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Abstract

In this article we describe the implementation of Artificial Intelligence models in track recon-

struction software for the CLAS12 detector at Jefferson Lab. The Artificial Intelligence based

approach resulted in improved track reconstruction efficiency in high luminosity experimental con-

ditions. The track reconstruction efficiency increased by 10− 12% for single particle, and statistics

in multi-particle physics reactions increased by 15% − 35% depending on the number of particles

in the reaction. The implementation of artificial intelligence in the workflow also resulted in a

speedup of the tracking by 35%.
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INTRODUCTION

Nuclear Physics experiments have become increasingly complex over the past decades,

with more complex detector systems and higher luminosities. In emerging experiments where

data collection rates are higher, there is a need for new approaches for data processing that

can improve data reconstruction accuracy and speed. New developments in the Artificial

Intelligence (AI) field present promising alternatives to conventional algorithms for data

processing. Machine Learning (ML) algorithms are being employed in various stages of ex-

perimental data processing, such as: the detector data reconstruction, particle identification,

detector simulations and physics analysis.

In this paper we present the implementation of machine learning models into the CLAS12

charged-particle track reconstruction software. Detailed analysis of the reconstruction per-

formance are presented, comparing track reconstruction efficiency and speed improvements

to conventional algorithms.

CHARGED PARTICLE TRACKING

The CLAS12 [1] forward detector is built around a six-coil toroidal magnet which divides

the active detection area into six azimuthal regions, called “sectors”. Each sector is equipped

with three regions of drift chambers [2] designed to detect charged particles produced by the

interaction of an electron beam with a target. Each region consists of two chambers (called

super-layers), each of them having 6 layers of wires. Each layer in a super-layer contains 112

signal wires, making a super-layer a 6x112 cell matrix. The schematic view of one region is

shown on Figure 1 (right panel).

Particles that originate at the interaction vertex travel through the magnetic field and pass

through all three regions of the drift chambers in a given sector are reconstructed by tracking

algorithms. First, in each super-layer adjacent wires with a signal are grouped together into

clusters (called segments), shown on Figure 1. The positions of these clusters (segments)

in each super-layer are used to fit the track trajectory to derive initial parameters, such

as momentum and direction. After the initial selection, good track candidates are passed

through Kalman filter [3] to further refine measured parameters.
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FIG. 1: Schematic view of signals generated in the drift chambers when a particle passes through.

The segments in each super-layer are shown along the trajectory of the track (left panel), and view

of the activated cells in the two super-layers of one region along the track trajectory (right panel).

FIG. 2: Example of signals in drift chambers for four events. Each plot represents one sector with

a 36x112 matrix of wires. Background hits (in gray) are shown along with the hits of reconstructed

identified tracks (in red). Dashed lines represent boundaries between super-layers.

For each beam-target interaction or “event”, drift chambers produce many segments,

some belonging to a track and some are background, or partial trajectories of low momentum

tracks. In Figure 2 drift chamber signals in one sector are shown for four different events, in

each sector data are hits represented as a 36x112 matrix (36 layers and 112 wires per layer),

showing all hits including those that were determined to be part of a track.

Due to inefficiencies in the drift chambers, it is possible to have one missing segment along

the trajectory of the particle, and the track has to be reconstructed using only 5 segments.

An example of a 5-segment track is shown on Figure 2 c), where super-layer 3 does not have
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any segment detected. For these types of tracks, candidates have to be identified from a large

number of combinatorics consisting of all combinations of clusters that form a 5-segment

candidates.

Tracking is computationally intensive and makes up 80% − 90% of the total CLAS12

event processing time (depending on background conditions and track multiplicity). The

procedure of finding tracks from a list of track candidates is where we found AI can provide

real benefits. Such benefits include: improved accuracy in identifying good tracks, and

improved data processing speed by significantly reducing the number of candidates that

have to go through initial fitting and then through Kalman filter. AI can also help in

identifying 5 super-layer track candidates.

MACHINE LEARNING

The Machine Learning is used to train a neural network to recognize good tracks from

a large list of candidates, constructed using one cluster from each super-layer. Two neural

networks were developed: a classifier that can identify a good track from 6-segment track

candidates and an auto-encoder that can take a list of 5-segment tracks and turn them into

6-segment track candidates by adding a pseudo-segment. The composed 6 super-layer track

candidates can be processed with the classifier network to identify and isolate“good” track

candidates.

Track Classifier

To determine what type of machine learning model works best with the CLAS12 drift

chamber data, we investigated different types of models [4], including Convolutional Neural

Network (CNN) , Extremely Randomized Trees (ERT) [5], and Multi-Layer Perceptron

(MLP) [6]. The study showed that Multi-Layer Perceptron was best suited for the CLAS12

reconstruction needs (based on inference speed and accuracy). The implemented architecture

is shown in Figure 3, where an input layer with 6 nodes is used (each node representing the

average wire position of the segment in super-layer) and 3 output nodes for the classes

“positive track”, “negative track” and “false track”.

The network is trained using a sample of tracks reconstructed by the conventional algo-
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FIG. 3: Architecture of Multi-Layer Perceptron used for track classification. Network has 6 input

nodes, corresponding to average wire positions of the segment in each super-layer, three hidden

layers with 12 nodes in each and 3 output nodes.

rithm, selected with χ2 cuts to retain the highest quality ones, which are fed to the network

with their respective labels (i.e. positive or negative tracks). For false tracks, a combination

of segments (6-segments forming a track candidate) that was not identified as a track by the

conventional algorithm is chosen.

Corruption Auto-Encoder

A second neural network was developed to fix the corruption in possible track candidates

due to inefficiencies of drift chambers. This network was used to identify track candidates

which have one of the segments missing. We used an auto-encoder architecture to implement

the corruption-recovery neural network [7]. The structure of the network can be seen in

Figure 4, with 6 input nodes and 6 output nodes.

To train the corruption auto-encoder network the same sample used for the classifier

training was used. The output for the network was set to the good track parameters (where

all 6 segments have non-zero values) and the input was modified by setting one of the nodes

(randomly) to zero. The network learns to fix the node containing zero, by assigning it a

value based on the other 5 segment values.

The test results of the trained network are shown in Figure 5, where the difference between

the true value of the segment position and the one reconstructed by the network is plotted,
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FIG. 4: Corruption-recovery auto-encoder architecture with 6 input nodes representing track seg-

ments mean wire values with one of the values is set to 0, and 6 output nodes with the correct

value for the node that has 0 in the input.

FIG. 5: Performance of corruption recovery auto-encoder foe each of six super-layers. The difference

between predicted and actual wire position is shown for all super-layers. Average accuracy of wire

position prediction is 0.36 wire.

showing a reconstruction accuracy of 0.36 wires. In Figure 4 this difference is shown for

each super-layer which was corrupted in the input. As can be seen, the performance of the
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network is uniform across all super-layers.

IMPLEMENTATION OF THE NEURAL NETWORK IN CLAS12 SOFTWARE

The models described in the previous sections were implemented in the CLAS12 tracking

software.

Track Identification Workflow

Track identification consists of two phases, programmed to be done in two passes. In the

first pass over the data, signals from each sector of drift chambers are analyzed to create

a track candidate list, each consisting of 6 segments. The resulting track candidates are

evaluated by the classifier neural network and are assigned a probability for being either

positive or negative track. The list of track candidates is sorted by probability and passed

to another algorithm that is responsible for removing tracks that have lower probability of

being a ”good” track and have clusters that are shared with a higher-probability candidate.

In this procedure the algorithm iterates over track candidates sorted according to the

probability of being a good track. Iteration starts at position number 2 and runs to the end

of the list. Candidates that share a cluster with candidate at position number 1 are removed

from the list. Track candidate at position 1 is moved from the track candidate list into the

identified track list. This procedure is repeated until there are no track candidates left in

the candidate list.

The second stage of track identification starts by constructing a list of track candidates

with combinations of 5 clusters out of 6 from all existing clusters (one per super-layer). The

candidates that share a cluster with tracks identified at the first stage of classification are

removed from the list. For each track candidate with a missing cluster in one of the super-

layers, a pseudo-cluster is generated using the Corruption Auto-Encoder Network and the

missing super-layer cluster is assigned the inferred value, hence turning all track candidates

to 6 cluster track candidates. The cured (or fixed) track candidate list is finally passed

to the track classifier module described above, which evaluates the list isolating candidates

with the highest probability of being a good track.
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FIG. 6: Stages of Neural Network track identification procedure. 1) identifying 6 super-layer

tracks. 2) removing all hits belonging to a identified track and constructing 5 super-layer track

candidates. 3) generating pseudo-clusters for 5 super-layer track candidates using corruption fixing

auto-encoder. 4) identify good track candidates from the list of 6 super-layer (one of the super-

layers is pseudo-cluster) track candidates. 5) isolate both identifies (6 super-layer and 5 super-layer)

tracks for further fitting with Kalman-Filter.

Implementation in reconstruction software

The CLAS12 reconstruction software framework is a Service Oriented Architecture plat-

form implemented in Java (CLARA [8]). The reconstruction software consists of several

microservices, each responsible for processing data from one detector [9]. The reconstruc-

tion procedure for some of the detector components can also be broken down into smaller

logical microservices to add some flexibility in changing the implementation of the small

parts, and provide alternative reconstruction procedures for some of the components. Re-

construction of tracks in drift chambers is a complex task and consists of several parts.

The first stage of the process, called clustering service, is to isolate clusters from the hits

in drift chambers. Once the clusters are isolated, track candidates are formed from all com-

binations of 6 segments. Once 6 segment tracks have been identified, the remaining segments

are then used to form 5 segments combinations. These two steps are known as track-finding

or seeding. Both 6 and 5 segments candidates are fitted defining the hit positions from the

wire coordinates (hit based tracking), resulting in a first list of reconstructed tracks.
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In a second stage of the tracking code (time-based tracking), the tracks identified at the

previous stage are refitted with a Kalman Filter algorithm, which uses drift time information

to refine the hit positions. This produces the final track list.

FIG. 7: Diagram of the tracking workflow with Artificial Intelligence included. The Workflow is

split into two parallel branches, one where track-finding is done by the conventional algorithm, and

one where only AI-isolated tracks are fed to the following stages.

In order to implement our neural network into the reconstruction workflow, we designed

two parallel branches in the reconstruction code where we run two algorithms to identify

good tracks from the candidate lists, one based on the conventional algorithm and one

based on the neural network. The two algorithms store their track suggestions in separate

data structures, and pass them to the next stage where track parameters are reconstructed

by conventional tracking algorithm, first by hit-based fitting and then using the Kalman

filter. This approach lets us have two parallel outputs from the tracking code that enables

a detailed comparison of the performance of each method.

Software Packages

As mentioned above, CLAS12 reconstruction is implemented in Java. The final implemen-

tation of the the track classifier was therefore in Java for easy integration into the reconstruc-

tion workflow. The initial tests and prototyping were done using the Keras/TensorFlow [10]

(python) package. The final implementation was based on the DeepNetts [11] community

edition library (in native Java) used for both the track candidate classifier and corruption-

recovery auto-encoder. DeepNetts is a light weight library with minimal dependencies, which

makes it ideal for providing portable code that can be used on variety of platforms with-
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out the need of installing large number of platform-dependent packages (like in the case

of keras/tensorflow). The inference procedure was implemented using Efficient Java Ma-

trix Library (EJML) [12], which is optimized for speed and is thread safe, matching the

requirements of the CLAS12 reconstruction software.

The analysis and data visualization for this article was done using GROOT data visual-

ization package [13] developed for CLAS12 software infrastructure (in Java) and is included

in the Java data analysis library for high energy physics Jas4pp [14].

ANALYSIS OF TRACK RECONSTRUCTION WITH AI

After implementing the track identification service in the CLAS12 reconstruction soft-

ware, the outputs from the conventional tracking algorithm and AI-assisted tracking algo-

rithm were analyzed event by event to assess the improvements of tracking.

Particle Reconstruction efficiency

The Neural Network for track classification was trained on experimental data after it was

processed with conventional tracking. Tracks that had “good” fit quality and were tracked

back to the target location were used as training samples for both the MLP classifier and

Auto-Encoder corruption-recovery network. Performance was assessed on data recorded at

CLAS12 production settings, specifically with 45 nA electron beam impinging on a 5 cm-long

hydrogen target for an instantaneous luminosity close to 0.6 × 1035cm−2s−1.

The results are shown in Figure 8, where the dependence of number of “good” recon-

structed negatively charged tracks are shown as a function of particle momentum (top row),

polar angle in laboratory frame (middle row) and interaction vertex (bottom row). The re-

constructed distributions from conventional tracking are plotted with filled histograms and

the tracks reconstructed using assistance from AI are plotted with solid lines. As can be

seen from the figure, there is a large gain in the number of reconstructed tracks with the 5

super-layer configuration compared to full 6 super-layer tracks. Typically for nominal 45 nA

experimental data increase in track efficiency averages about 3%− 6% for 6-sperlayer tracks

and to 70 − 120% for 5-superlayer tracks. In conventional data reconstruction, tracks that

are identified with 5 super-layers usually comprise about 10% of all reconstructed tracks,
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FIG. 8: Comparison of number of tracks reconstructed with the conventional algorithm (filled his-

tograms) vs AI-assisted tracking code (open black outline histograms) as a function of momentum,

polar angle and particle interaction vertex. The comparison is shown for 5 super-layer, 6 super-

layer tracks (left two columns), and the total number (right column).

and a significant increase in identification of such tracks leads to overall tracking efficiency

increase of 10% − 15%.

Track Configuration Conventional AI Assisted Gain Relative

6 Super-Layer 242,145 256,175 14030 1.0579

5 Super-Layer 24,155 52,839 28684 2.1875

All 267,339 309,058 51719 1.1561

TABLE I: Summary of reconstructed tracks and gain with assistance from Artificial Intelligence

algorithm.

The comparison of 5 and 6-segment track statistics and their relative gain is summarized

in Table I. As can be seen from the table, the gain in 6-segment tracks is about 5.7% but
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with significant gain in 5 super-layer tracks the overall gain in reconstructed tracks elevates

to > 15%. These results are intuitive since the number of track candidates composed of 5

super-layers, assuming a uniform number of clusters in the six super-layers, is significantly

higher than 6 super-layer track candidates, and in our tests AI performs better in choosing

the right combination with increasing combinatorics.

Luminosity Dependence

As discussed in the previous section, AI is more efficient than the conventional track-

finding algorithm in identify good candidates from a large pool. One would expect that, if the

number of combinations decreases, the efficiency of the conventional track selection should

approach the efficiency of AI-assisted track identification. Similarly, when the number of

combinations increases the gain of AI over the conventional algorithm should increase. Based

on this we expect AI to perform better in higher luminosity, higher background settings. To

evaluate the AI-assisted tracking efficiency dependence on background we analyzed several

different runs that were taken in different conditions (i.e. beam current) ranging from 5 nA

to 70 nA. To determine the tracking efficiency we first calculated the number of electrons

(Ne) detected in the analyzed data sample (typically one run, or 2 hours of data taking)

and then the number of positive and negative hadrons that were detected with the electron

inclusively (Nh+e and Nh−e respectively).

Then the efficiency for the data set was calculated as:

L+
t =

Nh+e

Ne

, L−t =
Nh−e

Ne

(1)

where L+
t is the efficiency of positively and L−t is the efficiency of negatively charged

particles respectively. In order to estimate the charged particle reconstruction efficiency as

a function of the beam current, the multiplicity, L
+/−
t , is fitted with a linear function:

L
+/−
t = a+ b× I (2)

Here a and c are the fit parameters and I is the beam current. Then it was assumed that

the reconstruction efficiency, E = 1 at I = 0 nA:

E+/− = 1 + c× I (3)
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with c = b
a
. The slope parameter c represents the variation of the reconstruction ineffi-

ciency per nA [15].

FIG. 9: Tracking reconstruction efficiency of the conventional algorithm (diamonds) is compared to

AI-assisted tracking efficiency (circles) for positively and negatively charged particles as a function

of beam current (luminosity).

The comparison of tracking efficiency as a function of beam current (luminosity) can

be seen in Figure 9 where E+/− are shown for positively and negatively charged particles

separately. AI-assisted tracking performs significantly better for any given luminosity (beam

current) and the decrease of efficiency is much slower as a function of luminosity, 0.22%

per nA versus 0.40% per nA for conventional tracking. This is expected and consistent

with the assumption that with increased combinatorial background (increased number of

track candidates to consider), AI performs better in choosing the best track candidate.

We established that AI-assisted tracking leads to more tracks reconstructed for any given

beam current setting. The next thing to check is what is the impact of increased track

reconstruction efficiency on physics analysis.

Physics Impact

To measure the implications of track reconstruction efficiency improvements on physics

analysis, we considered two event topologies with two and three particles in the final state,

respectively. The data for analysis were taken with 10.6 GeV electron beam incident on

5 cm liquid hydrogen target, with a beam current of 45 nA. We selected events where an
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electron was detected in the forward detector, and then isolated events where there was

an additional positively charged pion (π+) along with an electron and no other charged

particle. The second topology required two pions along with the electron, one positively

charged and one negatively charged. The two chosen topologies are denoted by H(e, e′π+X)

and H(e, e′π+π−X). In both cases there is a visible peak of a missing nucleon in the missing

mass distribution of detected final state, that we can use to measure the impact of efficiency

on physics outcome.

FIG. 10: Reconstructed missing mass distribution for H(e, e′π+X) and H(e, e′π+π−X) reactions

(top row) using the conventional track reconstruction algorithm (filled histogram) and AI-assisted

track reconstruction (black line histogram). The ratios of the two histograms are shown on the

bottom row.

The distributions of missing mass for both final state topologies are shown in Figure 10,

where the plots on the top row are missing mass of H(e, e′π−X) and H(e, e′π+π−X), where

the filled histogram is calculated from particles reconstructed by the conventional tracking

algorithm, and the histogram with black outline are the same distributions calculated from

particles that were reconstructed using suggestion from Artificial Intelligence. As can be

seen from the figure, there is significant increase in the number of events in the region of the

nucleon peak for AI assisted tracking. The ratios of the two histograms (AI-assisted divided
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by conventional) can be seen on the bottom row of Figure 10. As can be seen from the figure

the increase in statistics is uniform over the whole range of the missing mass indicating no

systematic abnormalities for AI-assisted tracking. The ratio also indicates that there is an

increase for the number of events of about 15% for H(e, e′π+X) final state and 30 − 35%

for the H(e, e′π+π−X) final state. Further studies show that improvements in statistics are

larger for higher luminosity (higher incident beam current), which is consistent with our

studies of increased efficiency of single particle reconstruction.

SUMMARY

In this paper we present results of the analysis of experimental data from the CLAS12

detector obtained with assistance of Artificial Intelligence to identify tracks from the hits in

drift chambers. This work is based on two neural networks developed to classify track candi-

dates from given cluster combinations [4] and to identify missing cluster positions in tracks

that do not have complete 6 cluster configuration [7]. After implementing these networks

into the CLAS12 reconstruction workflow, AI was able to identify “good” track candidates

and pass them to the tracking code to be analyzed in parallel to conventional algorithms

that chooses “good” track candidates iteratively considering all possible combinations. Our

studies showed that AI-assisted tracking performs better than conventional track identifica-

tion algorithm, and leads to track reconstruction efficiency increase of 10 − 12% for beam

current of 45 nA. The AI also performs better with increasing background (i.e. with in-

creased incident beam current) and improves the efficiency loss from 0.37% per nA to 0.22%

per nA. This increased track reconstruction (identification) efficiency directly impacts the

outcome of physics analysis, where it leads to an increase of statistics of 15%−35%, depend-

ing on how many particles are detected in the final state. This has significant implication

on the choice of experimental running conditions since with increased efficiency the required

statistical significance can be reached in a shorter time by running at higher beam current

(luminosity). Already collected experimental data can be re-processed with the AI-assisted

tracking code which can increase the statistics available for physics analysis up to 35%.

Therefor, both future experiments and already completed ones will benefit from this novel

development.

Another important outcome of this development was a reduction in data processing times.
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Since track candidates were identified by AI, there were fewer marginal quality tracks picked

to be analyzed and then later dropped due to non-convergence of Kalman filter, leading to

tracking code speedup of 35%.

In summary we proved that AI assistance in tracking is a good approach, and leads to

improvements in tracking code speed and efficiency. Using AI leads to a very small and

simple codebase, comprised of composing track candidates and feeding them to the neural

networks. We also found that performance keeps improving with constant training on new

data. We intend to continue this development in extending the approach to other tracking

detectors of the CLAS12, and possibly try to adapt our approach for other experimental

detector setups at Jefferson Lab.
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