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We present a high statistics study of the isovector nucleon charges and form factors using
seven ensembles of 2+1-flavor Wilson-clover fermions. The axial vector and pseudoscalar form
factors obtained on each of these ensembles satisfy the partially conserved axial current relation
between them once the lowest energy Nπ excited state is included in the spectral decomposi-
tion of the correlation functions used for extracting the ground state matrix elements. Simi-
larly, we find evidence that the Nππ excited state contributes to the correlation functions with
the insertion of the vector current, consistent with the vector meson dominance model. The
resulting form factors are consistent with the Kelly parameterization of the experimental elec-
tric and magnetic data. Our final estimates for the isovector charges are gu−dA = 1.32(6)(5)sys,

gu−dS = 1.06(9)(6)sys, and gu−dT = 0.97(3)(2)sys, where the first error is the overall analysis un-
certainty and the second is an additional combined systematic uncertainty. The form factors

yield: (i) the axial charge radius squared, 〈r2
A〉
u−d

= 0.428(53)(30)sys fm2, (ii) the induced pseu-
doscalar charge, g∗P = 7.9(7)(9)sys, (iii) the pion-nucleon coupling gπNN = 12.4(1.2), (iv) the electric

charge radius squared, 〈r2
E〉
u−d

= 0.85(12)(19)sys fm2, (v) the magnetic charge radius squared,

〈r2
M 〉

u−d
= 0.71(19)(23)sys fm2, and (vi) the magnetic moment µu−d = 4.15(22)(10)sys. All our

results are consistent with phenomenological/experimental values but with larger errors. Last, we
present a Padé parameterization of the axial, electric and magnetic form factors over the range
0.04 < Q2 < 1 GeV2 for phenomenological studies.

PACS numbers: 11.15.Ha, 12.38.Gc
Keywords: nucleon charges, nucleon form factors, lattice QCD

I. INTRODUCTION

The success of high precision experiments such as
DUNE at Fermilab [1, 2] and the T2T-HyperK in
Japan [3, 4] is predicated on precise determination of the
flux of the neutrino beam, incident neutrino energy and
their cross sections off nuclear targets. A major source of
uncertainty in the analysis of neutrino-nucleus interac-
tions is the axial vector form factors of the nucleon and
appropriate nuclear corrections. Steady improvements
in lattice quantum chromodynamics (QCD) calculations
are expected to provide first principle results with
control over all systematics [5]. In this paper, we present
high statistics results for the matrix elements of the
isovector axial and vector current between ground state
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nucleons. From these we extract the axial, electric, and
magnetic form factors and charges that are inputs in the
analysis of the charged current lepton-nucleus scattering
utilizing electron, muon and neutrino beams. A heuristic
parameterization of the form factors for phenomelogical
analyses is summarized in Eqs. (55), (56) and (58).

In previous publications, we have presented results
for the isovector charges, gu−dA , gu−dS and gu−dT [6]; ax-

ial, GA(Q2), induced pseudoscalar, G̃P (Q2) and pseu-
doscalar, GP (Q2), form factors [7, 8]; and the electric
and magnetic form factors, GE(Q2) and GM (Q2) [9].
Those calculations were done using the clover-on-HISQ
formulation, i.e., the Wilson-clover fermion action was
used to construct correlation functions on background
gauge configurations generated with 2+1+1 flavors of
the highly improved staggered quark (HISQ) action by
the MILC Collaboration [10]. They exposed a number of
issues that require attention: The central value for the
isovector axial charge gu−dA = 1.218(25)(30) [6], a key
parameter that encapsulates the strength of weak inter-
actions of nucleons, is about 5% below the accurately
measured value λ = gA/gV = 1.27641(45)stat(33)sys [11–
14]. Second, the axial and pesudoscalar form factors,

GA, G̃P and GP , did not satisfy the relation imposed on
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them by the partially conserved axial current (PCAC)
relation [7], whereas the original three-point correlation
functions did. Third, the electric and magnetic form fac-
tors, GE and GM , showed significant deviations from
the Kelly parameterization, which accurately describes
the experimental data [9]. Last, while the uncertainty

in the scalar and tensor charges, gu−dS = 1.022(80)(60)

and gu−dT = 0.989(30)(10), was reduced to O(10%) as re-
quired to put constraints on novel scalar and tensor inter-
actions at the O(10−3) level [15] that can arise at the TeV
scale, future experiments targeting O(10−4) sensitivity
require the reduction of errors to a few percent level.

In this paper, we revisit these issues with high-
statistics calculations on seven ensembles with simi-
lar lattice parameters but generated using 2+1 flavor
Wilson-Clover fermions by the JLab/W&M/LANL/MIT
Collaborations [16]. Three important improvements are
made over those presented in our previous papers [6–
9]. First, these calculations have been done using a uni-
tary, clover-on-clover, lattice formulation, whereas possi-
ble systematics in the clover-on-HISQ mixed action cal-
culations due to the nonunitarity formulation were not
explored. Second, the results are based on much higher
statistics, O(2–6 × 105) measurements on O(2–5 × 103)
configurations. The resulting smaller errors in the raw
data provide more reliable control over the systematics.
Last, we compare several analysis strategies to control
excited-state contamination (ESC) and quantify the sen-
sitivity of the results to different theoretically motivated
values of the mass gaps, and investigate the possible ex-
cited states that may be contributing.

Results for the nucleon charges from a subset of the
ensembles analyzed here have been presented in Refs. [17,
18]. In parts of the paper, we will drop, for brevity, the
superscripts (u − d) to denote isovector quantities since
all the analyses presented here are restricted to this case.
We will, however, include this superscript in the final
results and at appropriate places to avoid confusion for
the general reader. For the overall methodology used to
calculate the two- and three-point correlation functions,
we refer the reader to our previous work [6, 7, 9].

This paper is organized as follows. After a review of
the phenomenology and known results in Sec. II and the
lattice setup and error analysis strategy in Sec. III, we
briefly summarize the main systematics that need to be
resolved in Sec. IV. The analysis of excited states in the
two-point functions is discussed in Sec. V, and in three-
point functions in Sec. VI. The relations for the extrac-
tion of form factors from ground state matrix elements
are given in Sec. VII and the results for the isovector
charges gu−dA,S,T in Sec. VIII. The analysis of the A4 cor-

relator, 〈Ω|N (τ)A4(t)N (0)|Ω〉, and the consequent de-
scription of the strategies used for controlling ESC in the
axial channel are discussed in Sec. IX. The extraction of
the axial form factors is then presented in Sec. X fol-
lowed by the parameterization of the Q2 dependence of
GA(Q2) and the extraction of gA and 〈r2

A〉 in Sec. X A,

and of the induced pseudoscalar form factor G̃P (Q2) and

the couplings g∗P and gπNN in Sec. XI. Sec. XII is devoted
to the electromagnetic form factors. Final estimates at
the physical point defined by a = 0, Mπ = 135 MeV
and MπL = ∞ are obtained using simultaneous chiral-
continuum-finite-volume (CCFV) fits in Sec. XIII. An
alternate heuristic parameterization of the form factors
is given in Sec. XIV, and the comparison with previous
work and phenomenology in Sec. XV. Our conclusions
are presented in Sec. XVI. Further details of the data,
analyses, and figures are presented in eight appendixes.

II. PHENOMENOLOGY

One of the main uncertainties in the phenomenological
analyses of neutrino-nucleon scattering is the knowledge
of the axial form factors. Direct experiments using liq-
uid hydrogen (proton) targets are not being carried out
due to safety concerns. Thus, phenomenologists are look-
ing to lattice QCD to provide first principle estimates.
A good validation of the lattice methodology for the
calculation of form factors is to demonstrate agreement
between the simultaneously calculated isovector electric
and magnetic form factors with the Kelly (or other good)
parameterization of the accurate experimental data (see
Sec. XII). Furthermore, calculating the full set of axial
and electromagnetic form factors is the first step in the
analysis of the charged current neutrino-nucleon cross
section with all required input taken from lattice QCD.
Our results in Eqs. (55) (56) and (58) represent signifi-
cant progress toward this goal.

The matrix element of the isovector axial vector cur-
rent Aµ = uγµγ5d between ground state nucleons, which
describes neutron β-decay and the weak charged current
of the interaction of the neutrino with the nucleon, has
the following relativistically covariant decomposition in
terms of two form factors:

〈N(pf , sf )|Aµ(q)|N(pi, si)〉 =

uN (pf , sf )

(
GA(q2)γµ + qµ

G̃P (q2)

2MN

)
γ5uN (pi, si), (1)

where GA(q2) is the axial vector form factor, G̃P (q2)
the induced pseudoscalar form factor, |N(pf , sf )〉 the
nucleon state with momentum pf and spin sf , and the
momentum transfer is q = pf − pi. Throughout this pa-
per, all data for the form factors are presented in terms
of Q2 ≡ p2 − (E − m)2 = −q2, i.e., the spacelike four-
momentum squared. We use the DeGrand-Rossi basis
for the gamma matrices [19], and assume isospin symme-
try, mu = md. Thus, we neglect the induced tensor form

factor G̃T that vanishes in the isospin limit [15]. The
axial charge gA ≡ GA(q2 = 0) is obtained from both the
forward matrix element and by extrapolating GA(Q2) to
Q2 = 0 as discussed in Secs. VIII, and XIII A, respec-
tively.
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The pseudoscalar form factor, GP , is defined by

〈N(pf )|P (q)|N(pi)〉 = uN (pf )GP (q2)γ5uN (pi) , (2)

where P = uγ5d is the pseudoscalar density.
The discrete lattice momenta are given by 2πn/La

with the components of the vector n ≡ (n1, n2, n3) tak-
ing on integer values, |ni| ∈ {0, L}. The normalization of
the nucleon spinors uN (p, s) in Euclidean space is

∑

s

uN (p, s)ūN (p, s) =
E(p)γ4 − iγ · p+M

2E(p)
. (3)

The three form factors, GA(Q2), G̃P (Q2) and GP (Q2),
are not independent because of the PCAC operator iden-
tity, ∂µAµ − 2m̂P = 0. By contracting Eq. (1) with qµ

and using Eq. (2), this identity gives the following rela-
tion between them:

2m̂GP (Q2) = 2MNGA(Q2)− Q2

2MN
G̃P (Q2) , (4)

where m̂ ≡ ZmZP (mu + md)/(2ZA) is the average bare
PCAC mass of the u and d quarks, Zm, ZP and ZA are
the renormalization constants for the quark mass, the
pseudoscalar and the axial currents, respectively. Table I
gives the results for m̂ calculated using the PCAC rela-
tion within the pseudoscalar two-point correlation func-
tion, i.e., by requiring that, up to lattice artifacts, the
relation Γ(τ) = 〈Ω|(∂µAµ − 2m̂P )τP0|Ω〉 = 0 holds for
all Euclidean times τ 6= 0. It can also be measured us-
ing the three point functions by inserting the operator
∂µAµ = 2m̂P between any state including the nucleon.
Estimates of m̂ from two- and three-point correlation
functions with the same bare lattice operators should
agree up to discretization artifacts.

The pseudoscalar two-point function also gives the
pion decay constant Fπ through the matrix element
〈Ω|Apoint

4 |π〉 =
√

2MπFπ, which is obtained from a simul-

taneous fit to data in the plateau region of 〈Ω|Apoint
4 (τ)

P smeared(0)|Ω〉 and 〈Ω|P smeared(τ)P smeared(0)|Ω〉. These
values for Fπ are given in Table I, and their CCFV ex-
trapolation is shown in the bottom row of Fig. 36. The
result is consistent with the experimental value. The
largest contributor to the error, 1σ ≈ 4%, is the CCFV
extrapolation. Since the calculations of Fπ on the lattice
are among the most reliable [20], it is reasonable to ex-
pect a 4% uncertainty in results from CCFV fits to seven
points for all other quantities analyzed in this work.

Last, Table I also gives the product MNgA/Fπ, which
is equal to the pion-nucleon coupling gπNN by the
Goldberger-Treiman relation, for three estimates of gA
given in Table IV, i.e., from {4, 3∗}, {4Nπ, 2sim, P2} and
{4Nπ, 2sim, z2} strategies used to control ESC that are
defined in Sec. XIII A (also see Appendix A for their def-
initions). The nucleon mass, MN , is given in Table XV.

A large part of the analysis presented in this work is
influenced by the recent understanding and resolution [8]
of why the axial form factors calculated in the “standard”

way do not satisfy the PCAC relation given in Eq. (4), a
problem that afflicts previous lattice calculations [7]. We
show that a much lower energy excited state, with a mass
gap much smaller than obtained from n-state fits to the
two-point nucleon correlator and used in the standard
analysis of three-point functions, contributes in the axial
channel. Including these states in the fits, with masses
consistent with the noninteracting N(p = 0)π(p) and
N(−p)π(p) states on the lattice, gives form factors that
show much better agreement with the PCAC relation,
Eq. (4), and satisfy other consistency checks discussed in
Sec. IX A. While the need for including such low-energy
multihadron states has, so far, been demonstrated only
in the axial and pseudoscalar channels, it behooves us
to determine whether such multihadron states also con-
tribute in other channels. In this paper, we build on the
discussion in Ref. [8], and investigate the dependence of
various matrix elements on the spectrum of excited states
obtained from different fits.

The decomposition in Minkowski space of the matrix
element of the electromagnetic current V em

µ = 2
3uγµu −

1
3dγµd within the nucleon ground state into the Dirac,
F1, and Pauli, F2, form factors is:

〈
N(pf , sf )|V em

µ (q)|N(pi, si)
〉

=

uN (pf , sf )

(
F1(q2)γµ + iσµνqν

F2(q2)

2MN

)
uN (pi, si), (5)

where σµν = i/(γµγν − γνγµ)/2 and the induced scalar
form factor is neglected since we work in the isospin limit.
Throughout this paper, we will present results in terms
of the isovector Sachs electric, GE , and magnetic, GM ,
form factors that are related to the Dirac and Pauli form
factors in Euclidean space as

GE(Q2) = F1(Q2)− Q2

4M2
N

F2(Q2) , (6)

GM (Q2) = F1(Q2) + F2(Q2). (7)

These are very well measured experimentally, and from
them one gets the vector charge

gV = GE |Q2=0 = F1|Q2=0 (8)

which satisfies the conserved vector current relation
gV ZV = 1, where ZV is the renormalization constant for
the local vector current used on the lattice. The isovector
form factorGM gives the difference between the magnetic
moments of the proton and the neutron:

µp−µn = GM |Q2=0 = (F1+F2)|Q2=0 = 1+κp−κn . (9)

The anomalous magnetic moments of the proton and the
neutron, κp and κn, in units of the Bohr magneton, are
known very precisely [21]:

κp = 1.79284735(1) (proton) ,

κn = −1.91304273(45) (neutron) . (10)
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F bare
π Fπ|R1 Fπ|R2 gπNN = MNgA/Fπ

ID am̂PCAC aF bare
π [MeV] [MeV] [MeV] {4, 3∗} {4Nπ, 2sim, P2} {4Nπ, 2sim, z2}

a127m285 0.009304(34) 0.07115(15) 110.5(1.8) 97.5(2.1) 95.5(2.0) 12.46(12) 12.42(28) 12.32(19)
a094m270 0.005726(29) 0.05182(12) 108.8(1.2) 96.0(1.7) 95.1(1.4) 12.92(48) 12.49(45) 12.46(30)
a094m270L 0.005724(05) 0.05204(05) 109.2(1.2) 96.8(1.9) 97.2(1.4) 12.45(09) 12.63(16) 12.55(13)
a091m170 0.002104(09) 0.04743(06) 102.8(1.1) 90.7(1.7) 90.2(1.4) 12.45(19) 12.55(37) 12.63(33)
a091m170L 0.002123(10) 0.04754(05) 103.1(1.1) 90.2(1.7) 89.8(1.3) 12.55(16) 13.19(33) 13.17(31)
a073m270 0.004328(04) 0.04016(04) 108.9(1.2) 97.9(1.6) 97.8(1.4) 12.70(14) 12.63(18) 12.58(14)
a071m170 0.001522(04) 0.03661(04) 102.2(1.2) 91.6(1.3) 91.8(1.3) 12.60(32) 13.08(39) 13.10(36)
CCFV 93.0(3.8) 95.9(3.5) 12.65(38) 13.60(65) 13.58(49)

TABLE I. Results for the PCAC quark mass m̂ defined in the text and the pion decay constant Fπ with the two renormalization
methods defined in Sec. VIII A. The ∼ 1% uncertainty in Fπ comes mainly from that in the scale a given in Table XV. The
combination MNgA/Fπ, which is independent of ZA and dimensionless, is equal to gπNN by the Goldberger-Treiman relation.
It is evaluated using three ways of calculating gA discussed in Secs. VIII and XIII A: {4, 3∗} in which gA is taken from the
forward matrix element, {4Nπ, 2sim, P2} and {4Nπ, 2sim, z2} that uses P2 Padé and z2 fits to GA(Q2) given in Table IV. The
last row gives the continuum result from CCFV fits to these data as discussed in Sec. XIII A.

In phenomenological studies, it is customary to param-
eterize the form factors to obtain their value and slope
at Q2 = 0. These give the charges, gA, gV and µ, and
the charge radii squared, 〈r2

A,E,M 〉, defined as

〈r2〉 = −6
d

dQ2

(
G(Q2)

G(0)

)∣∣∣∣
Q2=0

. (11)

For the electromagnetic form factors, the Kelly pa-
rameterization provides a good fit to the experimental
data [22] and gives

rp−nE |exp = 0.926(4) ,

rp−nM |exp = 0.872(7) . (12)

In this study, we analyze various systematics and pro-
vide results for both axial and electromagnetic form fac-
tors over a range of Q2, especially the region . 1 GeV2

where nonperturbative effects are large. These data are
analyzed using the dipole, Padé and model-independent
z-expansion parameterizations. Control over various sys-
tematics in the extraction of the form factors is illustrated
by comparing the lattice data for GE,M with the Kelly
parameterization in Secs. XII and XIV. For the purpose
of comparison, and given the much larger errors in the
lattice data, one can equally well use other parameteriza-
tions, for example, the recent rational fraction discussed
in Ref. [23], without a change in our conclusions.

III. LATTICE AND ERROR ANALYSIS
METHODOLOGY

The parameters of the seven ensembles with 2+1-
flavors of O(a) improved Wilson-clover fermions gen-
erated by the JLab/W&M/LANL/MIT Collaboration
are given in Table XV in Appendix B. The parame-
ters used to calculate the quark propagators are given in
Table XVI. We have made O(2–6 × 105) measurements

of each observable on these ensembles using the trun-
cated solver with bias correction [24, 25] and the coher-
ent sequential propagator [17, 26] methods. Even with
these statistics, because of the e−(MN−3Mπ/2)τ decay of
the signal-to-noise ratio, the three-point correlation func-
tions are well-measured only up to source-sink separation
τ ∼ 1.5 fm. At these separations, excited state contami-
nation is significant and we fit the data using the spectral
decomposition of the correlation functions to isolate the
ground state value as discussed in Sec. VI. In the cal-
culation of form factors, the signal also degrades with
momentum transfer Q2, and the errors at the larger mo-
mentum transfers are sizable in some cases.

The central values and errors are calculated using a
single-elimination jackknife method. We make O(100)
measurements on each configuration with randomly
selected but widely separated source points to maximize
decorrelations. From these, bias corrected averages
are constructed for each configuration, which are then
binned over 5–11 configurations to further reduce
correlations. These O(500) binned values are then
analyzed using the jackknife procedure. All fits using
minimization of χ2 are made using the full covariance
matrix calculated using the binned values. This proce-
dure is followed for all observables, values of momentum
insertion, and ensembles. Note that even when using a
Bayesian procedure including priors to stabilize the fits,
the errors are calculated using the jackknife method and
are thus the usual frequentist standard errors1.

1 When priors are used, the augmented χ2 is defined as the stan-
dard correlated χ2 plus the square of the deviation of the param-
eter from the prior mean normalized by the prior width. This
quantity is minimized in the fits. In the following, we quote
this augmented χ2 divided by the degrees of freedom, and call
it χ2/dof for brevity. In the jackknife process, we keep the prior
and its width fixed. This is a consistent strategy as the errors
quoted are frequentist errors and do not represent a Bayesian
credibility interval. The p-value listed in figures showing fits is
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We use two criteria to determine whether the fits, for
example, those used to remove ESC or the CCFV fits, are
overparameterized: (i) the Akaike Information Criteria
(AIC) [27] which requires that the total χ2 decreases by
two units for every extra free parameter in the fit ansatz,
and (ii) whether the errors in the additional parameters
introduced to include, for example, the third state have
more than 100% uncertainty. The AIC weights are cal-
culated to assess whether the fits are overparameterized.
The actual choice of the averaging performed to get final
results is discussed in the individual sections.

Overall, the errors in data from three ensembles need
to be reduced to improve precision: on a094m270 due
to the small volume and on a091m170L and a071m170
due to the lighter pion mass. Of these, the latter two
ensembles are important for the chiral extrapolation, and
we plan to double their statistics in the future.

In our previous work using the clover-on-HISQ formu-
lation, we observed that some observables that should
vanish by the parity symmetry show a nonzero signal at
the 2.5–3σ level. Even though such deviations are most
likely statistical fluctuations, we improved the realiza-
tion of parity symmetry in our clover-on-clover work by
applying a random parity transformation on each gauge
configuration as follows: For a randomly chosen direction
µ ∈ 1–4, each gauge configuration is parity transformed
by implementing

Uν(x) −→ Uν(Pµ(x)− ν̂)† for ν 6= µ, (13)

Uµ(x) −→ Uµ(Pµ(x)) (14)

where Pµ(x), the parity transformation acting on the vec-
tor x labeling the sites, flips the sign of all components,
except for xµ [17, 18].

IV. SYSTEMATICS IN THE EXTRACTION OF
NUCLEON MATRIX ELEMENTS

There are four challenges to high precision calculations
of nucleon charges and form factors (or their primitives,
the ground state matrix elements) at a given value of
{a,Mπ,MπL}. The first and key challenge is the ex-
ponentially decreasing signal-to-noise in all nucleon cor-
relation functions—the signal falls off as e−(MN−1.5Mπ)τ

with increase in the source-sink separation τ . As shown
in Fig. 1, with O(2–6×105) measurements, a good signal
in the two-point functions extends to ∼ 2 fm. Similarly,
in the three-point functions, it extends to ∼ 1.5 fm as
illustrated in Figs. 17, 18 and 19. At ∼ 1.5 fm, ESC
is still significant in all three-point functions as shown
in Appendixes C, E, F, and G. As a result, for given
fixed statistics, one has to balance statistical uncertainty

given for convenience only as it is calculated from the also listed
χ2 value using the standard χ2 distribution.

against a systematic bias due to the values of τ picked to
control ESC.

The second challenge is determining all the excited
states that contribute significantly to a given three-point
function and isolating their contribution by making fits
to a truncated spectral decomposition—a sum of expo-
nentials as shown in Eqs. (15) and (18). While the con-
tribution of a given excited state is exponentially sup-
pressed by its mass gap, we are, however, confronted by
a tower of low-lying multihadron excited states starting
with N(p = 0)π(−p), N(p)π(−p), N(0)π(0)π(0). On
Mπ = 135 MeV ensembles, the tower, as a function of
p, starts at ≈ 1200 MeV, and gets arbitrarily dense as
p → 0. Thus, the suppression of excited-state contri-
butions due to the mass gap is smaller than in mesons
and decreases as Mπ → 0 and p → 0. In short, possible
contributions of the many multihadron states that lie be-
low the first two radial excitations, N(1440) and N(1710),
need to be evaluated.

It is typical to reduce the contributions of excited
states by smearing the delta-function source used to gen-
erate the quark propagators. We use the gauge-invariant
Wuppertal method [28] with parameters given in Ta-
ble XVI in Appendix B. However, in this approach, one
does not have detailed control over the size of the cou-
pling to a given excitation since there is only one tunable
parameter, the smearing size given by σ in Table XVI.
Second, for a given three-point function, couplings to cer-
tain states can get enhanced. A case in point is the con-
tribution of the N(p = 0)π(−p) and N(p)π(−p) states
in the axial channel as discussed in Sec. X.

The third issue is calculating the renormalization fac-
tor, including operator mixing, to connect to a continuum
scheme such as MS. This systematic, for the calculations
presented in this work, is considered to be under con-
trol to within about 2% as discussed in Ref. [20] and in
Sec. VIII A.

Once data with control over the statistical and the
above systematic uncertainties are obtained at multiple
values of {a,Mπ,MπL}, simultaneous chiral-continuum-
finite-volume (CCFV) fits, which include corrections with
respect to Mπ, a and MπL, are used to extract the phys-
ical result in the limits Mπ → 135 MeV, a → 0, and
MπL→∞. Having only seven ensembles introduces the
fourth challenge: only leading order corrections in each
variable can be included without overparameterization,
hence residual corrections may be underestimated. The
analyses performed, using appropriate CCFV fit ansatz,
are described in Sec. XIII.

Of these four issues, the most serious is excited state
contributions, which is exacerbated by the exponentially
falling signal-to-noise ratio with τ . To summarize, while
the overall methodology for all the lattice calculations
presented here is well-established, a clear strategy for
controlling excited state contamination that can be ap-
plied to all nucleon matrix elements remains elusive as
discussed below. We, therefore, analyze the data using
multiple strategies, each of which should converge and
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give the correct result with perfect data. At appropriate
places, we give reasons for picking the strategy used to
quote the final results and estimates of possible remain-
ing systematic uncertainties.

V. THE NUCLEON SPECTRUM FROM FITS
TO THE TWO-POINT FUNCTION

To determine the nucleon spectrum, we keep four
states in the spectral decomposition of the two-point
functions C2pt with momentum p:

C2pt(τ ;p) =

3∑

i=0

|Ai(p)|2e−Ei(p)τ . (15)

Here Ei are the energies and Ai are the corresponding
amplitudes for the creation/annihilation of a given state
|i〉 by the interpolating operator N chosen to be

N (x) = εabc
[
qa1
T (x)Cγ5

(1± γ4)

2
qb2(x)

]
qc1(x) , (16)

with color indices {a, b, c}, charge conjugation matrix
C = γ4γ2 in the DeGrand-Rossi basis [19], and q1 and q2

denoting the two different flavors of light Dirac quarks.
The Ei and the Ai are extracted from a fit to a large
range, [τmin, τmax]. The starting time, τmin/a is taken
to be small, between 1 and 4, and τmax is ∼ 2 fm with
the current statistics as shown in Fig. 1. For brevity,
throughout this paper, it should be assumed that the
values of t and τ are in lattice units.

There are two nagging issues with this “standard”
analysis. First the mass gaps, ∆E1 ≡ (E1 − E0), shown
in Table II are slightly larger than even of N(1440). This
could be explained away by assuming that the lower-
energy states, such as Nπ or even N(1440), do not couple
significantly. Second, the axial vector and pseudoscalar
form factors obtained using this spectrum to remove the
ESC do not satisfy the PCAC relation, Eq. (4), to a
much larger extent than observed in the original three-
point correlation functions in which the size of deviation
is consistent with that expected due to discretization er-
rors [7].

The likely reason for both issues is that standard fits
to the two-point function do not expose the lighter mul-
tihadron, Nπ, Nππ, . . ., states that are needed in the
analysis of three-point functions [8]. In Fig. 1, we show
results of four-state fits to C2pt(τ ;p = 0) along with the
data for the effective energy defined as

Eeff(τ) = log
C2pt(τ)

C2pt(τ + 1)
. (17)

It converges to the ground state energy for τ →∞ and for
p = 0 reduces to Meff(τ). The criteria used for judging
the quality of the fits is χ2/dof. The panels on the left
show fits with the standard strategy labeled {4}, in which
empirical Bayesian priors with wide widths are used only

to stabilize the fits. The initial central values for the
priors for ∆M1 ≡ M1 −M0, ∆M2 ≡ M2 −M1, and for
the corresponding amplitude ratios, Ri ≡ |Ai|2/|A0|2,
are taken from an unconstrained three-state fit. Prior
widths are set at ∼ 50% of the value. The fit is repeated
and resulting values are used as central values for the
priors in a four-state fit. This process is iterated one more
time to adjust the priors for the three excited states. The
final fit parameters for the p = 0 case, the prior value and
width, the fit range (FR) and the augmented χ2/dof of
the fit are given in the labels.

The second strategy, labeled {4Nπ}, uses a prior for
the mass gap, ∆E1, with value given by the lowest rele-
vant state, N(1)π(−1) or N(0)π(0)π(0), with a narrow
width. (The priors and their widths for the five larger
volume ensembles are given in the labels in Fig. 1.) No
narrow prior is put on the amplitude R1. The rest of the
procedure is the same as for {4}.

We stress an important clarification regarding the no-
tation ∆E1 and it “representing” the first excited state
that is implicit throughout this paper. The value of
∆E1 given by a four-state fit is a number that minimizes
χ2/dof and, most likely, represents an “effective” combi-
nation of a set of the lowest contributing states. Fits to
different correlation functions can, therefore, give differ-
ent “effective” ∆E1 (in fact ∆Ei) depending on the cou-
plings of and spacings between the contributing states.

There are two reasons for stopping at four-state fits.
First, in the three-state fits to the three-point functions
we use E0, E1 and E2. The ignored E3, which is most
contaminated by all the higher neglected states, acts as a
buffer. Second, including more than four states overpa-
rameterizes the fits. A summary of the ground-state mass
and the mass gap of the first excited state obtained from
different fits is given in Table II. Note that in most cases,

the a∆M
{4}
1 is a little larger but close to that expected

for the N(1440). The one exception is the low value
on the a094m270 ensemble that should be the same,
modulo finite volume corrections, as from a094m270L.

We find, illustrated by the zero-momentum case in
Fig. 1, that (i) the final value of ∆MNπ

1 tracks the prior
in {4Nπ} and (ii) the two fits, {4} and {4Nπ}, are not dis-
tinguished on the basis of the augmented χ2/dof, which
are similar. In fact, for each p there is a flat direction
in E1, i.e., a whole region of parameter values between
{4} and {4Nπ} gives similar augmented χ2/dof. Since
the ENπ

1 corresponds to roughly the value for the lowest
theoretically allowed state and is much smaller than the
radial excitation N(1440) or E2pt

1 , we will assume it is a
good estimate of the lower end of possible values. Simi-
larly, the data derived E2pt

1 is taken to be an estimate of
the upper end when probing the sensitivity of results for
the ground state matrix elements to E1. Later we will
discuss other estimates of E1 obtained from fits to the
three-point functions.

The values of Q2 = p2− (E−MN )2 for the two strate-
gies are given in Table XVII, and are essentially the same.
Nevertheless, all the analyses and plots presented use the
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FIG. 1. The effective mass Meff plotted versus the source-sink separation τ/a for 5 ensembles. The left panels show the standard
four-state fits, {4}, while the right panels show {4Nπ}, in which the noninteracting energy of Nπ state is input as the central
value of the prior for ∆M1. The legends give the ground state amplitude A0 and mass aM0, the excited-state amplitude ratios
Ri = |Ai|2/|A0|2 and mass gaps a∆Mi = a(Mi−Mi−1), the prior value and width (pr) used, the fit range FR, the χ2/dof and
the ensemble ID. The signal-to-noise grows rapidly after τ = 1.8–2.2 fm depending on the statistics and the ensemble. Note
that for the 170 MeV ensembles, even the ground state mass and amplitude differ by about 2–3σ between the two fit strategies,
and the relative contribution, R1e

−∆M1τ , of the low mass N(1)π(−1) state in the {4Nπ} fit is still about 3% at τ ≈ 1.8 fm.
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ID aM
{4}
N aM

{4Nπ}
N a∆M

{2}
1 a∆M

{4}
1 a∆M

{4Nπ}
1 a∆M̃

{2free}
1 |gA a∆M̃

{2free}
1 |gS a∆M̃

{2free}
1 |gT

a127m285 0.618(2) 0.617(2) 0.43(5) 0.39(5) 0.33(2) 0.15(7) 0.71(11) 0.60(10)
a094m270 0.468(5) 0.470(2) 0.31(6) 0.22(8) 0.25(1) 0.09(13) 0.51(6) 0.54(3)
a094m270L 0.466(1) 0.465(1) 0.35(2) 0.28(5) 0.20(2) 0.13(3) 0.52(2) 0.50(1)
a091m170 0.416(2) 0.413(3) 0.34(2) 0.29(5) 0.16(1) 0.08(13) 0.39(8) 0.46(6)
a091m170L 0.415(2) 0.408(4) 0.31(3) 0.24(3) 0.14(2) 0.14(9) 0.54(9) 0.44(4)
a073m270 0.372(1) 0.372(1) 0.32(2) 0.23(4) 0.20(2) 0.06(3) 0.40(2) 0.40(2)
a071m170 0.326(3) 0.323(2) 0.25(3) 0.18(5) 0.12(1) 0.08(4) 0.41(7) 0.38(2)

TABLE II. Results for the nucleon mass in lattice units, aM
{4}
N and aM

{4Nπ}
N , obtained from the two four-state fits to the

two-point functions. The next six columns give the values of the mass gap, a∆M1 ≡ a(M1 −M0), of the first excited state
obtained from different fits studied in this work. The notation {2} ({4}) denotes a two-state (four-state) fit to the two-point
functions, ({4Nπ}) is a four-state fit to the two-point functions with a prior for a∆M1 with a narrow width corresponding to
the noninteracting N(q)π(−q) (or the N(0)π(0)π(0)) state (see also Appendix A). In the three {2free} cases, the mass gaps

a∆M̃1 are determined from fits to the three-point functions used to extract the three charges gA,S,T as explained in Sec. VIII.
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values of Q2 appropriate to the fits, {4} or {4Nπ}.
An important point to note from Fig. 1 is that the Meff

data from the Mπ ≈ 170 MeV ensembles do not show a
plateau over the range 1 . τ . 2 fm, in contrast to what
is commonly assumed. Concomitantly, we find a system-
atic difference in M0 and A0 between the two strategies,
{4} and {4Nπ}, with {4Nπ} giving a 1–2σ smaller value
for bothM0 and |A0|2, and the relative difference growing
as Mπ is reduced. Note that the correlated decrease in
M0 and |A0|2 under {4} → {4Nπ} is consistent with both
fits preserving the asymptotic, τ →∞, value of C2pt(τ).
Such a variation implies that one has to re-examine the
strategy for even extractingM0 in calculations where per-
cent precision is needed, such as in the calculation of
the pion-nucleon sigma term, σπN , using the Hellmann-
Feynman theorem [20, 29] and in the extraction of ma-
trix elements discussed here. Consequently, we consider a
number of strategies for the analysis of charges and axial
and vector form factors in Sec.s VI, VIII, X and XII.

VI. CONTROLLING EXCITED-STATE
CONTAMINATION IN THREE-POINT

FUNCTIONS

The spectral decomposition of the three-point func-
tions, C3pt

O , truncated at 3 states is:

C3pt
O (τ ; t) =

2∑

i,j=0

Ap
i Aj〈i

p|O|j〉e−Eit−Ej(τ−t) , (18)

where O is the operator, Ai are the amplitudes with
which the states |i〉 are created by the interpolating op-
erator N with energies Ei as defined in Eq. (15). The
source point has been translated to t = 0, the operator is
inserted at time t, and the nucleon is annihilated at the
sink time slice τ . In Eq. (18), Ap

i and |ip〉 denote that
these states could have nonzero momentum p, whereas
the momentum at the sink is fixed to zero in all three-
point functions. Thus, for momentum transfer q = p,
the initial nucleon’s momentum is −p.

In principle, the spectrum of the transfer matrix that
contributes to the three-point functions, Eq. (18), should
be obtainable from the two-point function, Eq. (15), how-
ever, the relative contributions can vary significantly as
mentioned above, particularly in different 3-point func-
tions. As a result, their contribution may be manifest in
some correlators but not in all. This is demonstrated for
the axial channel in Sec. IX and for the vector current in
Sec. XII.

It is important for the reader to note that individual
excited state amplitudes Ap

i and Aj with i, j > 0, and
their values determined from fits to two-point functions,
C2pt(τ), are never used in fits to C3pt

O (τ ; t). The rea-

son is that in fits to C3pt
O (τ ; t), only the combinations

Ap
i Aj〈ip|O|j〉 enter. Furthermore, while these combi-

nations are unknown parameters in fits to C3pt
O (τ ; t) to

remove ESC, they are not used any further in the analy-
sis.

Data for the three-point functions have been accumu-
lated for the 4–6 values of τ specified in Table XV, and
for each τ for all values 0 < t < τ . In much of the
subsequent analyses, we make 3∗-state fits. These are
three-state fits with the term proportional to 〈2p|O|2〉
set to zero as it is not resolved with the current data and
including it overparameterizes the fit.

The spectral decomposition, given in Eqs. (15)
and (18), forms the basis of all analyses of excited-state
contamination in two- or three-point functions. In order
to extract the ground state matrix element 〈0p|OΓ|0〉 for
a given p using the three-state ansatz given in Eq. (18),
one has to, a priori, resolve 16 parameters from fits to
C3pt
O calculated as a function of t and τ . These are
A0,Ap

0 , the three each Mi and Ei, and the eight prod-
ucts of the type |Ap

0 ||A1|〈0p|OΓ|1〉 involving excited state
transition matrix elements. The ideal situation occurs
when A0,Ap

0 and the three Mi and Ei can be obtained
from, say, fits to the two-point functions for then the
fit ansatz reduces to a sum of terms with a linear de-
pendence on the unknowns. This, however, requires the
states that provide significant contributions to two- and
three-point functions at the simulated values of t and τ
are the same—naively a reasonable expectation since the
same interpolating operator N is used in both.

In Ref. [8], we showed that, operationally, this ex-
pectation fails for the form factors in the axial vector
and pseudoscalar channels. In fact, taking the three
Mi and Ei from {4}-fits to C2pt(τ ;p) to extract the ax-

ial vector form factors from C3pt
Aµ

and C3pt
P gave results

that do not satisfy the PCAC relation between them.
Since the original correlation functions, C3pt

Aµ
and C3pt

P ,

do satisfy PCAC up to discretization errors, the problem
was shown to be introduced while extracting the ground
state matrix elements from the correlation functions. We
showed that the lower-energy excited states N(q)π(−q)
and N(0)π(−q) contribute to the two sides of the oper-
ator insertion in the three-point functions even though
they are not manifest in straightforward fits to the two-
point function. The lesson was, one cannot just take
the spectrum obtained from the two-point function with
current statistics and apply it to all the three-point func-
tions. One has to explore and validate, both numerically
and theoretically, the relevant values of Mi and Ei to
use in the extraction of the various ground state matrix
elements.

Theoretically, N(q)π(−q) and N(0)π(−q) states have
much smaller energy, E1, compared to that obtained
from standard fits to the two-point function. (The
noninteracting energies of multiparticle states in a finite
box are taken to be the sum of lattice single particle
energies assuming a relativistic dispersion relation.) The
clue to their relevance came from fits to the three-point
function with the insertion of the time component of the
axial current, 〈Ω|N (τ)A4(t)N (0)|Ω〉 [8]. Fits to it using
Eq. (18) with the Ei from standard fits to C2pt(τ ;p)
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gave large χ2/dof. Consequently these data were ignored

in previous works (see Ref. [7]) because GA and G̃P
can be determined from the Ai correlators as defined
in Eqs. (20)–(22), i.e., the A4 data were superfluous
because the system of equations, Eqs. (20)–(23), is
overdetermined. The reason for the poor signal was
that the ESC in this channel is very large, in fact it
dominates the signal. Exploiting this last fact led us
to determine the relevant mass gap[s], which are much
smaller than the standard ∆E1, i.e., from {4}.

To analyze 〈Ω|N (τ)A4(t)N (0)|Ω〉 we, instead, used the
two-state version of Eq. (18) with the excited state energy
E1 left as a free parameter [8]. The resulting value, la-
beled EA4

1 , was close to the noninteracting Nπ state, and
much smaller than what the fits to the two-point func-
tion gave (labeled E2pt

1 ). The three form factors GA, GP
and G̃P , extracted using EA4

1 , satisfied PCAC to within
expected lattice systematics. This resolution has, how-
ever, created a conundrum for the analysis of all nucleon
matrix elements—what are the relevant excited-state en-
ergies, Ei, that contribute to a given matrix element, how
to determine them, and how to deal with the towers of
multiparticle states such as Nπ, Nππ, · · · that have the
same quantum numbers as the nucleon and become in-
creasingly dense as the lattice size L → ∞. Addressing
these questions is particularly hard for channels that do
not have an independent check such as PCAC.

The tools available include extracting the Ei from fits
to the three-point functions themselves, getting guidance
from heavy baryon chiral perturbation theory, evaluating
the full tower of excited states that could contribute, and
satisfying relations such as PCAC. In this paper, we at-
tempt to develop a framework to determine the relevant
Ei for each matrix element considered and, if possible, as-
sociate them with [multi]hadron states for a deeper un-
derstanding of the excited states that contribute. For
the axial channel, this is done in Appendix E, and for
the vector channel in Sec. XII

Throughout the paper, we will use Mi and Ei for first
excited-state energies determined from four-state fits to

the two-point functions, and M̃1 and Ẽ1 for the values
obtained from two-state fits to the three-point functions.

VII. EXTRACTING FORM FACTORS FROM
GROUND STATE MATRIX ELEMENTS

All matrix elements are obtained from fits to the three-
point correlators with the insertion of the various compo-
nents of the axial, pseudoscalar, scalar, tensor and vector
currents. To display these three-point correlator data we
construct the ratio, RO, of the three-point to the two-

point correlation functions,

RO(t, τ,p,0) =
C3pt
O (t, τ ;p,0)

C2pt(τ,p)
×

[
C2pt(t,p)C2pt(τ,p)C2pt(τ − t,0)

C2pt(t,0)C2pt(τ,0)C2pt(τ − t,p)

]1/2

, (19)

where C2pt and C3pt
O are defined in Eqs. (15) and (18).

This ratio gives the desired ground state matrix ele-
ment in the limits t → ∞ and (τ − t) → ∞. For
all the two-point correlation functions in Eq. (19), we
use the results of the appropriate four-state fit instead
of the measured values. When calculating the three-
point correlation functions, we use the spin projection
P = (1 + γ4)(1 + iγ5γ3)/2. As a result, the “3” direc-
tion is special while “1” and “2” are equivalent under the
rotational cubic symmetry. For the axial vector current,
qγ5γµq, the imaginary part of the Ai and real part of
A4 have a signal in the following four ratios and give the
desired form factors in the limit t and (τ − t)→∞:

R51 →
1√

(2Ep(Ep +M))

[
−q1q3

2M
G̃P

]
, (20)

R52 →
1√

(2Ep(Ep +M))

[
−q2q3

2M
G̃P

]
, (21)

R53 →
1√

(2Ep(Ep +M))

[
− q2

3

2M
G̃P + (M + E)GA

]
,

(22)

R54 →
q3√

(2Ep(Ep +M))

[
M − E

2M
G̃P +GA

]
. (23)

The G̃P can be determined from R51 with momenta
q = (i, 0, j)× (2π/La) and from R52 with q = (0, i, j)×
(2π/La). In practice, cases equivalent under the cubic
symmetry are averaged before we make the ESC fits. The
GA can be determined uniquely fromR53 with q3 = 0. In
the other momentum channels, the coupled set of equa-

tions, Eqs. (20)–(22), are solved for GA and G̃P using
the full covariance matrix. The A4 correlator gives a
second, and so far considered redundant because of the

much larger errors, linear combination of GA and G̃P .
As discussed below, it will play an important role in de-
termining the first excited state parameters, and thus in
the overall analysis.

The pseudoscalar form factor GP (Q2) is given by the
real part of R5, i.e., with O = qγ5q in Eq. (19):

R5 →
1√

(2Ep(Ep +M))
[q3GP ] . (24)

For the electric and magnetic form factors, the follow-
ing quantities, with O = (2uγµu−dγµd)/3, have a signal:

√
2Ep(MN + Ep)<(Ri) = − εij3qjGM , (25)

√
2Ep(MN + Ep)=(Ri) = qiGE , (26)

√
2Ep(MN + Ep)<(R4) = (MN + Ep)GE . (27)
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Exploiting the cubic symmetry under spatial rotations,
we construct two averages over equivalent three-point
correlators before doing fits to get the ground-state ma-
trix elements: over <(C3pt

1 ) and <(C3pt
2 ) for GM (Q2) and

over =(C3pt
1 ), =(C3pt

2 ) and =(C3pt
3 ) for GE(Q2). We la-

bel these form factors as GViM and GViE . Together with

GV4

E extracted from Eq. (27), they constitute the three
form factors analyzed. Each is obtained from a distinct
correlation function, and it is important to note that the
discretization artifacts and the excited-state contamina-
tions in these can be very different.

We remind the reader that these ratios are used only
to plot the data. Our results are obtained by making
n-state fits to the correlation functions themselves. In
making these fits we attempt to balance statistical and
systematic uncertainties. Data at smaller τ have smaller
statistical errors but larger ESC because a larger number
of states contribute. Similarly, data close to the source
and the sink have larger ESC. Therefore, for each τ we
neglect data on tskip time slices at either end, and we
make fits to data with the largest τ values that have sta-
tistically precise data. By skipping the same number of
points, tskip, at all τ fit, we increase the weight of the
larger τ data to partially compensate for the larger sta-
tistical weight given to the lower error points at smaller τ .

VIII. EXTRACTING NUCLEON CHARGES

This section covers the calculations of the isovector
nucleon charges, gu−dΓ , from the forward matrix elements:

〈N(p, s)|OΓ|N(p, s)〉 = gΓūs(p)Γus(p) . (28)

For q = 0 in the three-point functions, Eq. (19) simpli-

fies to ROΓ
(t, τ,0,0) = C3pt

OΓ
(t, τ ; 0,0)/C2pt(τ,0). With

the spin projection in the “3” direction, the Dirac matrix
structure of operators used to calculate the scalar, vec-
tor, axial and tensor charges are Γ = 1, γ4, γ3γ5 and σ12,
respectively. Since the nucleon states and all four opera-
tors, which commute with γ4, have positive parity, there-
fore all possible excited states with positive parity are
theoretically allowed in all four channels: axial, scalar,
tensor and vector. Based on conserved symmetries alone,
the ones with the smallest mass gap are N(0)π(0)π(0) or
N(1)π(−1). As mentioned above, their noninteracting
energies are roughly the same on each of the seven ensem-
bles. The unknown is their coupling in the various chan-
nels. Furthermore, the analysis of the two-point function
in Sec. V showed that there is a large range of M1 values
with similar χ2/dof in four-state fits. This range includes
the Nπ and Nππ states. We will, therefore, investigate
the impact on ground state matrix elements of choosing
values of M1 over this interval, the lower end of which is
taken to be the approximately degenerate energy of these
two states ignoring interactions.

The question is how to determine, nonperturbatively,
which of the possible states contribute significantly? In

chiral perturbation theory, N(1)π(−1) arises at one-
loop [30] and N(0)π(0)π(0) at two loops [31] in the ax-
ial channel. Similarly, the vector current couples to the
ρ meson (vector meson dominance), or equivalently the
two-pion state it decays into for sufficiently small pion
mass (see also the discussion in Ref. [32]). As will be
shown later, the contribution of these multihadron states
increases with decreasing Mπ (and q in the case of form
factors) in both the axial and the vector channels. More
generally, it is, a priori, not straightforward to narrow
down the states that give significant contributions to a
particular correlation function. Again, the criterion we
will use is the χ2/dof of the fits, input from χPT, and
the sensitivity of the observables to the value of the mass
gaps used in the fit to judge the best strategy.

To include the effect of either of the two kinds of states,
N(0)π(0)π(0) or N(1)π(−1), we use the spectrum from
the {4Nπ} fit noting that the fit to the three-point func-
tion only cares about ∆M1 and not the identity of the
state[s]. So, in the current analysis, the contributions
from all three possibilities, N(0)π(0)π(0) or N(1)π(−1)
or both, are included under the same label {4Nπ}.

We examine two more strategies, which we call
{4, 2free} and {4Nπ, 2free}, in which E1 is left a free pa-
rameter to be fixed by a two-state fit to the three-point
functions. Note that these two strategies differ only in
the ground state parameters A0 and M0 (or E0), which
are slightly different between the {4Nπ} and {4} fits as
shown in Fig. 1.

Furthermore, in Appendix D, we examine the ESC in
each charge from operator insertion on the u and d quarks
separately. These data provide additional understanding
of the statistical precision of the data, and how the errors
and ESC in the isovector (u − d) and in the connected
part of the isoscalar (u+ d) combinations, arise.

A comparison between fits with these four strategies is
shown in Figs. 17, 18 and 19 for the three charges gA,S,T .
The data show the following common features:

• The symmetry of R3pt
O (and C3pt

O ) about the mid-
point of the interval, t = τ/2, improves with statis-
tics as expected. The observed deviations, mostly
in the largest τ data for gS , are statistical fluctua-
tions (see also the discussion in Appendix D).

• The value of R3pt
O at each t (especially at the mid-

point, t = τ/2) converges monotonically toward the
τ = ∞ value. Having a clear monotonic behavior,
i.e., not obscured by the errors, is important for
choosing the values of τ to keep in the n-state fits
to remove ESC, and it improves the stability of the
fits with respect to variations in τ and tskip. .

Having data with these features, hallmarks of high statis-
tics calculations, improves the reliability of three-state
fits that we make to the largest three (four) values of τ
listed in Table XV to obtain results in the limit τ → ∞
for gA and gT (gS). To evaluate the convergence of es-
timates for gA,S,T on each ensemble, we compared re-
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FIG. 2. Data for the ratio RV4 , which give gV in the limit τ → ∞, are plotted versus t − τ/2 for the a091m170L (left two)
and a071m170 (right two) ensembles. Panels 1 and 3 show results using the {4}-state fit for C2pt in RV4 , while in panels 2
and 4 the data for C2pt are used. The final estimate shown by the gray band is the average of the five (six) central points for
τ = 14, 16 (τ = 19, 21) for the a091m170L (a071m170) ensemble.

Ensemble ID gV ZV ZV gV ZA ZS ZT ZA/ZV ZS/ZV ZT /ZV
a127m285 1.260(04) 0.806(23) 1.016(30) 0.882(13) 0.829(15) 0.892(16) 1.089(14) 1.017(40) 1.106(11)
a094m270 1.213(05) 0.828(17) 1.005(21) 0.883(12) 0.789(11) 0.928(17) 1.065(09) 0.946(25) 1.121(08)
a094m270L 1.203(02) 0.829(19) 0.997(23) 0.886(14) 0.796(14) 0.929(19) 1.070(10) 0.958(29) 1.122(09)
a091m170 1.210(03) 0.832(20) 1.006(24) 0.882(13) 0.790(15) 0.931(20) 1.061(11) 0.947(27) 1.122(08)
a091m170L 1.211(04) 0.827(18) 1.001(22) 0.875(14) 0.783(11) 0.926(15) 1.056(09) 0.943(24) 1.120(08)
a073m270 1.171(02) 0.857(15) 1.003(17) 0.899(11) 0.779(10) 0.961(18) 1.052(09) 0.911(30) 1.124(07)
a071m170 1.169(04) 0.853(13) 0.998(16) 0.896(07) 0.767(13) 0.965(15) 1.051(09) 0.897(28) 1.132(07)

TABLE III. Results for the bare vector charge gV and the renormalization constants ZA,S,T,V calculated nonperturbatively
on the lattice using the RI-sMOM scheme. The value of the product ZV gV is consistent with unity and the errors in it are
dominated by those in ZV . Note that the errors in the ratios ZA/ZV and ZT /ZV are smaller than those in ZA and ZT ,
respectively, while those in ZS/ZV are larger than in ZS .

sults from the two- and 3∗-state fits. Using this frame-
work, and the methodology for statistical analysis given
in Sec. III, the four charges, gA,S,T,V , are analyzed next.

A. gV and Operator Renormalization

The data for the vector charge obtained from the
correlator 〈N(τ,0)V4(t,0)N(0,0)〉 show a small (about
1%) variation over the range of τ values investi-
gated as illustrated in Fig. 2 for the a091m170L
and a071m170 ensembles. We show two versions of
the ratio RV (t, τ, 0, 0): C3pt

V (t, τ ; 0,0)/C2pt(τ,0)|fit and

C3pt
V (t, τ ; 0,0)/C2pt(τ,0), where in the first case we use

the result of the {4} fit, C2pt(τ,0)|fit, while in the second
case we use the two-point function itself. In both cases,
the data are essentially flat about τ/2, so for the final
value of gV , we take the average of 5–6 central points at
the largest two values of τ using the first version. The
errors in these estimates cover the spread in the values
at τ/2 for the various τ .

A check on these estimates of gV is that the product
ZV gV = 1 within O(a) discretization errors, where ZV is
the renormalization constant for the local vector current
used in this study. Values of ZV gV are shown in Table III
and deviate from unity by . 1%, i.e., by an amount
smaller than the errors in the product that come mainly
from ZV .

The calculation of the renormalization constants
ZA,S,T,V for the local axial, scalar, tensor and vector
quark bilinear operators on the lattice is done using the
regularization independent symmetric momentum (RI-
sMOM) scheme [33, 34]. Results are then converted to
the MS scheme at scale 2 GeV using two-loop matching
and three-loop running as described in Ref. [18]. The
calculation is done on all seven ensembles. Using these
estimates, together with the conserved vector charge re-
lation ZV gV = 1, we present renormalized quantities cal-
culated in two ways. In the first method, labeled Z1, the
renormalized results for operator O are given by ZOO.
In the second method, labeled Z2, we construct the two
ratios: ZO/ZV and gO/gV for the charges. For construct-
ing ZO/ZV , we start with the ratio of the two amputated
three-point functions in the RI-sMOM scheme, and for
gO/gV , the ratio of the matrix element after making the
excited-state fits for each. In both cases, these ratios are
taken within the jackknife process. For Z2, the expecta-
tion is a cancellation of correlated fluctuations in each of
the two ratios leading to smaller overall errors. The data
summarized in Table III show that the errors in ZA/ZV
and ZT /ZV are smaller than in ZA,T but not in ZS/ZV
versus ZS . Furthermore, data in Tables IV and V show
smaller errors from Z2 for gA,T and from Z1 for gS . Re-
sults from the two methods, after the CCFV fits carried
out in Sec. XIII A, differ by ∼ 0.03. When quoting the
central values, we will choose to renormalize gA,T using
Z2 and gS using Z1. The difference between the two es-
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timates will be used to assign an appropriate systematic
uncertainty in the three charges.

B. gA

The findings from the four fit strategies, {4, 3∗},
{4Nπ, 3∗} (and their two-state versions {4, 2}, {4Nπ, 2}
to check for overparameterization), {4, 2free} and
{4Nπ, 2free} are the following:

• The results from the {4, 2free} or {4Nπ, 2free} fits
are shown in Fig. 17 by the broad gray bands and

given in the labels. The output values of ∆M̃1 on
all but the a091m170L ensemble have large errors
and are much smaller than even those for the Nπ
state as shown in Table II. The reason is that the
fluctuations between the jackknife samples are un-
reasonably large. Lacking statistical control, we do
not consider these two strategies any further for
gA. In future higher precision calculations, espe-
cially on Mπ . 200 MeV ensembles, we will con-
tinue to check whether estimates from the {4, 2free}
and {4Nπ, 2free} strategies become more robust.

• Overall, two- and 3∗-state fits, irrespective of
whether inputs of ground state parameters are
from either the {4} or the {4Nπ} fits to two-point
functions, overlap on every ensemble. The 3*-state
fits are overparameterized with respect to the two-
state fits based on both the Akaike criteria and
because the uncertainty in the two additional fit
parameters is > 100% for the following ensembles
and strategies:

– a094m270: {4, 3∗}, {4Nπ, 3∗}
– a091m170: {4Nπ, 3∗}
– a091m170L: {4, 3∗}, {4Nπ, 3∗}

The values from {4Nπ, 3∗} agree with those from
{4Nπ, 2} but have larger errors. To be conservative,
we choose the {4Nπ, 3∗} results for all ensembles.

• There is a roughly 2σ difference between {4, 3∗}
and {4Nπ, 3∗} results on the Mπ ≈ 170 MeV
ensembles, a091m170, a091m170L and a071m170,
as shown in Fig. 3. The {4Nπ, 3∗} values are
larger—a smaller mass gap implies a larger ESC
and leads to a larger τ → ∞ value since the con-
vergence is from below as shown in Fig. 17. The
difference is approximately 6% at Mπ = 170 MeV,
and becomes ≈ 8% after the CCFV fits as shown
in Table X in Sec. XIII.

• A similar difference of approximately 5% is also
present in the axial form factor GA for the lowest
nonzero momentum transfer, ~q = (1, 0, 0)2π/La,
data on the Mπ ≈ 170 MeV ensembles between
the {4, 3∗} and {4Nπ, 3∗} strategies as shown in
Table XVIII.

The key issue to settle is whether the N(1)π(−1) state,
which is seen to contribute to the axial form factors at
the lowest Q2 and whose effect grows as Q2 → 0, also
contributes at the approximately 5% level to the forward
matrix element as indicated by the data. We discuss
this issue further in Sec. X, and in Sec. XIII A where we
compare these estimates of gA to the second set of values
obtained by extrapolating GA(Q2) to Q2 = 0 using the
dipole, Padé and z-expansion fits defined in Sec. X A.

C. gS

The data and fits to the largest four values of τ used
to remove ESC in gS are shown in Fig. 18. The statisti-
cal errors in individual points are much larger compared
to gA or gT , and are sizable for the Mπ ≈ 170 MeV
ensembles. The results after the ESC fits are collected
together in Table V. The notable features in the data,
fits, and results are the following:

• The {4, 2free} and {4Nπ, 2free} fits give results
with smaller errors compared to the {4Nπ, 3∗} and

{4, 3∗} fits. As shown in Table II, the ∆M̃1 ≈
1 GeV is, however, much larger than even ∆M1,
i.e., the result of the {4}-fits. Even accounting for
the fact that a two-state fit typically gives a larger

∆M1 (this can be seen by comparing a∆M
{2}
1 with

a∆M
{4}
1 in Table II), the values from the {2free} fits

are unexpectedly large.

• Estimates from the four fit strategies are consistent
on all ensembles as shown in Fig. 18 and in Table V.
No significant difference is observed between the
{4Nπ, 3∗} and {4, 3∗} values as shown in Fig. 3.

• The χ2/dof for the four fits are similar, so it cannot
be used to distinguish between them.

• The 3∗-state fits are not overparameterized by the
Akaike criteria.

• On the Mπ ≈ 170 MeV ensembles, the 0↔ 2 tran-
sition term is not well-determined in the 3∗ fits.

• The expected monotonic convergence in not yet re-
alized for the τ = 19 or 21 data on the a071m170
ensemble as shown in Fig. 18. However, as shown
in Fig. 20 in Appendix D, the data for the con-
nected insertions on u and d quarks do show it.
On making the same ESC fits to each of these to
get the τ → ∞ values, and then constructing the
isovector combination gu−dS gave overlapping val-
ues. The errors, however, are larger, presumably
because there is a cancellation of fluctuations when
fitting to the u − d data. The largest difference,
about 0.5σ, is in the a091m170L and a071m170
ensembles. Based on an analysis of subsets of data,
error reduction comes mainly from the average over
gauge configurations, i.e., the average over multiple
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fit gbare
A |q=0 gA|Z1

q=0 gA|Z2
q=0 gbare

A |dipole gbare
A |P2 gbare

A |z2 gA|Z1

z2 gA|Z2

z2

a127m285
{4, 3∗} 1.433(13) 1.264(22) 1.238(19) 1.424(13) 1.423(14) 1.424(13) 1.255(21) 1.230(19)

{4Nπ, 3∗} 1.445(13) 1.274(22) 1.248(19) 1.449(16) 1.459(19) 1.453(16) 1.281(23) 1.255(21)
{4Nπ, 2A4} - - - 1.458(18) 1.488(26) 1.465(20) 1.291(25) 1.266(23)
{4Nπ, 2sim} - - - 1.429(20) 1.432(32) 1.421(22) 1.252(26) 1.227(24)

a094m270
{4, 3∗} 1.431(51) 1.263(48) 1.256(45) 1.360(27) 1.390(52) 1.386(33) 1.224(34) 1.216(30)

{4Nπ, 3∗} 1.416(21) 1.250(25) 1.242(20) 1.365(25) 1.426(42) 1.409(28) 1.244(30) 1.237(27)
{4Nπ, 2A4} - - -
{4Nπ, 2sim} - - - 1.350(25) 1.379(49) 1.375(33) 1.213(33) 1.206(31)

a094m270L
{4, 3∗} 1.3892(96) 1.231(21) 1.236(14) 1.387(9) 1.393(10) 1.392(9) 1.234(21) 1.239(14)

{4Nπ, 3∗} 1.413(11) 1.252(22) 1.258(15) 1.410(13) 1.424(15) 1.418(14) 1.256(23) 1.262(16)
{4Nπ, 2A4} - - - 1.412(10) 1.434(13) 1.426(11) 1.264(22) 1.269(15)
{4Nπ, 2sim} - - - 1.397(12) 1.414(17) 1.406(14) 1.246(23) 1.251(17)

a091m170
{4, 3∗} 1.419(20) 1.251(25) 1.244(21) 1.399(15) 1.402(19) 1.413(19) 1.247(25) 1.240(21)

{4Nπ, 3∗} 1.495(41) 1.319(41) 1.311(38) 1.480(40) 1.469(58) 1.488(51) 1.313(49) 1.305(47)
{4Nπ, 2A4} - - - 1.412(21) 1.504(36) 1.504(31) 1.327(34) 1.319(31)
{4Nπ, 2sim} - - - 1.421(25) 1.442(41) 1.451(37) 1.280(38) 1.273(35)

a091m170L
{4, 3∗} 1.436(17) 1.257(25) 1.252(19) 1.426(17) 1.419(18) 1.423(19) 1.245(25) 1.241(20)

{4Nπ, 3∗} 1.521(41) 1.331(42) 1.327(39) 1.502(44) 1.487(51) 1.496(49) 1.309(47) 1.305(45)
{4Nπ, 2A4} - - - 1.441(25) 1.507(32) 1.504(30) 1.316(33) 1.312(29)
{4Nπ, 2sim} - - - 1.499(27) 1.538(36) 1.536(33) 1.344(36) 1.339(32)

a073m270
{4, 3∗} 1.371(15) 1.233(20) 1.232(17) 1.358(11) 1.359(17) 1.363(14) 1.226(19) 1.226(16)

{4Nπ, 3∗} 1.384(12) 1.245(18) 1.244(15) 1.361(11) 1.402(18) 1.392(13) 1.251(19) 1.251(16)
{4Nπ, 2A4} - - - 1.329(12) 1.359(18) 1.348(14) 1.212(20) 1.212(16)
{4Nπ, 2sim} - - - 1.342(12) 1.365(19) 1.360(15) 1.222(20) 1.222(17)

a071m170
{4, 3∗} 1.414(34) 1.267(32) 1.271(33) 1.371(21) 1.372(23) 1.377(24) 1.234(24) 1.237(24)

{4Nπ, 3∗} 1.479(38) 1.325(36) 1.329(36) 1.448(37) 1.476(49) 1.484(46) 1.329(42) 1.333(43)
{4Nπ, 2A4} - - - 1.359(21) 1.469(32) 1.472(30) 1.319(29) 1.323(29)
{4Nπ, 2sim} - - - 1.432(29) 1.483(44) 1.485(40) 1.330(37) 1.334(38)

TABLE IV. Results for gA from the seven ensembles and with the four strategies, specified in column one and defined in
Appendix A, used to control the excited state contamination. The second column gives estimates from the forward matrix
element (q = 0) for the two strategies {4, 3∗} and {4Nπ, 3∗} in which the excited state spectrum is taken from {4} and {4Nπ} fits
to C2pt. Columns 5–7 give gA obtained by extrapolating GA(Q2 6= 0) data using a dipole, P2 Padé and z2 fits to all ten Q2 6= 0
points. The fits to {4Nπ, 2A4} data on the a094m270 ensemble are not stable, so no results are presented. The corresponding
renormalized values using the two methods, Z1 ≡ ZAgbare

A and Z2 ≡ (ZA/ZV )× (gbare
A /gbare

V ), are given in columns 3-4 and 8-9.

measurements on each configuration is less effective
as compared to that for gA and gT .

Overall, we do not have an airtight criterion for picking
one strategy over the other. In Sec. XIII A, we perform
the CCFV extrapolation for all four cases, and the re-
sults, summarized in Table X, show consistency within
1σ. Eventually in Sec. XIII A, we will invoke the fact

that the two {2free} fits give an unexpectedly large ∆M̃1

to focus on the {4, 3∗} and {4Nπ, 3∗} values, which give
consistent results as shown in Fig. 3.

D. gT

The magnitude of the ESC and the errors in the data
for gT are smaller than those in gA or gS . Nevertheless,
we find that using a larger tskip improves the fits in many
cases. Other features in the data are the following

• The χ2/dof of fits with all four strategies are, again,
reasonable and consistent as shown in Fig. 19.

• The ∆M̃1 from {4, 2free} and {4Nπ, 2free} strategies
is determined with similar precision (5–15% error)
as from the {4Nπ} and {4} fits to the two-point
function. It is, however, much larger and com-
parable to the values found in the gS analysis as
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fit gbare
S gS |Z1 gS |Z2 gbare

T gT |Z1 gT |Z2

a127m285
{4,3*} 1.083(27)[0.94] 0.897(28) 0.874(41) 1.173(10)[1.16] 1.046(21) 1.029(14)
{4Nπ,3*} 1.091(31)[0.96] 0.904(30) 0.880(43) 1.169(12)[1.18] 1.043(22) 1.026(15)
{4, 2free} 1.036(22)[1.16] 0.858(24) 0.836(37) 1.1825(83)[1.10] 1.055(20) 1.038(13)
{4Nπ, 2free} 1.041(21)[1.15] 0.863(23) 0.840(37) 1.1839(92)[1.16] 1.056(21) 1.039(13)

a094m270
{4,3*} 1.22(10)[1.21] 0.965(83) 0.953(84) 1.102(24)[1.12] 1.022(30) 1.019(24)
{4Nπ,3*} 1.193(58)[1.22] 0.942(48) 0.930(51) 1.108(19)[1.12] 1.028(26) 1.024(19)
{4, 2free} 1.113(48)[1.19] 0.878(40) 0.867(44) 1.140(25)[1.02] 1.058(31) 1.054(24)
{4Nπ, 2free} 1.101(36)[1.21] 0.869(31) 0.858(36) 1.133(10)[1.01] 1.051(22) 1.047(12)

a094m270L
{4,3*} 1.195(24)[1.35] 0.951(25) 0.952(35) 1.0923(86)[0.96] 1.015(22) 1.019(11)
{4Nπ,3*} 1.176(43)[1.33] 0.936(38) 0.937(44) 1.095(13)[0.94] 1.017(24) 1.021(15)
{4, 2free} 1.165(15)[1.44] 0.927(20) 0.928(30) 1.1110(41)[1.03] 1.032(22) 1.0364(92)
{4Nπ, 2free} 1.178(15)[1.44] 0.938(20) 0.939(31) 1.1184(47)[1.11] 1.039(22) 1.0433(96)

a091m170
{4,3*} 1.172(60)[0.96] 0.926(51) 0.918(54) 1.054(14)[0.84] 0.981(25) 0.977(15)
{4Nπ,3*} 1.18(14)[0.95] 0.93(11) 0.92(11) 1.063(39)[0.89] 0.990(42) 0.985(37)
{4, 2free} 1.152(53)[0.98] 0.910(45) 0.902(48) 1.083(12)[0.88] 1.009(24) 1.004(13)
{4Nπ, 2free} 1.188(53)[1.00] 0.938(45) 0.930(49) 1.107(16)[0.88] 1.031(27) 1.027(17)

a091m170L
{4,3*} 1.145(73)[0.84] 0.897(58) 0.892(60) 1.061(14)[0.96] 0.983(20) 0.982(15)
{4Nπ,3*} 1.17(14)[0.85] 0.92(11) 0.91(11) 1.031(32)[1.01] 0.955(34) 0.954(31)
{4, 2free} 1.132(43)[0.91] 0.887(36) 0.882(40) 1.0977(91)[1.04] 1.017(18) 1.016(11)
{4Nπ, 2free} 1.223(57)[0.95] 0.958(47) 0.952(50) 1.149(26)[1.75] 1.064(29) 1.063(25)

a073m270
{4,3*} 1.271(25)[1.13] 0.989(23) 0.989(37) 1.0627(73)[0.87] 1.021(21) 1.0201(91)
{4Nπ,3*} 1.272(30)[1.09] 0.990(26) 0.989(40) 1.0623(86)[0.88] 1.020(21) 1.020(10)
{4, 2free} 1.230(14)[1.00] 0.958(16) 0.957(33) 1.0823(51)[1.00] 1.040(21) 1.0389(78)
{4Nπ, 2free} 1.235(14)[1.00] 0.962(16) 0.961(33) 1.0853(46)[1.01] 1.042(20) 1.0418(76)

a071m170
{4,3*} 1.22(13)[0.84] 0.94(10) 0.94(10) 1.016(22)[0.92] 0.980(26) 0.983(22)
{4Nπ,3*} 1.24(21)[0.84] 0.95(16) 0.95(16) 1.006(34)[0.89] 0.971(36) 0.974(33)
{4, 2free} 1.182(72)[0.83] 0.907(57) 0.907(62) 1.052(15)[0.89] 1.016(21) 1.019(16)
{4Nπ, 2free} 1.230(72)[0.83] 0.943(57) 0.944(62) 1.083(17)[0.96] 1.045(23) 1.049(18)

TABLE V. Results for gS and gT on the seven ensembles and for the four strategies specified in column 1 and defined in
Appendix A that are used to control the excited state contamination. The second and fifth columns give the bare values. The
renormalized values using the two different methods, Z1 ≡ ZS,T gbare

S,T and Z2 ≡ (ZS,T /ZV )× (gbare
S,T /g

bare
V ), are given in columns

3–4 and 6–7. The numbers within square brackets give the χ2/dof of the ESC fits.

shown in Table II. Thus, the same argument made
in the case of gS for choosing results from {4, 3∗}
or {4Nπ, 3∗} applies.

• The {4, 2free} and {4Nπ, 2free} estimates are sys-
tematically larger by 1–2σ as can be seen in Fig. 19

and from Table V. This is because a larger ∆M̃1

leads to a smaller τ →∞ extrapolation and thus a
larger gT because convergence is from above.

• We note a roughly 1σ difference between {4, 3∗}
and {4Nπ, 3∗} results on the a091m170L and
a071m170 ensembles, as shown in Fig. 3. While
this ≈ 2% difference is well within our error es-
timates, future calculations, especially at Mπ ≈
135 MeV, are needed to confirm whether the low-
lying multihadron states make a contribution at the

few percent level as Mπ → 135 MeV.

• For the {4Nπ, 2free} strategy, the gray band in
Fig. 19 showing the τ = ∞ value lies above the
largest τ data. This happens because the ratio
data need not converge monotonically for specific

combinations of ∆M̃1 (or ∆M4Nπ

1 ) and the size of
the ESC in the three-point function. An example
is when the contribution of the excited states in
the three-point function comes with a positive sign
(as for gT that converges from above) while that
from the two-point correlator always comes with a
negative sign. (The spectral decomposition of the
two-point function in the denominator is a sum of
positive terms because our source and sink inter-
polating operators are the same.) We have checked
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FIG. 3. The difference in the renormalized (Z1 method) axial
(top), scalar (middle) and the tensor (bottom) charges be-
tween the two strategies, {4Nπ, 3∗} − {4, 3∗}. The data are
shown for all the seven ensembles.

that this behavior describes our data, and leads to a
nonmonotonic convergence in the ratio for gT , i.e.,
the ratio data go below the gray band as τ is in-
creased and then turn back up at values of τ larger
than accessible in current calculations. Our fits to
the three-point correlators, which show monotonic
convergence in τ , are, on the other hand, robust.

Overall, as for gS , the χ2/dof of the various fits to the
data do not help us select among the strategies. We,
therefore, perform the CCFV extrapolation for all four
strategies in Sec. XIII A and then discuss our choice of
the best estimate.

IX. THE A4 THREE-POINT FUNCTION AT
Q2 6= 0 AND UNDERSTANDING ESC IN GA(Q2)

In Ref. [8], we showed that the first excited state en-
ergies M1 and E1, obtained from the four-state fit {4},
are much larger than those of the noninteracting multi-
hadron states relevant for extracting axial form factors:
N(q)π(−q) or N(0)π(−q), or Nππ or even the N(1440).
The differences are striking at small momentum trans-
fers. In fact, as illustrated in Fig. 1, estimates of E1 have
large uncertainty, and only the ground state parameters
are determined with few percent accuracy from fits to the
two-point functions. Even for M0, in spite of the seem-
ingly long plateau in the effective-mass plots starting at
τ ∼ 1 fm, estimates from {4}- and {4Nπ}-state fits differ

by 1–2%. In Ref. [8], we also showed that when Ẽ1 ex-
tracted from two-state fits to the A4 three-point function

〈N (τ,−q)A4(t, q)N (0,0)〉 is used to obtain GA, G̃P and
GP , the PCAC relation between the three form factors is
much better satisfied. That strategy, labeled SA4 in [8],
is called {4, 2A4} or {4Nπ, 2A4} in this paper.

With high statistics data, we further explore the two-
and three-state fits to the A4 correlator at nonzero mo-
mentum transfer. We can now make fits with the full
covariance matrix and can take the first excited state
parameters from two-point correlators or leave M1 and
E1 free along with the matrix elements, i.e., take only
M0, E0, A0 and Ap

0 from one of the two four-state fits
to the two-point function. To quantify the sensitivity
of the form factors to different choices for the mass gaps,
we investigate six strategies: {4, 3∗}, {4Nπ, 3∗}, {4, 2A4},
{4Nπ, 2A4}, {4, 2sim} and {4Nπ, 2sim}. The last two in-

volve a simultaneous fit, with common M̃1 and Ẽ1, to
all four Aµ and the P three-point functions as discussed
below. A more detailed discussion of the possible ex-
cited states and the limitations of analyses is given in
Appendix E.

The first comparison of such fits to the three-point
function 〈N (τ)A4(t)N (0)〉 is shown in Fig. 23 for the four
strategies {4, 3∗}, {4Nπ, 3∗}, {4Nπ, 2A4} and {4Nπ, 2sim}.
Data from six ensembles are shown for momentum trans-
fer n = (0, 0, 1) as these have large ESC. For the {4, 3∗}
strategy, the χ2/dof of the fits, given in the labels in
Fig. 23, are uniformly bad as was pointed out in Ref. [8].
Also, as shown in Fig. 4, the form factors obtained with
this strategy do not satisfy the PCAC relation rewritten
as

Q2

4M2
N

G̃P (Q2)

GA(Q2)
+

2m̂

2MN

GP (Q2)

GA(Q2)
= 1 , (29)

with m̂ given in Table I. Even though {4, 3∗} data fail the
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FIG. 4. The top four panels show tests of the PCAC relation between the axial form factors for four analysis strategies specified
at the bottom left corner. The middle panels show tests of the pion-pole dominance (PPD) hypothesis and the bottom panels

show the quantity 4MNm̂GP (Q2)/M2
πG̃P (Q2) that should equal unity for the PPD and the PCAC relation to be simultaneously

satisfied. A fit linear in Q2 is shown in the bottom right panel. The symbols and color code used to show the data from the
five larger volume ensembles are specified in the legends. Only data with Q2 ≤ 1 GeV2 are shown as the errors above it are
large in some cases.

PCAC test, we will continue to perform a full analyses
with it for the purpose of comparison.

The χ2/dof improves significantly with {4Nπ, 3∗} and
is the best with {4Nπ, 2A4} as shown in Fig. 23. The
χ2/dof of the {4Nπ, 2sim} fit is similar, however, recall it
involves a simultaneous fit to all five correlators. Also,

estimates of M̃1 and Ẽ1 are similar in the two cases. The
same is true with respect to satisfying PCAC as shown
in Fig. 4.

Next, note that ∆M1 and ∆E1 decrease on going from
{4, 3∗} to {4Nπ, 3∗} to {4Nπ, 2A4}; and the difference be-
tween ∆M1 and ∆E1 also changes. Overall, the behavior
using strategy {4Nπ, 2A4} is consistent with the results in
Ref. [8], i.e., (i) the χ2/dof of the fits are much reduced2;

(ii) the M̃1 and Ẽ1, which we label as M̃A4
1 and ẼA4

1 ,
are much smaller than those obtained from the {4}-fits

to the two-point correlation function; and (iii) M̃A4
1 and

ẼA4
1 are roughly consistent with the noninteracting ener-

gies of N(q)π(−q) and N(0)π(−q) states, respectively,
as shown in Fig. 22. These features are also consistent
with the effective field theory (χPT) result that, at lead-

2 The χ2/dof is still large in many cases indicating that the fit
ansatz used to control ESC does not fully describe the data and
highlights the need for a more nuanced understanding of excited
states that contribute significantly. This caveat should be con-
sidered implicit throughout the paper.

ing (tree) order, the axial current inserts a pion with
momentum q, i.e., the pion-pole dominance (PPD) hy-
pothesis [35, 36].

In contrast, fits to the Ai correlators with M̃1 and

Ẽ1 left as free parameters do not have good χ2/dof,
i.e., these correlators do not constrain the excited-state
parameters. The reason is that the ground state domi-
nates in the Ai correlators, whereas the excited state is
dominant in A4.

Using the M̃1 and Ẽ1 obtained from fits to A4 to also
analyze Ai and P leads to form factors that are in much
better agreement with PCAC relation as shown in Fig. 4.
This step, however, assumes that the same combination
of excited states provides the dominant contribution to
all five (O = Aµ and P ) correlation functions. If this
is the case then, statistically, the more sound method is
to fit these five correlators simultaneously with common

M̃1 and Ẽ1. These strategies are labeled {4, 2sim} and

{4Nπ, 2sim}. As expected, the resulting M̃1 and Ẽ1 from

these simultaneous fits are similar to MA4
1 and EA4

1 be-
cause these are mainly controlled by the A4 correlator.

Figure 4 also shows tests of the pion-pole dominance
hypothesis, which, with the Goldberger-Treiman rela-

tion [37], relates G̃P (Q2) to GA(Q2) as

Q2 +M2
π

4M2
N

G̃P (Q2)

GA(Q2)
= 1 . (30)
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The behavior of the data for the combination in Eq. (29)
(PCAC) and Eq. (31) (PPD) is very similar and corre-
lated, and {4Nπ, 2sim} gives the most consistent outcome.
Noting this strong correlation, we examine the relation

2m̂
2MN

M2
π

GP (Q2)

G̃P (Q2)
= 1 , (31)

which should hold for the PCAC relation, Eq. (29), and
PPD, Eq. (30), to be simultaneously satisfied. Following
Ref. [38], and working to first order in χPT in M2

π and
Q2, the left hand side of Eq. (31) can be expanded as

1 + ∆ +
1

6
〈r2
A〉M2

π +
Q2

M2
π

(
∆ +

1

6
〈r2
A〉M2

π

)
, (32)

where ∆ ≡ 2d18M
2
π/gA is the Goldberger-Treiman dis-

crepancy, and d18 is an unknown low-energy constant.
The data for the left hand side of Eq. (31), also presented
in Fig. 4, show that the ratio is close to unity at Q2 = 0
and has a significant, essentially linear, increase with Q2

on all seven ensembles. A linear fit to the five larger
volume ensembles, shown in the bottom right panel in
Fig. 4, gives 1.033(5) + 0.272(16)Q2, with Q2 in GeV2.
From Eq. (32), the quantity (∆+ 1

6 〈r
2
A〉M2

π) should equal

the intercept minus one, and also the slope timesM2
π . Us-

ing our result 〈r2
A〉 = 0.43 fm2 presented in Sec. XIII B,

we get ∆ ∼ 0 from the intercept and ∼ −0.02 from the
slope. For comparison, using the Goldberger-Treiman
relation gAMN = gπNNFπ(1 + ∆) and the experimental
values gA = 1.27641, MN = 939 MeV, Fπ = 92.2 MeV
and gπNN = 13.25 [39–41] gives ∆ ∼ −0.02. In short,
we show that the ratio defined in Eq. (31) is not unity,
and exhibits a linear dependence on Q2 that is consistent
with the prediction of χPT.

The data in Fig. 4 also show that with the {4Nπ, 2sim}
strategy, the smallest Q2 points on the a091m170L
ensemble start to deviate away from unity for both
the PCAC and PPD relations but not those from the
a071m170 ensemble. In contrast, for the {4, 3∗} strategy,
the data from both ensembles bend down at small Q2,
which we have shown is due to the missed Nπ states. To
investigate this difference between the a091m170L and
a071m170 data with the {4Nπ, 2sim} strategy, we show

(Q2 + M2
π)G̃P (Q2) versus Q2 in Fig. 26 in Appendix F,

and note that the data move up as a → 0 for all but
the {4, 3∗} strategy, i.e., they indicate a dependence on
a when the Nπ state is included. Nevertheless, we can-
not pinpoint whether the difference in behavior is a dis-
cretization effect or a combination of statistical and/or
larger discretization effects in the a091m170L data, or in-
dicates the need to include additional [multihadron] low
energy excited states in the fits. In the near future, we
plan to double the statistics on these two ensembles to
better quantify the difference and explore adding a third
state, i.e., a {4Nπ, 3sim} fit.

A. {4Nπ, 2sim} is our preferred strategy for
analyzing the axial form factors

Data from the two strategies {4Nπ, 2A4} and
{4Nπ, 2sim} show much better agreement with the PCAC
and PPD relations as shown in Fig. 4. To choose be-
tween them, we consider two additional checks: First,
the ground state matrix elements extracted from the
A4 correlator with q 6= 0 should satisfy the relation
∂4A4 = (E0 −M0)A4 for all q. Second, the value of the
ground state matrix element 〈N |A4|N〉 extracted from
fits to 〈NA4N〉 should agree with that reconstructed by

inserting GA and G̃P calculated from the Ai correlators
into the right hand side of Eq. (23). The first condition is
satisfied by both strategies even though 〈N |A4|N〉 is very
poorly determined with {4Nπ, 2A4}. The second check
is satisfied within errors only by data from {4Nπ, 2sim}.
Based on these two consistency checks and the PCAC
relation, we select {4Nπ, 2sim} as our preferred strategy
for analyzing the axial form factors, however, we will
continue to examine all six strategies discussed above to
exhibit the spread.

The obvious next step is {4Nπ, 3sim} fits, i.e., leaving
the first and second excited-state energy gaps as free pa-
rameters (or using priors for them) in fits to the three-
point functions. With current data, we do not get mean-
ingful results. Much higher statistics are required.

X. AXIAL VECTOR FORM FACTORS

As discussed in Sec. IX, we compare six strategies to
extract the axial vector form factors, with our preferred
one being {4Nπ, 2sim}. It makes the following assump-
tion: the excited-state contamination in all five chan-
nels, Aµ and P , can, to a good approximation, be ac-
counted for by a “single low mass effective excited state”
whose parameters can be determined from a simultane-
ous two-state fit to the five three-point functions. Only
the ground state parameters are taken from fits to the
two-point functions.

We find that the two sets of estimates using {4Nπ, 2A4}
and {4Nπ, 2sim}, versus {4, 2A4} and {4, 2sim} fits give
overlapping results for the form factors, which satisfy
PCAC equally well. These two sets differ only in the
M0 and A0 obtained from the {4Nπ}- and {4}-state fits
to the two-point functions, and these differences do not
significantly impact the results for the form factors. It
is the mass gap of the first excited state used in the fits
to the three-point function that is important. In both

the {2A4} and {2sim} fits, the output ∆Ẽ1 is controlled
by the A4 correlator and corresponds to the Nπ state
as discussed in Sec. IX. Thus, the impact of including
the Nπ state is far more significant in the 3-point
functions, however, our approach is to consistently
choose strategies in which the mass gap in both the two-
and three-point functions does or does not include the
low-lying (Nπ) state. This is achieved with the {4, 3∗},
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fit 〈r2
A〉|dipole 〈r2

A〉|P2 〈r2
A〉|z2

a127m285
{4, 3∗} 0.293(13) 0.293(20) 0.297(15)

{4Nπ, 3∗} 0.315(13) 0.333(22) 0.323(15)
{4Nπ, 2A4} 0.302(15) 0.349(32) 0.315(18)
{4Nπ, 2sim} 0.304(15) 0.310(42) 0.297(21)

a094m270
{4, 3∗} 0.255(18) 0.293(65) 0.291(29)

{4Nπ, 3∗} 0.265(14) 0.340(43) 0.314(18)
{4Nπ, 2A4}
{4Nπ, 2sim} 0.247(11) 0.280(48) 0.278(23)

a094m270L
{4, 3∗} 0.290(11) 0.305(18) 0.305(13)

{4Nπ, 3∗} 0.317(11) 0.348(20) 0.336(13)
{4Nπ, 2A4} 0.312(9) 0.358(19) 0.339(12)
{4Nπ, 2sim} 0.298(10) 0.333(26) 0.317(16)

a091m170
{4, 3∗} 0.301(15) 0.307(30) 0.340(29)

{4Nπ, 3∗} 0.376(33) 0.355(92) 0.411(69)
{4Nπ, 2A4} 0.292(16) 0.459(52) 0.466(41)
{4Nπ, 2sim} 0.306(16) 0.350(59) 0.378(53)

a091m170L
{4, 3∗} 0.341(19) 0.323(30) 0.342(30)

{4Nπ, 3∗} 0.449(45) 0.426(74) 0.462(63)
{4Nπ, 2A4} 0.311(20) 0.486(48) 0.484(40)
{4Nπ, 2sim} 0.369(19) 0.478(61) 0.479(51)

a073m270
{4, 3∗} 0.269(12) 0.270(24) 0.280(17)

{4Nπ, 3∗} 0.271(9) 0.330(22) 0.312(12)
{4Nπ, 2A4} 0.242(9) 0.287(21) 0.271(14)
{4Nπ, 2sim} 0.253(8) 0.285(22) 0.278(13)

a071m170
{4, 3∗} 0.284(22) 0.288(36) 0.306(38)

{4Nπ, 3∗} 0.368(29) 0.428(66) 0.455(56)
{4Nπ, 2A4} 0.271(15) 0.494(47) 0.507(39)
{4Nπ, 2sim} 0.308(18) 0.424(67) 0.438(59)

TABLE VI. Results for 〈r2
A〉 from a dipole, P2 Padé and z2

fits to all ten Q2 6= 0 points for the seven ensembles and the
four strategies in column 1 (see Appendix A), used to control
excited state contamination. The fits to {4Nπ, 2A4} data on
the a094m270 ensemble are not stable so no results are given.

{4Nπ, 3∗}, {4Nπ, 2A4} and {4Nπ, 2sim} strategies (see
Appendix A for their definition), which are, therefore,
used to present the final results. We do not discuss
estimates from the {4, 2A4} and {4, 2sim} strategies any
further since all we can add from their analysis is they
give results consistent with {4Nπ, 2A4} and {4Nπ, 2sim}.

The data for ZAGA(Q2) and ZAG̃P (Q2) for the four
remaining strategies are given in Tables XVIII and XIX
and plotted in Figs. 5 and 6, where we divide them by
gexp
A = 1.277 so that the value should equal unity at
Q2 = 0 in the CCFV limit. Similarly, the unrenormalized
GP (Q2) is given in Table XX and plotted in Fig. 7. The
latter is used primarily to check the PCAC and PPD
relations as shown in Fig. 4.

A. Parameterizing the Q2 behavior of GA(Q2) and
the extraction of gA and 〈r2

A〉

Our primary goal is to calculate the axial form factors,

GA and G̃P , as a function of Q2 as these are needed in the
calculation of the neutrino-nucleus cross-sections. These
results are shown in Figs. 5 and 6.

In most current lattice QCD calculations, the smallest
nonzero lattice momentum, which is also the gap between
the discrete momenta, is large, |qmin| ≥ 200 MeV. Con-
sequently, it is important to keep in mind that obtaining
the slope and the value at Q2 = 0 from fits to lattice
data with Q2 & 0.04 GeV2 have an associated system-
atic uncertainty. This can be estimated by comparing gA
obtained directly at Q2 = 0 from the forward matrix el-
ement with the extrapolated value GA(Q2 → 0). In this
work, we perform this extrapolation using three param-
eterizations, dipole, Padé and z-expansion, as discussed
below and in Sec. XIII A.

Historically, the dipole (D) ansatz has been used to
parameterize the Q2 behavior of GA(Q2):

GA(Q2)|D =
GA(0)

(1 +Q2/M2
A)2

=⇒ 〈r2
A〉 =

12

M2
A

. (33)

It is the Fourier transform of a distribution exponen-
tially falling in space, and appealing for phenomenologi-
cal analyses because it has only one unknown parameter,
the axial mass MA since gA is known accurately from
experiments. Also, it goes to zero as Q4 for large Q2 as
predicted by QCD perturbation theory [42, 43].

The second parameterization used is the model-
independent z-expansion [44, 45]:

GA(Q2)

GA(0)
=

∞∑

k=0

akz(Q
2)k , (34)

where the ak are fit parameters and z is defined to be

z =

√
tcut +Q2 −

√
tcut + t0√

tcut +Q2 +
√
tcut + t0

. (35)

In terms of z, the form factors are analytical within the
unit circle with the nearest singularity, a branch cut, at
Q2 = −tcut = −9M2

π (or −4M2
π in the vector channel).

We choose the parameter t0, which is the value of −Q2

that is mapped to z = 0, to be the midpoint of the
range of Q2 values on each ensemble to minimize the
maximum value of |z| as discussed in Ref. [8]. For the
seven ensembles listed in Table XV, this corresponds to
t0 = {0.4, 0.6, 0.3, 0.3, 0.2, 0.5, 0.25} GeV2, respec-
tively. We find no significant difference in the results on
using t0 = 0.

The data for ZAGA(Q2)/1.277 are plotted versus z in
Fig. 8 for the {4Nπ, 2sim} strategy and show only small
deviations from linearity. As a result, z-expansion fits
with z{2,3,4} truncations give essentially identical results
for both gA and 〈r2

A〉. As shown in Fig. 9, the augmented
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FIG. 5. The data for the renormalized axial form factor ZAGA(Q2)/gexp
A , with gexp

A = 1.277, are plotted versus Q2 in GeV2

(left) and Q2/M2
N (right). Each panel shows the data from the five larger volume ensembles. The four rows show the results

from four strategies, specified at the lower left corner of each panel that are used to control ESC. The three curves show the
dipole ansatz with MA = 1.026, 1.2 and 1.35 GeV, and have been drawn only to guide the eye. The agreement of the three
∼ 270 and the two 170 MeV data indicates that discretization errors are small.



21

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2 [GeV2]

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4, 3∗} 0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2/M2N

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4, 3∗}

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2 [GeV2]

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 3∗} 0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2/M2N

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 3∗}

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2 [GeV2]

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 2A4} 0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2/M2N

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 2A4}

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2 [GeV2]

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 2sim} 0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1 1.2

Z
A
G̃
P
/
g
E
xp
A

Q2/M2N

a127m285
a094m270L
a091m170L
a073m270
a071m170

PPD: MA = 1.0GeV
PPD: MA = 1.3GeV

{4Nπ, 2sim}

FIG. 6. The data for the renormalized induced pseudoscalar form factor ZAG̃P (Q2)/gexp
A , with gexp

A = 1.277, are plotted versus
Q2 in GeV2 (left) and Q2/M2

N (right). Each panel shows the data from the five larger volume ensembles. The four rows show
the results from four strategies for controlling ESC that are specified in the label at the bottom left corner. The difference
among the three ∼ 270 and the two 170 MeV data is more noticeable when plotted versus Q2/M2

N .
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χ2 does not decrease by two units on increasing the or-
der of truncation from z2 → z3 → z4. Therefore the
z{3,4} fits are considered overparameterized by the Akaike
information criteria [27]. In Ref. [9], we had observed
that fitting the precise experimental data for the electric
and magnetic form factors stabilizes for zk truncated at
k ≥ 4. Our current lattice data with ten points are well
fit by the z2 (z3) truncation for the axial (vector) form
factors as discussed further in Sec. XII.

We also examine z-expansion fits with sum rules that
ensure that GA(Q2) falls as Q−4 with Q2 → ∞ as pre-
dicted by perturbation theory [43] following the proce-
dure described in Ref. [9]. Results of analyses with and
without sum rules overlap. Our final results for gA (Ta-
ble IV) and 〈r2

A〉 (Table VI) are taken from fits without
sum rules as these quantities characterize the behavior
at Q2 = 0. To stabilize all these z-expansion fits, we use
Gaussian priors for all the ak with central value zero and
width five.

Last, we make two Padé fits, P2 ≡ P (g, 0, 2) and P3 ≡
P (g, 1, 3), defined as

P (g, 0, 2) =
g

1 + b1Q2 + b2Q4
, (36)

P (g, 1, 3) =
g(1 + a1Q

2)

1 + b1Q2 + b2Q4 + b3Q6
. (37)

These also incorporate the 1/Q4 behavior expected at
large Q2. Since the calculation is done for spacelike Q2

and at values sufficiently far from the physical poles and
cuts, their influence is expected to be small. Therefore,
these Padé fits should provide an equally good parame-
terization as the z-expansion.

We find that P2 gives results consistent with the z2,3,4

fits, and has the virtue of being easier to visualize in
terms of powers of Q2. In Sec. XIV we will also present
a P (g, 0, 2) and z2 (or z3) parameterization of the axial,
electric and magnetic form factors ignoring lattice arti-
facts, with results given in Eqs. (55), (56) and (58).

To explore systematic errors due to the limited range
of Q2 points fit, we compare results obtained by fitting

all ten Q2 6= 0 points versus the six with the smallest Q2

values. This cut, based on the number of points rather
than a value of Q2 in physical units, is chosen because,
in the problematic cases in the vector channel, the errors
are large in the four largest Q2 points as can be seen in
Figs. 12–14. Based on this comparison, we selected ten-
point fits for the axial form factors and six-point for the
vector.

Results for gA and 〈r2
A〉 depend on both the strategy

used to obtain the ground state matrix element and on
the fits (dipole, or the z-expansion or the Padé) used to
parameterize the Q2 behavior of GA(Q2). In particular,
the value of the low Q2 points in GA(Q2) vary between
the strategies as shown in Fig. 21, which in turn leads
to differences in the Q2 parameterization, i.e., in gA and
〈r2
A〉. These differences can be inferred from the labels in

Fig. 9, where the three panels give Q2 fits to GA(Q2 6= 0)
data for the {4, 3∗}, {4Nπ, 3∗} and {4Nπ, 2sim} strategies
for the a091m170L and a071m170 ensembles. Recall that
the difference in gA, obtained from the forward matrix
element, between the {4, 3∗} and {4Nπ, 3∗} strategies was
shown in Fig. 3.

Comparing results for gA and 〈r2
A〉 from the seven en-

sembles, summarized in Tables IV and VI, we note the
following points:

• With the {4, 3∗} strategy, results for gA from
dipole, z{2,3,4} and Padé fits agree with those mea-
sured directly from the forward matrix element on
all ensembles. The fits have reasonable χ2/dof.

• For the {4Nπ, 3∗} strategy, similar agreement is
seen between results from the dipole, z{2,3,4} and
Padé fits, and from the forward matrix element.
However, these estimates are larger than those
with the {4, 3∗} strategy, especially for the Mπ ≈
170 MeV ensembles (see Fig. 3).

• With the {4Nπ, 2A4} and the preferred {4Nπ, 2sim}
strategies, (i) the dipole estimates are smaller than
the z{2,3,4} or the Padé values on all three Mπ =
170 MeV ensembles, and (ii) the χ2/dof becomes
larger for the dipole fit to the data from all three
{4Nπ} strategies, mainly because it misses the low
Q2 points.

A key point is that the differences observed on the
Mπ ≈ 170 MeV ensembles are not evident at Mπ ∼
270 MeV. This is consistent with the earlier discussion
that the difference in the mass gaps between the {4} and
{4Nπ} fits become larger as Mπ decreases, i.e., the mass
gap of the Nπ state decreases. In short, the data shown
in Tables IV and VI indicate that estimates of gA and
〈r2
A〉 become increasingly sensitive to the ESC strategy

as Mπ → 135 MeV. Also, the dipole fit starts to fail. This
Mπ dependent behavior has a significant impact on the
final estimates obtained from the CCFV fits as discussed
in Sec. XIII and shown in Fig. 32.
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FIG. 9. Plot of GA versus Q2 for the a091m170L (top row) and a071m170 (bottom row) ensembles. Also shown are the dipole,

Padé (gA,0,2) and z{2,3,4} fits to the ten Q2 points. The results for unrenormalized gA and rA (in fm) are given in the legends:
dipole (top line), Padé (second line) and z2,3,4 (lines 3-5). The χ2/dof of the fits are given within square brackets. The error
bands of the fits are shown by dotted lines of the same color only over the range of the data for clarity.

ESC strategy c0 c1 c2 c3 [χ2/dof ] g∗P |Z1 gπNN |Z1 g∗P |Z2 gπNN |Z2

Q2 fits to the a091m170L data

{4, 3∗} 0.0356(16) 0.136(37) -2.13(30) - [29.38/7] 3.89(15) 7.52(39) 3.87(15) 7.50(38)
{4, 3∗} 0.0312(18) 0.545(93) -11.8(2.0) 65(13) [6.22/6] 3.76(16) 6.59(42) 3.75(15) 6.57(41)

{4Nπ, 3∗} 0.0501(41) -0.13(10) -0.99(74) - [15.91/7] 5.19(36) 10.59(90) 5.17(36) 10.55(90)
{4Nπ, 3∗} 0.0425(49) 0.43(23) -14.0(4.7) 87(31) [8.04/6] 4.86(38) 9.0(1.1) 4.84(38) 8.9(1.1)
{4Nπ, 2A4} 0.0548(23) -0.287(64) 0.86(48) - [3.59/7] 5.55(21) 11.56(57) 5.53(19) 11.53(54)
{4Nπ, 2A4} 0.0530(33) -0.18(15) -1.2(2.9) 13(18) [3.06/6] 5.45(25) 11.20(75) 5.43(23) 11.17(73)
{4Nπ, 2sim} 0.0529(25) -0.196(83) -0.05(71) - [4.02/7] 5.43(21) 11.17(60) 5.41(20) 11.13(58)
{4Nπ, 2sim} 0.0516(40) -0.11(21) -1.8(4.3) 12(28) [3.85/6] 5.36(27) 10.90(89) 5.34(26) 10.86(88)

Q2 fits to the a071m170 data

{4, 3∗} 0.0192(17) 0.116(67) -2.04(70) - [10.98/7] 3.69(27) 6.89(63) 3.71(27) 6.91(63)
{4, 3∗} 0.0174(18) 0.47(14) -13.7(4.1) 102(36) [2.81/6] 3.66(27) 6.22(67) 3.67(27) 6.24(67)

{4Nπ, 3∗} 0.0318(27) -0.231(94) 0.32(92) - [7.43/7] 5.73(42) 11.38(99) 5.75(43) 11.4(1.0)
{4Nπ, 3∗} 0.0271(34) 0.21(23) -12.0(5.8) 104(48) [2.82/6] 5.24(48) 9.7(1.3) 5.25(49) 9.7(1.3)
{4Nπ, 2A4} 0.0325(11) -0.295(49) 1.83(59) - [7.24/7] 5.81(17) 11.64(48) 5.83(17) 11.68(48)
{4Nπ, 2A4} 0.0359(20) -0.60(16) 10.0(4.2) -67(34) [3.34/6] 6.19(26) 12.87(80) 6.21(26) 12.91(80)
{4Nπ, 2sim} 0.0342(15) -0.295(66) 1.22(76) - [2.54/7] 6.13(23) 12.24(61) 6.15(24) 12.28(62)
{4Nπ, 2sim} 0.0354(26) -0.40(19) 4.1(5.0) -24(41) [2.20/6] 6.27(34) 12.69(98) 6.29(34) 12.73(98)

TABLE VII. Results of fits to
mµ

2MN
G̃P (Q2) versus Q2 using the ansatz and the parameters ci defined in Eq. (38). The strategies

used to remove ESC in column 1 are defined in Appendix A. Fits to a091m170L data (top) and a071m170 (bottom), with and
without the finite volume (c3) term, are compared for the four strategies listed in column one. All ten values of Q2 are used in
the fits and results are given for both renormalization methods.

XI. THE INDUCED PSEUDOSCALAR FORM
FACTOR G̃P (Q2) AND THE EXTRACTION OF g∗P

AND gπNN

The data for the renormalized induced pseudoscalar

form factor ZAG̃P (Q2)/(gexp
A ) from the five larger volume

ensembles are plotted versus Q2 and Q2/M2
N in Fig. 6.

Overall, the data show dependence on the pion mass, i.e.,
data fall into two bands for ensembles withMπ ≈ 270 and
170 MeV. This dependence is more evident when plotted
versus Q2/M2

N . On the other hand, we do not observe a
significant a dependence.



25

Ensemble {4, 3∗} {4Nπ, 2sim} {4, 3∗} {4Nπ, 2sim}
g∗P |Z1 g∗P |Z2 g∗P |Z1 g∗P |Z2 gπNN |Z1 gπNN |Z2 gπNN |Z1 gπNN |Z2

a127m285 2.266(66) 2.221(61) 2.655(81) 2.602(78) 11.30(53) 11.08(51) 13.64(67) 13.37(65)
a094m270 2.52(16) 2.50(16) 2.87(10) 2.851(96) 11.27(89) 11.20(87) 12.97(59) 12.90(57)

a094m270L 2.455(94) 2.465(89) 2.919(68) 2.931(55) 10.89(56) 10.94(54) 13.46(46) 13.51(43)
a091m170 3.93(14) 3.91(14) 5.53(22) 5.50(21) 7.77(37) 7.73(36) 11.30(56) 11.24(55)

a091m170L 3.89(15) 3.87(15) 5.43(21) 5.41(20) 7.52(39) 7.50(38) 11.17(60) 11.13(58)
a073m270 2.45(11) 2.45(10) 2.883(54) 2.883(48) 11.11(62) 11.11(62) 13.30(40) 13.30(39)
a071m170 3.69(27) 3.71(27) 6.13(23) 6.15(24) 6.89(63) 6.91(63) 12.24(61) 12.28(62)

TABLE VIII. Results for g∗P ≡ mµ
2MN

G̃P (0.88m2
µ) and gπNN ≡ c0

2a2mµFπ
from fits to

mµ
2MN

G̃P (Q2) using Eq. (38) with the term

proportional to c3 set to zero. Estimates from the two renormalization methods and the two strategies {4, 3∗} and {4Nπ, 2sim}
are compared.

The Q2 dependence of G̃P (Q2), given in Table XIX, is
analyzed using the small Q2 expansion of the pion-pole
dominance ansatz given in Eq. (30):

mµ

2MN
G̃P (Q2) =

c0
a2(M2

π +Q2)
+ c1 + c2a

2Q2 + c3a
4Q4 ,

(38)
where the leading term is the pion-pole term and the
polynomial approximates the dependence coming from
the small Q2 behavior of GA(Q2). It is also the behavior
predicted for small Q2 and M2

π by the leading order chiral
perturbation theory [38]. In practice, this ansatz fits the
data over a large range of Q2, 2.5M2

π – 50M2
π in units of

Mπ = 135 MeV, as given in Table XVII.
From these fits, we extract g∗P and the pion-nucleon

coupling, gπNN , using the following expressions:

g∗P ≡
mµ

2MN
G̃P (0.88m2

µ) , (39)

gπNN ≡ lim
Q2→−M2

π

M2
π +Q2

4MNFπ
G̃P (Q2) =

c0
2a2mµFπ

, (40)

where gπNN is defined as the residue of G̃P (Q2) at the
pion pole at Q2 = −M2

π , and mµ = 105.7 MeV is the
muon mass and Fπ = 92.2 MeV is the pion decay con-
stant.

We carried out fits to G̃P (Q2) versus Q2 to get g∗P
and gπNN using (i) just the sma llest six Q2 points and
(ii) to all ten. On all seven ensembles and for all four
strategies (except for the four highest momenta points
with the {4Nπ, 2A4} strategy on the a094m270 ensemble
that could not be fit reliably) the estimates from these
two fits are consistent at < 1σ level. For our final results,
we choose the ten-point fits.

A second issue is whether the Q4 term in Eq. (38) is
needed or is an overparameterization. Results of the fits
with and without the Q4 term are given in Table VII
for the a091m170L and a071m170 ensembles. We note a
significant difference between the {4, 3∗} and {4Nπ, 3∗}
strategies and in both cases there is a large reduction
in the total χ2, which justifies including the Q4 term
by the Akaike information criteria [27]. The errors on
c0 are, however, about a factor of 2 larger with the
{4Nπ, 3∗} strategy. Estimates from the {4Nπ, 2A4} and

the {4Nπ, 2sim} strategies are consistent and larger than
those from even {4Nπ, 3∗}. In these two cases, the Q4

term is an overparameterization by AIC and in fits in-
cluding it, even the c1 are poorly determined.

Data from all seven ensembles obtained using strate-
gies {4, 3∗} and {4Nπ, 2sim} are given for the two ways of
renormalizing the axial current in Table VIII. It shows
clearly that the main difference in the estimates comes
from whether the Nπ state is included in the analysis.

Our final results are presented with the {4Nπ, 2sim}
strategy based on the discussion in Sec. IX A and with
the term proportional to c3 set to zero. The CCFV fits
to the data in Table VIII are discussed in Sec. XIII C
where we also compare our final results for gπNN with
the phenomenological Goldberger-Treiman relation and
the experimental value from the πN scattering length.

XII. ELECTRIC AND MAGNETIC FORM
FACTORS

To obtain the electric and magnetic form factors, we
analyze the three sets of correlators, <V4, =Vi and <Vi
defined in Eqs. (25)–(27) using four strategies {4, 3∗},
{4Nπ, 3∗}, {4, 2sim} and {4Nπ, 2sim} to remove ESC. In
the {2sim} fits to the three-point functions, all three cor-

relators are fit simultaneously with common ∆M̃1 and

∆Ẽ1. Only the ground state parameters are taken from
the two-point function. Fits with different strategies are
illustrated in Figs. 27, 28 and 29 using the lowest momen-
tum transfer (n2 = 1) data that have significant ESC and
a good statistical signal, and the fits are stable with re-
spect to variations in τ and tskip. The χ2/dof of the fits
and the values of ∆M1 and ∆E1 entering in the fits to

the three-point functions (or ∆M̃1 and ∆Ẽ1 that are out-
comes in the {2sim} fits) are given in the legends. Note
that for each strategy, the mass gaps in fits to the three
correlation functions are the same since they either are
taken from fits to two-point functions for the first two
strategies or are outputs of simultaneous fits in the two
{2sim} cases.

The first issue we investigate is whether the excited
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FIG. 10. Estimates, in lattice units, of ∆M1 (black filled circles) and ∆E1 (open black diamonds) from fits to the two-point
function for four ensembles in the order a094m270L, a073m270 , a091m170L and a071m170 in each row. Each panel also shows

the values of ∆M̃1 (open blue squares) and ∆Ẽ1 (open red triangles) from the {4, 2sim} (top row) and the {4Nπ, 2sim} (bottom
row) fits to the vector three-point functions. The mass gaps of the noninteracting N(q)2π(−q) and N(0)2π(−q) states are
shown by the dotted blue and red lines. The horizontal dotted black lines show the masses of 1, 2, . . . pions.

states that contribute to these three correlators can be
identified. The analog of the pion-pole dominance in the
axial channel is vector-meson dominance, i.e., the vec-
tor current, Vµ(q), couples to the ρ-meson, the lowest
excitation in the vector channel, and thus to the 2π(q)
state. In this case, the dominant excited state contribut-

ing to ∆M̃1 and ∆Ẽ1 should be N(q)2π(−q) (and/or
N(0)2π(0)) and N(0)2π(q), respectively, where 2π(q) is
a two pion state with total momentum q.

In Fig. 10, the ∆M̃1 and ∆Ẽ1 from simultaneous
{2sim} fits are compared to the ∆M1 and ∆E1 from the
{4}- and {4Nπ}-state fits to the two-point functions and
to the mass gaps expected for a specified state (dotted
lines). Our criteria for identification of a state is when the

∆M̃1 or ∆Ẽ1 agree with the corresponding dotted line.
We remind the readers that {4Nπ}-state fits are also rel-
evant for the vector channel because the mass gap of the
N(0)π(0)π(0) state is close to that for the N(1)π(−1)
state for our ensembles. The data exhibit the following
features:

• The ∆Ẽ1 (open red triangles) for the 170 MeV en-
sembles are consistent with the energy of a nonin-
teracting N(0)2π(q) state shown by the red dotted
line. This agreement is seen for both the {4, 2sim}
and {4Nπ, 2sim} strategies.

• The ∆Ẽ1 for the 270 MeV ensembles lie between
1 and 2 times Mπ. The closest association would
be N(q)π(0) or N(0)π(q) or N(q)2π(0) states but
not the N(0)2π(q) state shown by the red dotted
line.

• The values of ∆M̃1 (blue squares) lie much below

the N(q)2π(−q) state shown by the blue dotted
line for the 270 MeV ensembles, however, the dif-
ference decreases significantly in the data from the
170 MeV ensembles. The increase with q also be-
comes similar in shape to that for N(q)2π(−q).

• The ∆M̃1 are similar to ∆Ẽ1 for the 170 MeV en-
sembles while they lie about Mπ/2 above for the
270 MeV ensembles. This behavior is very differ-
ent from the axial case shown in Fig. 22.

• With {4Nπ, 2sim}, the mass gap ∆M̃1 ≈ ∆Ẽ1 and
comes close to ∆E1 used in {4Nπ, 3∗} for both
170 MeV ensembles. Such an agreement in the
mass gaps in the {4Nπ, 2sim} and {4Nπ, 3∗} strate-
gies implies that they should give similar results.

These trends in ∆M̃1 and ∆Ẽ1 support vector meson
dominance, i.e., the insertion of 2π(q) by the current,
which we anticipate will become even more apparent on
physical Mπ = 135 MeV ensembles. This is in analogy
with pion-pole dominance with the axial current inserting

π(q) as inferred from Fig. 22. The values of ∆M̃1 from
the Mπ ≈ 270 MeV ensembles lying close to 2Mπ suggest
that the N(0)2π(0) state and its tower also contribute
on the p = 0 side of the operator.

Next, we investigated whether the data for GE from
=Vi, which show large ESC as illustrated in Fig. 28 and
similar to that seen in 〈N †A4N〉, provide further insight
on the identity of the excited states. We find that the
χ2/dof of even the {4, 3∗} fits is not unreasonably large
compared to the other strategies even though the val-
ues of ∆M1 and ∆E1 are significantly different. Overall,
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current data for GViE do not help us decide which excited
states give the dominant contribution.

An important feature in the ESC fits shown in Figs. 27
and 29 in Appendix G is that while the differences in the
mass gaps between the four strategies are large, the varia-
tion in results for GV4

E and GViM is . 5%. The smallness of
the variation is further highlighted in Figs. 12 and 14—all
four estimates of the form factors are consistent within
errors with the Kelly parameterization of the experimen-
tal data.

We base our choice of which strategy to choose for
presenting the final results on the trends in the mass gaps
illustrated in Fig. 10. The first is the growing agreement

between ∆M̃1 and ∆Ẽ1 in the {4Nπ, 2sim} data. Next,
their agreement with the ∆M1 and ∆E1 from the {4Nπ}
fits. Last, ∆M̃1 ≈ 2Mπ suggests that the lowest excited
state N(0)π(0)π(0) also contributes. These trends sug-
gest that the {4Nπ, 2sim} and {4Nπ, 3∗} strategies should
give similar results for the form factors. Thus we will
choose between these when presenting the final results.

Results for the renormalized form factors from the four
strategies are given in Tables XXII, XXIII, and XXIV.
The χ2/dof of the fits used to remove the ESC are rea-
sonable in most cases. The errors are the smallest in
the {4, 3∗} data, and are large for many of the large Q2

points from the {4, 2sim} and the {4Nπ, 2sim} fits. For
this reason, we choose fits to the smallest six Q2 points
for calculating the charge radii.

A comparison of the form factors, and the errors in
them, among the four strategies is shown in Fig. 11
for the five large volume ensembles. For each strat-
egy, the full data from the seven ensembles are shown
in Figs. 12, 13 and 14. The GViE show significant varia-
tion between the strategies, with the {4, 2sim} data being
closest to the Kelly curve. Part of this observed varia-
tion is a result of a poorer statistical signal and part due
to less control over ESC. For these reasons, we do not
include GViE in our final analysis; however, this channel

influences the extraction of ∆M̃1 and ∆Ẽ1 from the si-
multaneous {2sim} fits.

For the two cases with the best signal, GE from <V4

and GM from <Vi, we make the following observations
from Fig. 11 using the Kelly curve as a benchmark and
to guide the eye:

• No significant difference is observed between the
data from the two simultaneous fits, {4, 2sim} ver-
sus {4Nπ, 2sim}, i.e., the differences in the ground
state parameters used do not significantly affect the
results. On the four largest Q2 points, the errors
are large in many cases, but the overall shape of
the data is similar for all four strategies.

• Results for GV4

E and GViM lie close to the Kelly
parameterization for all four strategies, with the
{4Nπ, 3∗} data plotted versus Q2/M2

N showing the
best agreement.

• All four strategies give consistent results on the

Mπ ≈ 270 MeV ensembles.

• In Fig. 11, one can notice (i) a small spread among

the four strategies in GV4

E on the Mπ ≈ 170 MeV
ensembles, (ii) a small upward movement of data
from a091m170L to a071m170, and (iii) the {4, 3∗}
and both {2sim} data on a ≈ 0.07 fm ensembles lie
above the Kelly curve.

• The GViM data also move upwards from a091m170L
to a071m170. The {4, 3∗} strategy data lie below
others on the two smallest Q2 points.

• The data plotted versus Q2 show some dependence
on a and/or M2

π , whereas when plotted versus
Q2/M2

N , no significant dependence on either a or
M2
π is observed, and the agreement with the Kelly

curve is better. The size of the observed differ-
ence among the data plotted versus Q2 or Q2/M2

N
can be accounted for by discretization errors. As-
suming that there is a cancellation of these in the
analysis versus the dimensionless quantity Q2/M2

N ,
we choose it for presenting our final results.

As mentioned above, the analog of the PCAC relation
for the electromagnetic form factors is the conserved vec-
tor charge, i.e., limQ2→0GE(Q2) ≡ gV = 1/ZV . Since
gV from the forward matrix element has O(1%) excited-
state effect as shown in Fig. 2, one could use it to pick the
best strategy, i.e., the one for which the extrapolation of
GE(Q2) to Q2 = 0 using the z2 or Padé fit is most con-
sistent with gV . However, data from all four strategies
shown in Figs. 12 and 14, are consistent within expected
lattice artifacts with the Kelly parameterization, so this
check does not help in picking among the strategies.

The reduction in scatter in the form factors under vari-
ation in a and Mπ when plotted versus Q2/M2

N is consis-
tent with the analysis of clover-on-HISQ data presented
in Ref. [9], where results by other collaborations carried
out at or near the physical pion mass were also reviewed.
On the other hand, the improvement in agreement with
the Kelly curve of the clover-on-clover data presented
here is striking. (See in particular the {4Nπ, 3∗} strategy
data plotted versus Q2/M2

N in Figs. 12 and 14.) Beyond
the fact that the clover-on-clover formulation is unitary,
the only substantial change in the lattice methodology
we have made over the clover-on-HISQ calculations is the
random parity transformation (see Eq. (14) in Sec. III)
on all the lattices [17, 18]. Symmetry under parity plays
an important role in constraining the excited states that
should contribute; for example it disallows the N(0)π(0)
state. So, while we expect improvement in the precision
with which correlation functions or contributions that
should be zero under parity transformation are indeed
zero, the level of improvement in agreement with the
Kelly parameterization calls for further study.

For the {4, 3∗} strategy, the data in Fig. 11 for GE(Q2)
lie above the Kelly curve and the low Q2 points of
GM (Q2) lie below. This behavior is in accord with the
deviations pointed out in Ref. [9]. The data with the
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FIG. 11. Each panel shows a comparison between the renormalized form factors G<V4
E (left), G=ViE (middle), and G<ViM (right)

obtained using four strategies and plotted versus Q2 in GeV2. The labels specify the strategy used to remove the ESC, and
the ensemble ID. The solid black line shows the Kelly fit to the experimental data.

{4Nπ, 3∗} strategy are more consistent with the Kelly
result. We hypothesize on the basis of the observed
improvement with the Kelly curve, the behavior of the
mass gaps shown in Fig. 10, and the vector meson dom-
inance model that the low lying multihadron excitations
contribute. While significantly more data, especially

on Mπ ≈ 135 MeV ensembles, are needed to validate
this conjecture, we will select between {4Nπ, 3∗} and
{4Nπ, 2sim} strategies for presenting results in this pa-
per. Of these two strategies, the statistical precision of
the current data is better for {4Nπ, 3∗} and it has the ad-
vantage of including three states in the fit. On the other
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FIG. 12. GE(Q2) from <V4 plotted versus Q2 in GeV2 (top panels) and versus Q2/M2
N (bottom panels). Each panel shows

the data for the seven ensembles, and each row compares the four strategies used to remove ESC.
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FIG. 13. GE(Q2) from =Vi plotted versus Q2 in GeV2 (top panels) and versus Q2/M2
N (bottom panels). Each panel shows the

data for the seven ensembles, and each row compares the four strategies used to remove ESC.

hand {2sim} is, statistically, better motivated if the same
set of states contribute to the three correlation functions.
For the time being, we will continue to analyze all four
strategies since it is instructive to explore the differences.

The errors in the current lattice data are much larger
than in the Kelly parameterization of the experimental
data and cover a smaller range in Q2. It will be some
time before lattice data reach the precision of experi-
ments even in the range 0.04 < Q2 < 1 GeV2. Never-
theless, we regard the consistency of our results with the
Kelly curve an important and necessary step in demon-
strating control over all systematic uncertainties in the
calculations of form factors. The main thrust of future
improvements will be on increasing the statistics, design-
ing better nucleon interpolating operators to further con-
trol ESC, extending the calculation to more values of a
and Mπ to confirm the observed lack of dependence on
them, and obtaining data at smaller values of Q2.

Having obtained GE(Q2) and GM (Q2) from the four
strategies to control ESC, we again parameterize the Q2

dependence using the dipole, z-expansion and Padé fits.
From these fits, we extract the electric and magnetic
isovector charge radii squared, 〈r2

E〉 and 〈r2
M 〉, and the

magnetic moment µ. These data are given in Table IX
and exhibit two noteworthy features: (i) the estimates
with {4Nπ, 3∗} are larger, and (ii) the intercept at Q2 = 0
of fits to GM/gV shows the beginning of a flare-out, es-
pecially for z-expansion fits with sum rules. This second
feature suggests that Q2 = 0 is already at the edge of
reliability of extrapolation of the fits to our data, which
have Q2

min & 0.04 GeV2.

In Ref. [9], we had shown that the ratio GE/GM ex-
hibits a linear behavior versus Q2 and had used it to get
an estimate of GM (Q2 = 0) = µ. The clover-on-clover
data presented in this study confirms this behavior as
illustrated in Fig. 15 for the a091m170L and a071m170
ensembles. So we use this value of GM (Q2 = 0)/gV as a
prior in the fits to GM (Q2)/gV . The error in it is . 0.2
for all ensembles, so we select 0.2 for the width. Setting
the width to 0.3 changes the estimates by . σ/3 for both
〈r2
M 〉 and µ. Overall, the use of the prior stabilizes the

fits near Q2 = 0, but does not change the results for 〈r2
M 〉

or µ significantly. The dipole, Padé and z-expansion fits
for the four strategies are illustrated in Figs. 30 and 31)
in Appendix G for the a091m170L and a071m170 ensem-
bles, respectively. The values of 〈r2

E〉, 〈r2
M 〉, µ obtained,



30

0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2 [GeV2]

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4, 3∗}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2 [GeV2]

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4Nπ, 3∗}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2 [GeV2]

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4, 2sim}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2 [GeV2]

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4Nπ, 2sim}

0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2/M2N

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4, 3∗}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2/M2N

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4Nπ, 3∗}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2/M2N

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4, 2sim}
0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
M
/
g
V

Q2/M2N

a127m285
a094m270
a094m270L
a091m170
a091m170L
a073m270
a071m170
Kelly, 2004

{4Nπ, 2sim}

FIG. 14. GM (Q2) from <Vi plotted versus Q2 in GeV2 (top panels) and versus Q2/M2
N (bottom panels). Each panel shows

the data for the seven ensembles, and each row compares the four strategies used to remove ESC.
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FIG. 15. A linear fit to the smallest six Q2 points for GM/GE from the a091m170L and a071m170 ensembles obtained with
the {4Nπ, 3∗} strategy. The intercept at Q2 = 0 gives µu−d. The left panel shows separate fits to the two ensembles and the
right to the combined data. Also shown, for comparison, in the right panel are the data from the other three larger volume
Mπ ∼ 270 MeV ensembles.

and the prior used, are given in the labels. These fits
are made to the six smallest Q2 points since the errors
are large in some of the higher Q2 data. For complete-
ness, we state that the results of fits to all ten points are
essentially the same.

Two important points: first, the current data (six or
ten values of Q2) can be fit by the z2 and z3 truncations
and z4 is an overparameterization. We note a change be-
tween z2 and z3 and reasonable stability between z3 and
z4. Thus all subsequent results are with fits using the z3

truncation. Second, the two Padé fits give overlapping
results, and the P (g, 1, 3) is again an overparameteriza-
tion.

To obtain the continuum limit values for 〈r2
E〉, 〈r2

M 〉
and µ, the CCFV fits to the data given in Table IX are
discussed in Sec. XIII E.

XIII. FINAL RESULTS FROM THE
CHIRAL-CONTINUUM-FINITE-VOLUME FITS

In this section, we examine the dependence of the
isovector charges, gu−dA,S,T , the axial charge radius 〈r2

A〉,
the induced pseudoscalar charge g∗P , the pion-nucleon
coupling gπNN , the electric and magnetic charge radii,
〈r2
E〉 and 〈r2

M 〉, and the magnetic moment µu−d on the
lattice spacing a, pion mass Mπ, and the lattice size pa-
rameter MπL. The data are shown in Figs. 32–39 in Ap-
pendix H along with the CCFV fit results as pink bands.
In cases for which the largest variation is versus M2

π , we
also show, for comparison, the result of just a chiral fit
by a gray band. The more these two bands overlap, the
more dominant is the chiral correction.

The overall framework of the CCFV analysis is as fol-
lows. A simultaneous CCFV fit in the three variables
is made to get the results at the physical point defined
as Mπ = 135 MeV, a = 0 and MπL = ∞. With seven
data points, we can only include leading order corrections
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〈r2
E〉|dipole 〈r2

E〉|z3

Ensemble {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim}
a127m285 0.738(28) 0.773(27) 0.778(36) 0.777(38) 0.734(30) 0.768(30) 0.782(39) 0.778(43)
a094m270 0.698(37) 0.704(20) 0.705(49) 0.706(48) 0.656(52) 0.699(32) 0.692(62) 0.711(63)

a094m270L 0.682(22) 0.734(19) 0.698(22) 0.684(23) 0.669(24) 0.737(25) 0.701(25) 0.674(26)
a091m170 0.740(27) 0.891(32) 0.767(36) 0.728(32) 0.726(41) 0.969(77) 0.847(86) 0.772(98)

a091m170L 0.768(28) 0.902(54) 0.809(40) 0.784(38) 0.737(43) 0.893(79) 0.880(83) 0.76(10)
a073m270 0.643(23) 0.681(19) 0.667(25) 0.664(24) 0.625(26) 0.662(25) 0.712(33) 0.710(33)
a071m170 0.747(42) 0.854(43) 0.737(29) 0.712(25) 0.666(76) 0.834(96) 0.883(96) 0.72(11)

〈r2
M 〉|dipole 〈r2

M 〉|z3

Ensemble {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim}
a127m285 0.582(22) 0.613(23) 0.627(29) 0.624(29) 0.569(33) 0.627(34) 0.672(34) 0.654(35)
a094m270 0.507(25) 0.505(19) 0.544(29) 0.536(26) 0.565(36) 0.623(36) 0.634(31) 0.657(37)

a094m270L 0.544(19) 0.613(19) 0.564(18) 0.558(17) 0.592(34) 0.642(34) 0.576(35) 0.568(34)
a091m170 0.562(23) 0.691(39) 0.592(26) 0.615(29) 0.77(11) 1.00(11) 0.765(86) 0.743(95)

a091m170L 0.630(29) 0.817(52) 0.610(27) 0.678(30) 0.61(11) 0.88(11) 0.55(10) 0.66(11)
a073m270 0.495(18) 0.514(16) 0.509(20) 0.522(18) 0.527(40) 0.545(40) 0.613(26) 0.636(36)
a071m170 0.562(31) 0.679(37) 0.581(25) 0.582(23) 0.71(12) 0.85(11) 0.89(10) 0.83(11)

〈µ〉|dipole 〈µ〉|z3

Ensemble {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4, 2sim} {4Nπ, 2sim}
a127m285 4.558(51) 4.696(64) 4.753(84) 4.730(82) 4.538(56) 4.712(71) 4.823(89) 4.771(86)
a094m270 4.252(84) 4.249(76) 4.421(94) 4.421(93) 4.343(67) 4.452(72) 4.542(73) 4.558(75)

a094m270L 4.369(41) 4.571(57) 4.444(44) 4.422(41) 4.419(47) 4.578(61) 4.441(53) 4.426(47)
a091m170 4.177(55) 4.598(95) 4.303(71) 4.359(72) 4.321(83) 4.749(54) 4.445(64) 4.474(77)

a091m170L 4.323(64) 4.717(99) 4.275(57) 4.494(83) 4.311(78) 4.735(85) 4.224(72) 4.484(84)
a073m270 4.273(52) 4.332(52) 4.307(65) 4.371(58) 4.301(71) 4.374(75) 4.487(70) 4.550(72)
a071m170 4.200(78) 4.526(96) 4.230(70) 4.286(74) 4.281(82) 4.560(75) 4.455(79) 4.469(80)

TABLE IX. Results for the isovector electric charge radius squared 〈r2
E〉 (top); magnetic charge radius squared, 〈r2

M 〉 (middle);
and magnetic moment, µp−µn (bottom), for the seven ensembles obtained using the dipole and the z3 parameterization of the
Q2 behavior. These fits were made keeping the smallest six Q2 6= 0 points. In fits to GM , we included the point GM (0)/gV ,
obtained by linearly extrapolating GE/GM to Q2 = 0, as a prior with width 0.2. Data are compared for the four strategies
({4, 3∗}, {4Nπ, 3∗}, {4, 2sim} and {4Nπ, 2sim}) for controlling ESC (see Appendix A). Dipole estimates are not included in the
final results as explained in the text.

in each variable to avoid overparameterization. Keeping
just the leading terms, we cannot directly assess a sys-
tematic error associated with possible higher-order cor-
rections to the CCFV ansatz. What we do evaluate is
whether the final error estimate from the simultaneous
CCFV fit is conservative in comparison to the observed
change under extrapolation in each parameter. In par-
ticular, for each quantity, we compare the change be-
tween the data from the ensemble closest to the physical
point and the extrapolated value. For example, when
discretization errors are dominant, we compare the dif-
ference between data at a071m170 and the extrapolated
value with the error estimate from the CCFV fit to de-
termine if the latter is conservative enough.

In all cases, the discretization corrections are taken
to be linear in a as our calculation (lattice action and
operators) is not fully O(a) improved.

To evaluate possible finite volume corrections in
a given observable, we compare the data on the
two pairs of ensembles {a094m270, a094m270L} and
{a091m170, a091m170L}. Second, we also compare out-
puts of chiral-continuum (CC) fits to the five larger vol-
ume data with CCFV fits to the seven points, and check
for overparameterization. Differences between the two

fits, if significant in comparison to the quoted error, are
evaluated for whether an additional systematic uncer-
tainty should be assigned. Overall, finite-volume correc-
tions are observed to be small for MπL > 4.

The analysis so far has been carried out with a num-
ber of strategies for removing ESC in the various quan-
tities. As already discussed, the overriding uncertainty
in the final analysis comes from whether the low-lying
Nπ or Nππ states are relevant and included. Includ-
ing them significantly impacts the estimates from the
Mπ ≈ 170 MeV ensembles and thus the chiral extrap-
olation. In many cases the errors in the ≈ 170 MeV data
are much larger than in the Mπ ≈ 270 MeV points. Thus,
their weight in the CCFV fits is small. This is a serious
limitation. In subsequent sections, we will discuss this
and other issues on a case-by-case basis, and provide our
reasons for picking the strategy used to present the final
results and the assessment of the need for an additional
systematic uncertainty.
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A. The CCFV extrapolation for gu−dA,S,T

The leading order CCFV fit ansatz used for all three
isovector charges is

g(a,Mπ,MπL) = c1 + c2a+ c3M
2
π + c4

M2
πe
−MπL

√
MπL

. (41)

Results from these CCFV and CC (c4 set to zero) fits

to gu−dA,S,T are summarized in Table X and the CCFV fits
are shown in Figs. 32, 33 and 34 in Appendix H. Overall,
these data indicate possible finite-volume corrections in
gu−dA , but no significant effect is observed in gu−dS or gu−dT .
Below, just before Eq. (42), we also discuss the change
in results (i) on assuming that the discretization errors
begin at O(a2), i.e., replacing the term c2a by c2a

2, and
(ii) without any discretization error term.

All averages presented in this section are averages
weighted by the inverse square of the errors. In most
cases the χ2 of the different fits whose results we average
are very similar, so the averages constructed using AIC
weights are also the same. Furthermore, both of these
are also consistent with unweighted averages. We cau-
tion the reader that, for brevity, we use the term average
to denote averages weighted by the inverse square of the
errors.

We note a number of systematic shifts of O(0.03) in re-
sults summarized in Table X, which, while smaller than
the individual total analysis errors in most cases, need to
be addressed. These are (i) between the two renormaliza-
tion methods Z1 and Z2, (ii) between the CC and CCFV
fits and (iii) the variation between the various strategies.

The two methods of renormalization, Z1 and Z2,
are equally well motivated, however, as discussed in
Sec. VIII A, and the errors in the renormalization con-
stants are better controlled with Z1 for gS and with Z2

for gA and gT . We, therefore average the gS values ob-
tained with Z1, given in Table X and specified below, and
gA and gT with Z2. To account for the difference in re-
sults obtained using Z1 versus Z2, we assign an additional
systematic uncertainty for all three charges.

Second, comparing the CCFV and CC estimates, there
is a notable difference only in gu−dA , which we discuss be-

low. For gu−dS and gu−dT , the CCFV fits have slightly
larger errors but in most cases the reduction in χ2 is not
sufficient to warrant including the finite volume correc-
tion term by the Akaike criteria. As they are consistent,
we present the average of the CC and CCFV results.

On the third issue, for gu−dS and gu−dT , the two {2free}
strategies yield an unexpectedly large ∆M̃1. A larger
value is expected in a two-state fit, i.e., it constitutes
an effective mass gap representing the contribution of
all excited states. Including a third state improves the
estimate for ∆M1. Therefore, as discussed in Sec. VIII,
we will choose the final results from the strategies that
use a three-state fit, {4, 3∗} and {4Nπ, 3∗}. The axial

charge gu−dA requires a more extensive analysis with
respect to ESC that is presented below.

gu−d
A : The axial charges, summarized in Table X for

the various strategies considered, are obtained in two dif-
ferent ways: (i) from the forward matrix element, which
for the {4, 3∗} and {4Nπ, 3∗} strategies are given in rows
one and eight, and (ii) by extrapolating the form fac-
tor GA(Q2) to Q2 = 0. To specify the parameterization
used in the second case, we introduce a third symbol,
{D}/{z2}/{P2}, to represent a dipole/z2/P (g, 0, 2) fit.
For example {4Nπ, 3∗, z2} means form factors obtained
using the {4Nπ, 3∗} strategy and extrapolated using the
z2 fit (the glossary in Appendix A describes the var-
ious fits). In many of the CCFV fits, the data show
no significant finite volume correction, especially above
MπL > 4.0. The effect is much smaller than the over-
all analysis error from the CCFV fit shown in Fig. 32 in
Appendix H. So we also performed CC fits to data ne-
glecting the two small volume ensembles, a094m270 and

a091m170. These are labeled as {D̂} or {ẑ2} or {P̂2}.
Overall, the main issue that needs to be resolved in both
ways is whether the N(1)π(−1) state should be included
in the analysis.

With the {4, 3∗} strategy (first seven rows in Table X),
the ∆M1 from a four-state fit is large, about 600 MeV,
and the τ →∞ value for gu−dA is smaller, about 5% below
the experimental value. In this case, estimates from the
forward matrix element (first row) and those using the
dipole or z2 or Padé parameterization of the form factors
give consistent results. Comparison of these estimates
from the Q2 fits is shown in the two left panels in Fig. 9
for the two Mπ ∼ 170 MeV ensembles.

With the {4Nπ, 3∗} strategy [uses the N(1)π(−1) as
the lowest excited state as discussed in Sec. V], we find
that the finite-volume correction term is negligible as
shown by the CCFV fit to the {4Nπ, 3∗} data in Fig. 32.
Comparing the results in rows 9-14, we note that the esti-
mates with the dipole fit, {4Nπ, 3∗, D}, are smaller. The
reason is that the dipole fit misses the lowest Q2 point
on the Mπ ≈ 170 MeV ensembles as illustrated in the
middle panels in Fig. 9.

With the preferred {4Nπ, 2sim} strategy, selected on
the basis of satisfying the PCAC relation, only results
from the extrapolation of the form factor are possi-
ble. Within errors, the estimates in each of the four
columns in Table X are consistent, but two of the three
O(0.03) shifts discussed above (renormalization, and fi-
nite volume indicated by CCFV versus CC estimates)
are manifest. We derive our best estimate as follows.
The finite volume systematic is not well controlled, so
we average the larger volume, MπL > 4, CC-fit val-

ues {4Nπ, 2sim, ẑ2} and the {4Nπ, 2sim, P̂2}. For renor-
malization, we choose the Z2 estimates as discussed in
Sec. VIII A. With these choices, our result is gu−dA =
1.32(5). The same selection procedure applied to the

{4, 3∗} strategy gives gu−dA = 1.23(4). The large differ-
ence, ∼ 0.09, makes it clear that establishing whether
the low-mass Nπ state(s) contribute is essential to the

extraction of gu−dA .
Three systematic uncertainties, summarized in
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Eq. (42), are added to the above estimate. These are
taken to be half the spread in the data in Table X as fol-
lows: For renormalization it is half the difference between
the Z1 and Z2 values, i.e., 0.02. Half the spread in results
between the strategies that include the Nπ state when
removing ESC gives 0.04. For finite volume corrections,
half the difference between the CC and CCFV fit values
gives 0.02. In all these averages and error estimates, we
do not consider the dipole fit values since these fits miss
the lowest Q2 point on the Mπ ≈ 170 MeV ensembles.
This is illustrated in the right panels in Fig. 9.

Overall, in the CCFV fits we note (i) there is tiny
if any a dependence in data from any of the strategies
investigated; (ii) there is almost no dependence on M2

π

for {4, 3∗} but a significant one in the strategies that
include the Nπ state; and (iii) there is an indication of
a finite volume correction with the {4Nπ, 2sim, z2} and
{4Nπ, 2sim, P2} strategies. Of these three changes, the
largest effect is in the slope versus M2

π on including the
Nπ state. The contribution of the Nπ state grows as
Q2 → 0 and Mπ → 135 MeV. Since GA(Q2) is analytical
and monotonic in Q2, we expect the influence of the Nπ
state to persist at Q2 = 0 in the sense that the value of
gA obtained directly at Q2 = 0 from the forward matrix
element calculated using the A3 correlator must agree
in the continuum limit with that extracted from a z-
expansion (or Padé) fit to the form factor. Even though
our data satisfy this check individually for both {4, 3∗}
and {4Nπ, 3∗} strategies as shown in Table X, the value
of gA, however, is different. The estimate from {4Nπ, 3∗}
varies between 1.28(5) and 1.33(5). This is consistent

with our final result, gu−dA = 1.32(6), and the error covers

the {4Nπ, 2sim, ẑ2} and the {4Nπ, 2sim, P̂2} estimates.

We consider {4Nπ, 2sim, ẑ2} and {4Nπ, 2sim, P̂2} as two
models because, up to some reasonably small Q2, both
the fixed order z-expansion and the Padé should give the
same intercept in the limit of perfect data. The reason
we take the weighted average and do not include the AIC
weight is because the χ2 of both is abnormally small as
discussed below.

gu−d
S : We neglect the results from the two {2free}

strategies, which are somewhat larger, because the as-

sociated ∆M̃1 is larger than even that from the {4} fit as
discussed in Sec. VIII. Results from {4, 3∗} and {4Nπ, 3∗}
overlap (see Fig. 3) and no significant finite-volume cor-
rection is observed. Thus we average estimates from the
latter two strategies and the two fits, CCFV and CC, all
with the Z1 renormalization method (see Sec. VIII A).

The result is qgu−dS = 1.06(9). Note that the error esti-
mate covers the larger but neglected {2free} values.

The most significant variation in the CCFV fits shown
in Fig. 33 in Appendix H is versus a. The difference be-
tween the a = 0.071 fm and the a = 0 value is ∼ 0.12,
so we assign, in Eq. (42), an additional systematic uncer-
tainty of 0.06 for possible incomplete accounting of the
discretization error in the CCFV or CC fits. Estimates
from the two renormalization methods show a difference

of ∼ 0.04, so we assign an additional systematic uncer-
tainty of 0.02.

gu−d
T : We again neglect the results from the two

{2free} fits for the same reason as for gu−dS . Similarly,
we take the weighted average of the remaining four es-
timates in Table X with Z2 renormalization and get
gu−dT = 0.97(3). The largest variation in the CCFV fits
shown in Fig. 34 in Appendix H is versus M2

π , with a
possible ∼ 0.02 difference between Mπ = 170 and the
extrapolated 135 MeV value. This difference is covered
by the overall analysis (CC or CCFV) error. There is
also a ≈ 0.02 difference between the two ES strategies
(see Fig. 3), so we assign a 0.01 uncertainty for possi-
ble additional ES effects. Last, the two renormalization
methods give estimates that differ by ∼ 0.02, so we assign
an additional 0.01 uncertainty due to it.

Remarks on discretization errors: The discretiza-
tion correction in the CC and CCFV fit ansatz, Eq. (41),
is taken to be linear in a since our action and the axial
operator are not fully O(a) improved. We have also car-
ried out the analysis with the errors starting at O(a2),
i.e., using c2a

2 instead of c2a in Eq. (41) and assum-
ing the linear in a correction is negligible. The χ2 of
the two sets of CCFV fits are essentially the same for
all three charges. The corresponding estimates for the
charges change to gu−dA = 1.34(4), gu−dS = 0.97(6) and

gu−dT = 0.97(2). The reason for the smaller CCFV fit er-
rors is that the range of extrapolation to the continuum
limit is smaller in a2. We keep the larger error estimates
from fits with c2a but assign an additional discretization
uncertainty of 0.02 and 0.01 for gu−dA and gu−dT , respec-

tively. The largest change in gu−dS is with respect to a and
the error already assigned covers the variation between
c2a and c2a

2 fits.

We also show chiral fits (gray bands) for gA and gT
in the middle panels of Figs 32 and 34. The reason for
neglecting discretization and finite volume corrections is
the observation that the data on the five large volume
lattices do not show a significant dependence on a or
MπL. In all cases, these results overlap with the CCFV
values but have smaller errors. The similar χ2 suggests
that the CCFV fits are overparameterized. Nevertheless,
as discussed above, for the final results we quote the CC
values and errors for gA and CCFV for gS and gT .

Remarks on low χ2 values in CCFV fits: The χ2

of the two fits {4Nπ, 2sim, ẑ2} and {4Nπ, 2sim, P̂2} used

to get gu−dA are essentially zero as given in Table X. The
following two factors could explain such χ2 � 1: (i) the
errors assigned to the data points are overestimated, and
(ii) the fits are overparameterized. The first because the
error in the multiplicative renormalization factor ZA is
of the same size as the statistical error in gbare

A (see Ta-
bles III and IV) and is neither normally distributed nor
independent. The second because the discretization er-
rors are small and including the c2 term is an overparam-
eterization. We have chosen to include it (CC fit) but do
not construct an AIC weighted average due to the small
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χ2.
Within this framework, our final results are

Charge Value δES δZ δa δFV

gu−dA 1.32(6) (4) (2) (2) (2)

gu−dS 1.06(9) (2) (6)

gu−dT 0.97(3) (1) (1) (1)

(42)

where the first error is the overall analysis uncertainty
and δES, δZ, δa, and δFV are the additional systematic
uncertainties due to excited states, renormalization, dis-
cretization and finite volume artifacts. Combining these
systematic errors in quadrature, our results are:

gu−dA = 1.32(6)(5)sys ,

gu−dS = 1.06(9)(6)sys ,

gu−dT = 0.97(3)(2)sys . (43)

Even with our high statistics data, the errors in gu−dA

are much larger than in the experimental value gu−dA =

1.2764(1) [12–14]. Estimates for gu−dS and gu−dT are con-
sistent with results in Ref. [6] obtained using the clover-
on-HISQ formulation.

B. The CCFV extrapolation for the axial charge
radius squared 〈r2

A〉

The data given in Table VI show no significant differ-
ence between the {4, 3∗} and {4Nπ, 2sim} strategies on
the Mπ ≈ 270 MeV ensembles. However, there is a dif-
ference on the Mπ ≈ 170 MeV ensembles due to the
inclusion of the Nπ state. We have summarized our rea-
sons for choosing the {4Nπ, 2sim} strategy for the analysis

of the axial form factors GA and G̃P in Sec. IX A, and
we will use it to obtain the quantities derived from them,
〈r2
A〉, g∗P , and gπNN .
The CCFV ansatz used to fit 〈r2

A〉,

r2
A(a,Mπ, L) = c1 + c2a+ c3M

2
π + c4M

2
π

e−MπL

√
MπL

,

(44)

is the same as for the isovector charges given in Eq (41).
Fits with the {4Nπ, 2sim, z2} strategy are shown in Fig. 35
and the results summarized in Table XI. We note a strong
dependence on M2

π and a slight increase with both MπL
and a. Most of the increase with MπL takes place for
MπL < 4; therefore, we take the final result from the
{4Nπ, 2sim, ẑ2} analysis:

r2
A|z2 = 0.428(53)(30) fm2 ⇒ rA|z2 = 0.65(4)(2) fm ,

(45)
where the second, systematic, uncertainty is the dif-

ference from the {4Nπ, 2sim, P̂2} value. This result is
consistent with the {4Nπ, 2sim, z2} and {4Nπ, 2sim, P2}
values, and the quoted error also covers the spread

in the CCFV estimates from the {4Nπ, 3∗}, {4, 2sim},
{4Nπ, 2sim} strategies and both z2 and P2 fits.

Results for 〈r2
A〉 using the dipole parameterization of

the Q2 behavior are significantly smaller than those from
the z2 or P2 fits, and the χ2/dof is large in many cases.
More important, these fits miss the low Q2 points as
illustrated in Fig. 9. So we do not include the dipole
estimates in deriving the final results.

Our result, rA = 0.65(4)(2) fm, is consistent with
the three phenomenological/experimental values: (i) a
weighted world average of (quasi)elastic neutrino and an-
tineutrino scattering data [38], (ii) charged pion electro-
production experiments [38], and (iii) a reanalysis of the
deuterium target data [46]:

rA = 0.666(17)fm (MA = 1.03(2)GeV) [ν, ν scattering] ,

rA = 0.639(10)fm (MA = 1.07(2)GeV) [Electroprod.] ,

rA = 0.68(16)fm (MA = 1.00(24)GeV) [Deuterium] .
(46)

In this list, we do not quote the MiniBooNE value
MA = 1.35(17) GeV (rA = 0.506 fm) [47] as it is not
the outcome of an analysis, but the best value that re-
produces the double differential cross section for charged
current quasielastic neutrino and antineutrino scattering
data off carbon analyzed with a dipole ansatz and a rel-
ativistic Fermi gas model of nuclear interactions [42]. It
will be interesting to see an update of the MiniBooNE
analysis with our parameterization of GA(Q2) given in
Eq. (55) and a more realistic model of nuclear interac-
tions [48, 49].

C. The CCFV extrapolation for g∗P and gπNN

To perform the CCFV fit for g∗P given in Table VIII,
we use the ansatz

g∗P (a,Mπ,MπL)/gA =d1 + d2a+
d4

M2
π + 0.88m2

µ

+d3M
2
π +

d5M
2
π√

MπL
e−MπL , (47)

where the leading behavior in M2
π is taken to be the pion-

pole term evaluated at the momentum scale of the muon
capture experiment [50, 51]. The data and fit in Fig. 35
in Appendix H show no significant dependence on either
a or MπL but a strong dependence on M2

π . The result of
the CCFV fit to the {4Nπ, 2sim} data is

g∗P = 7.9(7)(9)sys , (48)

where the second systematic uncertainty is half the
change from the a071m170 point in the chiral extrapola-
tion. The two methods for renormalization give overlap-
ping results, so we do not assess an additional systematic
uncertainty due to it. To underscore the importance of
including the Nπ state in the analysis of ESC, note that
the analogous result with the {4, 3∗} strategy is 3.9(1.1).
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Strategy gu−dA |Z1 (c4 = 0) gu−dA |Z1 gu−dA |Z2 (c4 = 0) gu−dA |Z2

{4,3*} 1.215(48) [0.26] 1.203(59) [0.31] 1.250(42) [0.18] 1.250(51) [0.24]
{4, 3∗, z2} 1.194(44) [0.04] 1.200(52) [0.05] 1.230(39) [0.12] 1.242(46) [0.05]
{4, 3∗, ẑ2} 1.194(44) [0.02] 1.230(40) [0.14]
{4, 3∗, P2} 1.184(46) [0.02] 1.191(56) [0.01] 1.221(41) [0.16] 1.239(49) [0.06]

{4, 3∗, P̂2} 1.185(46) [0.00] 1.222(41) [0.23]
{4, 3∗, D} 1.183(42) [0.35] 1.206(48) [0.15] 1.217(36) [0.59] 1.248(42) [0.03]

{4, 3∗, D̂} 1.184(42) [0.05] 1.219(37) [0.13]
{4Nπ,3*} 1.280(48) [0.11] 1.288(55) [0.12] 1.317(42) [0.14] 1.331(47) [0.03]

{4Nπ, 3∗, z2} 1.274(52) [0.24] 1.289(61) [0.24] 1.307(48) [0.24] 1.328(55) [0.13]
{4Nπ, 3∗, ẑ2} 1.277(54) [0.24] 1.312(49) [0.15]
{4Nπ, 3∗, P2} 1.272(57) [0.14] 1.273(69) [0.18] 1.308(53) [0.10] 1.316(62) [0.12]

{4Nπ, 3∗, P̂2} 1.277(58) [0.20] 1.313(54) [0.10]
{4Nπ, 3∗, D} 1.222(49) [0.61] 1.262(56) [0.14] 1.256(43) [0.98] 1.303(50) [0.03]

{4Nπ, 3∗, D̂} 1.225(50) [0.01] 1.260(45) [0.18]
{4, 2sim, z2} 1.248(55) [0.84] 1.295(66) [0.56] 1.276(51) [1.07] 1.332(61) [0.52]
{4, 2sim, ẑ2} 1.263(56) [0.05] 1.296(52) [0.04]
{4, 2sim, P2} 1.239(64) [0.91] 1.290(78) [0.78] 1.269(59) [1.12] 1.332(73) [0.75]

{4, 2sim, P̂2} 1.257(65) [0.07] 1.293(60) [0.05]
{4, 2sim, D} 1.160(47) [1.50] 1.219(54) [0.35] 1.193(43) [2.33] 1.261(49) [0.27]

{4, 2sim, D̂} 1.159(47) [0.06] 1.192(43) [0.49]
{4Nπ, 2sim, z2} 1.279(54) [0.68] 1.320(62) [0.34] 1.308(50) [1.04] 1.357(57) [0.37]
{4Nπ, 2sim, ẑ2} 1.290(54) [0.00] 1.322(50) [0.26]
{4Nπ, 2sim, P2} 1.273(63) [0.73] 1.326(75) [0.38] 1.303(59) [1.07] 1.368(69) [0.38]

{4Nπ, 2sim, P̂2} 1.283(64) [0.00] 1.316(59) [0.23]
{4Nπ, 2sim, D} 1.210(48) [1.14] 1.259(55) [0.27] 1.242(44) [1.90] 1.299(49) [0.27]

{4Nπ, 2sim, D̂} 1.215(49) [0.02] 1.250(44) [0.43]

Strategy gu−dS |Z1 (c4 = 0) gu−dS |Z1 gu−dS |Z2 (c4 = 0) gu−dS |Z2

{4, 3∗} 1.068(68) [0.05] 1.052(92) [0.04] 1.101(96) [0.05] 1.09(12) [0.07]
{4Nπ, 3∗} 1.062(93) [0.05] 1.06(11) [0.06] 1.10(11) [0.02] 1.10(13) [0.02]
{4, 2free} 1.056(52) [0.39] 1.086(63) [0.28] 1.081(82) [0.40] 1.118(92) [0.27]

{4Nπ, 2free} 1.100(52) [1.01] 1.157(61) [0.25] 1.120(82) [0.85] 1.186(91) [0.21]

Strategy gu−dT |Z1 (c4 = 0) gu−dT |Z1 gu−dT |Z2 (c4 = 0) gu−dT |Z2

{4, 3∗} 0.944(46) [0.06] 0.942(53) [0.08] 0.968(27) [0.03] 0.971(34) [0.03]
{4Nπ, 3∗} 0.938(50) [0.14] 0.926(57) [0.13] 0.962(33) [0.15] 0.955(38) [0.17]
{4, 2free} 0.995(43) [0.15] 0.985(50) [0.15] 1.017(24) [0.26] 1.017(29) [0.35]

{4Nπ, 2free} 1.027(44) [0.22] 1.027(50) [0.29] 1.047(25) [0.46] 1.047(28) [0.61]

TABLE X. Results for the renormalized gu−dA,S,T after CC (c4 = 0) and CCFV extrapolations using Eq. (41) for the various
strategies used to remove the ESC listed in column one that are discussed in Secs. VIII and X, as well as in Appendix A. The
results for gu−dA labeled with additional z2/P2/D use gA = GA(Q2 = 0) obtained by extrapolating GA(Q2) to Q2 = 0 using these

fits to all ten Q2 6= 0 points (see glossary in Appendix A). The results in rows with D̂/ẑ2/P̂2 are from CC fits to data excluding
the small volume a094m270 and a091m170 ensembles. The χ2/dof of the CC and CCFV fits are given within the square brackets.

ESC Strategy z2 (c4 = 0) z2 P2 (c4 = 0) P2 dipole (c4 = 0) dipole
{4, 3∗} 0.307(38) [0.27] 0.319(45) [0.29] 0.276(48) [0.36] 0.298(58) [0.33] 0.262(29) [1.58] 0.297(34) [0.78]
{4, 3∗}† 0.306(40) [0.51] 0.277(48) [0.70] 0.270(29) [1.41]
{4Nπ, 3∗} 0.424(45) [0.34] 0.446(49) [0.10] 0.408(62) [0.17] 0.412(72) [0.23] 0.315(30) [2.75] 0.362(34) [0.46]
{4Nπ, 3∗}† 0.441(49) [0.07] 0.421(65) [0.06] 0.327(33) [1.53]
{4, 2sim} 0.413(47) [1.95] 0.450(53) [1.89] 0.375(75) [1.99] 0.434(90) [2.20] 0.228(25) [6.06] 0.281(28) [0.31]
{4, 2sim}† 0.465(51) [0.42] 0.445(80) [0.57] 0.224(26) [2.01]
{4Nπ, 2sim} 0.399(49) [1.01] 0.439(55) [0.47] 0.366(80) [0.90] 0.437(93) [0.48] 0.244(27) [4.71] 0.283(29) [0.98]
{4Nπ, 2sim}† 0.428(53) [0.33] 0.398(83) [0.31] 0.243(28) [2.04]

TABLE XI. Results for the axial charge radius 〈r2
A〉 from (i) different strategies for removing ESC listed in column one (see

Appendix A) and (ii) fits to the ten Q2 6= 0 points for the axial form factor GA(Q2) using the z2, P2 Padé and the dipole
parameterizations. The additional † in column one denotes results from CC fits with c4 = 0, i.e., neglecting the small volume
(a094m270 and a091m170) points. The χ2/dof of the Q2 fits are given within the square brackets.
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Experimentally, G̃P (Q2 = 0.88m2
µ) is determined from

muon capture by a proton, µ− + p → νµ + n [50, 51].
Current estimates from the MuCap experiment [50, 51],
and from chiral perturbation theory [38, 52] are

g∗P |MuCap = 8.06(55) ,

g∗P |χPT = 8.29+0.24
−0.13 ± 0.52 , (49)

respectively.

The CCFV fit to the pion-nucleon coupling gπNN data,
also given in Table VIII, was carried out using the ansatz
given in the right-hand side of Eq. (44). The result of the
fit, shown in Fig. 35 in Appendix H, is

gπNN = 12.4(1.2) . (50)

Again, the dominant dependence of the data is onM2
π but

there is no significant change from the a071m170 value.
The variation with the renormalization method is ∼ 0.3σ.
These are much smaller than the quoted 1σ error, so we
do not assign an additional systematic uncertainty. For
comparison, the result with the {4, 3∗} strategy that does
not include the Nπ state is 6.8(1.3).

To summarize, results for all three quantities, 〈r2
A〉,

g∗P and gπNN given in Eqs. (44), (48) and (50) come in
reasonable agreement with phenomenological values with
the {4Nπ, 2sim} strategy that is singled out on the basis
of the axial form factors satisfying the PCAC relation.

D. Goldberger-Treiman relation and Fπ

The Goldberger-Treiman (GT) relation predicts
gπNN (1 + ∆) = MNgA/Fπ as discussed in Sec. IX A.
Three of these quantities, MN (Table XV), gA (Table IV)
and Fπ (Table I), are calculated in this work. Data for the
product MNgA/Fπ, which is independent of the renor-
malization constant ZA and the lattice scale, are also
given in Table I for each ensemble. The CCFV fits to
these data forMNgA/Fπ and Fπ using the ansatz given in
Eq. (44) are shown in Fig. 36 in Appendix H. The result
for MNgA/Fπ depends, as expected, on the strategy used
to determine gA, and for the two extreme values for gA
obtained from {4, 3∗} and {4Nπ, 2sim, z2} fits discussed
in Sec. XIII A, it is = 12.65(38) and 13.58(49), respec-
tively. We also show the CCFV fit for Fπ in the bottom
row of Fig. 36 and find Fπ = 93.0(3.9) (96.1(3.6)) MeV
with Z1 (Z2) renormalization. These CCFV fits to the
Fπ and MNgA/Fπ data show significant variation with a
and Mπ. Thus, to improve precision more {a,Mπ,MπL}
points are needed.

For comparison, using the experimental values, gA =
1.2764, MN = 939 MeV and Fπ = 92.2 MeV and ignoring
the Goldberger-Treiman discrepancy ∆ (see discussion in
Sec. IX) give gπNN = MNgA/Fπ = 13. The phenomeno-
logical estimate obtained from the πN scattering length
analysis is 13.25(5) [39–41].

E. CCFV fits to the electric and magnetic radii,
〈r2
E〉 and 〈r2

M 〉, and the magnetic moment µ

The CCFV fits to each of these three quantities have

four free parameters denoted by c
{E,M,µ}
i . The fit ansatz

for the electric mean-square charge radius used is

〈r2
E〉(a,Mπ, L) = cE1 +cE2 a+cE3 ln

M2
π

λ2
+cE4 ln

M2
π

λ2
e−MπL ,

(51)
where the mass scale λ is chosen to be Mρ = 775 MeV
and the form of the chiral and FV corrections are taken
from Refs. [53–55]. For the magnetic mean charge radius
squared, we use

〈r2
M 〉(a,Mπ, L) = cM1 + cM2 a+

cM3
Mπ

+
cM4
Mπ

e−MπL , (52)

where the leading dependence on Mπ is taken from
Refs. [53, 54]. Last, the CCFV ansatz used for the mag-
netic moment is

µ(a,Mπ, L) =cµ1 + cµ2a+ cµ3Mπ+

cµ4Mπ

(
1− 2

MπL

)
e−MπL . (53)

where the forms of the chiral and finite-volume correc-
tion terms are taken from Refs. [54, 56]. All masses are
expressed in units of GeV and the lattice spacing in fm.

In all three CCFV fit ansatz, Eqs. (51)–(53), results
from the heavy baryon chiral perturbation theory (χPT)
have been used only to determine the form of the leading
order chiral correction. For example, for µ, χPT pre-
dicts the slope, cµ3 , of the linear dependence on Mπ as
MNg

2
A/(4πF

2
π ) [57] with Fπ = 92.2 MeV [21]; however,

we leave cµ3 a free parameter. Also, we include only the
leading nonanalytical term in Eqs. (51) and (52).

Data for 〈r2
E〉, 〈r2

M 〉 and µ from the four strategies and
the CCFV fits to them are shown in Figs. 37, 38, and 39.
The results are collected together in Table XII. We re-
mind the reader that a prior for GM (0)/gV ≡ µ, obtained
from the linear extrapolation of GE/GM , is included in
the Q2 fits to GM to get 〈r2

M 〉 and µ on each ensemble.
In Sec. XII, we had presented evidence that the low-

lying multihadron Nππ state is relevant, and as Mπ →
135 MeV, estimates from the {4Nπ, 3∗} and {4Nπ, 2sim}
strategies should agree. This is not manifest in Ta-
ble XII for 〈r2

E〉 or 〈r2
M 〉 and estimates from {4Nπ, 2sim}

are smaller. Furthermore, the data, and therefore the
CCFV fits, have three additional weaknesses:

• The errors in 〈r2
E〉 and 〈r2

M 〉 at Mπ ≈ 170 MeV and
with the z3 and Padé fits are larger by a factor of 2–
3 compared to Mπ ≈ 270 MeV points as can be seen
from the data in Table IX for all four strategies, and
from Figs. 37 and 38. The CCFV fits are therefore
dominated by the smaller error Mπ ≈ 270 MeV
points.
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〈r2
E〉 〈r2

M 〉 µ
ESCfit Q2fit CC CCFV CC CCFV CC CCFV
{4, 3∗} D 0.633(60)[0.26] 0.658(75)[0.25] 0.479(48)[1.24] 0.579(67)[0.04] 3.78(12)[1.36] 3.95(15)[0.54]

P2 0.589(74)[0.07] 0.613(98)[0.04] 0.491(93)[0.26] 0.49(14)[0.34] 3.81(14)[0.30] 3.86(17)[0.30]
z3 0.562(71)[0.05] 0.577(98)[0.05] 0.73(12)[0.50] 0.71(17)[0.66] 3.95(13)[0.28] 4.03(16)[0.13]

{4Nπ, 3∗} D 0.792(58)[0.36] 0.843(77)[0.16] 0.651(54)[5.28] 0.879(77)[1.19] 4.07(14)[3.17] 4.43(17)[0.20]
P2 0.792(81)[0.69] 0.85(12)[0.76] 0.64(13)[0.85] 0.48(19)[0.70] 4.03(18)[0.25] 4.06(22)[0.32]
z3 0.803(87)[0.43] 0.84(12)[0.52] 0.97(12)[0.56] 0.94(16)[0.72] 4.15(15)[0.54] 4.24(18)[0.44]

{4, 2sim} D 0.621(64)[0.26] 0.646(85)[0.28] 0.457(52)[0.27] 0.494(68)[0.12] 3.64(15)[0.45] 3.64(18)[0.59]
P2 0.65(11)[0.53] 0.65(16)[0.71] 0.52(13)[2.03] 0.31(17)[1.47] 3.80(20)[2.89] 3.62(23)[2.68]
z3 0.80(10)[0.57] 0.80(14)[0.76] 0.73(11)[2.17] 0.60(15)[2.37] 4.00(17)[3.85] 3.85(19)[4.15]

{4Nπ, 2sim} D 0.590(63)[0.52] 0.623(81)[0.54] 0.497(51)[1.04] 0.564(67)[0.62] 3.83(15)[0.89] 3.86(18)[1.17]
P2 0.59(12)[0.97] 0.49(18)[1.10] 0.67(12)[1.39] 0.49(18)[1.25] 4.04(20)[2.51] 3.86(22)[2.10]
z3 0.66(11)[0.79] 0.55(16)[0.79] 0.77(12)[1.41] 0.60(17)[1.18] 4.17(17)[2.28] 4.05(19)[2.45]

TABLE XII. Results for 〈r2
E〉, 〈r2

M 〉 and µ from CC and CCFV fits to data from the four strategies, {4, 3∗}, {4Nπ, 3∗}, {4, 2sim}
and {4Nπ, 2sim}, used to control ESC (see Appendix A). The Q2 behavior of the data from each strategy is parameterized using
the dipole (D), Padé (P2) and the z3 fits. The χ2/dof of the CC/CCFV fits are given within the square brackets.

• To a lesser extent, the same is true for the data
with the dipole fit and the {4Nπ, 3∗} strategy.

• The dipole fits to the a071m170 data with the
{4Nπ, 2sim} strategy shown in Fig. 31 miss the low
Q2 points, and the results differ from those from
the z3 or the P2 analyses.

In short, these CCFV fits are not yet robust. For our best
estimate, we take the average of the z3 and P2 fits to the
{4Nπ, 3∗} strategy data and the larger of the two analyses
error. The same is done for µu−d ≡ µp−n even though er-
rors in it at the two values of Mπ are comparable and the
CCFV fits are reasonable. In both cases we use half the
spread between the {4Nπ, 3∗} and the {4Nπ, 2sim} val-
ues as an additional systematic uncertainty for possible
residual ESC and Q2 fit ansatz dependence.

With the above selections, our final results are

〈r2
E〉u−d = 0.85(12)(19)sys fm2 ⇒ rE = 0.92(12) fm ,

〈r2
M 〉u−d = 0.71(19)(23)sys fm2 ⇒ rM = 0.84(18) fm ,

µu−d = 4.15(22)(10)sys . (54)

These radii are consistent with values obtained from
the Kelly parameterization [22] of the experimental data
given in Eq. (12) (see our review in appendix D in
Ref. [9]), and the more precise value of the proton charge
radius rp = 0.831 ± 0.007stat ± 0.012sys from the PRad
experiment at Jefferson Lab [23] that claims to resolve
the “proton radius puzzle” by reconciling the values from
e − p scattering with those from muonic hydrogen. The
errors in the lattice results are, of course, much larger
and do not provide independent input on the “proton
radius puzzle”. The µp−n is about 2σ smaller than the
precisely measured value µp−n|exp = 4.7059.

XIV. PARAMETERIZING THE FORM
FACTORS GA, GE AND GM USING PADÉ AND

z-EXPANSION FITS

The Padé and z-expansion fits to form factors pre-
sented in this section should be considered a good heuris-
tic, i.e., they serve our primary goal to provide a good
but simple parameterization of the lattice data. This is
in the same spirit as the phenomenologically useful Kelly
parameterization [22] of GE and GM that are well mea-
sured in electron scattering experiments, or the rational
function fit used in a recent analysis of the PRad exper-
iment at Jefferson Lab [23]. Note that the improvement
in the precision with which the proton radius is extracted
and the likely resolution of the “proton radius puzzle” in
Ref. [23] has come from increasing the range of Q2 and
the accuracy of the data and not from the parameteriza-
tion.

On the other hand, the axial form factors of the nu-

cleon, GA and G̃P , that are important inputs in the anal-
ysis of neutrino-nucleus scattering are not well measured
due to safety concerns with liquid hydrogen targets. Tra-
ditionally, GA has been parameterized using the dipole
ansatz, Eq. (33), with estimates of the axial mass, MA,

ranging from 1 to 1.35 GeV, and G̃P obtained from GA
using the PPD hypothesis [5]. Our analysis shows that
a dipole ansatz does not have enough free parameters
to fit the data over the range 0.04 < Q2 < 1 GeV2,
nevertheless, we include it in this section for compar-
ison. Furthermore, as discussed in Secs. XIII A, XIII B
and XIII E, while the data for the form factors have small
errors, the CCFV fits to charges and charge radii derived
from them are not yet robust, a consequence of having
only seven ensembles and the relatively larger errors in
the Mπ ≈ 170 MeV data. Thus, we did not present a
{a → 0,Mπ = 135MeV,MπL → ∞} limit parameteri-
zation of the form factors in those sections. On a posi-
tive note, the small dependence of GA, GE and GM on
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FIG. 16. Comparison of the dipole, P2 Padé, and z-expansion
fits to the combined data from the five larger volume ensem-
bles. We selected {4Nπ, 2sim} data for GA and {4Nπ, 3∗} for
GE and GM as they show the least dependence on a and Mπ,
which is neglected in these fits. Result of the P2 fit to GA is
given in Eq. (55), and to GE and GM in Eq. (58).

{a,Mπ,MπL} observed in Figs. 5, 12 and 14 motivated
the following heuristic analysis.

This simple parameterization assumes that the depen-
dence on a, Mπ and MπL can be neglected, with the
intent to subsequently include a and Mπ dependent cor-
rections as data get better. (This assumption is the least-
well motivated for GA.) To reduce the impact of the
neglected finite volume corrections, we do not include
data from the two small volume ensembles, a094m270
and a091m170 with MπL . 4, which show some evi-

dence of finite volume corrections. With the remaining
data from five ensembles (a total of fifty Q2 6= 0 points
for GA and thirty for GE,M ), we compare six parame-
terizations for each of the three form factors: the dipole,
two Padé, P (g, 0, 2) and P (g, 1, 3), and three z-expansion
fits, z2,3,4. For GA, we use the preferred {4Nπ, 2sim} data
with Z2 renormalization and remark that Z1 gives over-
lapping results. For GE and GM , we use the {4Nπ, 3∗}
data.

The data and three of the six fits are compared in
Fig. 16. The results are summarized in Table XIII. We
observe the following:

• The two P (g, 0, 2) and P (g, 1, 3) Padé results are es-
sentially identical and stable for all three form fac-
tors. On the basis of the Akaike criteria, P (g, 1, 3)
is an overparameterization.

• The dipole fit to GA is poor and shows deviations
near Q2 = 0 and at large Q2. Similar, but smaller,
deviations are seen for GM . The dipole is a reason-
able fit only for GE .

• The zn-expansion fits do not show convergence: Ta-
ble X shows variation between the z2,3,4 estimates,
and an increase in errors. Furthermore, these esti-
mates now depend on the choice of t0 [see Eq. (35)]
with the overall midpoint value t0 = 0.5 GeV2 giv-
ing the smallest χ2. As in Sec. XIII, our best choice
based on the Akaike criteria is again z2 for GA and
z3 for GE and GM .

Incorporating these observations and bearing in mind
the caveats, our best parameterizations of GA, neglect-
ing {a,Mπ,MπL} dependent lattice artifacts, are (i) the

{4Nπ, 2sim, P̂2} fit:

GA(Q2) ≡ gA

1 + b0
Q2

4M2
N

+ b1( Q2

4M2
N

)2

=
1.270(11)

1 + 5.36(20) Q2

4M2
N
− 0.22(81)( Q2

4M2
N

)2
, (55)

with χ2/dof=1.27 and MN = 939 MeV, and (ii) the
{4Nπ, 2sim, ẑ2} fit that gives

GA(Q2) = 0.725(5)− 1.63(3)z + 0.17(13)z2 , (56)

with χ2/dof=1.15, and z defined in Eq. (35) with t0 =
0.5 GeV2. For our best results, we take the average of

these {4Nπ, 2sim, P̂2} and {4Nπ, 2sim, ẑ2} values given in
Table XIII to get

gu−dA = 1.281(11)(22)sys ,

〈r2
A〉u−d = 0.391(15)(70)sys fm2 , (57)

which are slightly smaller than the values in Eqs. (42)
and (45). The second, systematic, error is taken to be
the difference between the two estimates averaged.
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fit 〈r2
A〉 [fm2] gA χ2/dof 〈r2

E〉 [fm2] gV χ2/dof 〈r2
M 〉 [fm2] µ χ2/dof

dipole 0.283(04) 1.232(09) 1.98 [95/48] 0.799(08) 1.003(04) 0.46 [13/28] 0.628(08) 4.499(35) 1.60 [45/28]
Padé(g, 0, 2) 0.356(13) 1.270(11) 1.27 [60/47] 0.778(19) 0.999(05) 0.42 [11/27] 0.642(23) 4.520(48) 1.64 [44/27]
Padé(g, 1, 3) 0.356(13) 1.271(11) 1.17 [53/45] 0.778(19) 0.999(05) 0.45 [11/25] 0.652(24) 4.532(48) 1.54 [38/25]

ẑ2 0.426(15) 1.292(11) 1.15 [54/47] 1.081(16) 1.048(05) 2.25 [61/27] 0.919(24) 4.750(49) 2.42 [65/27]
ẑ3 0.454(43) 1.301(17) 1.17 [54/46] 0.743(54) 0.996(9) 0.43 [11/26] 0.48(10) 4.424(85) 1.66 [43/26]
ẑ4 0.67(11) 1.349(29) 1.11 [50/45] 0.66(18) 0.987(20) 0.44 [11/25] 1.04(33) 4.72(20) 1.61 [40/25]

TABLE XIII. Results for the charge radii and charges obtained using the dipole, Padé, and z-expansion fits to the renormalized

form factors GA(Q2)|Z2 , GE( Q
2

M2
N

)/gV and GM ( Q
2

M2
N

)/gV . The fits are made to the combined data from the five larger volume

ensembles. The value t0 = 0.5 GeV2 (midpoint of the Q2 range) is used in the z-expansion fits for all data. The {4Nπ, 2sim}
data for GA and the {4Nπ, 3∗} data for GE and GM have been selected for this analysis as they exhibit the least dependence
on a, Mπ, and MπL as shown in Figs. 5, 12 and 14.

Similarly, the results of the {4Nπ, 3∗, P̂2} and
{4Nπ, 3∗, ẑ3} fits to GE and GM are

GE(Q2) =
0.999(5)

1 + 11.72(29) Q2

4M2
N

+ 38.5(1.9)( Q2

4M2
N

)2
, or

= 0.290(3)− 1.23(3)z + 1.72(19)z2

+ 2.48(35)z3 ,

GM (Q2) =
4.52(5)

1 + 9.68(35) Q2

4M2
N

+ 21.3(1.8)( Q2

4M2
N

)2
, or

= 1.613(11)− 5.74(14)z + 6.1(1.2)z2

+ 11.9(2.5)z3 .
(58)

Both sets of fits have very similar χ2/dof: ≈ 0.43 and
≈ 1.65 for GE and GM , respectively. The variance-
covariance matrices of the above six fits are given in Ap-
pendix I. The results are:

{4Nπ, 3∗, P̂2} {4Nπ, 3∗, ẑ3}
〈r2
E〉u−d fm2 0.778(19)(50)sys 0.743(54)(50)sys

〈r2
M 〉u−d fm2 0.642(23)(80)sys 0.48(10)(8)sys

µu−d 4.52(5)(10)sys 4.42(9)(10)sys .
(59)

The second, systematic, error in both cases is taken to be

half the spread between the {4Nπ, 3∗, P̂2}, {4Nπ, 3∗, ẑ3},
{4Nπ, 2sim, P̂2} and {4Nπ, 2sim, ẑ3} estimates.

Next, we explored adding corrections due to {a,Mπ}
in these combined fits by expanding all parameters in
them, for example b0 → (b00 + ba0a + bm0 O(M2

π)), where
O(M2

π)) is log(M2
π) for 〈r2

E〉 and 1/Mπ for 〈r2
M 〉. The

result is that the χ2 is reduced only marginally but the
errors in the observables jump by a factor of 6 or more
with any (even one) additional parameter. Also, in most
cases the extra parameter(s) are essentially undetermined
indicating overparameterization. Our conclusion again is
that much higher precision data on more ensembles are
needed to include {a,Mπ} dependent corrections in this
approach.

Another estimate of µu−d is obtained from a linear fit
to the GM/GE data as shown in Fig. 15. The left panel

shows separate fits to the a091m170L and a071m170
data with the {4Nπ, 3∗} strategy. The right panel shows
the fit to the combined data from these two ensembles.
(Data from the other three larger volume Mπ ∼ 270 MeV
ensembles are included only for comparison.) The re-
sult from the fit to the two Mπ ≈ 170 MeV ensembles,
µu−d = 4.67(12), is consistent with that in Eq. (59).

This heuristic analysis has the advantage of evading
the two-step process used to get results given in Sec. XIII:
first a parameterization of the Q2 behavior and then
CCFV fits to the observables with just leading order cor-
rections in {a,Mπ,MπL}. The disadvantage is assuming
that the {a,Mπ,MπL} corrections can be neglected, even
though the data in Figs. 5, 12 and 14 suggest it. The re-
markable outcome is that the estimates from the heuristic
analysis are consistent with those given in Eqs. (42), (45),
and (54) but with much smaller errors in all cases. Also
note that these fits give GE(Q2 = 0) = 0.999(5) and
GM (Q2 = 0) = 4.52(5), i.e., a necessary consistency
check against the precisely known values for the electric
charge and the magnetic moment.

To understand why the dipole fit does not work for
GA in this case also, we note that the errors on points at
small Q2 grow as Q2 → 0 because the extrapolation in
τ to remove ESC in the {4Nπ, 2sim} fits is large on the
170 MeV ensembles as can be seen from Fig. 24. Sim-
ilarly, the errors grow as Q2 increases because the sta-
tistical signal-to-noise degrades. Thus, the dipole fit in
Fig. 16 with gA and MA left as free parameters is an-
chored by the smaller error points in the middle and fails
at both ends as it does not have enough degrees of free-
dom to fully capture the curvature. The Padé {gA, 0, 2},
with one additional degree of freedom, is sufficient.

XV. COMPARISON WITH PREVIOUS
LATTICE QCD CALCULATIONS

In this section, we compare with results from other re-
cent lattice calculations done with either 2+1+1 or 2+1
dynamical flavors. We assume that a dynamical charm
in the lattice generation does not significantly impact the
quantities composed of light quarks that are investigated
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here; i.e., the two formulations give the same results.
For a more extensive review of the calculation of the
charges, we direct the reader to the Flavor Lattice Aver-
aging Group (FLAG) Reviews 2019 [20] and 2021 [73].

It is important to note that all of these isovector
quantities from different calculations are expected to
only agree at the physical point, and thus a CCFV
extrapolation is necessary. We have therefore applied
the following criteria in selecting the calculations to
compare. We require that (i) the results are either
obtained at Mπ ≈ 135 MeV or have been extrapolated
to it, and similarly (ii) they include ensembles with
a < 0.1 fm or a continuum extrapolation has been
performed. (iii) We find that so far no other calculation
has carried out the extensive high statistics analysis of
excited states presented in this work, so we do not apply
an excited-state criterion for inclusion, but will comment
on the method used to control ESC and the outcome.

The results compared are summarized in Table XIV.
For each collaboration, we quote the latest (or best in the
words of the authors) value for each observable, which is
often given in different publications. Overall, it is evident
that a complete control over systematic uncertainties, es-
pecially excited-state effects, is still work under progress.

The PNDME results [6, 7, 9] are from a clover-on-HISQ
formulation using eleven 2+1+1-flavor HISQ ensembles,
including two at the physical pion mass. All the quoted
results are from CCFV fits to data with the {4, 3∗} strat-
egy, i.e., they represent the status [20] before Nπ (or
Nππ) states were included in fits to remove the ESC.

The ETM Collaboration [58–60] has presented results
for most of the quantities analyzed in this work. Their
latest results are from one 2+1+1-flavor twisted mass
clover-improved ensemble with a = 0.0801(4) fm, Mπ =
139(1) MeV, MπL = 3.62, so issues of continuum extrap-
olation, finite volume corrections and chiral behavior are
not addressed. (Our a071m170 ensemble provides data
at similar values of Q2.) Their statistical sample is 750
lattices separated by 4 trajectories each, and results for
the isovector charges [59] are taken from a two-state fit,
{2, 2} in our notation. Their axial form factors [58] do
not satisfy the PCAC relation, and their estimates pre-

sented for G̃P and GP are not the calculated values but
those obtained from GA using the pion-pole dominance
relation. Consequently, we do not quote their estimates
for g∗P and gπNN . Both the dipole and z-expansion fits to
GA(Q2) obtained from {2, 2} strategy work well and give
〈r2
A〉 = 0.343(42)(16) fm2, which is consistent with our
{4, 3∗} value. The electric and magnetic form factors,
presented in Ref. [60], are well fit by a dipole ansatz,
however, they differ from the Kelly parameterization at
small Q2, as also seen in the PNDME results in Ref. [9].

The RBC-UKQCD Collaboration has analyzed two
ensembles of 2+1-flavor domain wall (DW) fermions
with Iwasaki plus dislocation-suppressing-determinant-
ratio (DSDR) gauge action at a = 1.378(7) fm and with
Mπ = 249.4(3) and 172.3(3) MeV. They report issues of
long autocorrelations in a statistical sample of only 700

trajectories, which may explain an underestimate of gA
and a large uncertainty in gS .

The CalLat Collaboration [62, 63] report gu−dA with
percent level accuracy using the domain-wall-on-HISQ
formulation. In their calculation, the operator is al-
ready summed over all insertion times t during gener-
ation; therefore, they can only analyze their data ver-
sus τ . They use two-state fits to data starting at much
smaller source-sink separations, 0.2 . τ . 0.8 fm, where
many higher excited states contribute and sensitivity to
contributions from Nπ states would be small. They
do not explicitly include an Nπ state in their analy-
sis. Thus, the balance between control over statistical
versus systematic errors, especially the impact of the
inclusion of the Nπ state(s), remains to be addressed.
The CCFV fits are made to data from 16 ensembles at
three values of a ≈ 0.09, 0.12, 0.15 fm and five values of
Mπ ≈ 400, 350, 310, 220, 130 MeV.

The PACS Collaboration [64–66] uses a single 1284

ensemble generated with 2+1-flavor stout-smeared O(a)
improved Wilson-clover fermions and Iwasaki gauge ac-
tion at a = 0.0846(7) fm and Mπ = 135(9) MeV. While
the lattice volume is large, MπL = 7.4, results have
been presented from only 20 lattices, each separated
by 10 trajectories. The JLQCD [74] use 2+1-flavor
overlap formulations with a single value of a = 0.11 fm,
4 values of Mπ = 293, 379, 453, 540 MeV and 50 gauge
configurations. In both calculations, even though some
of their estimates are reasonable, the control over the
statistical and various systematic uncertainties we have
discussed is limited. For example, on the key issue
of excited states, in Ref. [65] they find no significant
excited-state effects over the range 0.84 < τ < 1.35 fm,
in contradiction to all other calculations. Also, estimates
from 964 [64] and 1284 [65] lattices with the same lattice
spacing but with Mπ = 146 versus 135 MeV show much
larger differences than expected, presumably due to low
statistics in both calculations.

The RQCD Collaboration [67] has presented results for
the axial form factors on 37 ensembles with 2+1 flavors of
nonperturbatively O(a) improved Wilson-clover fermions
with a tree- level Symanzik improved gauge action gen-
erated by the CLS Collaboration [75]. These ensembles
cover five values of the lattice spacing and include two
physical pion mass ensembles. To remove excited states
they use a strategy similar to {3, 2} for the axial charge

and GA, and to {4Nπ, 3∗} for G̃P and GP form factors.
The resulting form factors satisfy the PCAC relation at
a level similar to that presented in this work. They
find that both the dipole and the z-expansion ansatz fit
the Q2 behavior of GA(Q2); however, results for gu−dA ,
〈r2
A〉u−d, and g∗P are different as can be seen from the

summary in Table XIV.

The Mainz Collaboration [68] analyzed 11 CLS ensem-
bles [75] that are common with the RQCD work described
above. On these ensembles, the pion mass ranges be-
tween 203 and 353 MeV. To control ESC they explore
the summation method and two-state fits with a common
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value for ∆M1 for six quantities, the three charges and
three Mellin moments that give the momentum fraction,
helicity, and transversity. Note that our data for ∆M1

(or ∆M̃1) for the three charges given in Table II and for
the three moments given in Ref. [76] do not support using
a common value for ∆M1 in the analysis of all six quanti-
ties. Their final results are also obtained with the CCFV
ansatz given in Eq. (41), which they call ABDE. For the
vector form factors [69], they analyze 10 CLS ensembles
including one with the physical pion mass; however, er-
rors in data from it are large. The ESC is controlled using
the summation and two-state fit methods ({2, 2} in our
notation), which give consistent values. The errors in
the data with the summation method, especially at the
larger Q2, are much larger. They employ dipole and z-
expansion parameterization of the Q2 behavior, and the
chiral-continuum extrapolation using heavy baryon chiral
perturbation theory (HBChPT) supplemented with lead-
ing order corrections for lattice discretization and finite
volume. Their final estimates are obtained from a model-
agnostic average (summation, two-state fits, dipole, z-
expansion, HBChPT, and cuts on Q2 and M2

π values)
with weights given by the Akaike information criteria.

The LHPC Collaboration [70, 71] analyzed two phys-
ical pion mass 2+1-flavor ensembles generated with
2-HEX-smeared Wilson-clover action (the Budapest-
Marseille-Wuppertal ensembles). One of their main ob-
servations from the study of charges [70] is a significant
variation in ZS between the RI′-MOM and RI-sMOM
renormalization schemes which, along with the statisti-
cal errors and extrapolation in a uncertainty, accounts
for the large error in gS . In Ref. [71], they present re-
sults for µp−n and charge radii from two methods: tra-
ditional (z-expansion) and derivative. In Table XIV, we
quote their results from the traditional method as recom-
mended by them, and from the two analyses for handling
ESC: τ/a = 10 ratio data (top) and summation (bot-
tom), which differ. Systematic uncertainties were not
evaluated in either set of estimates.

The χQCD Collaboration [72] used the overlap-on-
domain-wall formulation on three 2+1-flavor domain-wall
ensembles generated by the RBC/UKQCD Collabora-
tion. On each of these ensembles, data with 5–6 values of
the valence pion mass are generated. They obtain gu−dA
using a CC fit to these partially quenched data.

From the summary of results in Table XIV, we con-
clude that, overall, results for gu−dT are consistent within

5%, and for gu−dS within 10%, and sensitivity to excited
states in their extraction is small. For all other quantities
such as gu−dA , the charge radii, g∗P and gπNN , results from
analyses that do not include the Nπ states give smaller
values compared to phenomenology.

XVI. CONCLUSIONS

We have presented an analysis of isovector charges
and axial and electromagnetic form factors on seven

2+1-flavor Wilson-clover ensembles generated by the
JLab/W&M/LANL/MIT Collaborations [16] and de-
scribed in Table XV. This unitary clover-on-clover cal-
culation is an improvement over our previous work us-
ing the nonunitary clover-on-HISQ formulation [6–9]. In
addition, high-statistics data have allowed us to make
significant progress in understanding key issues in con-
trolling other systematic uncertainties including excited
state contamination in various nucleon matrix elements.

The excited-state contributions to each observable are
analyzed using a number of possible values of the en-
ergy of the first excited state, which is assumed to pro-
vide the dominant contamination. The axial form factors
extracted including the low-lying multihadron Nπ state
satisfy the PCAC relation between them and are consis-
tent with the pion-pole dominance hypothesis. We also
find evidence that the Nππ state, theoretically supported
by the vector-meson dominance hypothesis, contributes
to the electric and magnetic form factors. They show
much less sensitivity to the excited state mass gap, and
the results agree with the experimental data parameter-
ized using the Kelly result [22].

Results of the pseudoscalar decay constant, Fπ, after
CCFV fits to data with two methods for renormalization
are Fπ|Z1

= 93.0(3.9) (this CCFV fit is shown in Fig. 36)
and Fπ|Z2

= 95.9(3.5). These estimates agree with the
experimental value to within a few percent. Noting that
Fπ data points have small statistical errors, the differ-
ence and the size of the errors after CCFV fits, ≈ 4%,
should be regarded as a measure of the overall accuracy
of the CCFV fits with seven data points, especially in
observables that show significant variations with respect
to {a,Mπ,MπL}.

The results for the three isovector charges obtained
from the forward matrix elements [see Eq. (43)] are

gu−dA = 1.32(6)(5)sys (this estimate includes input from

the extrapolation of the Q2 6= 0 data), gu−dS =

1.06(9)(6)sys, and gu−dT = 0.97(3)(2)sys. The first overall
analysis error is conservative with respect to the varia-
tion observed under CCFV extrapolations. Estimation
of systematic uncertainties are discussed in Sec. XIII A.
The scalar and tensor charges gu−dS,T do not show a signif-
icant dependence on the value of the first excited state
mass, so we consider their estimate robust.

The value of gu−dA has been extracted in two ways, one
from the forward matrix element and the second from an
extrapolation of the axial form factor to Q2 = 0. These
two ways must give the same result in the continuum
limit that should agree with the experimental value. We
find that gu−dA is sensitive to the inclusion of the Nπ
state. Our results have a ∼ 10% spread depending on
the ESC strategy and the Q2 fits used as discussed in
Sec. XIII A. A snapshot of the spread is given in Table X.
The change in GA(Q2) on including the Nπ state is, in
most cases, a few percent (see Table XVIII): the largest
change (3–5%) is in the smallest Q2 point (n2 = 1) on
the Mπ ≈ 170 MeV ensembles, however, it is precisely
the change in the low Q2 points that has the largest im-
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pact on the extraction of gu−dA from fits to GA. Simi-
larly, the change in the forward matrix element is about
6% (see Fig. 3). These changes are of the same size as
our overall analysis error estimate, ∼ 5%, and the addi-
tional systematic uncertainty included in the final result
gu−dA = 1.32(06)(05)sys. Thus, this level of the possi-
ble contribution of the Nπ state in extracting GA, and
its impact on the improvement of the PCAC relation, is
just at the level of our current resolution. Our conclu-
sion, therefore, is as follows: to fully resolve the issue
of the size of the contributions of the Nπ states in the
extraction of GA and to improve the precision of lattice
estimates of gu−dA requires more extensive data.

To fit the Q2 dependence of the form factors, we ex-
plore the z-expansion, the dipole ansatz, and Padé fits.
Estimates from the z2,3,4 truncation of the z-expansion
give consistent results for the axial form factors and we
take final values from the z2 fits to avoid overparameteri-
zation. For the vector form factors we use the z3 trunca-
tion. The second order Padé, P (g, 0, 2), with three free
parameters, is found to provide an equally good parame-
terization. The dipole ansatz does not provide a good fit
to GA(Q2) obtained including the Nπ state when remov-
ing the ESC. It provides a reasonable fit to the electric
form factor, and less so to the magnetic.

We have carried out two analyses to get charge radii
from the form factors, and both sets of results are sum-
marized in Table XIV. In the first, the Q2 dependence
of data from each ensemble is parameterized using the
dipole, Padé and z-expansion, and the lattice artifacts in
the resulting values of the charges and the charge radii
due to discretization, finite volume effects, and heavier
than physical values of quark masses are then removed
by simultaneous CCFV fits keeping leading order correc-
tions in the three variables {a,Mπ,MπL}. The results
are the following: (i) the axial charge radius squared,
〈r2
A〉 = 0.428(53)(30)sys fm2, (ii) the induced pseu-

doscalar charge, g∗P = 7.9(7)(9)sys, (iii) the pion-nucleon
coupling gπNN = 12.4(1.2), (iv) the electric charge radius
squared, 〈r2

E〉u−d = 0.85(12)(19)sys fm2, (v) the magnetic

charge radius squared, 〈r2
M 〉u−d = 0.71(19)(23)sys fm2,

and (vi) the magnetic moment µu−d = 4.15(22)(10)sys.
At this point, we do not consider deviations from
phenomenological/experimental results significant. In
the axial channel, to obtain this improved consistency
of results and for the form factors to satisfy the PCAC
relation between them, it was crucial to include the Nπ
state in the removal of ESC.

The electric and magnetic form factors GE and GM ,
shown in Figs. 12 and 14, exhibit much less sensitivity to
the value of the mass gap of the excited state. Our results
agree with the Kelly parameterization of the experimen-
tal data over the range 0.04 . Q2 . 1.2 GeV2 when
plotted as a function of Q2/M2

N , and show no significant
variation with respect to either a or M2

π . This agreement
is a major improvement over our previous work using the
clover-on-HISQ formulation presented in Ref. [9].

A second, heuristic, analysis of form factors, presented

in Sec. XIV, explores the same set of parameterizations
(see Table XIII) but makes a single fit to data from
all five larger volume ensembles as shown in Figs. 5, 12
and 14, i.e., ignoring {a,Mπ,MπL} dependent artifacts.
The P (g, 0, 2) Padé does a good job of parameterizing
the Q2 behavior and the results are given in Eqs. (55)
and (58).

The results for gu−dA , 〈r2
A〉u−d, 〈r2

E〉
u−d

, 〈r2
M 〉

u−d
, and

µu−d from these two sets of analyses, summarized in Ta-
ble XIV, are consistent but the errors from the second
set are smaller; a consequence of the analysis becoming
simpler on ignoring {a,Mπ,MπL} dependent artifacts.

Our goal is to provide a parameterization of the
form factors themselves versus Q2 for input into phe-
nomenological analyses. In the analysis method “A,”
we do not have a robust theoretical guide or adequate
data for performing CCFV extrapolations of each of
the coefficients of the z-expansion or Padé fits (the ak
in Eq. (34) or the bi in Eq. (36)) determined from fits
to individual ensembles. In method “B,” we make the
assumption that the {a,Mπ,MπL} dependent artifacts
can be ignored (see the data in Fig. 16). Under this
assumption, Eqs. (55), (56), and (58) give our continuum
limit parameterization of the form factors.

Overall, our results for the form factors are consis-
tent with phenomenological/experimental values. For
this agreement, it was essential to include the low-energy
Nπ (Nππ) excited state in the analysis of the axial form
factors, and to a smaller extent in the vector channel.
Motivation for including these states comes from χPT,
pion-pole dominance for axial, and vector meson domi-
nance for vector channels. Our data support these hy-
potheses, and the estimates of ∆M1 are in rough agree-
ment with those expected with Nπ (or Nππ for vector)
states (see Figs. 22 and 10 for the axial and vector cases,
respectively). The change in the axial form factors is
only a few percent; however, it is large, ∼ 35%, in both

the induced pseudoscalar, G̃P , and the pseudoscalar, GP ,
form factors. With these changes, the resulting form fac-
tors satisfy the PCAC relation between them. Further-
more, the estimates of the induced pseudoscalar charge,
g∗P = 7.9(7)(9), and of the pion-nucleon coupling gπNN =
12.4(1.2) become consistent with phenomenology.

The change in the electric and magnetic form factors
between the four ESC strategies is small as shown in
Figs. 12 and 14. A significant reduction in the depen-
dence on {a,Mπ} of both form factors is observed when
plotted versus Q2/M2

N . This provided motivation for
the Padé and z-expansion parameterization presented in
Sec. XIV and the results in Eqs. (55)–(59).

To increase precision, address the issue of the spread
in results due to different estimates of the relevant mass
gap, and to resolve whether additional Nπ state[s] should
be included in the analysis, higher statistics data at more
values of {a,Mπ,MπL} are needed. The benchmarks for
improvement will continue to be satisfying the PCAC
relation between the axial form factors, the agreement
with the experimental value gu−dA = 1.2764(1), and the
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well measured vector form factors GE and GM .
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Appendix A: Glossary of labels used to describe the
various fits made

A summary of the abbreviations used to describe the
various analysis strategies and fits is given below in order

of the three entries such as in {4Nπ, 3∗, P̂2}.
The first entry specifies the fits to the two-point func-

tion used to extract the spectrum. It has two possibili-
ties:

• {4} denotes that four-state fits are made to the
two-point function. Empirical Bayesian priors with
wide widths for excited state energies and ampli-
tudes are used only to stabilize the fits. These fits
are illustrated in the left-hand column in Fig. 1.

• {4Nπ} denotes that a prior for ∆E1 with a narrow
width centered about the energy of the noninteract-
ing Nπ (or of Nππ that is essentially degenerate)
state is used in four-state fits to the two-point func-
tion. Priors on higher states are similar to those in
{4} fits. These fits are illustrated in the right-hand
column in Fig. 1.

The second entry specifies the four different fits made to
the three-point functions:

• {3∗} specifies that three-state fits are made to the
three-point functions with the spectrum taken from
either {4} or {4Nπ} fits to two-point functions, and
the 〈2|O|2〉 term in Eq. (18) is set to zero.

• {2A4}: This is a two-state fit to the three spatial
axial vector and the pseudoscalar three-point func-
tions with a common ∆E1 determined from fits to
the A4 correlator. The ground state parameters are
taken from either {4} or {4Nπ} fits.

• {2sim}: This is a two-state fit to a set of three-
point functions. In the axial channel it denotes
that a simultaneous fit to the four axial vector and
the pseudoscalar channels is made with a common
∆E1. In the vector channel it denotes a simulta-
neous fit to the three distinct correlation functions
described in Sec. XII. The ground state parame-
ters are taken from either {4} or {4Nπ} fits. In

both cases, the output mass gap is called ∆Ẽ1.

• {2free}: This is a two-state fit to an individual
three-point function with ∆E1 left as a free pa-

rameter. The output mass gap is called ∆Ẽ1. The
ground state parameters are taken from either {4}
or {4Nπ} fits.

The third entry specifies the six different fits made to the
form factors to parameterize the Q2 behavior:

• {D} and {D̂}: “D” stands for a dipole fit. The

hat in {D̂} specifies that subsequent CCFV fits
to quantities such as gA, 〈r2

E〉, 〈r2
M 〉 and µ have

been carried out neglecting the two small volume
points, a094m270 and a091m170, and the finite-
volume correction term have been neglected, i.e.,
only a CC fit is performed.

• {zk} and {ẑk}: These are z-expansion fits trun-
cated at power k. The hat in the label {ẑ} again
specifies that subsequent CC fits have been done
neglecting the two small volume points, a094m270
and a091m170, and the finite-volume correction
term have been neglected, i.e., only a CC fit is per-
formed.

• {Pn} and {P̂n}: “P” stands for a Padé fit. The sub-
script n specifies the order of the Padé as discussed

in Sec. X. The hat in {P̂} again specifies that the
two small volume points, a094m270 and a091m170,
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and the finite-volume correction term have been ne-
glected, i.e., only a CC fit is performed.

Appendix B: Lattice parameters and the values of
Q2 from the two four-state fits, {4} and {4Nπ}

In this appendix, we give the parameters of the seven
ensembles in Table XV and the corresponding parameters
used in the calculation of the clover propagators in Ta-
ble XVI. The values of momentum transfer squared, Q2,
obtained from the two four-state fits, {4} and {4Nπ},
to the two-point correlation function are given in Ta-
ble XVII.

ID β a Mπ M
{4}
N M

{4Nπ}
N Size MπL Lattices NHP NLP τ

[fm] [MeV] [MeV] [MeV] L/a T/a
a127m285 6.1 0.127(2) 285(5) 961(15) 958(15) 32 96 5.87 2,002 8,008 256,256 {8,10,12,14}
a094m270 6.3 0.094(1) 269(3) 982(15) 986(11) 32 64 4.09 2,469 7,407 237,024 {8,10,12,14,16}
a094m270L 6.3 0.094(1) 269(3) 979(11) 976(11) 48 128 6.15 4,510 18,040 577,280 {8,10,12,14,16,18}
a091m170 6.3 0.091(1) 169(2) 903(11) 895(12) 48 96 3.75 4,012 16,048 513,536 {8,10,12,14,16}
a091m170L 6.3 0.091(1) 170(2) 901(11) 884(13) 64 128 5.03 2,002 10,010 320,320 {8,10,12,14,16}
a073m270 6.5 0.0728(8) 272(3) 1008(11) 1007(11) 48 128 4.81 4,720 18,880 604,160 {11,13,15,17,19}
a071m170 6.5 0.0707(8) 166(2) 911(13) 901(12) 72 192 4.28 2,500 15,000 240,000 {13,15,17,19,21}

TABLE XV. Parameters of the seven isotropic clover ensembles being generated by the JLab/W&M/LANL/MIT Collaboration
using the highly tuned CHROMA code. Each row gives the ensemble ID and parameters, the number of lattices analyzed, the
number of high precision, NHP, and low precision, NLP, measurements of isovector quantities made and the values of source-sink
separation τ simulated. Each lattice is separated by 4–6 trajectories with ≈ 92% acceptance rate in the Hybrid Monte Carlo
(HMC) algorithm. The nucleon mass, MN , is given for the two fit strategies {4} and {4Nπ} defined in the text. The lattice
spacing a is determined from the Wilson flow parameter w0 using the method proposed in Ref. [85].

ID ml ms cSW Smearing parameters RMS smearing radius
a127m285 −0.2850 −0.2450 1.24931 {5, 50} 5.79(1)
a094m270 −0.2390 −0.2050 1.20537 {7, 91} 7.72(3)
a094m270L −0.2390 −0.2050 1.20537 {7, 91} 7.76(4)
a091m170 −0.2416 −0.2050 1.20537 {7, 91} 7.64(3)
a091m170L −0.2416 −0.2050 1.20537 {7, 91} 7.76(4)
a073m270 −0.2070 −0.1750 1.17008 {9, 150} 9.84(1)
a071m170 −0.2091 −0.1778 1.17008 {10, 185} 10.71(2)

TABLE XVI. The parameters used in the calculation of the clover propagators. The hopping parameter for the light/strange
quarks, κl,s, in the clover action is given by 2κl,s = 1/(ml,s + 4). cSW is the Sheikholeslami-Wohlert improvement coefficient
in the clover action. The parameters used to construct Gaussian smeared sources [28], {σ,NKG}, are given in the fifth column
where NKG is the number of applications of the Klein-Gordon operator and the width of the smearing is controlled by the
coefficient σ, both in Chroma convention [77]. The resulting root-mean-square radius of the smearing in lattice units, defined

as
√∫

dr r4S†S/
∫
dr r2S†S with S(r) the value of the smeared source at radial distance r, is given in the last column.
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Q2 values with strategy {4}
n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

(1, 0, 0) 0.091(03) 0.164(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.314(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
(1, 1, 1) 0.262(08) 0.453(11) 0.215(05) 0.226(05) 0.131(03) 0.348(08) 0.169(04)
(2, 0, 0) 0.341(11) 0.598(15) 0.281(06) 0.294(07) 0.172(04) 0.451(10) 0.222(05)
(2, 1, 0) 0.419(13) 0.716(18) 0.346(07) 0.361(08) 0.213(05) 0.553(12) 0.272(07)
(2, 1, 1) 0.495(16) 0.839(21) 0.409(09) 0.426(10) 0.252(06) 0.652(15) 0.322(08)
(2, 2, 0) 0.638(21) 1.046(28) 0.530(12) 0.549(13) 0.328(07) 0.838(20) 0.413(10)
(2, 2, 1) 0.705(23) 1.172(30) 0.588(13) 0.609(15) 0.365(08) 0.927(22) 0.461(12)
(3, 0, 0) 0.706(23) 1.186(32) 0.586(13) 0.611(16) 0.365(08) 0.923(22) 0.465(13)
(3, 1, 0) 0.774(25) 1.293(34) 0.642(14) 0.672(17) 0.401(09) 1.010(24) 0.506(13)

Q2 values with strategy {4Nπ}
n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

(1, 0, 0) 0.091(03) 0.165(04) 0.074(02) 0.078(02) 0.045(01) 0.122(03) 0.058(01)
(1, 1, 0) 0.178(06) 0.315(07) 0.146(03) 0.154(03) 0.088(02) 0.238(05) 0.114(03)
(1, 1, 1) 0.261(08) 0.456(10) 0.215(05) 0.225(05) 0.130(03) 0.348(08) 0.168(04)
(2, 0, 0) 0.341(11) 0.593(13) 0.281(06) 0.293(07) 0.171(04) 0.451(10) 0.221(05)
(2, 1, 0) 0.418(13) 0.715(16) 0.345(07) 0.359(08) 0.211(05) 0.552(12) 0.271(06)
(2, 1, 1) 0.493(16) 0.837(19) 0.408(09) 0.424(10) 0.249(06) 0.650(15) 0.320(08)
(2, 2, 0) 0.636(20) 1.042(25) 0.529(11) 0.546(13) 0.325(08) 0.833(19) 0.412(10)
(2, 2, 1) 0.704(22) 1.165(28) 0.587(13) 0.606(14) 0.361(09) 0.921(21) 0.459(11)
(3, 0, 0) 0.705(23) 1.173(32) 0.586(13) 0.605(15) 0.361(09) 0.918(21) 0.461(11)
(3, 1, 0) 0.772(25) 1.280(33) 0.641(14) 0.665(16) 0.397(10) 1.004(23) 0.503(12)

TABLE XVII. Data for the momentum transfer squared, Q2 = q2 − (E −MN )2, in units of GeV2, for the two strategies {4}
(top) and {4Nπ} (bottom) used in the analysis of the form factors.

Appendix C: Comparison of charges extracted using
4 strategies

In this Appendix, we show the data and the fits made
to control ESC in gA, gS and gT in Figs. 17, 18 and 19,

respectively, using the four strategies, {4, 3∗}, {4Nπ, 3∗},
{4, 2free}, and {4Nπ, 2free} discussed in Sec. VIII. The re-
sults for the charges are summarized in Tables IV and V.
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FIG. 17. Each panel gives the data for the ratio RA(t, τ) = C3pt
A (t, τ ; 0,0)/C2pt(τ,0) defined in Eq. (19), which gives the

unrenormalized axial charge gu−dA in the limit τ → ∞, plotted as a function of t − τ/2 for the four largest values of τ . The
data connected by lines of the same color for the three largest τ are used in the fit to get the τ →∞ value given by the black
line with its gray error band. Data at the smallest τ , shown as gray crosses, are not used in the fit. The four panels in each
row show the excited-state fits to the same data but with the four strategies, {4, 3∗} (left column), {4Nπ, 3∗} (second column),
{4, 2free} (third column), and {4Nπ, 2free} (right column). The labels give the bare charge gA, the χ2/dof of the fit, the mass

gap a∆M1 (or a∆M̃1) and the ensemble ID.



48

t − τ/2

τ : ∞ 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.39(5)
χ2/27 = 0.94, p = 0.55
gS = 1.083(27)

127m285

{4,3∗}

t − τ/2

τ : ∞ 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.33(2)
χ2/27 = 0.96, p = 0.52
gS = 1.091(31)

127m285

{4Nπ,3∗}

t − τ/2

τ : ∞ 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.71(11)
χ2/28 = 1.16, p = 0.26
gS = 1.036(22)

127m285

{4,2free}

t − τ/2

τ : ∞ 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.71(10)
χ2/28 = 1.15, p = 0.27
gS = 1.041(21)

127m285

{4Nπ,2free}

t − τ/2

τ : ∞ 18 16 14 12 10

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.28(5)
χ2/43 = 1.35, p = 0.06
gS = 1.195(24)

094m270L

{4,3∗}

t − τ/2

τ : ∞ 18 16 14 12 10

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.20(2)
χ2/43 = 1.33, p = 0.07
gS = 1.176(43)

094m270L

{4Nπ,3∗}

t − τ/2

τ : ∞ 18 16 14 12 10

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.52(2)
χ2/44 = 1.44, p = 0.03
gS = 1.165(15)

094m270L

{4,2free}

t − τ/2

τ : ∞ 18 16 14 12 10

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.52(2)
χ2/44 = 1.44, p = 0.03
gS = 1.178(15)

094m270L

{4Nπ,2free}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.29(5)
χ2/27 = 0.96, p = 0.53
gS = 1.172(60)

091m170

{4,3∗}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.16(1)
χ2/27 = 0.95, p = 0.54
gS = 1.18(14)

091m170

{4Nπ,3∗}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.39(8)
χ2/28 = 0.98, p = 0.50
gS = 1.152(53)

091m170

{4,2free}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.40(8)
χ2/28 = 1.00, p = 0.47
gS = 1.188(53)

091m170

{4Nπ,2free}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.24(3)
χ2/27 = 0.84, p = 0.70
gS = 1.145(73)

091m170L

{4,3∗}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.14(2)
χ2/27 = 0.85, p = 0.68
gS = 1.17(14)

091m170L

{4Nπ,3∗}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.54(9)
χ2/28 = 0.91, p = 0.61
gS = 1.132(43)

091m170L

{4,2free}

t − τ/2

τ : ∞ 16 14 12 10 8

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.55(9)
χ2/28 = 0.95, p = 0.54
gS = 1.223(57)

091m170L

{4Nπ,2free}

t − τ/2

τ : ∞ 19 17 15 13 11

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.23(4)
χ2/39 = 1.13, p = 0.27
gS = 1.271(25)

073m270

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13 11

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.20(2)
χ2/39 = 1.09, p = 0.33
gS = 1.272(30)

073m270

{4Nπ,3∗}

t − τ/2

τ : ∞ 19 17 15 13 11

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.40(2)
χ2/40 = 1.00, p = 0.47
gS = 1.230(14)

073m270

{4,2free}

t − τ/2

τ : ∞ 19 17 15 13 11

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.40(2)
χ2/40 = 1.00, p = 0.47
gS = 1.235(14)

073m270

{4Nπ,2free}

t − τ/2

τ : ∞ 21 19 17 15 13

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.18(5)
χ2/47 = 0.84, p = 0.77
gS = 1.22(13)

071m170

{4,3∗}

t − τ/2

τ : ∞ 21 19 17 15 13

0.8

1.0

1.2

1.4

-10 -5 0 5 10

ΔM1 = 0.12(1)
χ2/47 = 0.84, p = 0.77
gS = 1.24(21)

071m170

{4Nπ,3∗}

t − τ/2

τ : ∞ 21 19 17 15 13

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.41(7)
χ2/48 = 0.83, p = 0.79
gS = 1.182(72)

071m170

{4,2free}

t − τ/2

τ : ∞ 21 19 17 15 13

0.8

1.0

1.2

1.4

-10 -5 0 5 10

Δ eM1 = 0.41(7)
χ2/48 = 0.83, p = 0.79
gS = 1.230(72)

071m170

{4Nπ,2free}

FIG. 18. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized scalar charge gu−dS in the
limit τ →∞, and plotted as a function of t− τ/2 for the for the five largest values of τ (four for a127m285). In each panel, the
data with the four largest τ and connected by lines of the same color are used in the fit to get the τ →∞ value (gray band).
The rest is the same as in Fig. 17.
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FIG. 19. Each panel shows the data for the ratio defined in Eq. (19) that gives the unrenormalized tensor charge gu−dT in the
limit τ →∞, and plotted as a function of t− τ/2 for the four largest values of τ . The rest is the same as in Fig. 17.
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Appendix D: Anatomy of the excited-state
contamination in the charges

In this Appendix, we compare fits to the data for the
three charges, gA,S,T , in Fig. 20 to highlight (i) the dif-
ferences in ESC for the u, d, u − d and u + d quark
bilinear operator insertions and (ii) how these ESC pat-
terns impact the extraction of the isovector and isoscalar
(connected only) combinations. Data are presented for
the a071m170 ensemble, which have the largest statisti-
cal errors. The fits are made using the {4, 3∗} strategy.
We also examine the data for symmetry about (t− τ/2),
monotonic convergence versus τ and the size of errors,
and how these impact our ability to remove ESC.

The ESC in the axial channel is equally large in mag-
nitude for insertion in the u and d quarks. It adds in the
u − d combination as the data have opposite signs, but
cancel in u+d. In the case of the scalar charge, the ESC
in both the u and d insertions are a similar fraction of
the value. Thus, it adds in u + d. In the u − d combi-
nation, there is a large cancellation; however, significant
ESC remains as shown in Fig. 18. In the case of the
tensor charge, the value and the ESC in the insertion in

the u quark is much larger, and it dominates in both the
u− d and the u+ d combinations. Overall, in the u+ d
axial and u−d scalar cases, where there is a cancellation,
much higher statistical precision in the τ > 1.5 fm data
is needed to demonstrate monotonic convergence and im-
prove the reliability of n-state fits.

Given these patterns, we made fits with the same set of
ESC strategies to data with separate insertions of u and
d quark operators. The goal was to see whether these
fits, especially in the scalar channel, are more stable and
the gu−dS combination constructed from individual ESC
fits has better precision. What we found, on all seven
ensembles and for all three charges, is that direct fits to
the u − d data gave values and errors consistent with
those obtained by combining results from separate fits to
data with u and d insertions. The largest differences are
in gu−dS for the a091m170L (about 1σ) and a071m170
(about 0.5σ) ensembles. This check shows that our er-
ror estimates are reasonable even in the worst cases. In
short, examining the separate fits did provide a better
understanding of the ESC and of the statistical preci-
sion of the fits but did not improve the estimates for the
isovector charges.
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FIG. 20. Data for the ratio defined in Eq. (19) for different operator insertions—on the u quark (left column), d quark (second
column), u − d combination (third column) and the connected part of the u + d combination (right column)—are shown for
the a071m170 ensemble. Data for gA (top row), gS (middle row) and gT (bottom row), are plotted as a function of t− τ/2 for
the values of τ specified in the labels. All the fits to get the τ →∞ values are with the {4, 3∗} strategy.
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Appendix E: Excited states in the axial three-point
functions

On a finite lattice, one has towers of eigenstates of the
transfer matrix labeled by their quantum numbers. A
strict identification with physical states such asN(0)π(q)
and N(−q)π(q) can only be done in infinite volume and
in the continuum limit. As mentioned in the text, both
N(p)π(−p) and N(0)π(0)π(0) have the right quantum
numbers (spin, parity, G-parity) to contribute to the ax-
ial channel. It is the magnitude of their couplings that
decides the size of their contributions. These need to be
determined nonperturbatively from fits to the three-point
functions for high precision results. In such analyses, for
example in the axial channel, χPT is a good guide.

In a series of papers, Bär has presented the predictions
of χPT [30, 35, 36] keeping one excited state, Nπ, in the
analysis. At the tree level, consistent with the pion-pole
dominance hypothesis, the axial current Aµ(q) couples
through a pion with momentum qµ. In our setup, for
the matrix elements of the three spatial Ai, the interac-
tion with π(q) causes the transitions to the excited states
N(0)→ N(0)π(q) and N(−q)→ N(−q)π(q) in addition
to the desired ground state transitions N(0)→ N(q) and
N(−q) → N(0). These ESC arise at tree-level, depend

on q and are expected to be large in the G̃P and GP form
factors. In addition, at the loop-level, all states with the
right quantum numbers such as N(q)π(0), N(0)π(q),
N(0)π(0)π(0) and the full tower of N(−p)π(p) states
with all allowed values of p on the p = 0 side of the three-
point function, can contribute to all three form factors.
These loop-level contributions are estimated to be a few
percent effect and show only a mild dependence on p.

The {4Nπ, 2sim} strategy analysis of the axial form fac-
tors includes the Nπ state predicted by tree-level χPT
analysis but neglects the contribution of all other states
that can contribute at loop-level. Compared to {4, 3∗},
this changes G̃P and GP by ∼ 35% and GA by ∼ 5%
at the smallest Q2 point on the a071m170 ensemble as
shown in Fig. 21. The difference is much smaller on the
Mπ ≈ 270 MeV ensembles as shown for the a073m270
ensemble, i.e., the effect of the Nπ state increases as
Q2 → 0 and Mπ → 0. For the axial charge gA obtained
from A3, there is no tree-level contribution due to the
kinematic constraint. Our analysis in Sec. VIII, includ-
ing only the lowest, N(−1)π(1) (or the approximately
degenerate N(0)π(0)π(0)) state that can contribute at
loop-level indicates that the effect could be ∼ 8% for
Mπ = 135 MeV. The impact of the remaining tower of ex-
cited states in either case is unknown. In this appendix,
we discuss these effects and how best to proceed to re-
move all ESC.

First, we discuss the evidence that multihadron states
contribute. Next, we point out why it will be difficult
to resolve all relevant states from fits to the two-point
function. Last, we provide some thoughts on how the
analysis presented in this work can be extended.

The data for the energy gaps, a∆M̃1 and a∆Ẽ1,
obtained using three strategies {4, 2sim}, {4Nπ, 2A4},
and {4Nπ, 2sim} are presented in Fig. 22 and compared
against the values obtained assuming that the excited
states on the two sides of the operator are N(q)π(−q)
(blue dotted lines) and N(0)π(q) (red dotted lines), re-
spectively. The data exhibit the following features:

• The energy gaps given by the fits to the three-point

functions, a∆M̃1 (blue squares) and a∆Ẽ1 (red
triangles), differ significantly, depending on the
momentum transfer q, and the difference increases
with q.

• The rough agreement between the blue dotted line
and blue squares and the red dotted line and red
triangles improves as Mπ decreases and indicates

that a∆M̃1 and a∆Ẽ1 correspond to N(q)π(−q)
and N(0)π(q) excited states, respectively. The
agreement was found to be even better for the
physical mass ensemble investigated in Ref. [8]
using the clover-on-HISQ formulation.

• The values of a∆M1 (black filled circle) and a∆E1

(black diamonds) obtained from {4} and {4Nπ} fits
(left versus the right two panels) to the two-point
function have a smaller difference.

• The agreement between the a∆E1 (black dia-
monds) from the {4Nπ} fits to the two-point
function and the dotted red line showing the
energy of the noninteracting N(0)π(q) state is by
construction since the latter is used as a prior for
aE1 in the {4Nπ} fit.

The identification of N(0)π(q) and N(−q)π(q) as the
leading excited states on the two sides of the operator
insertion is consistent with the predictions of chiral per-
turbation theory [35, 36, 86].

An important consequence of the energy gaps, a∆M̃1

and a∆Ẽ1, being different and corresponding to different
momentum dependent excited states, N(q)π(−q) versus
N(0)π(q), is that their mass gaps cannot be determined
straightforwardly from fits to the two-point function. For
example, for our calculations, to get the mass gaps for the
ten N(q)π(−q) states from the p = 0 correlator is unre-
alistic, even with a variational ansatz. As shown by the
onset of the plateau in the effective mass plots in Fig. 1,
the ground state dominates at τ & 1 fm, i.e., the plateau
starts at 9 < τstart < 14 in the ensembles we have ana-
lyzed. Thus, the number of earlier time slices sensitive
to, and available for determining excited-state parame-
ters are 6–11, which restricts the analysis to a maximum
of four states, including radial excitations. Second, at
these short times, the contributions of the full set of ex-
cited states are still significant and even the first excited
state parameters, M1 and E1, extracted from the fit are
typically larger and τmin dependent. Third, these four-
state fits (as well as the three-state fits) have exposed flat
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FIG. 21. The form factors ZAGA/g
exp
A , ZAG̃P /g

exp
A and GP from the two strategies {4, 3∗} and {4Nπ, 2sim} are compared in

each panel for the ensembles a071m170 (top row) and a073m270 (bottom row). We also show two dipole fits with MA = 1.026

and 1.35 to GA, and a pion-pole dominance fit to G̃P with GA given by the dipole ansatz to guide the eye.

directions in the fit parameters leading to a large space
of values with roughly similar χ2/dof as illustrated in
Fig. 1. In short, fits to the data show many equally good
solutions and the output values are heavily influenced by
the priors used to stabilize the fits.

To resolve a light excited state such as N(0)π(q),
which has a mass of about 1200 MeV as q → 0, from the
ground state from fits to the two-point function requires
very high precision data at large enough τ by which the
higher states have died out sufficiently. In our setup, this
occurs for τ & 1 fm. Isolating two (actually a whole tower
as q → 0) states from the “plateau” region at τ & 1 fm
will be challenging. In short, our work suggests that de-
termining the masses and amplitudes of all the needed
low-lying excited states from fits to two-point functions
constructed using a single nucleon or multihadron inter-
polating operator is unlikely in the foreseeable future.

One can improve the situation by working on
anisotropic lattices (setting the spacing in the time di-
rection much finer than in the three spatial directions to
have more points to fit within the same physical time in-
terval) and/or by using a variational approach with many
nucleon interpolating operators, including relevant multi-
hadron operators with the same quantum numbers. The
two methods have been implemented together success-
fully in detailed calculations of the meson and baryon
excited-state spectra [87]. For matrix elements, how-
ever, only exploratory calculations of nucleon charges us-
ing the variational method have been performed [17, 88].
Each of these approaches, unfortunately, requires addi-
tional/new simulations that are beyond the scope of the
current work.

We are, therefore, faced with the following possibilities

to systematically include all the relevant excited states to
get percent level precision:

• [A] Take only the ground state parameters from fits
to the two-point function and leave all the excited

state parameters, ∆M̃i and ∆Ẽi, to be determined
from the three-point functions. This is the basis
of our strategies {4Nπ, 2A4} and {4Nπ, 2sim}, how-
ever so far we have been able to include a single
excited state. To include the next, second, excited
state with the current data, one could hardwire the

∆M̃1 and ∆Ẽ1, determined from a two-state fit, in

a three-state fit with only ∆M̃2 and ∆Ẽ2 free. Our
attempts at this failed—the χ2 does not decrease by
two units for each additional parameter as required
to satisfy the Akaike information criteria, and the
parameter values have over 100% errors. We are
also not able to estimate how precise the data need
to be for this approach to work given the large flat
regions in the χ2 landscape, evident already by the

range of ∆M̃1 and ∆Ẽ1 values, and the large num-
ber of possible states that could contribute.

• [B] Assume, based on chiral perturbation theory,
that N(q)π(−q) and N(0)π(q) are the relevant
first excited states and hardwire their noninteract-
ing energies for ∆M1 and ∆E1 in fits to the three-
point function. For the second and higher excited
states, one can again resort to χPT or take the es-
timate of the next lowest energy level from fits to
the two-point function. This approach has recently
been used in Ref. [67]. In our case, the {4Nπ, 3∗}
strategy is a step in this direction; however, since
{4Nπ, 2A4} and {4Nπ, 2sim} do a better job of sat-
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FIG. 22. Mass gaps in the axial channel from various fits plotted versus the momentum transfer in units of n2 for six
ensembles. The a∆M1 (black filled circles) and a∆E1 (black diamonds) are from fits to the two-point function using strategy
{4} (left panel), and {4Nπ} that uses a prior with a narrow width for the energy of a noninteracting N(0)π(q) state (middle

and right panels). The output of the {2sim} (or {2A4}) fits are a∆M̃1 (blue squares) and a∆Ẽ1 (red triangles). The dotted
blue line is calculated assuming a∆M1 is given by a noninteracting N(q)π(−q) state, while the red dotted line shows the
a∆E1 for a noninteracting N(0)π(q) state.
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isfying PCAC, one could add a third state with
fixed ∆M2 and ∆E2 to the latter when making the
fits. Our attempts at adding a third state to the
{4Nπ, 2sim} fit led to both an overparameterization
and essentially undetermined values for all the ex-
tra parameters.

• [C] Determine the spectrum of [multihadron] ex-
cited states in a finite box from a variational cal-
culation of two-point functions with a large enough
basis of operators and use them as priors in fits to
the three-point functions. Our contention, based
on the current analyses, is that, for the first ex-
cited state, the energy gaps will be close to those
given by {4Nπ, 2A4} or the {4Nπ, 2sim} strategies
and the fits to the three-point functions with cur-
rent statistics will not be sensitive to the higher
states.

In short, determining the spectrum of multiparticle ex-
cited states that contribute significantly is essential for
obtaining ground state matrix elements in the axial chan-
nel. The A4 correlator allows us to nonperturbatively
identify Nπ as giving the leading contribution, consis-
tent with χPT analysis, however, more work is needed
to determine the second relevant [multiparticle] excited
state, which may be necessary to reach percent level pre-
cision. In Sec. XII, we show that similar issues need to
be addressed in the vector channel also, but the electric
and magnetic form factors are less sensitive to the values

of the excited-state energies.

Appendix F: Comparison of the axial form factors
extracted using 4 strategies

This appendix contains the data for the axial form fac-
tors obtained from four strategies used to remove ESC:
{4, 3∗}, {4Nπ, 3∗}, {4Nπ, 2A4}, and {4Nπ, 2sim}. The

renormalized axial form factors ZAGA and ZAG̃P and
the unrenormalized GP are given in Tables XVIII, XIX
and XX, respectively. Data for the left-hand side of
Eq. (29), which by the PCAC relation should equal unity,
are presented in Table XXI. Figure 23 shows the data
for R54, defined in Eq. (23), for six ensembles and com-
pares the fits with the four strategies. A comparison

of three matrix elements that give G̃P , GA, and GP
obtained using the four strategies is shown in Fig. 24
for the a091m170L and a071m170 ensembles. Each row
in Fig. 25 compares the results of the fits to data ob-
tained using the four strategies to remove ESC. The six
rows show data for the a091m170L (rows one, three, and
five) and a071m170 (rows two, four and six) ensembles
and the three ratios: R53 defined in Eqs (22) for two
different n2 = 1 momentum channels, and for R5 de-
fined in Eq. (24). Figure 26 shows that the data for

(Q2 +M2
N )G̃P (Q2) are almost linear and monotonic ver-

sus Q2 on all seven ensembles except at small Q2 for the
{4, 3∗}, and to a lesser extent for {4Nπ, 3∗}, strategy on
the Mπ = 170 MeV ensembles (data in the upper two
panels).
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n {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim}
a127m285 a094m270

(1, 0, 0) 1.128(18) 1.136(20) 1.152(20) 1.128(22) [1.54] 1.009(20) 1.008(20) 1.014(20) 1.007(21) [1.33]
(1, 1, 0) 1.021(17) 1.023(18) 1.031(17) 1.011(18) [0.95] 0.864(23) 0.866(16) 0.884(18) 0.878(17) [1.23]
(1, 1, 1) 0.921(15) 0.918(16) 0.923(16) 0.915(17) [0.82] 0.743(24) 0.747(15) 0.763(26) 0.752(21) [1.19]
(2, 0, 0) 0.853(16) 0.848(16) 0.858(18) 0.856(19) [1.59] 0.656(40) 0.674(23) 0.714(20) 0.701(23) [1.31]
(2, 1, 0) 0.785(14) 0.779(14) 0.800(15) 0.786(16) [1.22] 0.589(26) 0.601(14) 0.619(28) 0.615(16) [0.98]
(2, 1, 1) 0.720(15) 0.712(14) 0.747(16) 0.716(16) [1.25] 0.537(26) 0.549(16) 0.588(29) 0.566(15) [1.12]
(2, 2, 0) 0.639(15) 0.635(14) 0.641(18) 0.627(18) [1.15] 0.482(32) 0.490(24) 0.519(27) [1.36]
(2, 2, 1) 0.592(16) 0.585(13) 0.608(23) 0.587(21) [1.18] 0.424(27) 0.436(23) 0.460(13) [1.26]
(3, 0, 0) 0.614(22) 0.608(25) 0.627(31) 0.618(59) [1.38] 0.542(84) 0.521(50) 0.448(19) [1.12]
(3, 1, 0) 0.570(16) 0.563(15) 0.585(17) 0.560(29) [1.39] 0.489(53) 0.485(33) 0.430(36) [1.19]

a094m270L a091m170
(1, 0, 0) 1.124(19) 1.134(21) 1.134(20) 1.134(20) [1.40] 1.122(19) 1.153(30) 1.167(23) 1.156(25) [1.15]
(1, 1, 0) 1.030(17) 1.031(18) 1.027(22) 1.030(18) [1.55] 1.018(17) 1.020(29) 1.028(20) 1.020(21) [1.21]
(1, 1, 1) 0.951(16) 0.945(17) 0.963(17) 0.952(17) [1.57] 0.937(16) 0.932(31) 0.948(20) 0.937(21) [1.14]
(2, 0, 0) 0.889(16) 0.876(17) 0.886(16) 0.887(16) [1.58] 0.873(17) 0.849(32) 0.894(21) 0.893(22) [1.28]
(2, 1, 0) 0.828(16) 0.815(15) 0.827(14) 0.834(15) [1.48] 0.813(16) 0.789(26) 0.828(18) 0.830(19) [1.92]
(2, 1, 1) 0.776(15) 0.761(15) 0.771(14) 0.773(15) [1.50] 0.755(16) 0.728(29) 0.764(22) 0.765(17) [1.63]
(2, 2, 0) 0.695(15) 0.680(15) 0.715(15) 0.699(14) [1.24] 0.660(18) 0.595(34) 0.741(34) 0.707(23) [2.15]
(2, 2, 1) 0.659(14) 0.647(14) 0.675(15) 0.652(14) [1.14] 0.632(17) 0.600(36) 0.678(29) 0.636(18) [1.51]
(3, 0, 0) 0.662(15) 0.637(16) 0.687(20) 0.652(19) [1.10] 0.603(28) 0.513(49) 0.753(78) 0.627(28) [1.13]
(3, 1, 0) 0.627(15) 0.601(15) 0.623(16) 0.618(18) [1.44] 0.607(21) 0.552(37) 0.638(22) 0.616(22) [1.23]

a091m170L a073m270
(1, 0, 0) 1.169(22) 1.208(39) 1.229(29) 1.236(30) [2.00] 1.067(14) 1.072(15) 1.061(15) 1.066(15) [1.63]
(1, 1, 0) 1.101(20) 1.119(29) 1.137(28) 1.132(29) [1.81] 0.945(13) 0.942(13) 0.941(13) 0.946(14) [1.66]
(1, 1, 1) 1.048(19) 1.059(27) 1.054(23) 1.073(29) [2.18] 0.841(13) 0.834(12) 0.847(12) 0.850(12) [1.29]
(2, 0, 0) 0.972(19) 0.945(27) 1.013(31) 0.997(26) [1.40] 0.760(14) 0.750(13) 0.781(12) 0.774(12) [1.18]
(2, 1, 0) 0.930(18) 0.900(25) 0.971(29) 0.956(20) [2.12] 0.699(13) 0.691(11) 0.725(12) 0.712(11) [2.25]
(2, 1, 1) 0.889(18) 0.851(25) 0.933(29) 0.905(25) [2.68] 0.637(15) 0.637(10) 0.674(12) 0.663(10) [1.73]
(2, 2, 0) 0.806(18) 0.755(28) 0.855(29) 0.849(24) [2.42] 0.554(15) 0.559(11) 0.592(12) 0.577(11) [1.62]
(2, 2, 1) 0.772(18) 0.719(29) 0.833(29) 0.787(21) [2.36] 0.518(16) 0.529(10) 0.544(13) 0.546(11) [1.35]
(3, 0, 0) 0.766(20) 0.700(34) 0.842(31) 0.790(21) [1.99] 0.520(17) 0.521(15) 0.540(24) 0.547(16) [1.28]
(3, 1, 0) 0.735(19) 0.666(31) 0.815(29) 0.773(23) [1.98] 0.483(15) 0.487(13) 0.529(24) 0.508(12) [1.57]

a071m170
(1, 0, 0) 1.154(18) 1.203(31) 1.186(23) 1.214(27) [1.48]
(1, 1, 0) 1.078(14) 1.099(22) 1.076(16) 1.103(22) [1.82]
(1, 1, 1) 1.001(14) 0.997(19) 1.002(15) 1.018(21) [1.43]
(2, 0, 0) 0.941(16) 0.930(22) 0.954(19) 0.957(20) [1.47]
(2, 1, 0) 0.897(16) 0.878(18) 0.896(14) 0.912(19) [1.92]
(2, 1, 1) 0.837(19) 0.812(19) 0.876(33) 0.871(18) [1.69]
(2, 2, 0) 0.777(19) 0.737(22) 0.813(18) 0.799(17) [1.73]
(2, 2, 1) 0.731(20) 0.703(21) 0.787(17) 0.768(18) [1.63]
(3, 0, 0) 0.697(28) 0.658(28) 0.784(21) 0.739(26) [1.67]
(3, 1, 0) 0.686(24) 0.651(22) 0.763(18) 0.722(21) [1.97]

TABLE XVIII. Data for the renormalized axial form factor ZAGA(Q2) obtained using four strategies {4, 3∗}, {4Nπ, 3∗},
{4Nπ, 2A4}, {4Nπ, 2sim} for controlling excited-state contamination. The values of Q2, given in Table XVII, for a given of value
of n are different for all seven ensembles, so only the data with the four strategies on each ensemble should be compared. No
reasonable fits could be made for the four largest Q2 points for the a094m270 ensemble with the {4Nπ, 2A4} strategy. The
χ2/dof is shown only for the {2sim} fit. In other cases, the result is obtained using a two-step process—first fits are made to
remove ESC and then the overdetermined set of equations is solved to get the form factors. The data are arranged by ensemble
to facilitate comparison between the four strategies for each Q2.
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n {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim}
a127m285 a094m270

(1, 0, 0) 20.82(58) 21.99(67) 24.29(77) 23.78(76) [1.54] 14.85(88) 14.91(48) 16.46(55) 15.89(54) [1.33]
(1, 1, 0) 13.22(32) 13.73(30) 14.56(38) 14.17(33) [0.95] 8.03(27) 8.26(22) 8.79(29) 8.61(23) [1.23]
(1, 1, 1) 9.29(23) 9.40(20) 9.82(29) 9.64(24) [0.82] 5.03(27) 5.23(17) 5.92(27) 5.55(22) [1.19]
(2, 0, 0) 7.04(21) 7.12(19) 7.65(20) 7.47(24) [1.59] 3.66(29) 3.63(18) 4.03(14) 3.83(19) [1.31]
(2, 1, 0) 5.50(14) 5.52(12) 5.95(12) 5.73(15) [1.22] 2.65(17) 2.66(10) 3.05(12) 2.82(11) [0.98]
(2, 1, 1) 4.35(13) 4.27(11) 4.76(11) 4.54(14) [1.25] 2.02(20) 2.03(11) 2.45(14) 2.18(11) [1.12]
(2, 2, 0) 3.24(13) 3.19(10) 3.43(10) 3.27(13) [1.15] 1.53(19) 1.54(13) 1.74(18) [1.36]
(2, 2, 1) 2.62(10) 2.56(10) 2.86(10) 2.82(13) [1.18] 1.01(13) 1.06(12) 1.20(09) [1.26]
(3, 0, 0) 2.57(13) 2.55(16) 2.91(17) 2.69(40) [1.38] 1.49(41) 1.40(27) 1.25(11) [1.12]
(3, 1, 0) 2.28(09) 2.26(10) 2.53(12) 2.34(13) [1.39] 1.44(29) 1.37(19) 1.03(23) [1.19]

a094m270L a091m170
(1, 0, 0) 24.84(84) 27.72(71) 28.51(68) 28.53(68) [1.40] 24.27(67) 28.2(1.7) 32.6(1.4) 32.0(1.3) [1.15]
(1, 1, 0) 16.23(50) 17.49(37) 17.35(78) 17.39(36) [1.55] 14.79(42) 17.17(69) 17.53(50) 17.31(51) [1.21]
(1, 1, 1) 11.70(31) 12.26(27) 12.73(27) 12.30(26) [1.57] 10.20(27) 11.53(55) 11.65(29) 11.75(31) [1.14]
(2, 0, 0) 8.94(22) 9.26(23) 9.27(25) 9.34(21) [1.58] 7.52(23) 7.78(47) 8.74(23) 8.71(26) [1.28]
(2, 1, 0) 7.04(17) 7.14(15) 7.27(16) 7.38(16) [1.48] 5.94(17) 6.25(33) 6.63(15) 6.75(18) [1.92]
(2, 1, 1) 5.74(15) 5.79(14) 5.82(13) 5.99(15) [1.50] 4.84(16) 4.94(36) 5.12(30) 5.37(20) [1.63]
(2, 2, 0) 4.08(11) 4.07(11) 4.53(09) 4.25(11) [1.24] 3.22(14) 2.90(23) 4.38(30) 3.84(12) [2.15]
(2, 2, 1) 3.55(11) 3.51(11) 3.90(09) 3.70(11) [1.14] 2.95(12) 3.04(31) 3.35(14) 3.16(13) [1.51]
(3, 0, 0) 3.54(12) 3.57(13) 3.99(11) 3.64(12) [1.10] 2.79(16) 2.38(40) 3.97(40) 3.20(15) [1.13]
(3, 1, 0) 3.02(09) 2.97(10) 3.36(09) 3.20(12) [1.44] 2.53(13) 2.16(30) 2.81(12) 2.74(12) [1.23]

a091m170L a073m270
(1, 0, 0) 36.3(1.3) 45.3(2.8) 46.2(2.0) 45.7(2.0) [2.00] 18.48(71) 19.98(56) 20.88(44) 21.18(39) [1.63]
(1, 1, 0) 24.55(77) 29.2(1.4) 28.41(91) 28.5(1.0) [1.81] 10.98(36) 11.46(23) 11.89(22) 12.05(21) [1.66]
(1, 1, 1) 18.27(55) 21.45(96) 19.54(74) 20.40(62) [2.18] 7.41(21) 7.56(14) 7.98(16) 8.04(14) [1.29]
(2, 0, 0) 13.64(42) 14.85(71) 15.20(72) 15.07(52) [1.40] 5.38(12) 5.44(11) 5.89(13) 5.87(11) [1.18]
(2, 1, 0) 11.33(29) 12.04(43) 12.32(32) 12.34(39) [2.12] 4.20(10) 4.15(08) 4.60(08) 4.52(09) [2.25]
(2, 1, 1) 9.41(25) 9.74(38) 10.25(27) 10.23(43) [2.68] 3.35(11) 3.26(07) 3.69(07) 3.59(07) [1.73]
(2, 2, 0) 6.78(19) 6.70(30) 7.41(19) 7.55(23) [2.42] 2.35(08) 2.26(06) 2.60(05) 2.49(06) [1.62]
(2, 2, 1) 5.95(18) 5.80(31) 6.56(18) 6.35(25) [2.36] 1.99(07) 1.93(06) 2.18(05) 2.12(06) [1.35]
(3, 0, 0) 5.58(22) 5.19(38) 6.59(24) 6.22(26) [1.99] 1.96(09) 1.90(08) 2.34(19) 2.25(08) [1.28]
(3, 1, 0) 5.08(17) 4.70(30) 5.89(18) 5.77(27) [1.98] 1.71(07) 1.65(06) 1.97(14) 1.84(08) [1.57]

a071m170
(1, 0, 0) 31.8(1.8) 39.4(2.7) 42.5(1.6) 43.5(1.8) [1.48]
(1, 1, 0) 20.9(1.4) 24.3(1.3) 23.12(57) 24.46(72) [1.82]
(1, 1, 1) 14.73(73) 16.46(77) 15.82(45) 16.66(46) [1.43]
(2, 0, 0) 11.37(55) 12.41(54) 12.16(54) 12.36(31) [1.47]
(2, 1, 0) 8.86(33) 9.61(35) 9.29(27) 9.79(25) [1.92]
(2, 1, 1) 7.26(31) 7.57(29) 8.08(56) 8.10(23) [1.69]
(2, 2, 0) 5.17(21) 5.27(21) 5.88(14) 5.77(14) [1.73]
(2, 2, 1) 4.50(23) 4.55(20) 5.16(12) 5.10(16) [1.63]
(3, 0, 0) 4.44(25) 4.36(27) 5.07(14) 4.79(19) [1.67]
(3, 1, 0) 3.95(23) 3.95(19) 4.53(10) 4.31(14) [1.97]

TABLE XIX. Data for the renormalized induced pseudoscalar form factor, ZAG̃P (Q2), obtained using the four strategies
{4, 3∗}, {4Nπ, 3∗}, {4Nπ, 2A4}, {4Nπ, 2sim} for controlling excited-state contamination. The rest is the same as in Table XVIII.



58

n {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim}
a127m285 a094m270

(1, 0, 0) 36.0(9) [3.89] 38.6(8) [1.89] 42.0(1.0) [4.74] 41.8(1.0) [1.54] 28.5(2.1) [1.11] 28.5(7) [1.09] 31.0(9) [2.48] 30.3(8) [1.33]
(1, 1, 0) 23.4(5) [2.23] 24.2(3) [1.07] 25.6(5) [2.06] 25.1(4) [0.95] 15.6(5) [1.07] 16.0(3) [0.80] 17.2(5) [0.95] 16.7(4) [1.23]
(1, 1, 1) 17.1(4) [0.98] 17.3(3) [0.87] 18.1(4) [0.55] 17.8(3) [0.82] 10.3(3) [1.00] 10.6(2) [0.95] 11.6(4) [1.14] 11.1(4) [1.19]
(2, 0, 0) 13.0(3) [1.25] 13.1(2) [0.98] 14.2(3) [0.62] 13.9(4) [1.59] 7.2(4) [1.10] 7.2(3) [1.16] 8.0(2) [1.38] 7.6(3) [1.31]
(2, 1, 0) 10.3(2) [1.35] 10.3(1) [1.22] 11.1(2) [1.19] 10.8(2) [1.22] 6.1(3) [0.99] 6.0(2) [1.03] 7.0(3) [0.91] 6.2(3) [0.98]
(2, 1, 1) 8.6(2) [1.32] 8.5(1) [1.31] 9.3(2) [1.46] 8.9(2) [1.25] 4.6(4) [1.93] 4.6(2) [1.94] 5.2(2) [1.85] 4.8(2) [1.12]
(2, 2, 0) 6.1(1) [1.08] 6.0(1) [1.05] 6.6(2) [1.14] 6.3(2) [1.15] 3.4(5) [1.08] 3.4(3) [1.09] 4.0(4) [1.36]
(2, 2, 1) 5.5(2) [0.98] 5.4(1) [0.96] 5.9(2) [1.05] 5.8(2) [1.18] 2.7(5) [1.03] 2.7(3) [1.02] 2.8(2) [1.26]
(3, 0, 0) 5.4(2) [0.68] 5.3(2) [0.65] 6.1(3) [0.57] 5.7(6) [1.38] 2.0(8) [0.69] 2.3(5) [0.68] 2.6(4) [1.12]
(3, 1, 0) 4.8(2) [1.02] 4.7(2) [1.02] 5.5(2) [1.22] 5.0(3) [1.39] 2.4(3) [1.19] 2.4(5) [1.19] 2.7(7) [1.19]

a094m270L a091m170
(1, 0, 0) 44.5(1.5) [3.97] 49.9(8) [1.62] 52.1(1.1) [1.55] 52.0(8) [1.40] 50.8(1.5) [2.43] 65.7(1.4) [0.92] 67.9(2.6) [1.11] 66.9(2.4) [1.15]
(1, 1, 0) 29.9(8) [2.82] 32.3(4) [1.36] 33.2(2.0) [3.33] 32.5(4) [1.55] 31.4(8) [2.84] 36.5(9) [1.46] 37.7(9) [1.12] 37.1(10) [1.21]
(1, 1, 1) 21.9(5) [2.01] 23.0(3) [1.28] 24.0(3) [2.78] 23.3(3) [1.57] 22.0(5) [2.13] 24.6(7) [0.87] 25.7(5) [0.77] 26.2(7) [1.14]
(2, 0, 0) 17.0(3) [1.32] 17.7(2) [0.99] 17.9(4) [1.05] 18.0(3) [1.58] 16.9(4) [1.05] 18.9(8) [0.61] 19.0(5) [0.72] 19.1(5) [1.28]
(2, 1, 0) 13.9(2) [1.53] 14.1(2) [0.82] 14.4(2) [1.82] 14.6(2) [1.48] 13.3(3) [1.83] 13.6(5) [1.21] 15.3(3) [1.43] 15.5(4) [1.92]
(2, 1, 1) 11.6(2) [1.47] 11.7(2) [0.94] 11.9(1) [2.56] 12.1(2) [1.50] 11.1(3) [1.35] 10.9(8) [1.14] 12.0(6) [2.12] 12.3(4) [1.63]
(2, 2, 0) 8.6(1) [0.59] 8.5(1) [0.44] 9.3(1) [0.84] 8.9(1) [1.24] 8.0(3) [1.94] 7.6(6) [1.78] 10.2(6) [2.00] 9.1(3) [2.15]
(2, 2, 1) 7.5(1) [1.26] 7.5(1) [1.07] 8.1(1) [0.96] 7.9(1) [1.14] 6.7(2) [1.32] 5.7(6) [1.13] 7.8(3) [1.85] 7.4(3) [1.51]
(3, 0, 0) 7.5(2) [0.76] 7.6(2) [0.72] 8.4(2) [0.85] 7.7(2) [1.10] 7.4(3) [1.07] 7.4(8) [1.09] 10.3(1.6) [1.43] 7.8(4) [1.13]
(3, 1, 0) 6.5(1) [1.25] 6.4(3) [0.97] 7.3(2) [1.10] 7.0(2) [1.44] 6.3(3) [1.32] 6.5(7) [1.29] 6.8(3) [1.08] 6.9(3) [1.23]

a091m170L a073m270
(1, 0, 0) 73.9(2.3) [2.39] 95.0(5.1) [1.04] 97.7(3.2) [2.50] 97.0(3.4) [2.00] 34.2(1.4) [3.18] 37.2(9) [1.33] 39.1(6) [2.03] 40.1(5) [1.63]
(1, 1, 0) 50.3(1.5) [2.88] 61.4(3.1) [1.54] 60.6(1.4) [1.95] 60.4(1.8) [1.81] 20.8(7) [3.20] 21.8(3) [1.58] 22.6(3) [1.09] 23.0(2) [1.66]
(1, 1, 1) 37.5(1.0) [3.48] 44.8(1.9) [2.12] 42.1(1.1) [5.28] 44.0(1.1) [2.18] 14.7(4) [2.04] 15.0(2) [1.32] 15.7(2) [0.89] 15.7(2) [1.29]
(2, 0, 0) 30.1(8) [1.52] 34.2(1.4) [1.15] 33.9(1.5) [1.02] 34.1(1.1) [1.40] 10.9(2) [2.27] 11.1(1) [1.72] 11.7(2) [1.22] 11.8(2) [1.18]
(2, 1, 0) 24.7(6) [2.07] 27.5(10) [1.45] 27.5(6) [1.57] 27.2(8) [2.12] 8.5(1) [0.99] 8.5(1) [0.91] 9.3(1) [1.68] 9.2(1) [2.25]
(2, 1, 1) 20.7(5) [1.78] 22.7(7) [1.51] 23.0(6) [1.91] 23.3(9) [2.68] 7.0(1) [1.19] 6.9(1) [1.25] 7.7(1) [1.84] 7.5(1) [1.73]
(2, 2, 0) 15.3(3) [2.41] 16.0(5) [1.99] 17.0(4) [1.98] 17.2(6) [2.42] 5.0(1) [1.03] 5.0(1) [0.94] 5.6(1) [1.97] 5.4(1) [1.62]
(2, 2, 1) 13.6(3) [1.85] 14.3(4) [1.71] 15.0(4) [1.54] 15.0(6) [2.36] 4.4(2) [0.75] 4.2(1) [0.77] 4.9(1) [1.36] 4.7(1) [1.35]
(3, 0, 0) 13.8(3) [2.10] 14.3(6) [1.91] 15.5(5) [2.04] 14.8(5) [1.99] 4.3(2) [0.94] 4.2(2) [0.95] 5.0(3) [1.26] 4.9(2) [1.28]
(3, 1, 0) 11.9(3) [1.74] 12.1(5) [1.58] 13.5(4) [2.00] 13.4(6) [1.98] 3.8(2) [0.78] 3.8(2) [0.79] 4.5(3) [1.14] 4.2(2) [1.57]

a071m170
(1, 0, 0) 66.7(4.7) [1.84] 84.4(5.2) [0.90] 91.2(3.0) [1.43] 94.2(3.5) [1.48]
(1, 1, 0) 42.7(2.8) [1.98] 50.3(2.5) [1.28] 49.7(10) [6.23] 52.0(1.4) [1.82]
(1, 1, 1) 31.1(1.7) [1.68] 35.2(1.5) [1.31] 34.4(7) [3.93] 36.0(10) [1.43]
(2, 0, 0) 24.3(1.2) [1.60] 26.6(10) [1.47] 26.4(10) [1.74] 27.6(7) [1.47]
(2, 1, 0) 19.2(6) [1.97] 20.7(6) [1.64] 20.7(4) [6.03] 22.4(6) [1.92]
(2, 1, 1) 15.9(6) [1.24] 16.7(5) [1.08] 17.9(1.2) [1.58] 18.2(5) [1.69]
(2, 2, 0) 11.7(5) [1.64] 12.2(4) [1.24] 13.6(3) [1.29] 13.5(4) [1.73]
(2, 2, 1) 10.4(4) [0.68] 10.6(4) [0.57] 11.9(3) [0.89] 12.1(3) [1.63]
(3, 0, 0) 10.5(5) [1.24] 10.3(5) [1.17] 11.5(3) [1.11] 11.5(4) [1.67]
(3, 1, 0) 9.2(4) [1.19] 9.3(5) [1.16] 10.5(3) [1.31] 10.4(4) [1.97]

TABLE XX. Data for the unrenormalized pseudoscalar form factor GP (Q2) obtained using four strategies {4, 3∗}, {4Nπ, 3∗},
{4Nπ, 2A4}, {4Nπ, 2sim} for controlling excited-state contamination. The numbers within the square brackets are the χ2/dof of
the fit.
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~n {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim} {4, 3∗} {4Nπ, 3∗} {4Nπ, 2A4} {4Nπ, 2sim}
a127m285 a094m270

(1, 0, 0) 0.876(21) 0.931(16) 1.007(20) 1.015(20) [1.54] 0.930(68) 0.931(21) 1.016(25) 0.992(21) [1.33]
(1, 1, 0) 0.926(19) 0.965(11) 1.014(17) 1.008(13) [0.95] 0.951(41) 0.972(16) 1.016(24) 1.000(15) [1.23]
(1, 1, 1) 0.959(23) 0.980(13) 1.019(19) 1.009(13) [0.82] 0.946(35) 0.973(19) 1.074(31) 1.025(25) [1.19]
(2, 0, 0) 0.964(28) 0.985(15) 1.049(25) 1.027(21) [1.59] 0.982(39) 0.937(26) 0.982(18) 0.950(22) [1.31]
(2, 1, 0) 0.970(26) 0.984(13) 1.033(14) 1.012(15) [1.22] 0.948(41) 0.923(21) 1.027(53) 0.954(26) [0.98]
(2, 1, 1) 0.966(31) 0.963(15) 1.021(14) 1.017(19) [1.25] 0.909(54) 0.888(30) 0.993(26) 0.921(33) [1.12]
(2, 2, 0) 1.004(45) 0.998(18) 1.063(26) 1.036(28) [1.15] 0.936(76) 0.915(50) 0.981(69) [1.36]
(2, 2, 1) 0.967(42) 0.963(21) 1.029(25) 1.050(45) [1.18] 0.794(80) 0.796(63) 0.846(47) [1.26]
(3, 0, 0) 0.916(30) 0.919(31) 1.020(42) 0.957(64) [1.38] 0.89(17) 0.86(12) 0.905(65) [1.12]
(3, 1, 0) 0.947(33) 0.955(26) 1.034(36) 0.998(73) [1.39] 1.04(12) 0.984(88) 0.86(13) [1.19]

a094m270L a091m170
(1, 0, 0) 0.858(29) 0.957(17) 0.991(13) 0.991(10) [1.40] 0.723(19) 0.856(36) 0.945(28) 0.938(25) [1.15]
(1, 1, 0) 0.914(29) 0.992(14) 0.998(34) 0.989(08) [1.55] 0.824(25) 0.968(29) 0.983(21) 0.978(20) [1.21]
(1, 1, 1) 0.939(26) 0.996(13) 1.017(10) 0.994(08) [1.57] 0.859(22) 0.988(36) 0.986(19) 1.007(19) [1.14]
(2, 0, 0) 0.947(24) 1.001(13) 0.993(15) 0.999(10) [1.58] 0.862(24) 0.937(37) 0.990(18) 0.988(19) [1.28]
(2, 1, 0) 0.949(25) 0.984(11) 0.988(11) 0.994(08) [1.48] 0.881(25) 0.967(39) 0.982(15) 0.996(18) [1.92]
(2, 1, 1) 0.952(25) 0.983(13) 0.977(12) 1.001(10) [1.50] 0.905(27) 0.965(50) 0.959(35) 1.001(26) [1.63]
(2, 2, 0) 0.946(27) 0.969(14) 1.022(09) 0.985(12) [1.24] 0.877(35) 0.888(56) 1.071(51) 0.983(24) [2.15]
(2, 2, 1) 0.951(32) 0.963(17) 1.020(12) 1.006(18) [1.14] 0.921(39) 1.001(74) 0.986(25) 0.992(36) [1.51]
(3, 0, 0) 0.940(32) 0.992(19) 1.025(16) 0.989(23) [1.10] 0.923(51) 0.94(12) 1.058(08) 1.020(41) [1.13]
(3, 1, 0) 0.920(26) 0.948(18) 1.036(22) 0.998(27) [1.44] 0.908(46) 0.867(88) 0.963(27) 0.972(36) [1.23]

a091m170L a073m270
(1, 0, 0) 0.710(22) 0.897(44) 0.903(22) 0.889(22) [2.00] 0.855(33) 0.926(21) 0.980(10) 0.993(06) [1.63]
(1, 1, 0) 0.811(25) 0.986(48) 0.947(18) 0.952(22) [1.81] 0.909(34) 0.955(16) 0.993(09) 1.001(06) [1.66]
(1, 1, 1) 0.861(25) 1.034(42) 0.952(21) 0.977(17) [2.18] 0.936(33) 0.965(14) 1.002(10) 1.004(06) [1.29]
(2, 0, 0) 0.884(27) 1.027(51) 0.975(29) 0.985(20) [1.40] 0.935(19) 0.960(10) 0.997(12) 1.004(08) [1.18]
(2, 1, 0) 0.917(26) 1.041(44) 0.985(15) 0.999(21) [2.12] 0.944(25) 0.946(10) 0.998(08) 0.998(09) [2.25]
(2, 1, 1) 0.926(25) 1.034(40) 0.988(17) 1.019(26) [2.68] 0.959(38) 0.933(14) 0.997(09) 0.987(10) [1.73]
(2, 2, 0) 0.934(25) 1.019(41) 0.991(17) 1.016(18) [2.42] 0.969(41) 0.925(14) 1.004(09) 0.984(15) [1.62]
(2, 2, 1) 0.946(27) 1.022(45) 0.992(18) 1.019(30) [2.36] 0.962(40) 0.912(17) 1.001(12) 0.974(18) [1.35]
(3, 0, 0) 0.900(26) 0.950(45) 0.989(22) 0.994(28) [1.99] 0.939(32) 0.910(25) 1.077(76) 1.025(19) [1.28]
(3, 1, 0) 0.928(25) 0.978(44) 0.994(20) 1.027(31) [1.98] 0.963(34) 0.919(22) 1.010(44) 0.980(36) [1.57]

a071m170
(1, 0, 0) 0.723(46) 0.885(45) 0.968(23) 0.972(25) [1.48]
(1, 1, 0) 0.833(59) 0.971(44) 0.950(14) 0.979(17) [1.82]
(1, 1, 1) 0.878(54) 1.004(43) 0.964(17) 0.998(15) [1.43]
(2, 0, 0) 0.915(57) 1.029(39) 0.985(28) 1.001(14) [1.47]
(2, 1, 0) 0.898(41) 1.012(33) 0.961(16) 0.998(13) [1.92]
(2, 1, 1) 0.920(45) 1.006(33) 0.995(34) 1.004(15) [1.69]
(2, 2, 0) 0.892(30) 0.976(29) 0.987(15) 0.987(13) [1.73]
(2, 2, 1) 0.914(34) 0.976(31) 0.990(15) 1.004(15) [1.63]
(3, 0, 0) 0.956(61) 1.007(47) 0.981(16) 0.984(18) [1.67]
(3, 1, 0) 0.934(48) 1.000(36) 0.978(16) 0.986(19) [1.97]

TABLE XXI. Check of the PCAC relation between the axial and pseudoscalar form factors given in Eq. (29) for four strategies
used to remove ESC. Since PCAC is an operator relation, deviations from unity should only be due to discretization errors.
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FIG. 23. The ratio R54, defined in Eq. (23), is plotted versus the shifted operator insertion time t − τ/2 for n = (0, 0, 1).
Results of the fits with {4, 3∗} (left column), {4Nπ, 3∗} ( second column), {4Nπ, 2A4} (third), and {4Nπ, 2sim} (right) strategies
are shown by lines connecting the data points. The τ → ∞ value is shown by the gray band. The y-axis interval is the same
for a given row to facilitate comparison of the result and the error. The legends give the analysis strategy, the ensemble ID,

the ground state value (the gray band), the χ2/dof and the p-value of the fit, and the mass gaps, ∆M1 and ∆E1 (or ∆M̃1

and ∆Ẽ1 for {2A4} or {2sim} fits), of the first excited state on the two sides of the operator. For each τ , only the data points
connected by lines with the same color as the symbols are included in the simultaneous fits.
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FIG. 24. Matrix elements of the axial and pseudoscalar currents that give (i) G̃P (from R51 with n2 = 2 defined in Eq. (20)]
in column one, (ii) GA (from R53 with n2 = 1 and qz = 0 defined in Eq. (22)] in the second column, (iii) the combination
G̃P

2MN
− (M+E)

q23
GA [from R53 with q3 = (0, 0, 1)2π/La] in the third column, and (iv) GP (from R5 defined in Eq. (24)) in the

right column. All data are with the {4Nπ, 2sim} strategy and plotted versus the shifted operator insertion time t − τ/2. The
rest is the same as in Fig. 23.
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FIG. 25. Matrix elements at momentum transfer n2 = 1 that give GA [from R53 with qz = 0 defined in Eq. (22)] in rows

one and two, the combination G̃P
2MN

− (M+E)

q23
GA [from R53 with q3 = (0, 0, 1)2π/La] in rows three and four, and GP [from R5

defined in Eq. (24)] in rows five and six. Data from the a091m170L (rows one, three and five) and a071m170 (rows two, four
and six) ensembles are plotted versus the shifted operator insertion time t−τ/2. The four panels in each row show the data and
fits from the four strategies, {4, 3∗} (left), {4Nπ, 3∗} (second), {4Nπ, 2A4} (third), and {4Nπ, 2sim} (right). The y-axis interval
is chosen to be the same for each row to facilitate comparison of the result and the error. The rest is the same as in Fig. 23.
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FIG. 26. The data for (Q2+M2
N )G̃P (Q2) from the seven ensembles are plotted versus Q2. According to the pion-pole dominance

hypothesis, Eq. (30), the result should be a smooth monotonic function that is proportional to GA(Q2). The data from the
{4, 3∗} and {4Nπ, 3∗} strategies on the Mπ = 170 MeV ensembles (top two panels) show deviations from this expectation at
small Q2. Also, the “lines” of data from a given ensemble move up slightly as a→ 0 and down as Mπ → 135 MeV. The labels
specify the analysis strategy and the ensemble ID.
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Appendix G: Comparison of electric and magnetic
form factors extracted using 4 strategies

In this appendix, we show in Figs. 27, 28 and 29 the
ratios defined in Eqs. (25)–(27) that give GV4

E , GViE , and

GViM . The four panels in each row show the results for
the ground state matrix element obtained using the four

ESC strategies, {4, 3∗}, {4Nπ, 3∗}, {4, 2sim}, {4Nπ, 2sim}.
The renormalized electric and magnetic form factors are
given in Tables XXII, XXIII, and XXIV. Each panel in
Figs. 30 and 31 shows the dipole, Padé and z-expansion
fits to these data and gives the values of 〈r2

E〉, 〈r2
M 〉, µ

obtained. Data from the four strategies are shown in
the four rows in each figure, and for the a091m170L and
a071m170 ensembles in the two figures.
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FIG. 27. GE(n = (1, 0, 0)) obtained from the ratio R4 defined in Eq. (27) for five ensembles plotted versus the shifted operator
insertion point t − τ/2. The panels in the left column show the fits with {4, 3∗}, the second with {4Nπ, 3∗}, the third with
{4, 2sim} and the right column with {4Nπ, 2sim} strategies. The interval along the y-axis is the same for a given row to facilitate
comparison of the result and the error. The rest is the same as in Fig. 23.
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FIG. 28. GE(n = (1, 0, 0)), obtained from =Vi (see Eq. (26)) plotted versus the shifted operator insertion point t− τ/2. The
rest is the same as in Fig. 23.
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FIG. 29. GM (n = (1, 0, 0)), obtained from <Vi [see Eq. (25)] plotted versus the shifted operator insertion point t− τ/2. The
rest is the same as in Fig. 23.
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n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

Strategy {4, 3∗}
(1, 0, 0) 0.764(05)[2.05] 0.642(20)[1.18] 0.817(04)[1.03] 0.791(06)[1.06] 0.870(05)[1.07] 0.737(07)[1.29] 0.845(11)[1.10]
(1, 1, 0) 0.609(06)[1.21] 0.461(21)[1.56] 0.680(06)[0.90] 0.643(08)[1.04] 0.764(06)[0.90] 0.569(11)[0.99] 0.723(15)[1.17]
(1, 1, 1) 0.495(08)[1.47] 0.356(16)[0.95] 0.576(08)[1.32] 0.541(09)[0.63] 0.679(07)[0.79] 0.454(12)[1.35] 0.622(18)[1.25]
(2, 0, 0) 0.417(08)[1.04] 0.245(21)[0.91] 0.499(08)[1.03] 0.464(10)[0.95] 0.607(08)[1.71] 0.376(09)[1.16] 0.548(20)[0.91]
(2, 1, 0) 0.356(08)[1.01] 0.214(14)[1.02] 0.436(08)[1.44] 0.401(09)[1.44] 0.546(09)[1.24] 0.312(10)[1.42] 0.488(17)[0.88]
(2, 1, 1) 0.303(10)[1.33] 0.184(11)[1.13] 0.385(08)[1.69] 0.355(09)[1.09] 0.498(09)[0.81] 0.262(11)[1.56] 0.435(18)[0.95]
(2, 2, 0) 0.234(09)[0.77] 0.137(16)[1.02] 0.310(08)[1.35] 0.276(11)[1.52] 0.414(09)[1.54] 0.196(11)[1.21] 0.364(14)[0.89]
(2, 2, 1) 0.208(10)[1.04] 0.128(14)[1.12] 0.278(08)[1.62] 0.251(09)[0.47] 0.385(09)[0.91] 0.176(09)[2.24] 0.333(13)[0.62]
(3, 0, 0) 0.212(10)[1.23] 0.094(43)[1.33] 0.284(08)[1.31] 0.236(16)[1.11] 0.384(09)[1.26] 0.180(09)[0.97] 0.319(18)[0.52]
(3, 1, 0) 0.188(09)[0.78] 0.125(24)[1.41] 0.261(07)[1.31] 0.222(11)[1.42] 0.353(09)[1.35] 0.156(08)[1.07] 0.301(14)[0.48]

Strategy {4Nπ, 3∗}
(1, 0, 0) 0.755(05)[1.64] 0.643(09)[1.15] 0.804(04)[1.02] 0.750(10)[0.94] 0.839(11)[1.01] 0.725(06)[0.97] 0.815(14)[1.16]
(1, 1, 0) 0.599(05)[1.04] 0.465(07)[1.24] 0.664(05)[0.89] 0.593(09)[1.01] 0.726(13)[0.87] 0.557(06)[1.02] 0.688(14)[1.19]
(1, 1, 1) 0.487(05)[1.49] 0.357(07)[0.89] 0.559(05)[1.27] 0.492(11)[0.85] 0.632(15)[0.76] 0.442(07)[1.59] 0.584(15)[1.46]
(2, 0, 0) 0.409(05)[1.01] 0.268(10)[0.96] 0.481(05)[0.98] 0.416(12)[0.88] 0.562(16)[1.92] 0.364(06)[1.11] 0.507(16)[1.05]
(2, 1, 0) 0.350(05)[1.03] 0.224(06)[1.04] 0.422(05)[1.19] 0.353(10)[1.18] 0.499(17)[1.43] 0.306(05)[1.58] 0.448(14)[0.96]
(2, 1, 1) 0.300(05)[1.38] 0.192(07)[1.14] 0.371(05)[1.53] 0.317(12)[0.79] 0.453(17)[0.93] 0.263(05)[2.01] 0.398(14)[1.12]
(2, 2, 0) 0.233(05)[0.76] 0.141(12)[1.01] 0.302(05)[1.14] 0.230(16)[1.09] 0.372(16)[1.73] 0.201(05)[1.47] 0.328(13)[0.88]
(2, 2, 1) 0.207(05)[1.03] 0.131(10)[1.12] 0.271(05)[1.49] 0.228(14)[0.55] 0.346(15)[1.05] 0.184(04)[2.52] 0.305(11)[0.67]
(3, 0, 0) 0.207(08)[1.20] 0.122(22)[1.37] 0.269(07)[1.24] 0.213(24)[1.03] 0.342(16)[1.33] 0.184(07)[0.97] 0.295(14)[0.55]
(3, 1, 0) 0.185(07)[0.76] 0.122(27)[1.42] 0.248(06)[1.09] 0.212(17)[1.75] 0.314(15)[1.48] 0.160(06)[1.18] 0.273(12)[0.48]

Strategy {4, 2sim}
(1, 0, 0) 0.749(09)[1.58] 0.603(41)[1.07] 0.810(05)[0.96] 0.778(11)[1.48] 0.856(10)[1.06] 0.713(14)[0.89] 0.811(16)[1.02]
(1, 1, 0) 0.589(14)[1.19] 0.424(52)[0.92] 0.671(07)[0.83] 0.625(19)[0.55] 0.749(12)[0.98] 0.549(11)[1.17] 0.709(10)[1.57]
(1, 1, 1) 0.481(17)[1.44] 0.362(22)[1.02] 0.562(11)[1.08] 0.539(15)[0.85] 0.658(14)[1.09] 0.450(11)[1.04] 0.625(11)[1.35]
(2, 0, 0) 0.416(14)[1.19] 0.16(15)[1.31] 0.492(09)[1.11] 0.433(27)[0.82] 0.600(14)[0.93] 0.362(18)[1.35] 0.541(30)[0.91]
(2, 1, 0) 0.350(14)[1.03] 0.218(33)[0.92] 0.407(16)[1.06] 0.347(43)[0.77] 0.533(20)[1.27] 0.311(11)[0.97] 0.488(11)[1.31]
(2, 1, 1) 0.294(17)[1.36] 0.104(44)[1.41] 0.349(24)[1.30] 0.322(32)[0.70] 0.477(17)[1.30] 0.254(21)[0.87] 0.444(12)[1.20]
(2, 2, 0) 0.236(19)[0.90] 0.158(03)[1.28] 0.281(24)[1.13] 0.232(83)[1.24] 0.393(26)[1.29] 0.180(25)[0.76] 0.347(22)[1.10]
(2, 2, 1) 0.172(61)[1.91] 0.115(24)[1.04] 0.179(60)[1.06] 0.219(47)[0.89] 0.363(23)[1.41] 0.182(17)[0.79] 0.341(11)[1.02]
(3, 0, 0) 0.08(26)[1.21] 0.062(52)[1.60] 0.242(29)[1.25] 0.224(66)[1.33] 0.368(38)[1.26] 0.177(25)[0.95] 0.322(31)[0.66]
(3, 1, 0) 0.17(15)[0.91] 0.121(04)[1.74] 0.14(16)[1.01] 0.214(39)[1.04] 0.348(19)[1.29] 0.167(16)[1.13] 0.306(20)[0.70]

Strategy {4Nπ, 2sim}
(1, 0, 0) 0.746(11)[1.52] 0.593(43)[1.09] 0.816(06)[0.95] 0.790(15)[1.59] 0.881(27)[0.78] 0.708(13)[0.80] 0.843(18)[1.13]
(1, 1, 0) 0.590(14)[1.21] 0.427(41)[0.89] 0.676(07)[0.88] 0.641(15)[0.60] 0.771(17)[0.81] 0.551(11)[1.19] 0.724(14)[1.62]
(1, 1, 1) 0.478(19)[1.53] 0.357(21)[1.01] 0.567(15)[1.18] 0.548(11)[0.86] 0.675(14)[1.11] 0.450(10)[1.08] 0.635(12)[1.16]
(2, 0, 0) 0.416(14)[1.19] 0.216(90)[1.36] 0.494(10)[1.16] 0.441(36)[0.94] 0.615(16)[0.92] 0.364(18)[1.37] 0.559(22)[0.89]
(2, 1, 0) 0.349(15)[1.06] 0.220(26)[0.93] 0.408(18)[1.14] 0.358(48)[0.80] 0.546(14)[1.27] 0.312(11)[0.96] 0.497(10)[1.29]
(2, 1, 1) 0.295(15)[1.44] 0.112(44)[1.38] 0.351(28)[1.41] 0.336(41)[0.76] 0.488(16)[1.35] 0.259(19)[0.86] 0.453(08)[1.16]
(2, 2, 0) 0.233(16)[1.00] 0.154(04)[1.50] 0.247(31)[1.07] 0.17(16)[0.89] 0.415(19)[1.36] 0.185(23)[0.76] 0.355(18)[1.11]
(2, 2, 1) 0.169(63)[1.95] 0.135(08)[1.06] 0.177(51)[1.33] 0.219(48)[0.96] 0.373(23)[1.44] 0.186(14)[0.78] 0.348(09)[1.01]
(3, 0, 0) 0.127(70)[0.96] 0.076(76)[1.60] 0.246(56)[1.17] 0.224(64)[1.34] 0.375(36)[1.28] 0.181(22)[0.96] 0.329(27)[0.66]
(3, 1, 0) 0.04(28)[1.20] 0.132(72)[1.66] 0.211(30)[1.31] 0.246(13)[1.10] 0.347(22)[0.99] 0.166(17)[1.13] 0.313(15)[0.71]

TABLE XXII. Data for renormalized G<V4
E (Q2)/gV from the seven ensembles and with the four strategies for controlling ESC.

The χ2/dof of the fits are given within square parentheses, and are the same for the three quantities G<V4
E (Q2), G=ViE (Q2) and

G<ViM (Q2) in the simultaneous {2sim} fits. Only data with the four strategies for a given ensemble and n can be compared.
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n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

Strategy {4, 3∗}
(1, 0, 0) 0.761(17)[1.20] 0.701(89)[0.96] 0.817(19)[0.90] 0.816(46)[2.36] 0.872(35)[0.88] 0.726(30)[2.99] 0.862(81)[1.00]
(1, 1, 0) 0.620(15)[1.23] 0.534(52)[1.00] 0.690(17)[0.91] 0.679(30)[1.47] 0.788(28)[0.58] 0.583(25)[2.32] 0.749(59)[1.59]
(1, 1, 1) 0.505(16)[1.24] 0.394(25)[1.20] 0.593(18)[1.51] 0.591(26)[1.37] 0.728(27)[0.85] 0.483(23)[1.86] 0.661(57)[1.04]
(2, 0, 0) 0.436(20)[0.85] 0.296(38)[1.08] 0.531(17)[1.13] 0.518(26)[0.73] 0.635(29)[0.81] 0.412(16)[1.23] 0.611(56)[1.00]
(2, 1, 0) 0.374(16)[1.48] 0.254(25)[0.92] 0.466(14)[1.19] 0.461(22)[1.27] 0.598(24)[0.81] 0.339(16)[1.15] 0.528(34)[1.11]
(2, 1, 1) 0.318(17)[1.90] 0.185(25)[1.48] 0.419(15)[1.34] 0.418(20)[0.81] 0.564(22)[1.20] 0.295(18)[1.35] 0.484(34)[0.97]
(2, 2, 0) 0.248(20)[1.54] 0.163(27)[1.25] 0.345(13)[0.98] 0.335(21)[0.96] 0.473(25)[1.07] 0.216(16)[1.11] 0.427(27)[1.16]
(2, 2, 1) 0.218(18)[1.90] 0.095(36)[1.04] 0.311(15)[0.99] 0.309(19)[0.77] 0.439(20)[0.69] 0.201(15)[1.42] 0.376(24)[0.78]
(3, 0, 0) 0.221(17)[1.43] 0.082(66)[1.20] 0.322(16)[1.31] 0.262(34)[0.92] 0.435(28)[0.87] 0.212(16)[1.04] 0.378(38)[0.60]
(3, 1, 0) 0.212(21)[0.61] 0.211(93)[1.56] 0.302(13)[1.00] 0.280(30)[1.31] 0.397(29)[1.23] 0.162(18)[0.89] 0.346(28)[0.58]

Strategy {4Nπ, 3∗}
(1, 0, 0) 0.725(34)[0.91] 0.635(33)[1.00] 0.823(27)[1.38] 0.94(12)[1.74] 0.91(10)[0.58] 0.669(26)[1.21] 0.910(93)[0.96]
(1, 1, 0) 0.609(15)[0.91] 0.498(20)[1.01] 0.694(20)[0.69] 0.709(63)[1.09] 0.860(69)[0.57] 0.567(15)[1.31] 0.793(56)[1.67]
(1, 1, 1) 0.505(13)[1.09] 0.375(19)[1.20] 0.601(17)[0.97] 0.624(55)[1.36] 0.802(63)[0.74] 0.477(12)[1.52] 0.707(58)[1.26]
(2, 0, 0) 0.430(15)[0.81] 0.317(23)[1.08] 0.531(17)[1.16] 0.443(51)[0.66] 0.682(62)[0.77] 0.405(12)[1.01] 0.659(51)[0.98]
(2, 1, 0) 0.371(12)[1.49] 0.259(16)[0.94] 0.471(13)[0.90] 0.490(44)[0.66] 0.639(51)[0.80] 0.343(09)[1.04] 0.528(32)[1.24]
(2, 1, 1) 0.320(11)[1.90] 0.198(18)[1.49] 0.427(13)[1.06] 0.453(45)[0.57] 0.604(44)[1.22] 0.310(09)[1.43] 0.496(35)[1.09]
(2, 2, 0) 0.250(12)[1.53] 0.167(21)[1.24] 0.353(11)[0.93] 0.351(42)[0.68] 0.492(48)[1.14] 0.233(08)[1.15] 0.423(29)[1.15]
(2, 2, 1) 0.219(13)[1.89] 0.113(26)[1.05] 0.321(13)[0.88] 0.317(52)[0.79] 0.449(38)[0.75] 0.217(10)[1.45] 0.374(31)[0.80]
(3, 0, 0) 0.217(19)[1.42] 0.095(97)[1.23] 0.319(17)[1.25] 0.198(23)[0.87] 0.432(55)[0.81] 0.220(16)[1.05] 0.402(38)[0.59]
(3, 1, 0) 0.206(23)[0.59] 0.16(12)[1.57] 0.306(18)[0.88] 0.296(72)[1.37] 0.378(54)[1.21] 0.176(17)[0.93] 0.330(42)[0.61]

Strategy {4, 2sim}
(1, 0, 0) 0.778(27)[1.58] 0.585(78)[1.07] 0.820(19)[0.96] 0.815(42)[1.48] 0.858(36)[1.06] 0.729(32)[0.89] 0.916(89)[1.02]
(1, 1, 0) 0.615(19)[1.19] 0.448(48)[0.92] 0.680(18)[0.83] 0.631(36)[0.55] 0.767(28)[0.98] 0.560(19)[1.17] 0.755(54)[1.57]
(1, 1, 1) 0.488(24)[1.44] 0.379(35)[1.02] 0.569(20)[1.08] 0.550(25)[0.85] 0.690(25)[1.09] 0.458(17)[1.04] 0.653(41)[1.35]
(2, 0, 0) 0.436(17)[1.19] 0.15(16)[1.31] 0.504(15)[1.11] 0.453(35)[0.82] 0.610(24)[0.93] 0.376(20)[1.35] 0.555(61)[0.91]
(2, 1, 0) 0.359(18)[1.03] 0.225(36)[0.92] 0.419(21)[1.06] 0.388(48)[0.77] 0.562(23)[1.27] 0.326(14)[0.97] 0.522(29)[1.31]
(2, 1, 1) 0.290(26)[1.36] 0.003(04)[1.41] 0.361(28)[1.30] 0.346(39)[0.70] 0.525(22)[1.30] 0.263(24)[0.87] 0.476(26)[1.20]
(2, 2, 0) 0.241(25)[0.90] 0.170(05)[1.28] 0.292(27)[1.13] 0.239(86)[1.24] 0.424(27)[1.29] 0.197(27)[0.76] 0.398(34)[1.10]
(2, 2, 1) 0.152(94)[1.91] 0.002(04)[1.04] 0.202(64)[1.06] 0.270(39)[0.89] 0.406(22)[1.41] 0.194(18)[0.79] 0.360(20)[1.02]
(3, 0, 0) 0.09(26)[1.21] 0.002(05)[1.60] 0.258(34)[1.25] 0.282(30)[1.33] 0.406(38)[1.26] 0.193(26)[0.95] 0.338(39)[0.66]
(3, 1, 0) 0.196(84)[0.91] 0.117(09)[1.74] 0.19(13)[1.01] 0.251(45)[1.04] 0.376(25)[1.29] 0.167(20)[1.13] 0.350(23)[0.70]

Strategy {4Nπ, 2sim}
(1, 0, 0) 0.747(25)[1.52] 0.527(62)[1.09] 0.804(17)[0.95] 0.818(55)[1.59] 0.830(49)[0.78] 0.694(33)[0.80] 0.825(56)[1.13]
(1, 1, 0) 0.608(17)[1.21] 0.434(41)[0.89] 0.680(17)[0.88] 0.650(34)[0.60] 0.805(45)[0.81] 0.556(17)[1.19] 0.759(37)[1.62]
(1, 1, 1) 0.486(21)[1.53] 0.365(26)[1.01] 0.576(24)[1.18] 0.566(22)[0.86] 0.732(39)[1.11] 0.456(15)[1.08] 0.676(29)[1.16]
(2, 0, 0) 0.434(14)[1.19] 0.21(10)[1.36] 0.506(16)[1.16] 0.470(49)[0.94] 0.649(33)[0.92] 0.378(20)[1.37] 0.582(28)[0.89]
(2, 1, 0) 0.359(16)[1.06] 0.228(30)[0.93] 0.424(23)[1.14] 0.411(48)[0.80] 0.600(26)[1.27] 0.328(13)[0.96] 0.536(18)[1.29]
(2, 1, 1) 0.298(20)[1.44] 0.003(04)[1.38] 0.367(33)[1.41] 0.369(40)[0.76] 0.560(27)[1.35] 0.270(22)[0.86] 0.490(17)[1.16]
(2, 2, 0) 0.242(20)[1.00] 0.166(03)[1.50] 0.262(33)[1.07] 0.18(17)[0.89] 0.460(25)[1.36] 0.207(23)[0.76] 0.412(25)[1.11]
(2, 2, 1) 0.161(95)[1.95] 0.04(30)[1.06] 0.177(56)[1.33] 0.287(34)[0.96] 0.431(25)[1.44] 0.201(13)[0.78] 0.370(14)[1.01]
(3, 0, 0) 0.127(98)[0.96] 0.003(09)[1.60] 0.272(53)[1.17] 0.291(27)[1.34] 0.412(41)[1.28] 0.199(23)[0.96] 0.351(29)[0.66]
(3, 1, 0) 0.15(17)[1.20] 0.109(56)[1.66] 0.251(40)[1.31] 0.282(17)[1.10] 0.401(31)[0.99] 0.168(19)[1.13] 0.358(18)[0.71]

TABLE XXIII. Data for the renormalized G=ViE (Q2)/gV from the seven ensembles and with the four strategies for controlling
ESC. The rest is the same as in Table XXII.
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n a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170

Strategy {4, 3∗}
(1, 0, 0) 3.671(33)[1.21] 3.072(58)[0.71] 3.713(27)[1.04] 3.498(42)[1.27] 3.830(54)[1.07] 3.349(26)[1.39] 3.705(68)[0.84]
(1, 1, 0) 3.071(26)[1.21] 2.320(71)[0.42] 3.193(22)[0.80] 2.962(30)[0.75] 3.458(43)[1.71] 2.724(16)[0.96] 3.250(45)[1.12]
(1, 1, 1) 2.620(28)[1.18] 1.834(68)[0.62] 2.790(23)[0.91] 2.566(68)[0.93] 3.129(40)[1.53] 2.269(22)[0.88] 2.889(44)[0.97]
(2, 0, 0) 2.231(20)[0.97] 1.593(69)[1.35] 2.471(24)[1.07] 2.302(37)[0.66] 2.809(49)[1.01] 1.963(22)[1.21] 2.624(45)[0.98]
(2, 1, 0) 1.967(25)[0.67] 1.333(48)[0.84] 2.203(27)[0.81] 2.032(29)[0.75] 2.612(37)[1.53] 1.691(24)[0.91] 2.377(37)[0.99]
(2, 1, 1) 1.756(30)[1.00] 1.146(51)[1.01] 1.969(31)[1.65] 1.808(34)[1.03] 2.408(37)[1.16] 1.471(33)[1.15] 2.127(50)[0.94]
(2, 2, 0) 1.419(35)[0.85] 0.88(15)[0.85] 1.656(29)[1.12] 1.527(34)[0.73] 2.080(38)[1.27] 1.202(29)[0.90] 1.830(54)[1.18]
(2, 2, 1) 1.312(33)[1.83] 0.817(67)[0.75] 1.500(35)[1.69] 1.364(41)[1.20] 1.944(40)[1.31] 1.069(36)[0.65] 1.696(48)[1.32]
(3, 0, 0) 1.280(39)[1.21] 0.85(20)[1.46] 1.556(28)[1.01] 1.442(51)[1.27] 1.935(48)[1.34] 1.101(31)[1.05] 1.718(57)[0.77]
(3, 1, 0) 1.198(35)[0.97] 0.82(14)[1.80] 1.430(29)[1.09] 1.283(50)[0.40] 1.845(45)[1.51] 1.019(29)[1.14] 1.664(40)[0.87]

Strategy {4Nπ, 3∗}
(1, 0, 0) 3.711(52)[1.09] 3.054(47)[0.72] 3.787(43)[0.97] 3.69(15)[1.26] 4.04(14)[0.93] 3.365(34)[1.36] 3.82(12)[0.82]
(1, 1, 0) 3.082(33)[1.17] 2.337(40)[0.44] 3.214(36)[0.79] 2.960(86)[0.69] 3.546(95)[1.54] 2.723(21)[0.95] 3.308(77)[1.09]
(1, 1, 1) 2.614(31)[1.22] 1.842(38)[0.62] 2.785(31)[0.89] 2.535(83)[0.84] 3.148(86)[1.45] 2.254(19)[0.88] 2.896(70)[0.95]
(2, 0, 0) 2.215(29)[0.98] 1.638(51)[1.37] 2.447(31)[1.01] 2.260(92)[0.55] 2.763(85)[0.98] 1.949(21)[1.22] 2.615(66)[0.95]
(2, 1, 0) 1.949(24)[0.72] 1.356(25)[0.85] 2.162(25)[0.71] 1.983(65)[0.77] 2.521(68)[1.39] 1.679(17)[0.92] 2.346(52)[0.99]
(2, 1, 1) 1.738(24)[1.03] 1.172(31)[1.01] 1.917(25)[1.61] 1.714(73)[1.05] 2.294(66)[1.04] 1.471(17)[1.25] 2.051(54)[0.96]
(2, 2, 0) 1.402(25)[0.90] 0.895(50)[0.83] 1.617(24)[1.11] 1.439(81)[0.69] 1.924(72)[1.11] 1.211(18)[0.85] 1.733(56)[1.20]
(2, 2, 1) 1.295(27)[1.81] 0.839(43)[0.75] 1.447(24)[1.63] 1.187(78)[1.08] 1.769(74)[1.11] 1.088(19)[0.69] 1.616(54)[1.33]
(3, 0, 0) 1.255(39)[1.22] 0.879(99)[1.45] 1.516(35)[1.01] 1.44(15)[1.29] 1.797(90)[1.24] 1.109(28)[1.06] 1.670(65)[0.73]
(3, 1, 0) 1.175(32)[1.02] 0.839(80)[1.81] 1.369(29)[1.12] 1.182(93)[0.42] 1.704(81)[1.30] 1.028(25)[1.13] 1.618(56)[0.87]

Strategy {4, 2sim}
(1, 0, 0) 3.769(68)[1.58] 3.088(64)[1.07] 3.739(34)[0.96] 3.563(53)[1.48] 3.792(47)[1.06] 3.368(92)[0.89] 3.759(80)[1.02]
(1, 1, 0) 3.095(41)[1.19] 2.327(76)[0.92] 3.209(28)[0.83] 2.968(57)[0.55] 3.442(36)[0.98] 2.709(23)[1.17] 3.222(43)[1.57]
(1, 1, 1) 2.608(32)[1.44] 1.865(56)[1.02] 2.799(20)[1.08] 2.562(31)[0.85] 3.147(44)[1.09] 2.260(24)[1.04] 2.876(37)[1.35]
(2, 0, 0) 2.223(28)[1.19] 1.36(29)[1.31] 2.476(24)[1.11] 2.314(30)[0.82] 2.838(39)[0.93] 1.929(33)[1.35] 2.603(62)[0.91]
(2, 1, 0) 1.975(31)[1.03] 1.345(64)[0.92] 2.179(35)[1.06] 1.951(76)[0.77] 2.619(50)[1.27] 1.687(25)[0.97] 2.377(32)[1.31]
(2, 1, 1) 1.747(44)[1.36] 0.90(21)[1.41] 1.934(49)[1.30] 1.772(69)[0.70] 2.408(39)[1.30] 1.470(53)[0.87] 2.164(32)[1.20]
(2, 2, 0) 1.445(62)[0.90] 0.965(21)[1.28] 1.606(57)[1.13] 1.571(25)[1.24] 2.057(54)[1.29] 1.170(62)[0.76] 1.821(47)[1.10]
(2, 2, 1) 1.23(18)[1.91] 0.73(15)[1.04] 1.30(14)[1.06] 1.31(14)[0.89] 1.948(51)[1.41] 1.114(47)[0.79] 1.744(32)[1.02]
(3, 0, 0) 1.14(34)[1.21] 1.66(67)[1.60] 1.486(64)[1.25] 1.43(12)[1.33] 1.929(84)[1.26] 1.104(57)[0.95] 1.743(65)[0.66]
(3, 1, 0) 1.15(54)[0.91] 0.825(14)[1.74] 1.14(39)[1.01] 1.298(75)[1.04] 1.845(52)[1.29] 1.062(35)[1.13] 1.668(41)[0.70]

Strategy {4Nπ, 2sim}
(1, 0, 0) 3.737(67)[1.52] 3.035(88)[1.09] 3.733(29)[0.95] 3.609(56)[1.59] 3.966(78)[0.78] 3.396(35)[0.80] 3.791(77)[1.13]
(1, 1, 0) 3.086(34)[1.21] 2.312(73)[0.89] 3.207(26)[0.88] 3.000(35)[0.60] 3.548(65)[0.81] 2.709(23)[1.19] 3.267(50)[1.62]
(1, 1, 1) 2.612(35)[1.53] 1.854(58)[1.01] 2.796(25)[1.18] 2.584(32)[0.86] 3.190(54)[1.11] 2.261(24)[1.08] 2.912(41)[1.16]
(2, 0, 0) 2.216(28)[1.19] 1.49(16)[1.36] 2.476(24)[1.16] 2.314(52)[0.94] 2.882(55)[0.92] 1.932(34)[1.37] 2.646(53)[0.89]
(2, 1, 0) 1.967(32)[1.06] 1.357(49)[0.93] 2.174(35)[1.14] 1.965(82)[0.80] 2.639(41)[1.27] 1.690(25)[0.96] 2.404(32)[1.29]
(2, 1, 1) 1.741(41)[1.44] 0.98(22)[1.38] 1.930(54)[1.41] 1.796(80)[0.76] 2.425(41)[1.35] 1.482(46)[0.86] 2.189(31)[1.16]
(2, 2, 0) 1.426(57)[1.00] 0.971(20)[1.50] 1.540(68)[1.07] 1.39(27)[0.89] 2.097(48)[1.36] 1.187(52)[0.76] 1.837(45)[1.11]
(2, 2, 1) 1.20(17)[1.95] 0.843(50)[1.06] 1.22(15)[1.33] 1.29(15)[0.96] 1.957(56)[1.44] 1.126(35)[0.78] 1.761(31)[1.01]
(3, 0, 0) 1.15(16)[0.96] 2.3(1.4)[1.60] 1.48(11)[1.17] 1.43(13)[1.34] 1.937(95)[1.28] 1.115(46)[0.96] 1.762(59)[0.66]
(3, 1, 0) 0.7(1.1)[1.20] 0.86(35)[1.66] 1.355(63)[1.31] 1.354(32)[1.10] 1.830(64)[0.99] 1.065(36)[1.13] 1.683(38)[0.71]

TABLE XXIV. Data for the renormalized G<ViM (Q2)/gV from the seven ensembles and with the four strategies for controlling
ESC. The rest is the same as in Table XXII.
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z2, μ = 4.34(8), rM = 0.82(4) [0.50]
z3, μ = 4.31(8), rM = 0.78(7) [0.60]
z4, μ = 4.31(8), rM = 0.78(7) [0.89]
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z3, μ = 4.74(9), rM = 0.94(6) [0.19]
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FIG. 30. Data for the renormalized electric (left) and magnetic (right) form factors from the a091m170L ensemble. All fits are
made to the lowest six Q2 points (open circles) and the remaining four points not fit are shown by the symbol cross. Error bands
are shown only over the range of the data for clarity. The prior and its width, µprior, used in the fits to GM is given in each panel
and explained in the text. The top line of the labels gives the results of the dipole fit (ME , 〈rE〉) or (MM , µ and 〈rM 〉). Lines 2–5

give 〈rE〉 or (µ and 〈rM 〉) from the P2 Padé and the z{2,3,4} fits. In each case, the χ2/dof of the fits are given within the square
brackets. The four rows show data from the four strategies {4, 3∗}, {4Nπ, 3∗}, {4, 2sim} and {4Nπ, 2sim} defined in the text.
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FIG. 31. The data for the renormalized electric (left) and magnetic (right) form factors from the a071m170 ensemble fit using
the dipole, P2 Padé and z2,3,4 ansatz. The rest is the same as in Fig. 30.



73

Appendix H: Chiral-Continuum-Finite-Volume Fits

This appendix contains the figures showing the CCFV
fits made to get the results at the physical point for var-
ious analysis strategies. Figures 32–39 show the data
and fits for the three isovector charges, gu−dA,S,T ; the axial

charge radius squared, 〈r2
A〉; the induced pseudoscalar

charge g∗P |Z2
; the pion-nucleon coupling gπNN |Z2

; the
product MNgA/Fπ; the pion decay constant, Fπ; the
electric and magnetic charge radius squared, 〈r2

E〉 and
〈r2
M 〉; and the magnetic moment, µp−n, respectively. The

extraction of the final results from the set of CCFV fits
and the assessment of additional systematic uncertainties
is presented in Sec. XIII.
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FIG. 32. The CCFV extrapolation of the renormalized (Z2 method) isovector axial charge gu−dA for five strategies: {4, 3∗} (top
row), {4Nπ, 3∗} (second row), {4, 2sim, z2} (third row), {4Nπ, 2sim, z2} (fourth row) and {4Nπ, 2sim, P2} (fifth row). In each panel,
the result of the simultaneous fit in {a,Mπ,MπL} is shown by the pink band, and plotted versus a (left panel), M2

π (middle)
and MπL (right) with the other two variables in each case set to their physical value. The result of the CCFV fit at the physical
point is shown by the red star (label Extrap) and the value and χ2/dof given in the left panel. The gray band is the result of a
chiral fit only with the physical point marked with a black cross (label M2

π-Extrap) and the value given in the middle panel.
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FIG. 33. The CCFV extrapolation of the renormalized (Z1 method) isovector scalar charge gu−dS for the four strategies, to

remove ESC: {4, 3∗} (top row), {4Nπ, 3∗} (second row), {4, 2free} (third row) and {4Nπ, 2free} (bottom row). The rest is the
same as in Fig. 32.
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FIG. 34. The CCFV extrapolation of the renormalized (Z2 method) isovector tensor charge gu−dT for the four strategies to

remove ESC: {4, 3∗} (top row), {4Nπ, 3∗} (second row), {4, 2free} (third row) and {4Nπ, 2free} (bottom row). The rest is the
same as in Fig. 32.
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FIG. 35. The CCFV extrapolation of the axial charge radius squared 〈r2
A〉(top row), the induced pseudoscalar charge g∗P |Z2

(middle row), and the pion-nucleon coupling gπNN |Z2 (bottom row). The data for 〈r2
A〉 are obtained using the z2-fit to

parameterize the Q2 behavior. Data for g∗P |Z2 and gπNN |Z2 are obtained using the pion-pole dominance ansatz given in

Eq. (38) to fit G̃P . Data for all three quantities are with the {4Nπ, 2sim} strategy. The rest is the same as in Fig. 32.
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FIG. 36. The CCFV extrapolation of the product MNgA/Fπ with gA from the {4, 3∗} (top row) and the {4Nπ, 2sim} (middle
row) strategies. The bottom row shows the fit for Fπ renormalized using the Z1 method. The rest is the same as in Fig. 32.
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FIG. 37. The CCFV extrapolation of the electric charge radius squared, 〈r2
E〉. Data and fits are shown for three strategies,

{4, 3∗} (rows one and two), {4Nπ, 3∗} (rows three and four), and {4Nπ, 2sim} (rows five and six). Data from the dipole (D)
fit (rows one, three, and five) are compared with those from z3 (rows two, four, and six). Each panel shows the simultaneous
(CCFV) fit in the three variables, {a,Mπ,MπL}, but plotted versus a single variable (a, or M2

π , or MπL) with the other two
set to their physical value defined by a = 0, Mπ = 135 MeV, MπL =∞. The result and the χ2/dof of the fit are given by the
label at the bottom left in the left panel and marked by a red star (“Extrap”).
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FIG. 38. The CCFV extrapolation of the magnetic charge radius squared, 〈r2
M 〉. A prior for GM (0) was used when making the

dipole, P2 and z3 fits to parameterize the Q2 dependence as explained in the text. The rest is the same as in Fig. 37.
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FIG. 39. The CCFV extrapolation of the isovector magnetic dipole moment, µp−n. A prior for GM (0) was used when making
the dipole, P2 and z3 fits to parameterize the Q2 dependence as explained in the text. The rest is the same as in Fig. 37
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Appendix I: Variance-covariance matrices of the fits

The fits versus Q2/4M2
N and z presented in Sec. XIV

and the errors on the fit parameters, calculated by prop-
agating the errors on individual points, were done using
lsqfit [89], which calls multifit from the GNU scien-
tific library [90], and gvar [91] routines. In this appendix
we provide the sampling variance-covariance matrices of
the fits. The errors quoted in the main text in Sec. XIV
are the square roots of the diagonal elements of these
matrices.

The variance-covariance matrices for the
{4Nπ, 2sim, P̂2} fit to GA given in Eq. (55) is

gA b0 b1( )
gA 1.184× 10−4 1.507× 10−3 −4.499× 10−3

b0 1.507× 10−3 3.898× 10−2 −1.419× 10−1

b1 −4.499× 10−3 −1.419× 10−1 6.631× 10−1
,

(I1)
and for the {4Nπ, 2sim, ẑ2} fit to GA given in Eq. (56)

and using the notation given in Eq. (34) is

a0 a1 a2( )
a0 2.188× 10−5 −2.238× 10−5 −1.155× 10−4

a1 −2.238× 10−5 8.549× 10−4 2.769× 10−3

a2 −1.155× 10−4 2.769× 10−3 1.811× 10−2
.

(I2)

The variance-covariance matrix for the {4Nπ, 3∗, P̂2}
fit to GE and GM given in Eq. (58) are

gV b0 b1( )
gV 2.782× 10−5 1.155× 10−3 −5.206× 10−3

b0 1.155× 10−3 8.260× 10−2 −3.912× 10−1

b1 −5.206× 10−3 −3.912× 10−1 3.791

(I3)
and

µ b0 b1( )
µ 2.271× 10−3 1.413× 10−2 −3.931× 10−2

b0 1.413× 10−2 1.238× 10−1 −4.836× 10−1

b1 −3.931× 10−2 −4.836× 10−1 3.157
,

(I4)

respectively, and for the {4Nπ, 3∗, ẑ3} fit are

a0 a1 a2 a3





a0 6.5178× 10−6 1.0374× 10−5 5.9814× 10−6 1.8014× 10−5

a1 1.0374× 10−5 8.1815× 10−4 4.6176× 10−3 7.3053× 10−3

a2 5.9814× 10−6 4.6176× 10−3 3.4227× 10−2 6.2428× 10−2

a3 1.8014× 10−5 7.3053× 10−3 6.2428× 10−2 1.2394× 10−1

(I5)

and

a0 a1 a2 a3





a0 1.2656× 10−4 3.8253× 10−4 9.5665× 10−4 1.0035× 10−3

a1 3.8253× 10−4 1.9869× 10−2 1.3524× 10−1 2.5216× 10−1

a2 9.5665× 10−4 1.3524× 10−1 1.3230 2.7857
a3 1.0035× 10−3 2.5216× 10−1 2.7857 6.4023

, (I6)

respectively.
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