolution Spectrometers (HRSs)

To focus the scattered electrons, a pair of High Resolution Spectrometers
(HRSs) were used. The spectrometers were designed to have 10−4 momentum
resolution for particles between 0.8-4.0 GeV/c with angular acceptance of ±30
and ± 60 mrad in the horizontal and vertical planes respectively. The HRSs
have a QQDQ magnet configuration as shown in Figure 2.12. The dipole has
a 45o bend which defines the dispersive direction. The first quadrupole serves
the purpose of focusing the electrons in the dispersive direction, while the
second quadrupole focuses in the transverse (non-dispersive) direction. The
third quadrupole also focuses the electrons in the transverse direction onto the
detectors [49]. For PREX-II and CREX, the magnets were set in such a way
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to focus the elastically scattered electrons onto the main detectors (see section
2.9.2). More about the optics will be discussed in Chapter 3 of this thesis.

Figure 2.12: Design Layout of the HRSs. Figure from [49]

2.9 Detector Package

2.9.1 Vertical Drift Chamber

Particle tracking is done by using a pair of vertical drift chambers (VDCs)
located about 3.5 m downstream of the Q3 exit which lay along the lab’s
horizontal plane. Each VDC chamber consists of two 2118x288 mm2 wire
planes, and the two chambers are separated by 335 mm (see Figure 2.14). A
wire plane consists of sense wires which are grounded and horizontally placed
between two high voltage planes (see Figure 2.13). The high voltage planes
are held at -4 kV high voltage thus resulting a uniform electric field pointing
vertically away from the wires (solid lines in Figure 2.12). Near the wire, the
field transitions from uniform to quasiradial and in (ellipses in Figure 2.12).
The chamber is filled with a mix of argon and ethane gas such that when
a charged particle traverses the gas, it ionizes along the track. The ionized
electrons are accelerated by the electric field toward the sense wires, away
from the trajectory along the path of least time. The accelerated electrons
produce an electron avalanche, which produces a signal which is collected by
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the time to digital converters (TDCs). The time that the TDC measures can
be converted into a perpendicular distance between the trajectory and the
sense wire plane. Fitting these distances, one can define local cross over point
Qi and local trajectory angle θQi for a given track for a given plane i. With
four wire planes on each arm, the 3D position and angle of the track can be
reconstructed.

The wire planes are oriented in a UV configuration which has their wires
perpendicular to each other. The wires are inclined at 45o with respect to
dispersive and non-dispersive directions. A nominal particle track traverses
the VDC at a 45o angle (Figure 2.14) [49, 59].

Figure 2.13: Particle trajectory going through a VDC wire plane. The solid
lines are electric field lines which are uniform away from the sense wires and
quasiradial toward the sense wiress. The measured drift time gives information
of the perpendicular distance between a trajectory and sense wires. Figure
from [59].
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Figure 2.14: Schematic of the VDCs [59]

2.9.2 Integrating Detector System

Downstream of the VDCs inside of the detector huts, contains the integrating
detector system. The integrating detector system consisted of the tandem pair
main detectors which measured the transverse asymmetry. Downstream of the
main detectors were the AT detectors which were used to monitor any residual
transverse horizontal polarization (discussed in Chapter 5) during production
running. Independent of the integrating detector system, were two Gaseous
Electron Multiplier (GEM) systems for high rate tracking. This is shown in
Figure 2.15.
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Figure 2.15: Integrating Detector System. The tandem detectors were
mounted on a stand in between GEM planes 1 and 2 of the small 3 GEM
detector array. The AT detectors were downstream the main detectors but
upstream the large 3 GEM detector array.

The PREX and CREX measurements use thin quartz detectors connected
to photomultiplier tubes (PMTs). The design made use of total internal reflec-
tion inside the quartz to collect Cherenkov light from the passage of electrons.
The roughly 5 mm detectors were 3.5x16 cm2 with an active region 10 cm and
a ”stubby” region of 6 cm. The ”stubby” region consisted of two regions, a 4
cm ”light guide” and 2 cm buffer for alignment purposes. The stubby piece
served as a spacer while the elastically scattered electrons traversed the active
region of the detector. The quartz pieces were mounted onto rails and had a
3D printed ABS-plastic enclosure with Kapton windows [60–62]. The tandem
detector system is shown in Figure 2.16.
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Figure 2.16: Tandem Detector shown with and without plastic enclosure

Two additional quartz detectors were in each arm were placed downstream
of the main detectors in order to monitor any residual transverse polarization.
The detectors were built using the same design as the main detector. The
AT detectors were also 5 mm thick, with an active area of 3.5 x 10.0 cm2.
Similarly to the main detectors, the AT detectors were mounted on Bi-slides
(2” and 4” for x and y motion respectively) [60–62]. The AT detectors are
shown in Figure 2.17.

Figure 2.17: AT detectors. Photo taken by Dr. D. McNulty
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2.9.3 Gaseous Electron Multiplier (GEM) Detector Sys-

tems

Separate from the integrating detector system were two independent GEM
systems. The smaller system consists of three 10x20 cm2 mounted on a stand
with the main detectors while the larger three GEM system (50x60 mm2) were
located downstream of the main detectors. GEM detectors consist of a drift
electrode, readout plane and three GEM foils in between. Each foil is held at
a potential voltage thus creating an electric field. A traversing particle ionizes
the gas medium. The ionized electrons are accelerated to foils which have a
large field. This further allows more electrons to be ionized thus creating an
electron avalanche. See Figure 2.18.

Figure 2.18: Schematic layout of the Gaseous Electron Multiplier (GEM) de-
tector [63]

The GEM detectors provide additional tracking for the experiment. The
advantage of using GEMs over the VDCs is that they can handle a higher rate
(∼ MHz) compared to VDCs, which can handle up to about 250 kHz rate.

2.10 Data Acquisition Systems (DAQ)

The experiments required to be able to operate in both integrating mode and
counting mode. There was a counting DAQ for low current calibrations and
an integrating DAQ for production running. Our detector setup allowed us to
freely switch between counting and integrating mode by swapping cables.

2.10.1 Counting DAQ

The main triggers for the low current counting runs were scintillator triggers.
The first scintillator called S0 (185x25x1 cm3) laid horizontally above the
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second VDC chamber was the main trigger. S0 had two PMTs, one on each
end called S0A and S0B and the trigger of the logical and of S0A and S0B
was called T1. Another scintillator, S3 (71x9x1 cm3) was downstream of UVA
GEM array and its trigger was called T3. However, the S3 scintillator for
PREX-II had a much smaller acceptance than S0 so it was only used for
sysmtematic studies. PREX-II also had additional triggers T2 (logical or of
S0A and S0B), T4 (upper quartz) and T5 (downstream quartz) and T6 (and of
T1 and T3), however, T4-T6 were not used for most of the run [64]. For CREX,
the quartz triggers were removed and the T3 trigger consisted of a digital OR
signal of three S3-sized scintillators to closely mimic the acceptance of S0. T1
(S0A and S0B) remained the main trigger for all Q2 analysis.

The counting DAQ read out the ADC spectra for the quartz detectors and
scintillators. The trigger rates were read and tracking information from the
VDcs were read out. The raster current and beam monitor was read out in
the data stream to ensure that the spot size on target (see section 2.3.2).

2.10.2 Integrating (Parity) DAQ

The integrating DAQ is used to accumulate the data during the main and
transverse measurements. It consists of four VME crates: counting house
(CH), left HRS (LHRS), right HRS (RHRS) and injector. The crates were
located throughout the accelerator, both inside in the Hall and along the
beamline to minimize noise and signal attenuations.

The parity DAQ used 18-bit analog-to-digital converters (ADCs) based on
the QWeak design. The ADCs were designed to accommodate a faster data
acquisition rate while suppressing pedestal drifts and non-linearity. They also
allowed for further subsegmentation of the integration window which allows
to systematically check the integration gate timing. The signals for the beam
monitors and detectors were read out through the ADCs [65].

The parity DAQ was also able to read out the scaler information from
the beam modulation system. The scaler read out the frequency of the beam
modulation through a voltage-to-frequency (V2F).
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Chapter 3

Optics

Optics is a crucial aspect of the PREX-II and CREX experiments. Optics
refers to the transformation required to reconstruct the interaction at the
target given what we measure at the focal plane. The tracks at the VDCs are
our snapshots of the interaction at the target. An accurate reconstruction of
the interaction point requires calibrating the spectrometer. After calibration,
the tracks at the target are reconstructed using the optics matrix. The optics
matrix reconstructs tracks from the focal plane to the target region. We use
the target variables to reconstruct our kinematics which will ultimately be
compared to simulation.

In addition to spectrometer calibration, we use the VDC tracks to align
our detectors. Because the detectors are downstream the focal plane, the VDC
tracks are extrapolated to the quartz detectors. The upstream main detector
was about 1.3 meters downstream the focal plane while the AT detectors were
about 1 meter downstream of the upstream main detector. The tracks that
intersect the quartz detectors define the acceptance of the experiment.

3.1 Optics Formalism

3.1.1 TRANSPORT Formalism

The beam transport of charged particles through a magnetic spectrometer can
be described in the TRANSPORT formalism [66]. A trajectory of a charged
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particle relative to the optic axis is described by a vector

x =



x

θ

y

φ

δ


(3.1)

where x is the displacement along the dispersive axis, θ is the tangent of the an-
gle in the dispersive plane with respect to the reference trajectory (θ = dx/dz,
where z is along the direction of the optic axis), y and φ are the equivalents
in the transverse plane, and δ is the fractional deviation of the momentum of
the trajectory from the the central momentum. Transport through a series
of magnetic elements up to the focal plane can be represented as a matrix
equation to first order and tensor equation to arbitrary order. Any particle
trajectory can be expressed as a Taylor expansion about the central trajectory
i.e.,

xi =
5∑
j=1

Rijxj(0) +
5∑
j=1

5∑
k=1

Tijkxj(0)xk(0). (3.2)

Here Rij and Tijk are the first and second order forward transport matrices.
Rij is a 5x5 matrix while Tijk is a 20x20 tensor. In reality, we measure the
charged particles at the focal plane and reconstruct the interaction point. This
involves the inverse of these matrices. A more detailed description of the optics
calibration is given in section 3.3.

3.1.2 PREX/CREX Optics

To first order the matrix R is given by
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(x|x) (x|θ) (x|y) (x|φ) (x|δ)

(θ|x) (θ|θ) (θ|y) (θ|φ) (θ|δ)

(y|x) (y|θ) (y|y) (y|φ) (y|δ)

(φ|x) (φ|θ) (φ|y) (φ|φ) (φ|δ)

(δ|x) (δ|θ) (δ|y) (δ|φ) (δ|δ).


(3.3)

PREX-II/CREX required point to point imaging in order to minimize the
spot size at the main detectors. To first order, this requires the matrix elements
(x|θ) and (y|φ) to be zero at the detectors. The HRS is designed to have large
dispersion (x|δ) so (x|θ) being zero means particles of one momentum focus
to one ”X” in the focal plane, independent of the scattering angle. This
allows the rejection of inelastic states to the main measurement. As stated
in Chapter 2, the active area of the main detectors is 10 (dispersive) x 3.5
(transverse) cm2. The (y|φ) being zero requires the accepted electrons to focus
onto the transverse dimension of quartz regardless of the scattering angle. This
is schematically shown in Figure 3.1.

For point-to-point imaging, the magnification in the x and y planes is given
by magnitude of the (x|x) and (y|y) respectively for a given spot size [66].

Figure 3.1: PREX Optics Schematic. The focal plane of the spectrometer
coincides with the first lower plane of the VDC.
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3.2 Coordinate Systems

The variables used in the optics calibration are measured in different coordi-
nate systems [67]. A summary of the coordinate systems is presented here. A
more detailed description can be found here [68]. The figures presented in this
section were taken from [69].

• Hall A Coordinate System (HCS): The origin of the HCS is at the
Target center. It’s defined by the intersection of the electron beam and
the vertical symmetry axis of the target system. Because of the septum,
the center is about 0.7 m upstream of the hall center. Direction ẑ is along
the beam direction, ŷ is vertically up and x̂ is beam left. See Figure 3.2.

• Target Coordinate System (TCS): Each spectrometer has its own
TCS. ẑ is defined along the central ray and points away from the target.
x̂ points down and defines the dispersive direction. The ŷ direction points
away (toward) from the beamline for the left (right) spectrometer. The
origin of the TCS is defined along ẑ at a distance L, measured from the
target center to the central sieve slit hole. See Figure 3.3. Ideally, the
TCS has the same origin of the HCS.

Figure 3.2: Top View of Hall Coordinate System

• Detector Coordinate System (DCS): The intersection of wire 184
of VDC1 U1 plane and the perpendicular projection of wire 184 of the
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Figure 3.3: Top and Side Views of the Target Coordinate System

VDC1 V1 plane onto the VDC1 U1 plane defines the origin of the DCS.
In this system, ẑ is perpendicular to VDC plane pointing up, while x̂ is
along the VDC’s long symmetry axis pointing away from the dipole. See
Figure 3.4.

• Transport Coordinate System (TRCS) at the focal plane: The
TRCS at the focal plane is generated by rotating the DCS 45o clockwise
about its y-axis as shown in Figure 3.5. Its z-axis ideally coincides with
the spectrometer optic axis.

• Focal plane Coordinate System (FCS): The focal plane Coordinate
System is a rotated coordinate system used for the optics calibration.
This system is obtained by rotating the DCS about its y-axis by an angle
ρ, where ρ is the angle between the local central ray1 and ẑ axis of the
DCS. As a result, ẑ in the FCS is a function of the relative momentum
δp
p

(Figure 3.6).

1Ray with θ = φ = 0 for a given δp
p
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Figure 3.4: Detector Coordinate System

Figure 3.5: Transport Coordinate System (side view)

For each event, the position (xdet,ydet) and angle (θdet,φdet) are measured
at the VDCs in the DCS. The dispersive direction is given by x and θ while
the transverse is given by y and φ. These variables get corrected for any
detector offsets from the ideal central ray and transformed to give the focal
plane coordinates xfp, yfp, θfp and φfp. The transformations are given in [68].
These variables are used to calculate x, θ, y,φ and δ in the TCS. During optics
calibration, the data is taken with the raster off and xtg, the vertical beam
position on target is effectively fixed at zero requiring that the beam on target
is within 250 µm of the HCS origin. This reduces the number of unknowns. A
set of tensors (5th order) link the focal plane variables to the target variables
according to
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Figure 3.6: Focal Plane Coordinate System

ytg =
∑
j,k,l

Yjklθ
j
fpy

k
fpφ

l
fp (3.4)

θtg =
∑
j,k,l

Tjklθ
j
fpy

k
fpφ

l
fp (3.5)

φtg =
∑
j,k,l

Pjklθ
j
fpy

k
fpφ

l
fp (3.6)

δ =
∑
j,k,l

Djklθ
j
fpy

k
fpφ

l
fp. (3.7)

The tensors Yjkl,Tjkl,Pjkl,Djkl are polynomials in xfp e.g.,

Yjkl =
m∑
i=0

C
Yjkl
i xifp. (3.8)

3.3 Optics Calibration

Determining the tensor elements is critical to understanding our kinematics.
Optimizing the optics database requires data covering a wide range in momen-
tum acceptance and solid angle acceptance. This data is taken without the
raster and with the sieve slit collimators inserted into the beam path. The
sieve collimators are shown in Figure 3.7.
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Figure 3.7: Sieve Slit Collimators

3.3.1 Spatial and Angular Calibration

The angular calibration was done first because the spatial and momentum
calibrations depend on this. The beam and surveyed positions of the sieve
relative to the target was used to calculate the expected position for each sieve
hole. The details of the hole positions are shown in Figure 3.8. The position
for each hole was calculated using the matrix elements. The difference between
the squares of the expected position and calculated position is minimized. The
output gives the theta and phi tensor elements. The spatial calibration is done
by the same procedure [45].

3.3.2 Momentum Calibration

The momentum calibration involved taking data on the thin carbon foil at sev-
eral spectrometer central momentum settings Po to sweep the electrons across
the focal plane. For each event passing through a given hole, the scattering
angle is calculated. Each sieve hole in the same column has a fixed scatter-
ing angle. From this, the expected momentum of each hole is calculated and
hence the fractional momentum for a given Po is calculated. The difference of
squares of the actual central value and the expected value is minimized [45].
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Figure 3.8: CAD drawing of RHRS Sieve. All dimensions are given in inches.
The large sieve holes are used a reference for the tracks

3.4 Optics Simulation Tools

Evaluating the acceptance is crucial to interpreting the PREX-II and CREX
results. The angular experimental acceptance is defined by the Q1 collimator
while the momentum acceptance is defined by the dimensions and placement
of the main detector. With this information, we define an acceptance func-
tion ε(θ) which is the probability that an electron as a function of kinematic
parameters that reaches the detector, scattered off of 208Pb2. To interpret the
measurement with theoretical models, one must integrate over the acceptance
function:

〈A〉 =

∫
dθ sin θA(θ) dσ

dΩ
ε(θ)∫

dθ sin θ dσ
dΩ
ε(θ)

, (3.9)

where dσ
dΩ

is the differential cross section and A(θ) is the modeled parity-
violated asymmetry as function of the lab-frame scattering angle [70]. The
acceptance function is generated through simulation to match the observed
data. This section discusses the simulation tools used for optics. The compar-
isons will be limited to PREX-II i.e., 1 GeV data.

2For CREX, 48Ca
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3.4.1 HRSTrans

HRSTrans is a Monte Carlo program that studies first and second order optics
in an idealized framework. Particle trajectories are sampled as vectors in
the target phase space and transported through the spectrometer via matrix
multiplication (see [66] for the matrices). HRSTrans provides a quick way to
study different spectrometer tunes for a given experiment.

HRSTrans provides the transport chain for four configurations, standard
(no septum), PREX, CREX and APEX. The standard tune describes the
design of the HRS in Hall A [49]. The program uses a natural unit of length
so that the transport can be understood in terms of positions, angles and
a central reference trajectory. An instance of the class is specified by three
quadrupole fields at the bore given in units of inverse length and are fields are
specified for any spectrometer momentum setting which allows a direct scaling
between tunes by the momentum ratio. One of the first goals of HRSTrans was
to reproduce the standard tune which adjusted the quad settings to reproduce
both the first order transport matrix and z-dependence of the matrix elements.
This is shown in Figure 3.9. Reproducing the standard tune was important
for proof of principle.
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Figure 3.9: Z-dependence of the first order matrix elements for the Standard
Tune
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The initial PREX transport configuration was designed based on PREX-
I, the 2010 run. However, the tune was designed to still minimize (x|θ) and
(y|φ) matrix elements at the main detectors. The initial optimization provided
what was called ”Tune B”, which is the spectrometer tune PREX-I ran with.
PREX-II was different in the fact that the target was moved 10 cm upstream
relative to PREX-I. Scaling the quads to account for this didn’t result in the
optimal tune for PREX-II. PREX-II ran with a relative tune from Tune B
called Tune P, which ran 6% low on Q1 and 7% low on Q3 while keeping
Q2 the same. Tune P provided the same focusing properties at the main
detector that it did for Tune B (figure 3.10) but weaker raster coefficients and
dispersion (See Figure 3.11). However, Tune P provided better momentum
resolution defined as the ratio of the dispersion over the magnification factor
(x raster coefficient).
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(a) Tune P x Matrix Elements
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Figure 3.10: Z-dependence of the first order matrix elements for Tune P. The
blue lines indicating the position due to angle on target intersect the detectors
at t∼ 25 at zero.
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−2.29 −0.03 0 0 15.63

−0.25 −0.44 0 0 2.35

0 0 1.44 0.04 −0.34

0 0 0.98 0.73 −0.14

0 0 0 0 1


(a) Tune P Matrix
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−0.31 −0.37 0 0 2.52

0 0 1.83 0.09 −0.43

0 0 1.02 0.59 −0.17

0 0 0 0 1


(b) Tune B Matrix

Figure 3.11: First order matrix elements for Tune B and Tune P. The nonzero
(y|δ) and (φ|δ) matrix elements are due to the septum. The sign depends on
the spectrometer(+ for LHRS, - for RHRS). The matrix elements colored in
red highlight the differences between the tunes.

3.4.2 G4HRS

3.4.2.1 Overview

G4HRS is a Geant4 ray tracing Monte Carlo program. Electrons are sampled
and transported through the spectrometer. The geometry consists of the septa
and HRSs(see Figure 3.12). The hits are recorded on virtual planes located
at various locations throughout the spectrometer chain. Unlike HRSTrans,
G4HRS takes into account initial and final state radiation, energy loss and
multiple scattering in the target.
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Figure 3.12: Geometry in G4HRS. The square box is the septum, the yellow
volume is the dipole volume including the fringe volumes. The red disks are
the virtual planes the hits are recorded on.

The septum field is described by a current and momentum scale while the
spectrometer magnets are scaled by the momentum only. More explicitly, the
septum is given by

B′xyz = (
J

J0

)× (
p

p0

)×Bxyz (3.10)

where Bxyz are the field components at current density J0. Bxyz are read in
from a TOSCA file and were produced at J0 = −1320A/cm2. The fields for
the spectrometer magnets are scaled by

(Bi
o)
′ = (

p

p0

)×Bi
o, i = Q1, Q2, D,Q3. (3.11)

The momentum scale p0 was chosen to be 1 GeV. The dipole field is de-
scribed by a analytic function (written by J. LeRose) while the quadrupole
fields are explicitly defined at the poletip field b and aperture radius R as
given by Equation 3.12.

Bi = {( bi
Ri

)(
P

1GeV
)y, (

bi
Ri

)(
P

1GeV
)x, 0} (3.12)

i.e., there are no fringe fields and the indices i go from 1 to 3. The momen-
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tum P was set to the ideal momentum settings of the recoil central ray, given
the exact beam momentum.

3.4.2.2 G4HRS Magnet Tune

Similar to HRSTrans, the spectrometer is tuned to meet the PREX/CREX
design optics. This first involves defining the central ray and then a quad
tune. Defining the central ray consists of two parts: (1) finding the septum
current density J such that the central ray goes through the center of Q1 and
is normally incident onthe Q1 face and (2) varying the dipole field to have
the central ray normally incidence on Q3 and through its center. Once the
central ray is established, the quadrupole fields bi are optimized to minimize
(x|θ) and (y|φ) matrix elements at the detector plane. The quadrupole tune
involves sampling constant vectors in theta and phi at the target and projecting
those to x and y at the detector plane. The points are fit to quadratics and
the linear coefficients are optimized to satisfy the optics requirement.

3.5 Acceptance Function

This section discusses how the acceptance function and its systematic uncer-
tainty for PREX-II was determined. The acceptance function is generated in
G4HRS.

The integrating measurement encodes the vertex kinematics which sees ra-
diated and multiple scattered beam however, what the detector measures has
been additionally radiated and multiple scattered as it passes through the tar-
get. Our snapshot of the kinematics as it leaves the target come from counting
mode measurements. What is measured in counting mode are the event by
event angles, momentum and Q2, after scattering. These kinematic quantities
are known as ”apparent” quantities. In reality, because our counting mode
measurements have no access to vertex information, we rely on the simula-
tion. As an example, there can be smaller angle events that multiple scatter
in the acceptance that is not identified with counting mode measurements.

However, for theorists to interpret our measurements, requires computing
what is called the ”elemental” asymmetry, where we can think of the scatter-
ing as point-like scattering for a fixed beam energy over the accepted angles.
Simply stated, for a given model, theorists compute the asymmetry for a fixed
beam energy over a range of scattering angles so that equation 3.9 is appli-
cable. To use equation 3.9 involves integrating over the acceptance function
which includes vertex scattering angles. The simulation is used to correct the
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measurement corresponding to a change in the asymmetry from measuring
with a monoenergetic beam i.e.,

〈Ae〉 = AmRradcor, Rradcor ≡
〈Ase〉
〈Asv〉

(3.13)

where Am is the measured asymmetry, the superscript s refers to simula-
tion and the subscripts e and v are for the elemental and vertex quantities
respectively [71]. Rradcor is the pre-vertex radiative correction.

Benchmarking ε(θ) involves comparing the apparent kinematic quantities
between data and simulation. The relevant quantities are the asymmetry, lab-
scattering polar angle, the momentum and Q2. Evaluating the uncertainty in
the acceptance function involves simulating models that can cause variations in
the acceptance. The models include varying the Q1 collimator position, target
position and pinch point positions for various septum currents and quantifying
the relative differences between the data and simulation.

3.5.1 Angular acceptance

The septum current in G4HRS is tuned to match the central ray of the exper-
iment. To verify the edges of the acceptance, an inner collimator edge search
was done in the simulation to see which holes blinked in and out of the accep-
tance by changing the septum current. The sieve pattern in simulation was
compared to the data as shown in Figure 3.13.

The correspondence between data and simulation is pretty good aside from
a few marginal differences. The simulation shows two holes that seem atten-
uated at the second to last column on the outermost edge and a hole on the
innermost edge in the center row (see Figure 3.14). We explored the differ-
ence between the data and simulation by looking at the sieve holes patterns
through various parts of the spectrometer in the simulation. The simulation
showed that the sieve holes highlighted in blue in the Figure 3.14 were lost in
the spectrometer at Q1 or Q2 (Figure 3.15).

60



(a) LHRS

(b) RHRS

Figure 3.13: Sieve pattern comparison between data (right hand side) and
simulation (left). For the LHRS, beam center is toward negative phi. Beam
center is toward positive phi for RHRS

Figure 3.14: LHRS Sieve Patterns isolating the difference between data and
simulation. Figure taken from [71]
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(a) Accepted sieve pattern at the Q1 exit

(b) Accepted sieve pattern at the Q2 entrance

Figure 3.15: The two holes at the top/bottom in the third to last column get
attenuated between the Q1 exit and Q2 entrance.

Figure 3.15a shows the sieve pattern that make it through the Q1 collimator
and Q1 exit while 3.15b shows the pattern that makes it the Q2 entrance.
The holes on the third outermost edge get partly attenuated somewhere in
the spectrometer [72]. To see where the innermost hole comes to focus, we
simulated a fine tune septum scan from ± 2% on the nominal field strength
in 0.5% steps. The scan shows that the innermost holes come into focus when
the septum current is scaled down -1% from nominal while the holes at the top
and bottom of the outermost edge are lost as you increase the current(Figure
3.16). The innermost hole in the center row probably gets lost somewhere in
septum or Q1 [73]. The effect of the missing holes on the polar angle, Q2 and
the asymmetry relative to the nominal configuration is summarized in Table
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3.1.

(a) -2% from Nominal (b) -1.5% from Nominal

(c) -1% from Nominal (d) -0.5% from Nominal

Figure 3.16: RHRS Septum scan from -2% up to -0.5% detuned from nominal.
The innermost hole in the center row begins to show up at -1% from nominal.
It is the same for the LHRS septum scan as well.

θlab(deg) Q2GeV −2 APV (ppb)
No hole 4.778 0.006364 576.7
Inner hole 4.783 (+0.1%) 0.006377 (+0.2%) 577.5 (+0.14%)
Outer holes 4.769 (-0.19%) 0.006338 (-0.4%) 575.5 (-0.21%)

Table 3.1: The variation in the apparent quantities with the missing hole cuts
are within 0.5% level with respect no cut configuration
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3.5.1.1 Target Position

As mentioned previously, various factors can limit the angular acceptance.
One such factor is the target position. The cryotarget is on a long lever
arm which was not surveyed or viewed after pulling vacuum or cooldown [71].
As a result, the target may have moved a few millimeters from its nominal
position. We scanned the target position in the simulation, by moving it 5mm
upstream and downstream relative to the nominal target position. For each
target position, the simulated septum current was varied by ± 2% from the
nominal current. The relative change in the apparent quantities was compared
to the data. Figure 3.17 shows an observed 0.5% change in the lab scattering
angle and the apparent asymmetry between for the upstream and downstream
target position simulations at a fixed septum current, while Table 3.2 shows
that changing the septum current to match the lab scattering angle to the
data, the apparent asymmetry matched as well.
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(a) Lab Angle, 5mm Upstream
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(b) Lab angle, 5mm Downstream
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(c) Apparent Asymmetry, 5mm Up-
stream
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Figure 3.17: RHRS polar angle and apparent asymmetry comparison between
data and simulation for the target position. The relative changes are 0.5%
level with the position shift. The data run is run 21185
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(a) Downstream Scan

Target +5mm θsim
θdat

Q2
sim

Q2
dat

Asim
Adat

Septum -2% 100.30% 101.17% 100.95%
Septum -1% 99.96% 100.486% 100.52%
Septum 0% 99.50% 99.54% 99.96%
Septum +1% 99.03% 98.60% 99.38%
Septum +2% 98.89% 98.32% 99.20%

(b) Upstream Scan

Target -5mm θsim
θdat

Q2
sim

Q2
dat

Asim
Adat

Septum -2% 99.91% 100.38% 100.45%
Septum -1% 99.52% 99.60% 99.97%
Septum 0% 99.11% 98.78% 99.45%
Septum +1% 98.73% 98.00% 98.96%
Septum +2% 98.39% 97.33% 98.54%

Table 3.2: Septum scan for the upstream and downstream target positions.
The comparison to data is done for Run 21185

3.5.1.2 Pinch Point

The pinch point is another factor that can limit the acceptance. The pinch
point is defined as the closest approach between the septum’s acceptance box
to its coils at the septum entrance. A top view of pinch point is shown in
Figure 3.18. The vacuum boxes are positioned by flanges which during instal-
lation were found to be slightly out of design specifications. As a result, the
vacuum box could vary from ideal by as much as 3 mm [71]. In simulation, the
acceptance path through the septum is modeled by virtual planes at various
locations [74]. We performed a pinch scan to see its effect on the apparent
quantities (see Figure 3.19).
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Figure 3.18: CAD of the pinch point (see arrow). The septum vacuum box is
in gray and the septum coils are shown in bright red. The nominal accepted
track envelopes are shown in red-brown. Figure from [75]

fig:Pinch
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(b) Q2 vs. Pinch offset
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Figure 3.19: RHRS pinch scan. The angle changes are at the level of 0.3%
while the asymmetry changes are at the 0.5% level. Q2 changes at the 1%
level. These changes are for a fixed septum current.

3.5.1.3 Collimator Offset

The acceptance can also change if the Q1 collimator is in the wrong place.
Any horizontal offset of the collimator position from ideal would change the
lab scattering angle. A systematic study changing the collimator offset was
done using the simulation. The coordinates of the Q1 collimator virtual plane
in G4HRS was fixed to match the surveyed position in reality. Using a c++
function that modeled the collimator shape that was built, we offset the colli-
mator horizontally and scanned the position at different septum currents [58].
The lab scattering angle and the asymmetry varied roughly at the 0.5% per-
cent level for different collimator offsets for a given septum current, while Q2

varied at the percent level (Figure 3.20).
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(a) Lab Theta vs. Ycol offset
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(b) Q2 vs. Ycol offset
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Figure 3.20: RHRS collimator scan. Negative offset corresponds to away from
beam center (x = 0) while positive is toward the beam center

3.5.1.4 Vertex Correction

The vertex correction is the implied difference between the apparent asym-
metry and the vertex asymmetry. The vertex kinematics were extracted from
the simulation. An example of the comparison between vertex and apparent
distributions is shown in Figure 3.21. The vertex asymmetry only accounts
for events that scatter off the lead target. The vertex distributions include
smaller scattering angles due to multiple scattering that aren’t seen in the ap-
parent distributions. The relative difference between the vertex and apparent
asymmetry is (3.7 ± 0.30) % for simulated configurations. The uncertainty
was obtained by considering the simulation models that matched the apparent
distributions well and look at the range of the vertex asymmetry. The vertex
asymmetry for those scans agreed within 0.3%.

68



1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

10000

12000

14000

16000
lab[1]

Entries  55153
Mean    4.781
RMS    0.4459

lab_v
Entries  29181
Mean    4.673
RMS    0.5196

Apparent
Vertex

 Septum Detuned 0.0
lab

θRHRS Apparent 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

2000

4000

6000

8000

10000

12000

qsq[1]
Entries  55153
Mean   0.006371
RMS    0.001221

qsq_v
Entries  29181
Mean   0.006107
RMS    0.001376

Apparent
Vertex

 Septum Detuned 0.02RHRS Apparent Q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000 asym[1]
Entries  55153
Mean   0.5771
RMS     0.067

asym_v
Entries  29181
Mean   0.5589
RMS    0.08156

Apparent
Vertex

RHRS Apparent Asymmetry Septum Detuned 0.0

Figure 3.21: RHRS vertex and apparent kinematics from simulation. The
vertex distributions only include events that scatter off lead while the apparent
distributions consider all scattered events (both diamond and lead)

3.5.2 Momentum Acceptance

The main detectors define the momentum acceptance for the experiment. To
see where the momentum is cutoff, we identify the location of the quartz edge
in the dispersive plane. To identify the quartz edge, one looks at the tracks
that are above and below an ADC threshold of the pulse height spectrum. For
the simulation, we mimic the geometric cut by using a combined cut which
includes momentum and target theta.

Different target theta show up at different x at the detector for the same
momentum. Because of the nonzero coupling between the momentum and
theta, they are correlated. We can use a correlated cut to mimic the geometric
cut at the quartz edge [76] as shown in Figure 3.22. The correlated cut is what
was used in the simulation and the previous analysis outlined in section 3.5.1.
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Figure 3.22: Theta and dp correlation. The top plot has an ADC cut in data
while the bottom has the correlated theta/dp cut in simulation. Note one can
observe a triangular ”edge” of the acceptance in both plots.

3.5.3 Systematics Summary

The relative uncertainties on APV from the acceptance model is summarized
in Table 3.2. The uncertainties in the acceptance function mismatch was
determined by considering all the simulation scans for every configuration,
picking the scans that best matched the apparent kinematics quantities. From
those scans, the range of the vertex asymmetry was extracted from simulation.
The vertex asymmetries for those configurations agreed at the 0.3% level. This
suggests that even that we can reproduce the vertex asymmetry even if the
acceptance function is not exactly correct, provided that apparent polar angle
and Q2 match. Finally, the quadrature sum of the uncertainties gives a 0.6%
relative error on APV .

Value Uncertainty δAPV
APV

Apparent Acceptance Mismatch 0.3-0.5% 0.5%
Vertex kinematics correction 3.70% 0.3% 0.3%
Radiative correction Ae vs Av 0.10% 0.1% 0.01%

total 0.6%

Table 3.3: Table of the systematics associated with the acceptance function.
The dominant error is from the apparent acceptance mismatch
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Chapter 4

PREX-II AT Analysis

PREX-II performed AT measurements on three isoscalar targets highlighted
by the first measurement on an intermediate Z nucleus, 40Ca. The 40Ca mea-
surement is interesting as it provides additional input on the A

Z
dependence of

the analyzing power as given by equation 1.28. The other measurements were
done on 12C and 208Pb. The AT measurement on the 208Pb was done as an
nonzero analyzing power can contribute to the systematic error for PREX-II.
The 12C measurement was done since the lead targets are sandwiched between
two diamond foils. Its contamination needs to be subtracted out to extract
the 208Pb result. This chapter addresses the analyses of the transverse data
for PREX-II.

The goal was to measure AT to better than 5%. Using 6 ppm magnitude
asymmetry for 12C AT means that we planned to measure AT to better than
0.3 ppm precision. Assuming that the 40Ca should match the 12C at the same
Q2 means that we want to also measure the 40Ca AT to better than 0.3 ppm
precision. For 208Pb, the expectation was to measure AT to significantly below
0.3 ppm. To achieve the proposed statistical precision, the run plan was to take
data on the 12C, 208Pb and 40Ca for 2 hours, 4 hours and an hour respectively.

4.1 Asymmetry Data

The raw asymmetry for the detectors is calculated as the fractional difference
between the detector signals D+,−, in different helicity states normalized to
the beam current I+,− in those states
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Araw =
D+

I+
− D−

I−

D+

I+
+ D−

I−

. (4.1)

The PREX-II transverse data ran with a 240 Hz helicity flip rate in an
octet randomized helicity pattern with the initial helicity state being chosen
pseudorandomly. The multiplet asymmetries were calculated by averaging the
signals in the same helicity states using Equation 4.1. About 10000 multiplets
form what is called a minirun. A collection of about 2-5 miniruns form a run.
A collection of runs taken with or without half wave plate inserted form a
slug. The carbon and lead data sets had four slugs of data while the calcium-
40 data set had two (5 runs, 11 miniruns). The carbon data set consisted of
seven runs (20 miniruns) while lead consisted of 13 runs (53 miniruns). To
extract the correct asymmetry value, the runs without the half wave plate
have their asymmetry values sign corrected i.e., multiplied by -1.

The left and right spectrometers measure the asymmetry with opposite
sign due to the fact the vector normal to the scattering plane changes sign (see
Equation 1.19). As a result, the main AT measurement is given by the so-called
double difference between the asymmetries in the left and right spectrometers.
The 40Ca raw double difference is plotted in Figure 4.1 as an example, while
the raw asymmetry values in ppb are given in Table 4.1. The 12C and 208Pb
asymmetry plots are shown in Section A.2 of Appendix A.

Figure 4.1: Raw 40Ca AT measurement plotted vs minirun given in ppb
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AmC12 AmPb AmCa40

Raw Left 5041 ± 860.4 -783 ± 797 3272 ± 2354

Raw Right -5437 ± 837 -579 ± 693 -5079 ± 1753

Raw Double Diff. 5268 ± 741 -196 ± 672 4439 ± 1219

Table 4.1: Tabulated Raw Asymmetries for the Left/Right Main Detectors
and the Double Differences for 12C, 208Pb and 40Ca given in ppb.

As mentioned in section 2.3, to extract the physics asymmetry, the asym-
metry needs to be corrected for any helicity-correlated beam asymmetries (HB-
CAs) which was given by equation 2.3.

4.1.1 Charge Asymmetry

The charge asymmetry AI arises in the electron source due to birefrigent ele-
ments downstream of the Pockels cell such as the vacuum window (see Figure
2.2) and imperfect alignment of the Pockels cell. The birefringence introduces
residual linearly polarized laser light, which has opposing orientations between
helicity states. Since the helicity states had their linear components oriented
differently, they are transmitted differently, resulting in a nonzero charge asym-
metry. This is known as the Polarized Intensity Transport Asymmetry (PITA)
effect [77]. The PITA effect is minimized by the feedback loop described in
Chapter 2.3. The Pockels cell high voltages get corrected by measuring the
PITA slope which describes the relationship between the AI and the corrected
voltage (PITA scan) [78]. A PITA scan was performed before the transverse
running. The charge asymmetry was less than 200 ppb for all three targets as
shown in Table 4.2. The AI figures are shown in Appendix A.2.1.

12C 208Pb 40Ca

AI -35 ± 1148 -173 ± 1188 128 ± 430

Table 4.2: Sign corrected charge asymmetry for all targets in units of ppb
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4.1.2 Beam False Asymmetry

The other source of HCBAs is from beam fluctuations in position, angle, and
energy. As discussed in Section 2.3, the detector rates are sensitive to any
beam fluctuations. Helicity-correlated fluctuations introduces a beam false
asymmetry (see third term in equation 2.3). The beam false asymmetries
were extracted using two techniques, linear regression and dithering.

Regression
Regression is a technique that uses the natural beam motion to remove

any HCBAs. It gets it name from the fact the slopes are calculated using χ2

minimization. For a one parameter regression, the slope is calculated as [79]

b =

∑
i(yi− < y >)(xi− < x >)∑

i(xi− < x >)2
(4.2)

where y is the dependent variable and x is the independent variable. The
dependent variable gets regressed by removing the calculated sensitivity to the
dependent variable i.e., yregi = yi−bxi. Multiparameter regression diagonalizes
the covariance matrix, simultaneously regressing in all dimensions.

Dithering
The other method to extract slopes is using dithering. Dithering calibrates

the detector response using the beam modulation system described in Chap-
ter 2. By modulating the voltage applied to the coils sinusoidally, the DAQ
measures the response in the BPMs and detectors along different points in the
sinousoid. More specifically, what we measure are the BPMs and detectors’
response to changes in the coils i.e, ∂D

∂Cj
and ∂xi

∂Cj
. To extract the slopes from

the detector response, we note that

∂D

∂xi
= (

∂xi
∂Cj

)−1 ∂D

∂Cj
(4.3)

where the expression in parenthesis is known as the dithering matrix [1].
The dithering matrix defines the monitor response due to a change in coil

behavior. For each detector, the dithering matrix equation is solved for the
slopes. The regressed and dither corrected asymmetries (ppb) are tabulated
in Table 4.3.
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Adit,L Areg,L Adit,R Areg,R Adit,dd Areg,dd

C12 5651 ± 473 5627 ± 472 -5326 ± 463 -5290 ± 462 5494 ± 330 5464 ± 330

Pb208 -208 ± 185 -238 ± 183 -197 ± 180 -239 ± 177 0 ± 129 0 ± 127

Ca40 5410 ± 482 5105 ± 442 -5226 ± 446 -5479 ± 413 5295 ± 290 5276 ± 288

Table 4.3: Regression and Dither Corrected asymmetries for Left/Right main
detector and the double difference in ppb

The beam corrections for the double difference were dominated by hori-
zontal position beam fluctuations with the largest slopes on the order of 30
ppb/nm for 12C, 35 ppb/nm 40Ca and 50 ppb/nm for the 208Pb (see Table 4.3).
Fluctuations in the horizontal beam position changes the acceptance in both
arms in opposite ways while fluctuations in the vertical beam position and
energy largely cancel in the double difference (see Table 4.4). The dithering
results will be used for subsequent analysis. For the energy modulation, an
effective BPM was used called BPM E, a linear combination of 11 and 12X.
The uncertainty in the beam correction is discussed in Section 4.2.6.

(a) AT Run Pd 1

12C 208Pb 40Ca
c4aX -8.95 -18.35 -14.25
c4eX 29.45 47.5 37.0
c4aY -0.7 -1.05 -0.4
c4eY 1.35 7.95 -1.5
cE -3.55 -2.8 2.4

(b) AT Run Pd 2

12C 208Pb
c4aX -10.1 24.3
c4eX 29.15 23.85
c4aY 17.95 0.7
c4eY 0.1 -1.15
cE -3.8 -6.15

Table 4.4: Dithering slopes for the double difference for each target. The units
are given in ppb/nm. The variation between the slopes are at the 5% level

4.1.3 Asymmetry Sign

It is important to determine what settings gave vertical spin up or down in
the Hall and correlate that to helicity windows measured by the parity DAQ.
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(a) AT Run Pd 1

12C 208Pb 40Ca
< 4aX > -5.3 3.2 -1.6
< 4eX > -29.6 21.8 -22.9
< 4aY > 22.4 6.1 5.0
< 4eY > 13.6 2.3 2.2
< E > -17.4 -17.8 2.9

(b) AT Run Pd 2

12C 208Pb
< 4aX > -5.6 -1.4
< 4eX > 9.3 -56.2
< 4aY > -22.5 15.2
< 4eY > -14.2 19.6
< E > -23.5 3.1

Table 4.5: The position differences for the different run periods on various
targets given in nanometers.

Since the transverse measurements use the polarization from the Møller mea-
surements, the sign of the longitudinal polarization was taken from the Møller
polarimeter. Using the Møller measurements taken before PREX-II transverse
running, longitudinal polarization was positive for IHWP out and negative for
IHWP in [80, 81]. This means the asymmetry was calculated relative to the
sign of the polarization. From calibration data taken after transverse running,
the Møller and parity DAQs measured asymmetries with the same sign [82].

The sign of the asymmetry is tied to the scalar product of the electron
spin and the cross product of the incoming and outgoing electron momentum
(Eq 1.19). For the vertical up transverse case, this is positive for the LHRS.
For PREX-II, the measured asymmetry for IHWP out state was positive and
corresponded to vertical down since we sign correct for this state. This means
that the LHRS measures a negative asymmetry while the RHRS measures a
positive asymmetry [83].

4.2 An Extraction and Systematic Errors

After correcting for the HCBAs, we need to account for other background
processes. The integrated signal can be separated into an elastic part and the
sum of all background signals [48]

S = SE +
∑
i

SiB. (4.4)

Following the derivation in [48], the corrected asymmetry can then be cal-
culated as the fractional difference between + and - helicity states
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Acorr =
S+ − S−
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=
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(4.5)

where fi are known as the dilution factors. The dilution factors are the
fraction of each kind of background asymmetry (ABi). Isolating the elastic
asymmetry, equation 4.5 becomes

AE =
Acorr −

∑
i fiABi

1−
∑

i fi
∼ (1 +

∑
i

fi)Acorr −
∑
i

fiABi (4.6)

where it has been assumed fi is much less than 1 [48]. Furthermore, the
extracted asymmetry AE must be corrected for both the beam polarization
and finite acceptance so that An is given by

An =
(1 +

∑
i fi)Acorr −

∑
i fiABi

P 〈cosφ〉
. (4.7)

Equation 4.7 is the basis for all subsequent analysis.

4.2.1 〈cosφ〉 Analysis

The An extraction requires a 〈cosφ〉 correction to account for the fact that
the spectrometer acceptance is not strictly confined in the horizontal plane.
However, it is confined enough horizontally, that the correction is small. To
quantify this, we use the low current Q2 tracking data. Here the azimuth is
defined relative the vertical axis (see Figure 4.2).
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Figure 4.2: Beam view of the azimuth. The kidney shaped drawings are the
Q1 collimators. Here φ is defined relative to the vertical.

The azimuth can be expressed directly in terms of the transport coordinates
as

cosφ =
±θtg√

θ2
tg + sin2 θo ± 2 tan θoφtg +

φ2tg
cos2 θo

(4.8)

sinφ =
sec θo(φtg + sin θo cos θo)√

θ2
tg + sin2 θo ± 2 tan θoφtg +

φ2tg
cos2 θo

(4.9)

where θo is the central angle and the ± sign in equation 4.7 are for the LHRS
and RHRS respectively. The central angle θo is 4.78o for the LHRS and−4.762o

for the RHRS. The 〈cosφ〉 histograms for 40Ca are shown in Figure 4.3 (see
Appendix B for other targets). For the measurement, the central values were
averaged for the left and right arms (Table 4.6).
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LHRS 〈cosφ〉 RHRS 〈cosφ〉 Avg 〈cosφ〉

C12 0.967 0.967 0.967

Pb208 0.966 0.966 0.966

Ca40 0.964 0.964 0.964

Table 4.6: Tabulated 〈cosφ〉 values. The lead AT data was taken on two dif-
ferent 208Pb targets. The 208Pb acceptance correction was taken by averaging
the two runs from the LHRS and two runs from the RHRS.

The cuts for the 〈cosφ〉 analysis were the same cuts that were used for the
Q2 analysis. The schematic for a Q2 measurement is shown in Figure 4.4. The
first cut was a cluster cut on each VDC plane. A cluster is a group of hits
with consecutive wire numbers. We used a single cluster cut to remove any
tracking inefficiencies. The S0 scintillator as the main trigger so we selected
tracks that hit the main detector that were triggered by the S0 scintillator.
The electrons that hit the detector produced a signal which was output from
the ADC (see Figure 4.5). The pulse-height distribution includes both the
pedestal and signal so we cut on the ADC value above pedestal to ensure that
we pick the events that hit the main detector.

(a) LHRS Ca40 (b) RHRS Ca40

Figure 4.3: 40Ca 〈cosφ〉 distributions
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(a) Setup (b) Scattered Flux

Figure 4.4: Schematic of the Q2 measurement. The events triggered by the
S0 scintillator shown in (a) above the VDC hits the quartz detector producing
Cherenkov light, which collected by the PMT (b). The signal is sent to an
ADC, which is read out during the data replay. Figure a is from [84] and b is
from [62]

Figure 4.5: Pulse-height spectrum for Run 2292. The red line (at 485) indicates
where the cut was made

In addition to ADC cut and trigger cut, we also cut on the target variables,
theta, phi and momentum to ensure that the tracks are within the acceptance.
The collimator height was 9 cm and roughly located about 2.5 m downstream
of the target. The inner and outer edges of the collimator are located at -3.36
and +5.71 cm with respect to the central ray [85]. From these dimensions, we
bound the acceptance by

θtg ∼
xheight
z

, φtg ∼
yedge
z

. (4.10)
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From equation, we expect θtg = (-36,36) mrad and φtg = (−14, 24) mrad1.
In the data, we restricted abs(θtg) to be between 0.08 radians and abs(φtg) to
be within 0.05 radians. The momentum cut was determined by identifying the
quartz edge in momentum space. This involved drawing two histograms, one
that passes the ADC cut(above the red line in Fig 4.5) and one that misses the
ADC cut. The intersection of those two histograms defines the quartz edge.
The momentum cut was δ = (−0.04, 0.002) which ensured we were isolating
the elastic peak.

4.2.2 Polarization and Carbon Contamination

The 12C and 40Ca targets are isotopically pure while the 208Pb targets were
sandwiched between two diamond foils. Equation 4.7 reads

An,i =
AE,i

P 〈cosφ〉
, i =12 C,40Ca (4.11)

An,Pb =
(1 + fC)Acorr − fCAcorr,C

P 〈cosφ〉
. (4.12)

The variable fC is the dilution factor associated with the carbon contami-
nation. It is defined as the carbon to lead rate ratio. The dilution faction was
extracted from simulation and found to be 6.71±0.57% [86]. The uncertainty
in the ratio was obtained by varying the target thickness (both diamond and
lead) and the momentum cutoff in simulation. The asymmetries are -6340 ppb
for 12C, 430 ppb for 208Pb and -6120 ppb for 40Ca.

The polarization P for the transverse data was inferred from the Møller
longitudinal polarization measurements. The Møller polarimeter measured
the polarization to be 89.70 ±0.8%. The systematic associated with the beam
polarization is given by

dAP = −AE
dP

P
. (4.13)

The polarization systematic on the final asymmetry is given by 56 ppb for
12C, 3 ppb for 208Pb and 54 ppb for 40Ca.

The lead asymmetry has an additional systematic due to the carbon con-
tamination. The uncertainty consists of two parts given by

1This is for LHRS. For RHRS, (-24,14) mrad
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dAPbf =
(Acorr − Acorr,C12)dfC

P 〈cosφ〉
(4.14)

dAPbC =
dAcorr,C12fC
P 〈cosφ〉

. (4.15)

Equation 4.14 originates from the uncertainty in the dilution factor fC
while equation 4.15 comes from the uncertainty in the carbon measurement.
Using 0.6% uncertainty in the dilution factor gives a 36 ppb systematic. Using
the 12C asymmetry given in Table 4.3, the uncertainty due to the carbon
asymmetry is 26 ppb. The combined error due to the carbon contamination
is 44 ppb.

4.2.3 Detector Linearity

The main detectors were designed in such a way such that the integrated PMT
signal is proportional to the electron flux. However, at certain PMT voltages,
the PMT response is nonlinear, which can result in an increase in signal relative
to amount of measured photons. This means for a given integrating window,
the number of measured photons is given by [1]

N+,−
meas = N+,−(1 + βN+,−) (4.16)

where β is the nonlinearity.
The detector nonlinearity was measured both in-situ during the experi-

ment, and on the bench pre- and post- experiment in a way that mimicked
running conditions. The bench tests consisted of a PMT facing a pair of LED
sources in a black box. One LED served as a baseline, where a constant signal
was sent to it , thus producing a constant photon flux measured by the PMT.
The other LED was pulsed at 240 Hz, the helicity flip rate for transverse run-
ning [87]. In addition, there is a filter wheel with 8 transmission settings in
from of the baseline LED which attenuates the baseline signal without chang-
ing the pulsed signal. Using the parity DAQ, we can compute the asymmetry
between two windows which differ by whether the pulse was sent or not. The
asymmetry is given by

Ameas = Atrue(1 + β
N+ +N−

2
) (4.17)

where the positive sign is for a pulsed window and the negative sign is for an
unpulsed window. The asymmetries were computed for 20 cycles of different
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filter wheel rotation and different high voltage settings [87, 88]. For a linear
PMT, the signal difference between pulsed and unpulsed signals should be
independent of the filter setting so that the measured asymmetry is the true
asymmetry , while a nonlinear PMT will a baseline dependent asymmetry (see
Equation 4.16). The measured asymmetry was plotted against high voltage
where the slope of the line is β. For the PREX-II transverse running, the
PMT nonlinearity was within 0.3% for all three targets [89]. The systematic
associated is 0.3% on the raw asymmetry.

The detector nonlinearity was monitored during the run using PITA and
current calibration scans. Because the detectors are calibrated using the
BCMs, the BCM performance can introduce a systematic effect on the detec-
tor non-linearity. The systematic effect comes the detector calibration which
uses a beam-based calibration over a 28-80 uA range. The uncertainty in the
detector calibration was assigned to be 1% percent. The results from the in-
situ and bench tests agreed within 0.5%. Therefore a 0.5% systematic was
assigned due to the non-linearity [89, 90]. Correcting for the polarization and
finite acceptance, the systematic due to the detector nonlinearity is

dAdet = 0.5%
Araw

P 〈cosφ〉
. (4.18)

The systematic error due to the detector non-linearity is 30 ppb for 12C, 1 ppb
for 208Pb and 25 ppb for 40Ca.

4.2.4 BCM Linearity

Given that the asymmetry is normalized to the beam charge, a nonlinear re-
sponse in the BCM can contribute systematically to the main measurement.
The BCM nonlinearity were monitored during the runs via current scans. The
BCMs were fit against the Unser BCM to get the BCM pedestals. The nonlin-
earity was zeroed out but the uncertainty in the BCM calibration i.e., pedestals
was assigned to be 1% of the charge asymmetry. Using the charge asymmetries
from Table 4.2, the raw charge asymmetry uncertainties are 0.5 ppb for 12C, 1
ppb for 208Pb and 1 ppb for 40Ca. Accounting for the polarization and 〈cosφ〉
acceptance factor, the systematic due to the BCM linearity are 0 ppb, 1 ppb
and 1 ppb for 12C, 208Pb and 40Ca respectively.
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4.2.5 Q2

The energy dependence on the transverse asymmetry comes from Q2. The
systematic error due to Q2 is given by

dAT
AT

=
1

2

dQ2

Q2
. (4.19)

From the PREX-II APV analysis, the relative error on Q2 was 0.65% which
implies the error on AT is 0.325%. From this, the error in the corrected
asymmetry is 2 ppb for 12C, 2 ppb for 40Ca and 0 ppb for 208Pb. Correcting
for the beam polarization and acceptance 〈cosφ〉, the systematic error in the
physics asymmetry An due to Q2 is 2 ppb for 12C, 2 ppb for 40Ca and 0 ppb
for 208Pb. The 40Ca Q2 distributions in Figure 4.6. The 208Pb and 12C Q2

distributions are shown in Appendix B.

(a) LHRS Ca40 Q2 (b) RHRS Ca40 Q2

Figure 4.6: Q2 distributions for the 40Ca target. The same cuts used for the
〈cosφ〉 histograms were used for Q2.

The average Q2 in (GeV/c)2 for each target is given in Table 4.7.
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Target LHRS RHRS Average

C12 0.0068 0.0066 0.00671

Pb208 0.0065 0.0063 0.00640

Ca40 0.0068 0.0067 0.00673

Table 4.7: Q2 values for LHRS and RHRS in units of (GeV/c)2. The 208Pb re-
sult was obtained by averaging the LHRS runs and RHRS runs on the different
two lead targets.

4.2.6 Beam False Asymmetry Fluctuation Correction

The uncertainty in the beam correction is associated with the dithering cor-
rection. The beam false correction is given by Equation 2.3.

The position differences and dithering slopes were measured twice during
the transverse run for carbon and lead2 as shown in Tables 4.3 and 4.4.

The largest beam corrections come from the horizontal position 4eX. Be-
cause the largest correction came from the horizontal position 4eX, we took
the uncertainty to be dominated by that correction. The source of uncertainty
is dominated by how well we measure the 4eX dithering slope. The variation
in the 4eX slope between the two data sets is within 5% so 5% of the beam
false asymmetry was taken as the uncertainty i.e.,

dAbeam =
|Acorr − Araw|

20
. (4.20)

The systematic uncertainty in the transverse asymmetry due to beam false
asymmetry is 11 ppb for 12C, 10 for 208Pb and 43 ppb for 40Ca.

4.2.7 Results

Following the analysis, the results for the asymmetries are

AC12 = −6.34± 0.38(stat)± 0.07(sys)ppm

APb208 = 0.43± 0.16(stat)± 0.05(sys)ppm

2We only had one measurement on Ca40
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ACa40 = −6.12± 0.33(stat)± 0.08(sys)ppm.

The systematic errors are summarized in Table 4.8 (ppm). The carbon-12
and calcium-40 result are consistent with one another while the lead mea-
surement is consistent with zero. This will be further discussed in Chapter
6.

Error 12C 208Pb 40Ca

Polarization -0.057 0.004 -0.055

Nonlinearity(BCM+Det) 0.031 0.002 0.026

Beam False Asymmetry 0.011 0.010 0.043

Carbon Contamination 0.044

Q2 0.002 0 0.002

Total Syst 0.07 0.05 0.08

Statistical 0.38 0.16 0.33

Total (Stat+Sys) 0.39 0.17 0.34

Table 4.8: Breakdown of systematic and statistical errors given in ppm. The
errors are absolute errors

86



Chapter 5

AT Corrections

From the PREX-II transverse measurements (Chapter 4.2.5), the 208Pb result
is consistent with zero to 0.16 ppm to be compared to a raw APV of about
0.5 ppm. What this means is that for PREX-II is that the AT correction
was negligible. However, CREX measured an nonzero 48Ca An. The CREX
48Ca An was measured to be about 9 ppm at Q2 = 0.03 (GeV/c)2. This was
about 4 times larger than the predicted parity-violating asymmetry APV of
about 2.3 ppm at CREX kinematics [91]. Therefore, we have to carry out a
careful treatment of the AT correction for CREX. This chapter discusses the
correction procedure. The numbers are preliminary. The CREX data is not
the main subject of this thesis.

Any residual transverse polarization results in a potential false asymmetry
in APV (see Chapter 1.3.5). Equation 1.31 serves as the starting point which
says that when the beam is not 100% longitudinally polarized, the measured
asymmetry for each detector consists of three parts, the parity-violating asym-
metry and the contributions from the transverse asymmetry due to vertical
and horizontal transverse polarization. For the vertical AT correction, we will
use the main detectors. In contrast, a special combination of the AT detectors
will be used to correct for the horizontal AT .
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5.1 Measured Asymmetries Using Kinematic

Distributions

Recall from Chapter 2, there are six integrating detectors used during CREX.
The main CREX APV measurement is done by taking the average of the up-
stream left and right main detectors (See Figure 5.1). But this measurement
consists of both the parity-violating part and transverse part with no a pri-
ori way to decouple the two although there are significant cancellations due
to symmetry in the apparatus. The question becomes can we pick a clever
combination of detectors that is sensitive to vertical and horizontal transverse
polarization while being insensitive to APV . The answer is yes and requires
looking at the kinematic distributions, which give the event by event energy
and scattering angle.

Figure 5.1: The grand average sign corrected asymmetry

As discussed in Chapter 4.2.1, defining the azimuth φ relative to the vertical
means the vertical transverse asymmetry has a 〈cosφ〉 dependence while the
horizontal has 〈sinφ〉 dependence. From equations 4.8 and 4.9, the azimuth
depends on θtg and φtg. Figures 5.2a and b show 〈cosφ〉 and 〈sinφ〉 weighted
average main detector acceptance. Lines of constant cosφ and sinφ are curved.
However, to first order 〈cosφ〉 is correlated with θtg, which is the out-of-plane
variable, and 〈sinφ〉 is correlated with φtg, the in-plane variable. Drawing lines
of constant θtg and φtg decouples up/down from left/right (see Figure 5.2 c
and d). Since sinφ ≈ φ, we can think of 〈θtg〉 and 〈φtg〉 as a analyzing power
for the horizontal and vertical AT after accounting for the central angle. From
this we have,
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ATV = PVAn〈φtg〉, ATH = PHAn〈θtg〉 (5.1)

where PV and PH are the vertical and horizontal transverse polarization
respectively. Using the ansantz that parity-violating asymmetry scales with
Q2 (see Equation 1.19), each integrating detector measures

Am = PL ˆAPVQ
2 + PVAn〈φtg〉+ PHAn〈θtg〉 (5.2)

where ˆAPV is the invariant asymmetry given in ppm/GeV −2. Equation 5.2
is the starting point for subsequent analysis. To isolate the parity-violating
asymmetry, we need to evaluate the second and third terms in equation 5.2.

(a) 〈sinφ〉 Weighted Acceptance (b) 〈cosφ〉 Weighted Acceptance

(c) θtg Weighted Acceptance (d) φtg Weighted Acceptance

Figure 5.2: LHRS Acceptance for CREX run 3213. The event cuts used were
the same used for the 〈cosφ〉 analysis described in Chapter 4. In these figures,
increasing negative φtg corresponds to moving toward beamline. In the RHRS,
increasing positive φtg is toward the beamline.
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5.2 Vertical Polarization Correction Using Main

Detectors

For the main detectors, equation 5.2 reads

Am,usl = PL ˆAPVQ
2
usl + PVAn〈φtg〉usl + PHAn〈θtg〉usl (5.3)

Am,usr = PL ˆAPVQ
2
usr + PVAn〈φtg〉usr + PHAn〈θtg〉usr (5.4)

where usl and usr refer to the upstream main detectors on the left and right
arms respectively. For the transverse running, the longitudinal and horizontal
transverse polarization are neglected. We can further define

ATm,usl = PTAn〈φtg〉usl, ATm,usr = PTAn〈φtg〉usr. (5.5)

The superscript T indicates that this is transverse running. As discussed
in Chapter 4, the AT measured by the left and right arms comes in opposite
sign. Considering the average and double difference of equation 5.5 leads to

ATm,usavg = PTAn
〈φtg〉usl + 〈φtg〉usr

2
(5.6)

ATm,usdd = PTAn
〈φtg〉usl − 〈φtg〉usr

2
. (5.7)

Taking the ratio of equation of equations 5.6 and 5.7 leads to

ξ =
ATm,usavg
ATm,usdd

=
〈φtg〉usl + 〈φtg〉usr
〈φtg〉usl − 〈φtg〉usr

(5.8)

where ξ is the left-right apparatus asymmetry. Since 〈φtg〉usl and 〈φtg〉usr
have opposite sign, ξ is small.

For production running, the average and double difference are

Am,usavg = PL ˆAPVQ
2
us,avg + PVAn〈φtg〉us,avg + PHAn〈θtg〉us,avg (5.9)

Am,usdd = PL ˆAPVQ
2
us,d + PVAn〈φtg〉us,d + PHAn〈θtg〉us,d (5.10)
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with

Q2
usavg,d =

Q2
usl ±Q2

usr

2

〈φtg〉usavg,d =
〈φtg〉usl ± 〈φtg〉usr

2

〈θtg〉usavg,d =
〈θtg〉usl ± 〈θtg〉usr

2
.

We now address which main detector combination can be used as a vertical
transverse polarization monitor. Before that, a discussion about the AT due
to a horizontal polarization is necessary. To understand the magnitude of 〈θtg〉
for the main detectors, we revisit Figure 5.2c as an example. If the top/bottom
apparatus symmetry is broken, events at the top/bottom of the acceptance are
more sensitive to AT (〈θtg〉 is increasing) relative to the events at the center of
acceptance where the AT sensitivity is roughly zero. So for an apparatus that
is perfectly symmetric top to bottom, there is cancellation leading to a null
AT sensitivity at the main detectors. The acceptance defining collimators were
designed and installed to millimeter top/bottom tolerance. Given this, a 1 mm
vertical misalignment in the acceptance would result in 〈θtg〉 on the order of
10−4 and then for a -9.34 ppm An, the transverse asymmetry measured by the
main detectors is suppressed by at least 100. This means that we can’t use
the main detectors as a horizontal transverse monitor since 〈θtg〉 is small and
we can neglect the third terms in equations 5.9 and 5.10. With this in mind
and recalling that the vertical AT comes in opposite sign between the left and
right arms, the double difference can be used as vertical transverse monitor.
In this case, equation 5.10 can be written as

Am,usdd ≈ PL ˆAPVQ
2
usd + PV 〈φtg〉usd. (5.11)

If Q2 is the same between the left and right arms, the first term in equation
5.13 is zero. However, for a difference in Q2 we must subtract that part from
the double difference,

Am,corr,usdd = Am,usdd − PL ˆAPVQ
2
usd = PVAn〈φtg〉usd (5.12)

where the Am,corr,usdd is the Q2 corrected double difference. The corrected
double difference is then a direct measure of the vertical transverse polariza-
tion. Equation 5.12 together with equation 5.8 gives the vertical AT correction,
ATV,usavg for the upstream average i.e.,
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ATV usavg = Am,corr,usddξ (5.13)

while the systematic error in that correction is

dATV usavg
ATV usavg

=

√
(
dAm,corr,usdd
Am,corr,usdd

)2 + (
dξ

ξ
)2 (5.14)

We can also find the fraction of the beam that is vertically polarized, fV .
This is obtained by taking the ratio of the corrected double difference (equation
5.12) and the double difference from transverse running (equation 5.7). The
fraction fV and its uncertainty is given by

fV ≡
PV
PT

=
Am,corr,usdd
ATm,usdd

. (5.15)

dfV
fV

=

√
(
dAm,corr,usdd
Am,corr,usdd

)2 + (
dATm,usdd
ATm,usdd

)2 (5.16)

5.2.1 Vertical AT Correction Analysis

The vertical AT correction given by equation 5.13, requires computing the
left/right apparatus asymmetry ξ and the corrected double difference. The
corrected double difference comes from the production integrating measure-
ment, while ξ can be extracted from either counting mode measurements or
transverse integrating mode measurements. From the transverse data, ξ is
can be extracted using either the regression or dither corrected averages and
double differences. The regression and dither corrected values and their errors
(ppb) for transverse running are given in Table 5.1.

ATreg,usavg ATdit,usavg ATreg,usdd ATdit,usdd

48Ca -172.844 ± 844.647 -290.674 ± 852.216 7969.8 ± 837.6 7916.9 ± 839.2

Table 5.1: 48Ca average and double difference for vertical transverse running

The uncertainty in ξ given by

dξ

ξ
=

√
(
dATm,usavg
ATm,usavg

)2 + (
dATm,usdd
ATm,usdd

)2 (5.17)
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leading to

ξreg ξdit

48Ca -0.022 ± 0.110 -0.037 ± 0.108

Table 5.2: Left/Right apparatus asymmetry calculated from regression and
dithering

For the counting mode measurements, we use the Q2 runs to calculate
ξ using the average of the reconstructed angles in the spectrometer optics
for each event. The asymmetry ξ is calculated on a run by run basis, by
taking the central values of the 〈φtg〉 distributions for a LHRS run and its
corresponding RHRS run. Then ξ is computed using the central values. Figure
5.3 show ξ values calculated from counting mode which are compared to the
ξ measurements from integrating mode using both regression and dithering.
The figures show that the counting mode measurements fall within the error of
the integration measurements (see bands in Figure 5.3). However, due to large
statistical uncertainties in the integrating measurements, ξ for counting mode
is used to do the vertical AT correction. Only runs where there is clean signal
to pedestal separation in the ADC spectra were considered for this analysis.

‘
Figure 5.3 shows a discrete change in ξ between the pre-COVID and post-

COVID run periods. For this reason, the data is broken up into pre and
post-COVID periods where the AT corrections are done separately. The ξ
measurements from counting mode were fit to a line which is shown in Figure
5.4 and the results from the fits are summarized in Table 5.3.

Pre-COVID Post-COVID
ξ 0.0329 ± 7.5e-04 -0.0432 ± 2.93e-03

Table 5.3: Pre and post-COVID ξ values. The uncertainties are from the fit.

The next part of the analysis involves removing the Q2 dependence of
the measured double difference Am,usdd to get the corrected double difference
Am,corr,usdd (equation 5.12). The signed corrected double difference is shown in
Figure 5.8 and tabulated in table 5.4. The error bars in the measured double
difference are statistical.
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(a) Dithering (b) Regression

Figure 5.3: Comparison of the counting mode measurements with integrating
measurement. (a) Uses the dithering result (b) Uses the regression mode. The
shaded region represents the errors from integrating measurement while solid
line represents the central value. The dashed line indicates whether the data
was taken pre or post-COVID shutdown. Counting measurements fall within
the error of the integrating measurements. The uncertainties in the counting
mode measurements are negligible in these figures

(a) Pre-COVID double difference (b) Post-COVID double difference

Figure 5.5: Signed Corrected Double Differences vs. Slug Number in ppb

Removing the Q2 dependence in the double difference requires computing
the invariant asymmetry ˆAPV and knowing the polarization. Using the pre-
dicted asymmetry of about 2.3 ppm at Q2 = 0.03GeV −2, which gives ˆAPV is
77 ppm/GeV −2. This value will be used for subsequent analysis.
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Figure 5.4: ξ fits pre and post-COVID

Figure 5.6: Q2 Double Differences for the main detector. The units are
(GeV/c)2

The Q2 double differences are shown in Figure 5.6 and was computed to
same way as ξ i.e., using the central values of the distributions for a given
run. The parity-violating component APV,usdd is -4.44 ± 0.84 ppb and 18.27
± 1.53 ppb for the pre and post COVID run periods respectively. The errors
here consider the errors from the Q2 double difference fit and polarization.
The longitudinal polarization was taken from a preliminary analysis of the
Møller polarimeter measurements. The polarization was measured to 86.7 ±
0.06 % pre-COVID and 87.5 ± 0.07 % post-COVID [92]. The parity violating
component measured by the main detector double difference is tabulated in
Table 5.4, while the corrected double difference is given in Table 5.5, both of
which are given in ppb.
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Pre COVID Post COVID

APV,usdd -3.85 ± 0.73 15.98 ± 1.35

Table 5.4: Parity-violating component in the double difference of the main
detectors in ppb.

Pre COVID Post COVID

Am,corr,usdd -233.4 ± 108.2 141.2 ± 139.6

Table 5.5: Corrected double difference in ppb

The values from tables 5.5 together with the ξ values from table 5.3 give
the vertical AT correction ATV,usavg. The pre and post-COVID corrections and
their uncertainties are shown in table 5.6.

Pre COVID Post COVID

ATV,usavg -7.68 ± 3.56 -6.10 ± 6.04

Table 5.6: pre and post-COVID Vertical AT corrections given in units of ppb.

From the errors given in Table 5.6, the uncertainty in the vertical AT cor-
rection is less than 5% of the statistical error of the double difference for both
run periods. The statistical error in the average is about the same as the dou-
ble difference. This means for a 4% precision measurement of APV , the total
statistical error is about 90 ppb for APV of about 2.3 ppm at CREX kinemat-
ics. The vertical AT systematic error is about 4.5 ppb which in quadrature
with the total statistical error changes the error bar from 90 ppb to 90.1 ppb
which is negligible.

The magnitude of the fraction of the beam that is transverse polarized ver-
tically and its error is given by equations 5.15 and 5.16. Using the regressed
asymmetry double difference from Table 5.1 together with the corrected dou-
ble differences from Table 5.6, we get fV . The values are given in % and
summarized in Table 5.8.
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Pre COVID Post COVID

fV -2.9 ± 1.39 1.77 ± 1.76

Table 5.7: Magnitude of the vertical transverse polarization

5.3 Horizontal Polarization Correction Using

AT Detectors

The null horizontal AT sensitivity for the main detectors means that we cannot
use the main detectors to monitor horizontal polarization. Given that we need
a way to account for the case there is residual transverse polarization. To
do that, we use the AT detectors. The AT detectors located about a meter
downstream of the main detectors, were placed to intercept events at the top
and bottom of the acceptance where the events are AT enhanced, where the
AT sensitivity is maximized.

5.3.1 AT Detector Placement Optimization

The AT detector locations were determined by optimizing the square root of
horizontal AT figure of merit defined as

AT,FOM = R〈θtg〉2 (5.18)

where R is the accepted rate at the detector. This quantity is a measure
of how well the AT detectors measure a horizontal AT . The AT detectors were
designed to isolate the blue and yellow spots indicating the top and bottom
of the acceptance of Figure 5.7. Each AT detector has an active area 3.5x10
cm2. By introducing two AT detectors, one for each spot, a position scan
was performed, scanning both vertically and horizontally. At each position,
the horizontal AT sensitivity and sqrt(FOM) was calculated by integrating
over the detector dimensions. In counting mode, the detector intercepting the
yellow blob is called AT In and the other is AT Out. In integrating, AT In is
referred to atl1, while the other is atl2 on the left arm.

The position scan was performed using data. In the data, an acceptance
function was defined, which represented the quartz response due the tracks
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Figure 5.7: Plot of the
√
AT,FOM for a given run. The red boxes indicate the

AT detectors, one for each spot sensitive to the top/bottom of the acceptance.
The optimal location of these detectors are found by scanning the position in
x (vertically) and y (horizontally).

that hit the detector. This is defined as the ratio of two histograms, one of
which has an additional cut on the ADC spectrum of the AT detectors (see
Figure 5.8). To parameterize the acceptance function, small slices were fit
vertically and horizontally making sure to highlight the falloff in probability
(e.g., yellow to light blue). The slice in y (vertical slice) was fit to the difference
in error functions, parameterized by the amplitude and Gaussian sigma and
two means, representing the edges of the detector. The x (horizontal slice) was
fit with a complementary error function also parameterized by an amplitude,
sigma and mean.
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Figure 5.8: Acceptance Function for AT In for a CREX run. The color scale
represents the probability that quartz fired given the tracks that hit it. The
falloff from yellow to blue is indicative of edges of the detector. The lines
represent the slices taken to parameterize the acceptance function.

To do the position scan, the acceptance function was used as a weight by
varying the edge parameters described by the means of the fit distribution.
The results for the AT FOM scan for the left arm AT detectors are shown in
Figure 5.9.

(a) atl1 Scan (b) atl2 Scan

Figure 5.9: AT FOM position scans. (a) is for AT in. (b) is for AT out.
Going toward zero on the vertical axis for (a) implies moving toward positive
x indicating we are accepting more of the blue spot (figure 5.3). It is the
opposite for (b) meaning we are accepting more yellow. The horizontal axis
represents the detector center. If the edge is at -4 cm, the -9 cm is ycenter
(along transverse dimension. The AT Out detector’s FOM is insensitive to the
y position while AT In has a preferred location in y
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5.3.2 Extracting the Horizontal Transverse Polarization

using the AT Detectors

Once the AT detectors are placed in their ideal positions, the next thing is to
work out which combinations of AT detectors are sensitive to the horizontal
transverse polarization while suppressing APV . For simplicity, only the left
arm will be considered. Returning back to equation 5.2, the two left arm AT
detectors measure

Am,atl1 = PL ˆAPVQ
2
atl1 + PVAn〈φtg〉atl1 + PHAn〈θtg〉atl1 (5.19)

Am,atl2 = PL ˆAPVQ
2
atl2 + PVAn〈φtg〉atl2 + PHAn〈θtg〉atl2. (5.20)

Considering the case where the beam is transversely polarized vertically,
the average and double difference of AT detectors on the left arm measure

ATm,atlavg = PVAn
〈φtg〉atl1 + 〈φtg〉atl2

2
(5.21)

ATm,atldd = PVAn
〈φtg〉atl1 − 〈φtg〉atl2

2
. (5.22)

As discussed in 5.1.1, the left and right arms measure AT with opposite
sign, implying equation 5.21 is sensitive to the vertical AT since 〈φtg〉atl1 and
〈φtg〉atl2 have the same sign.

For a transversely polarized beam horizontally, the average and double
difference are

AHm,atlavg = PHAn
〈θtg〉atl1 + 〈θtg〉atl2

2
(5.23)

AHm,atldd = PHAn
〈θtg〉atl1 − 〈θtg〉atl2

2
. (5.24)

In this case, double difference measures the horizontal AT , while in average
the horizontal AT is suppressed since the one AT detector isolates events with
a negative average θtg while the other isolates events with a positive θtg. For
production running, the double difference of the two AT detectors gives

Am,atldd ≈ PL ˆAPV
Q2
atl1 −Q2

atl2

2
+ PHAn

〈θtg〉atl1 − 〈θtg〉atl2
2

. (5.25)
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Removing the Q2 dependence, the corrected double difference Am,corr,atldd is
given by

Am,corr,atldd = Am,atldd − PL ˆAPV
Q2
atl1 −Q2

atl2

2
. (5.26)

Equation 5.26 is a horizontal transverse monitor. Using equation 5.26, the
correction due to a horizontal AT for left arm main detector is

ATH,usl =
Am,corr,atldd
χLHRS

(5.27)

where

χLHRS =
〈θtg〉atl1 − 〈θtg〉atl2

2〈θtg〉usl
. (5.28)

The correction factor χLHRS can be thought of as an up/down apparatus
asymmetry. The error in the correction is

dATH,usl
ATH,usl

=

√
(
dAm,corr,atldd
Am,corr,atldd

)2 + (
dχLHRS
χLHRS

). (5.29)

One can also extract the portion of the beam polarized horizontally trans-
verse. The horizontal transverse beam polarization and its uncertainty is ob-
tained from

PH =
Am,corr,atldd
An〈θtg〉atld

(5.30)

dPH
PH

=

√
(
dAm,corr,atldd
Am,corr,atldd

)2 + (
dAn
An

)2 + (
d〈θtg〉atld
〈θtg〉atld

)2 (5.31)

5.3.3 Horizontal AT Correction Analysis

After correcting for the vertical AT contribution, we correct for the horizon-
tal AT using equations 5.26-5.29. The correction involves correcting for the
Q2 dependence for the AT detectors and calculating the up/down apparatus
asymmetry. The analysis presented in this thesis will be for the left arm. The
pre and post-COVID grand averages for the upstream left main detector and
AT double difference is given in Table 5.8 while the plots are shown in Figure
5.10.

101



Am,usl Am,atldd

Pre-COVID 1795 ± 154.1 -150 ± 241.3

Post-COVID 2339 ± 197.6 -298 ± 305.1

Table 5.8: Pre and post-COVID regressed asymmetries in ppb for the left main
detector and the double difference for the AT detector

(a) Pre-COVID Am,usl (b) Pre-COVID Am,atldd

(c) Post-COVID Am,usl (d) Post-COVID Am,atdd,avg

Figure 5.10: Grand average regressed Am,usl and Am,atldd vs. Slug Number in
ppb

As done in the Section 5.2.1, the Q2 dependence must be removed from the
regressed values for the AT double difference. The Q2 difference is shown in
Figure 5.11 for the left and right arms. The data set consisted of runs where
the AT detectors weren’t touched from their optimally placed positions. Using
the invariant asymmetry and polarization measurements from Section 5.2, the
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parity-violating component (in ppb) in the AT double difference is given in
Table 5.9 .

Figure 5.11: Q2 Difference for the Pre and Post-COVID Run Periods. The
error bars are statistical in units of (GeV/c)2

Pre-COVID Post-COVID

APV,atldd -21.93 ± 1.94 -28.91 ± 2.75

Table 5.9: Pre and Post-COVID parity-violating Component for AT double
difference given in ppb

The Q2 corrected AT double difference is given below in Table 5.10.

Pre-COVID Post-COVID

Am,corr,atldd -128.1 ± 241.3 -269.1 ± 305.1

Table 5.10: Corrected AT double difference given in ppb

The last part of the analysis involves obtaining the up/down asymmetry
χLHRS, which is also computed using the central values of the distributions.
The fit for χLHRS is shown in Figure 5.12 while the fit values are summarized
in Table 5.11.

The horizontal AT correction is then given by 21.6 ± 40.7 ppb for the pre-
COVID period and 43 ± 48.8 ppb for the post-COVID period. This is also
shown in Table 5.12.
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Figure 5.12: Up/Down Apparatus asymmetry for the Horizontal AT correc-
tion. The uncertainties are negligible

Pre-COVID Post-COVID
χLHRS -5.9 ± 3.4e-02 -6.3 ± 7.5e-02

Table 5.11: χLHRS values pre and post-COVID. The uncertainty is from the
fits

Pre-COVID Post-COVID

ATH,usl 21.6 ± 40.7 43 ± 48.8

Table 5.12: Corrected AT double difference given in ppb

The statistical errors for the left upstream main detector were 154.1 ppb
and 197.6 ppb pre and post-COVID. From the uncertainties in the horizontal
AT correction given in table 5.12, we see that the systematic error is about
25% of the statistical error measured by the main detector. If this is true on
the right arm as well, then for a 4% measurement in APV with a 90 ppb error,
the systematic error due to a horizontal AT is about 22.5 ppb. Adding these
errors in quadrature, the error goes from 90 ppb to 92.8 ppb. Including the
error from the vertical AT (4.5 ppb), the quadrature sum of the statistical
error and the systematic due to AT goes from 90 to 92.9 ppb.

The horizontal transverse polarization is gotten from equations 5.30 and
5.31. The measured vector analyzing power for 48Ca was -9.35 ± 1.09 ppm
(statistical error). The 〈θtg〉atld shown in Figure 5.13. Using the numbers
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from Table 5.10, the horizontal transverse polarization and its uncertainty is
summarized in Table 5.13.

Figure 5.13: 〈θtg〉atd fits pre- and post-COVID

Pre-COVID Post-COVID

PH 0.81 ± 1.53 1.72 ± 1.95

Table 5.13: Extracted horizontal transverse beam polarization
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Chapter 6

Results and Discussion

6.1 An Measurements at 1 GeV

The PREX-II An measurements were summarized in Chapter 4.2.7. These
measurements are shown together with the PREX-I measurements in Figure
6.1. Figure 6.1 shows the new theory predictions at Ebeam = 0.95 GeV/c, based
on the calculations done by [42] where the Dirac equation was solved numeri-
cally with an optical potential while including Coulomb distortions. Together
with the old theory predictions which used the optical theorem [31] (see Fig-
ure 1.14a), the data indicates that the dynamics of light to intermediate mass
nuclei are well understood within both theoretical frameworks. The 208Pb
measurements remain discrepant with both theoretical predictions at two dif-
ferent Q values. It should be noted that the new calculation is somewhat closer
to the measured 208Pb result but it’s still over 15 standard deviations away
from theory. In contrast, the 12C and 40Ca results are somewhat consistent.

The 40Ca measurement provided new insight on the Z dependence of the
analyzing power. The fact that the result is consistent with the old model
seems to indicate that Coulomb distortions don’t play as big a role which is
consistent with the new theory at PREX-II kinematics. This strongly sug-
gests that the theoretical model is missing important dynamics, and therefore
further investigation is needed. The PREX-II and CREX (2 GeV) An mea-
surements will be published together in the upcoming months.
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Figure 6.1: PREX-I and PREX-II An measurements at beam energies Ebeam
= 1.06 GeV/c and 0.95 GeV/c respectively. Overlapping points were offset
slightly in Q.

6.2 Neutron Skin Thickness Measurements

As discussed in Chapter 5, the An measurement of 208Pb during PREX-II
resulted in no correction to the 208Pb APV analysis. The PREX-II collabo-
ration reported an APV measurement of 550 ± 18(total) ppb at Q2 = 0.0062
(GeV/c)2. The weak form factor was extracted to be 0.318 ± 0.013 at PREX-II
kinematics. The neutron skin thickness rns defined as the difference between
the point neutron and proton radius was measured to be 0.283 ± 0.071 fm
[70]. CREX plans to report an APV measurement which will lead to a neutron
skin measurement on 48Ca. The CREX analysis is underway and the result
is forthcoming. The CREX APV measurement may follow the PREX-II ob-
servation of a large neutron skin, stimulating interest in what CREX will say
about the neutron skin thickness on 48Ca.
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Appendix A

Transverse Running Integrating
Data

A.1 Asymmetries at the Minirun Level

A.1.1 Raw Asymmetries

(a) 12C Upstream Left Asymmetry (b) 208Pb Upstream Left Asymmetry

(c) 40Ca Upstream Left Asymmetry

Figure A.1: Raw Asymmetries for upstream left detectors in ppb
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(a) 12C Upstream Right Asymmetry (b) 208Pb Upstream Right Asymmetry

(c) 40Ca Upstream Right Asymmetry

Figure A.2: Raw Asymmetries for upstream right detectors in ppb
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(a) 12C Upstream Average (b) 208Pb Upstream Average

(c) 40Ca Upstream Average

Figure A.3: Raw Upstream Averages in ppb

(a) 12C Raw Double Difference (b) 208Pb Raw Double Difference

Figure A.4: Raw Double Differences for 12C and 208Pb given in ppb
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A.1.2 Charge Asymmetry

(a) 12C AI (b) 208Pb AI

(c) 40Ca AI

Figure A.5: Sign corrected charge asymmetries in ppb.
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A.1.3 Regression Corrected Asymmetries

(a) 12C Regression Corrected Upstream Left
Asymmetry

(b) 208Pb Regression Corrected Upstream
Left Asymmetry

(c) 40Ca Upstream Regression Corrected Left
Asymmetry

Figure A.6: Regression Corrected Asymmetries for upstream left detectors in
ppb
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(a) 12C Regression Corrected Upstream Right
Asymmetry

(b) 208Pb Regression Corrected Upstream
Right Asymmetry

(c) 40Ca Upstream Regression Corrected
Right Asymmetry

Figure A.7: Regression Corrected Asymmetries for upstream right detectors
in ppb
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(a) 12C Upstream Average (b) 208Pb Upstream Average

(c) 40Ca Upstream Average

Figure A.8: Regression Corrected Upstream Averages in ppb
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(a) 12C Regression Corrected Upstream Dou-
ble Difference

(b) 208Pb Regression Corrected Upstream
Double Difference

(c) 40Ca Upstream Regression Corrected Dou-
ble Difference

Figure A.9: Regression Corrected Double Differences in ppb

Dither Corrected Asymmetries

123



(a) 12C Dither Corrected Upstream Left
Asymmetry

(b) 208Pb Dither Corrected Upstream Left
Asymmetry

(c) 40Ca Upstream Dither Corrected Left
Asymmetry

Figure A.10: Dither Corrected Asymmetries for upstream left detectors in ppb
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(a) 12C Dither Corrected Upstream Right
Asymmetry

(b) 208Pb Dither Corrected Upstream Right
Asymmetry

(c) 40Ca Upstream Dither Corrected Right
Asymmetry

Figure A.11: Dither Corrected Asymmetries for upstream right detectors in
ppb
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(a) 12C Upstream Average (b) 208Pb Upstream Average

(c) 40Ca Upstream Average

Figure A.12: Dithering Corrected Upstream Averages in ppb
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(a) 12C Dither Corrected Upstream Double
Difference

(b) 208Pb Dither Corrected Upstream Double
Difference

(c) 40Ca Upstream Dither Corrected Double
Difference

Figure A.13: Dither Corrected Double Differences in ppb
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A.2 Multiplet Level Asymmetries

A.2.1 40Ca Asymmetry Distributions

A.2.1.1 40Ca Raw Asymmetries

(a) 40Ca Upstream Left (b) 40Ca Upstream Right

(c) 40Ca Upstream Average (d) 40Ca Upstream Double Difference

Figure A.14: 40Ca Raw Octet Level Asymmetries in ppm
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A.2.1.2 40Ca Regression Corrected Asymmetries

(a) 40Ca Upstream Left (b) 40Ca Upstream Right

(c) 40Ca Upstream Average (d) 40Ca Upstream Double Difference

Figure A.15: 40Ca Regression Corrected Octet Level Asymmetries in ppm
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A.2.1.3 40Ca Dithering Corrected Asymmetries

(a) 40Ca Upstream Left (b) 40Ca Upstream Right

(c) 40Ca Upstream Average (d) 40Ca Upstream Double Difference

Figure A.16: 40Ca Dithering Corrected Octet Level Asymmetries in ppm
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A.2.2 12C Asymmetry Distributions

A.2.2.1 12C Raw Asymmetries

(a) 12C Upstream Left (b) 12C Upstream Right

(c) 12C Upstream Average (d) 12C Upstream Double Difference

Figure A.17: 12C Raw Octet Level Asymmetries in ppm
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A.2.2.2 12C Regression Corrected Asymmetries

(a) 12C Upstream Left (b) 12C Upstream Right

(c) 12C Upstream Average (d) 12C Upstream Double Difference

Figure A.18: 12C Regression Corrected Octet Level Asymmetries in ppm
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A.2.2.3 12C Dithering Corrected Asymmetries

(a) 12C Upstream Left (b) 12C Upstream Right

(c) 12C Upstream Average (d) 12C Upstream Double Difference

Figure A.19: 12C Dithering Corrected Octet Level Asymmetries in ppm
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A.2.3 208Pb Asymmetry Distributions

A.2.3.1 208Pb Raw Asymmetries

(a) 208Pb Upstream Left (b) 208Pb Upstream Right

(c) 208Pb Upstream Average (d) 208Pb Upstream Double Difference

Figure A.20: 208Pb Raw Octet Level Asymmetries in ppm
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A.2.3.2 208Pb Regression Corrected Asymmetries

(a) 208Pb Upstream Left (b) 208Pb Upstream Right

sections/AppendixFigures/RegPb208_usavg.png

(c)
208Pb
Up-
stream
Av-
er-
age

sections/AppendixFigures/RegPb208_usdd.png

(d)
208Pb
Up-
stream
Dou-
ble
Dif-
fer-
ence

Figure A.21: 208Pb Regression Corrected Octet Level Asymmetries in ppm
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A.2.3.3 208Pb Dithering Corrected Asymmetries

(a) 208Pb Upstream Left (b) 208Pb Upstream Right

(c) 208Pb Upstream Average (d) 208Pb Upstream Double Difference

Figure A.22: 208Pb Dithering Corrected Octet Level Asymmetries in ppm
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Appendix B

Kinematic Distributions

B.1 〈cosφ〉 Distributions

(a) LHRS 208Pb 〈cosφ〉, Target 8 (b) RHRS 208Pb 〈cosφ〉, Target 8

(c) LHRS 208Pb 〈cosφ〉, Target 9 (d) RHRS 208Pb 〈cosφ〉, Target 9

Figure B.1: 208Pb 〈cosφ〉 Distributions. The AT data was taken on two targets
denoted as Pb8 and Pb9
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(a) LHRS 12C 〈cosφ〉 (b) RHRS 12C 〈cosφ〉

Figure B.2: 12C 〈cosφ〉 Distributions

B.2 Q2 Distributions

(a) LHRS 208Pb Q2, Target 8 (b) RHRS 208Pb Q2, Target 8

(c) LHRS 208Pb Q2, Target 9 (d) RHRS 208Pb Q2, Target 9

Figure B.3: 208Pb Q2 Distributions
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(a) LHRS 12C Q2 (b) RHRS 12C Q2

Figure B.4: 12C Q2 Distributions
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