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Background: The transverse densities ρ1,2(b) describe the distributions of electric charge and magnetic moment
at fixed light-front time and connect the nucleon’s elastic form factors with its partonic structure. The dispersive
representation of the form factors F1,2(t) expresses the densities in terms of exchanges of hadronic states in the
t-channel and permits their analysis using hadronic physics methods.

Purpose: Compute the densities at peripheral distances b = O(M−1
π ), where they are generated predominantly

by the two-pion states in the dispersive representation. Quantify the uncertainties.

Methods: Dispersively improved chiral effective field theory (DIχEFT) is used to calculate the isovector spectral
functions ImF1,2(t) on the two-pion cut. The method includes ππ interactions (ρ resonance) through elastic
unitarity and provides realistic spectral functions up to t ≈ 1 GeV2. Higher-mass states are parametrized by
effective poles and constrained by sum rules (charges, radii, superconvergence relations). The densities ρ1,2(b)
are obtained from their dispersive representation. Uncertainties are quantified by varying the spectral functions.
The method respects analyticity and ensures the correct b→∞ asymptotic behavior of the densities.

Results: Accurate densities are obtained at all distances b & 0.5 fm, with correct behavior down to b → 0.
The region of distances is quantified where transverse nucleon structure is governed by the two-pion state. The
light-front current distributions in the polarized nucleon are computed and discussed.

Conclusions: Peripheral nucleon structure can be computed from first principles using DIχEFT. The method
can be extended to generalized parton distributions and other nucleon form factors.
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I. INTRODUCTION

Transverse densities have emerged as a key concept in
nucleon structure physics. The functions ρ1,2(b) describe
the transverse coordinate distributions of charge and cur-
rent in the nucleon at fixed light-front time x+ = x0 +x3

and provide a spatial representation appropriate to the
relativistic nature of the dynamical system [1–4]. They
are defined as two-dimensional Fourier transforms of the
invariant form factors (FFs) F1,2(t) parametrizing the
current matrix element between nucleon states. At the
same time, they represent a projection of the general-
ized parton distributions (GPDs) describing the distribu-
tion of partons in light-front longitudinal momentum and
transverse position [2, 3]. As such, the transverse densi-
ties connect the FFs measured in low-energy electron-
nucleon elastic scattering with the partonic structure
probed in high-energy processes such as deep-inelastic
scattering and hard exclusive processes.

The nucleon FFs F1,2(t) at spacelike momentum trans-
fers t < 0 can be interpreted in terms of hadronic ex-
changes between the current and the nucleon. The math-
ematical framework is provided by the dispersive repre-
sentation of the FFs based on analyticity in t. The FFs
at t < 0 are expressed as integrals over their imaginary
parts on the cut at t > tthr > 0, ImF1,2(t), the so-called
spectral functions, which correspond to t-channel states
with definite hadronic composition and quantum num-
bers. A similar dispersive representation can be derived
for the transverse densities [5]. It establishes a correspon-
dence between the densities at a given distance b and the
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hadronic exchanges at various masses t > 0 [6]. In par-
ticular, it connects the densities at large distances b & 1
fm with the lowest-mass t-channel states and permits a
systematic study of “peripheral” nucleon structure [5, 7–
9]. Using this framework one can compute the periph-
eral densities from first principles employing methods of
hadronic physics. One can also explore the duality be-
tween the hadronic exchanges in the t-channel and the
partonic structure in s-channel [6].

The lowest-mass t-channel state in the nucleon electro-
magnetic FFs is the two-pion (ππ) state. It appears in
the isovector channel and saturates the isovector spectral
functions up to t ≈ 1 GeV2. The ππ system in this mass
region interacts strongly and forms the ρ resonance at
t ≈ 0.6 GeV2. The picture of “vector dominance” ab-
stracted from this situation explains many observations
in the phenomenology of the electromagnetic form factors
of the nucleon and other hadrons. The spectral func-
tions in the ππ channel have been constructed empiri-
cally using methods of hadronic amplitude analysis, such
as elastic unitarity with input from πN scattering data
[10, 11], or Roy-Steiner equations [12]. The transverse
densities have been studied using the dispersive repre-
sentation with such empirical spectral functions [6].

It would be interesting if the transverse densities could
be computed using spectral functions derived from chiral
effective field theory (chiral EFT). This approach would
open up several new possibilities. First, chiral EFT is
predictive and allows one to reduce the information con-
tent of the spectral functions and densities to a few uni-
versal parameters (low-energy constants), which are de-
termined from independent measurements. Second, one
can quantify the uncertainties in the peripheral densities
using the parametric expansion of chiral EFT. Third, be-
cause chiral EFT is a point-particle field theory, one can
explore the duality between t-channel exchanges and s-
channel structure at a microscopic level and derive a par-
tonic representation of the chiral processes. Fourth, be-
cause of the universality of chiral EFT one can relate the
electromagnetic densities to other elements of peripheral
nucleon structure.

Traditional chiral EFT calculations of the spectral
functions are limited to the near-threshold region t −
4M2

π ∼ few M2
π and cannot describe the ρ resonance re-

gion, because the strong ππ interactions amount to large
higher-order corrections [13–16]. When applied to the
transverse densities, this only allows one to compute the
densities at very large distances b & 2 fm, where they are
extremely small and of little practical interest [5, 7–9]. In
order to go to smaller distances, one needs an approach
that takes into account the ππ interactions in the ρ re-
gion in a different manner. Dispersively improved chi-
ral EFT (DIχEFT) is an approach that incorporates ππ
interactions through elastic unitarity and enables EFT-
based calculations of the spectral functions in the ρ me-
son region [17–19] (an equivalent alternative formulation
is described in Ref. [20]). Using the N/D method, the
spectral function is separated into a part containing the

nonperturbative interactions in the ππ system, which is
taken from the measured pion timelike form factor, and a
part describing the coupling of the ππ system to the nu-
cleon, which can be computed with chiral EFT with good
convergence. The DIχEFT spectral functions have been
used to compute the electromagnetic form factors [18, 19]
and extract the proton radii from elastic scattering data
[21, 22]; the approach has also been applied to the nu-
cleon scalar FF [17]. A first study of transverse densities
has been performed in leading-order (LO) accuracy [23].

In this work we use DIχEFT to compute the periph-
eral transverse charge and magnetization densities ρ1,2(b)
in the nucleon and study their properties. We construct
the ππ spectral functions ImF1,2(t) in partial next-to-
leading-order (N2LO) accuracy. High-mass states are de-
scribed by effective poles, whose parameters are fixed by
dispersive sum rules and superconvergence relations. We
compute the transverse densities in the dispersive rep-
resentation and quantify the region of distances where
they are dominated by the ππ state. We quantify the un-
certainties of the densities resulting from the low-energy
constants and the high-mass poles. We also compute the
transverse light-front current densities and construct 2-
dimensional images of the transversely polarized nucleon.
We discuss the interpretation of the results and possible
applications to physics studies with transverse densities.

Novel aspects of the present study of transverse den-
sities are as follows: (a) The dispersive representation
respects the analytic properties of the FFs (position and
strength of singularities) and produces densities with the
correct asymptotic behavior at b → ∞. This makes
it possible to reliably compute the peripheral densities
and estimate their uncertainties. Methods based on the
Fourier transform of empirical FFs become unstable at
large b and are not adequate for peripheral densities [24].
(b) The DIχEFT approach incorporates ππ interactions
and the ρ resonance and produces realistic spectral func-
tions up to t ≈ 1 GeV2, which allows one to compute
the densities down to distances b . 0.5 fm, substantially
smaller than possible with traditional chiral EFT [5, 7–
9]. This means that a large fraction of transverse nucleon
structure is now amenable to an EFT description and can
be deconstructed in terms of effective degrees of freedom
and low-energy constants, representing a significant gain
of information. It also means that the EFT description
at large distances can be matched with a quark model-
based description of the densities at distances b . 1 fm,
enabling studies of quark-hadron duality in the trans-
verse densities. (c) The uncertainties of the densities
are estimated in the context of the dispersive represen-
tation, by varying the elements of the spectral functions.
The unknown high-mass part of the spectral functions is
parametrized by a random ensemble of high-mass poles,
whose distribution is constrained by stability criteria im-
posed on the spacelike form factors. This new formula-
tion minimizes the model dependence in the description
of the high-mass states [18, 19] and enables robust un-
certainty estimates for the densities.
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The article is organized as follows. In Sec. II we de-
scribe the methods used in the present study, including
the properties of the transverse densities, their dispersive
representation, the construction of the DIχEFT spectral
functions, and the uncertainty estimates in the dispersive
representation. In Sec. III we describe the results, includ-
ing the DIχEFT isovector spectral functions, the isovec-
tor transverse densities, the proton and neutron densi-
ties, and the light-front current densities in the polarized
nucleon. In Sec. IV we discuss the results and outline
possible future applications to quark-hadron duality and
other structures. In Appendix A we collect the nucleon
radii and their uncertainties, which serve as input pa-
rameters in the DIχEFT calculation. In Appendix B we
summarize the formulas for the N functions appearing
in the calculation of the spectral functions with the N/D
method. In Appendix C we describe the parametrization
of the isoscalar spectral functions used in the calculation
of proton and neutron densities.

II. METHODS

A. Transverse densities

The transition matrix element of the electromag-
netic current operator between nucleon (proton, neutron)
states with 4-momentum transfer ∆ ≡ p′−p is described
by the FFs F1(t) and F2(t) (Dirac and Pauli FFs); see
Ref. [23] for details. They are functions of the invariant
momentum transfer t = ∆2, with t < 0 in the physical
region of elastic scattering. Their values at t = 0 are
given by the nucleon charges and anomalous magnetic
moments (in units of nuclear magnetons),

F p,n1 (0) = Qp,n = (1, 0), (1)

F p,n2 (0) = κp,n = (1.793,−1.913). (2)

The isovector and isoscalar components are defined as

FV,Si ≡ 1
2 (F pi ∓ F

n
i ) (i = 1, 2); (3)

the same convention is used for other quantities (densi-
ties, radii; see below).

The FFs are invariant functions and can be analyzed
without specifying the form of relativistic dynamics or
choosing a reference frame. Their interpretation in terms
of spatial distributions requires specific choices. In the
light-front form of relativistic dynamics one follows the
evolution of strong interactions in light-front time x+ ≡
x0 + x3 and describes the structure of systems at fixed
x+ [25–27]. In this context it is natural to consider the
FFs in a class of reference frames where the 4-momentum
transfer has only transverse components, ∆0 = ∆3 =
0,∆T ≡ (∆1,∆2) 6= 0, with |∆T |2 = −t. The FFs can
then be represented as 2-dimensional Fourier integrals
over a transverse coordinate variable b, with b ≡ |b|,

Fi(t = −|∆T |2) =

∫
d2b ei∆T ·b ρi(b) (i = 1, 2) (4)

(b)
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FIG. 1. Interpretation of the transverse densities in a proton
state localized at the transverse origin, x = y = 0, Eq. (7).
ρ1(b) describes the spin-independent J+ current at transverse
radius b. ρ̃2(b) describes the spin-dependent distortion in a
nucleon polarized in the y-direction.

(the two-dimensional Fourier integrals can also be ex-
pressed as radial Fourier-Bessel integrals) [1–4]. The
functions ρ1,2(b) are the transverse densities. Their spa-
tial integrals reproduce the total charge and anomalous
magnetic moment,∫

d2b ρp,n1 (b) = F p,n1 (0) = Qp,n, (5)∫
d2b ρp,n2 (b) = F p,n2 (0) = κp,n. (6)

The functions ρ1,2(b) describe the transverse spatial dis-
tributions of electric charge and anomalous magnetic mo-
ment in the nucleon at fixed light-front time. The distri-
butions are frame-independent (they are invariant under
longitudinal light-front boosts and transform kinemati-
cally under transverse boosts) and provide a spatial rep-
resentation appropriate to the relativistic nature of the
dynamical system; see Refs. [2, 7, 28] for discussion.

A simple interpretation of the densities can be pro-
vided in nucleon states which are localized in transverse
position (see Fig. 1; we use x, y, z to denote the 1, 2, 3
spatial directions) [2, 7]. In a state where the nucleon
is localized at the transverse origin, and its spin quan-
tized along the y-direction, the expectation value of the
current J+ at the transverse position b is

〈J+(b)〉plocalized = (...) [ρp1(b) + (2Sy) cosφ ρ̃ p2 (b)] , (7)

ρ̃ p2 (b) ≡ ∂

∂b

[
ρp2(b)

2mN

]
(8)

(same for p → n). Here (...) represents a factor result-
ing from the normalization of states [7], φ is the angle
of the vector b relative to the x–axis, and Sy = ±1/2 is
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the expectation value of the spin in the y–direction. mN

is the nucleon mass (same for p and n). Thus ρ1(b) de-
scribes the spin-independent part of the plus current in
the localized nucleon state, and ρ̃2(b) describes the spin-
and angle-dependent part of the current in a transversely
polarized nucleon. Note that ρ̃2(b) satisfies the integral
relation ∫

d2b b ρ̃ p,n2 (b) = −κ
p,n

mN
, (9)

which is obtained from Eq.(6) by integration by parts.
The derivatives of the FFs at t = 0 are related to the

average squared transverse radii of the distributions,

4
dF p,n1

dt
(0) = 〈b2〉p,n1 ≡

∫
d2b b2 ρp,n1 (b), (10)

4

κp,n
dF p2
dt

(0) = 〈b2〉p,n2 ≡ 1

κp,n

∫
d2b b2 ρp,n2 (b). (11)

The factor 4 results from the 2-dimensional distributions
and replaces the well-known factor 6 in the representa-
tion of the FF derivatives in terms of conventional 3-
dimensional radii. While the 3-dimensional radii have
a physical interpretation only in nonrelativistic systems,
the transverse radii here are averages of spatial distri-
butions that have a well-defined meaning for relativistic
system. The relation between the transverse radii and
the 3-dimensional Dirac and Pauli radii 〈r2〉1,2 is

〈b2〉p,n1 =
2

3
〈r2〉p,n1 〈b2〉p,n2 =

2

3
〈r2〉p,n2 . (12)

The nucleon radii are used as parameters in the dynam-
ical calculations of the transverse densities in this work.
Because form factor phenomenology usually quotes the
3-dimensional nucleon radii, we present our calculations
such that they use the 3-dimensional radii as input, keep-
ing in mind that they are related to the transverse radii
by Eq. (12). The empirical values of the 3-dimensional
radii and their uncertainties are summarized in Ap-
pendix A and will be quoted in the following.

In studies of the nucleon’s partonic structure in QCD
one considers the transverse coordinate distributions of
quarks and antiquarks with a given light-cone momentum
fraction x in the proton, fa(x, b) and f̄a(x, b), where a =
u, d, ... denotes the quark flavor. They are defined as
the Fourier representation of the GPDs Ha(x, ξ = 0, t),
which describe the form factors of partons with light-cone
plus momentum fraction x in the proton, in the situation
where the plus momentum difference between the proton
states is ξ = 0 and the momentum transfer has only
transverse components [2, 3],

Ha(x, ξ = 0, t = −|∆T |2) =

∫
d2b ei∆T ·b fa(x, b),

(13)

−Ha(−x, ξ = 0, t = −|∆T |2) =

∫
d2b ei∆T ·b f̄a(x, b).

(14)

In this context the transverse charge density ρp1(b) repre-
sents the integral over x of the difference of the proton’s
quark and antiquark distributions at transverse distance
b, weighted by the quark charges ea,

ρp1(b) =
∑
a

ea

∫ 1

0

dx [fa(x, b)− f̄a(x, b)], (15)

which can be interpreted as the cumulative charge of the
partons in the proton at the transverse radius b. Equiva-
lently, ρp1(b) represents the Fourier transform of the first
moment of the charge-weighted GPDs,∫

d2b ei∆T ·b ρp1(b) =
∑
a

ea

∫ 1

−1
dx

×Ha(x, ξ = 0, t = −|∆T |2). (16)

A similar relation connects the density ρp2(b) with the pro-
ton helicity-flip GPDs Ea(x, ξ = 0, t) [2, 3]. The trans-
verse densities are thus directly related to the nucleon’s
transverse partonic structure in QCD.

The concepts of light-front quantization and partonic
structure referenced here are used only for the inter-
pretation of the transverse densities but are not needed
for their computation. The densities are simple Fourier
transforms of the invariant FFs and can be computed
using hadronic physics methods such as dispersion the-
ory and effective field theory. It is this “dual” character
that makes the transverse densities so useful for nucleon
structure studies.

B. Dispersive representation

The nucleon FFs are analytic functions of t. The phys-
ical sheet has a principal cut at positive real t > tthr; the
threshold tthr depends on the isospin channel (see below).
The FFs satisfy unsubtracted dispersion relations,

Fi(t) =
1

π

∫ ∞
tthr

dt′
ImFi(t

′)

t′ − t− i0
(i = 1, 2), (17)

which express the functions at complex t as integrals over
their imaginary parts on the cut. The real functions
ImFi(t

′) are known as the spectral functions. They cor-
respond to processes in which the electromagnetic current
with timelike momentum transfer t > tthr couples to the
nucleon through a hadronic state in the t-channel. These
processes occur in the unphysical region below the two-
nucleon threshold, tthr < t < 4m2

N , where the spectral
functions cannot be measured directly and have to be
constructed using theoretical methods; see Ref. [29] for
a review. In the isovector FFs the lowest-mass t-channel
state is two-pion state with tthr = 4M2

π ; in the isoscalar
FF it is the three-pion state with tthr = 9M2

π .
The transverse densities Eqs. (4) can be computed as

the Fourier transform of the dispersive representation of
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FFs, Eq. (17) [5, 6]. One obtains a dispersive (or spectral)
representation of the densities as

ρ1(b) =
1

2π2

∫ ∞
tthr

dt K0(
√
tb) ImF1(t), (18)

ρ̃2(b) = − 1

2π2

∫ ∞
tthr

dt

√
t

2mN
K1(
√
tb) ImF2(t), (19)

where K0 and K1 are the modified Bessel functions of the
second kind. Equations (18) and (19) express the den-
sities at a given distance b as a superposition of contri-
butions of t-channel states (or exchanges) with squared
mass t. The modified Bessel functions decay exponen-
tially at large arguments,

K0,1(
√
tb) ∼

√
π

2
√
tb
e−
√
tb (

√
tb � 1). (20)

The dispersive integrals for the densities therefore con-
verge exponentially at large t, and the integration effec-
tively extends over masses

√
t ∼ 1/b. (21)

This provides a mathematical formulation of the connec-
tion between the masses of the exchanges and the ranges
of the spatial distributions in the nucleon. In particular,
the peripheral densities at b = O(M−1π ) are governed by
lowest-mass states in the dispersive representation and
can be computed and analyzed accordingly. Note that
the actual spectral composition of the densities — how
much the states with various

√
t contribute to the densi-

ties at given b — depends on the distribution of strength
in the spectral functions and can be established only with
specific models of the latter.

The dispersive representation offers several theoreti-
cal and practical advantages for studying the periph-
eral transverse densities compared to other approaches.
(a) The dispersive representation permits efficient cal-
culation of the peripheral densities. The exponential
convergence of the dispersion integrals reduces the con-
tribution from the high-mass region, where the spec-
tral functions are poorly known. Calculations can fo-
cus on the low-mass region — the two-pion part of the
isovector spectral function, for which dedicated theoret-
ical methods are available. The high-mass region can
be parametrized by effective poles, whose coefficients are
fixed by sum rules; only the overall strength in this region
is relevant to the peripheral densities, not the details of
the distribution. (b) The dispersive representation auto-
matically generates densities with the correct asymptotic
behavior at b→∞. The asymptotic behavior of the den-
sities at b → ∞ is governed by the analytic properties
of the FFs in t (position and strength of singularities),
which are explicitly realized in the dispersive represen-
tation. The densities exhibit an exponential decay with
a range governed by lowest-mass exchanges, modified by
a pre-exponential factor resulting from the behavior of
the spectral function near the threshold [7]. The spec-
tral integrals Eqs. (18) and (19) permit stable numerical

evaluation of the densities in the region where they are
exponentially small.1 In contrast, methods calculating
the densities as Fourier transforms of the FFs become nu-
merically unstable at large b, even if the FF parametriza-
tion have correct analytic properties.2 (c) The dispersive
representation enables uncertainty estimates of the pe-
ripheral densities. The densities generated by Eqs. (18)
and (19) depend smoothly on the parameters of spectral
function, even at large b where they are exponentially
small. Varying the parameters of the low-mass spectral
functions one can estimate the uncertainties of the pe-
ripheral densities in a manner that respects analyticity
and is numerically stable. Methods using the frequency
spectrum of the Fourier transform of FFs for estimating
the uncertainties of the densities are not appropriate for
distances significantly larger than 1 fm [24].

The spectral functions obey certain integral relations
(sum rules), which result from the constraints on the nu-
cleon FFs at t = 0 and their derivatives in the dispersive
representation Eq. (17),

1

π

∫ ∞
tthr

dt
ImF1(t)

t
= Q, (22)

1

π

∫ ∞
tthr

dt
ImF1(t)

t2
=

1

6
〈r2〉1 =

1

4
〈b2〉1, (23)

1

π

∫ ∞
tthr

dt
ImF2(t)

t
= κ, (24)

1

π

∫ ∞
tthr

dt
ImF2(t)

t2
=

1

6
κ〈r2〉2 =

1

4
κ〈b2〉2. (25)

Additional relations follow from the asymptotic behavior
of the nucleon FFs at large spacelike |t|,

F1(t) ∼ |t|−2, F2(t) ∼ |t|−3 (|t| → ∞). (26)

This behavior is predicted by the QCD hard scattering
mechanism up to logarithmic corrections (counting rules)
[27]. In F1 the predicted behavior is approximately ob-
served in data at |t| & 1 GeV2; in F2 the predicted be-
havior is not observed at presently available momentum

1 In Ref. [30] the low-t nucleon form factors were analyzed by ex-
panding the transverse densities in a set of basis functions (or-
thogonal polynomials). That method produces peripheral den-
sities with an oscillating behavior, which is in conflict with the
smooth exponential fall-off dictated by the dispersive representa-
tion; see Ref. [6] and the results of the present study, esp. Fig. 7.
The basis function expansion does not naturally describe the ex-
ponential smallness of the densities, and correlations between
many terms would be required to express it correctly.

2 FF parametrizations with incorrect analytic properties, e.g. ra-
tional functions with singularities at complex t with Im t 6= 0 on
the physical sheet, produce Fourier densities with qualitatively
incorrect asymptotic behavior at b→∞. Such FF parametriza-
tions are principally not adequate for evaluating densities at dis-
tances above b & 2 fm, even if they provide good fits to the
spacelike form factor data at small t < 0; see Ref. [6] for a dis-
cussion.
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transfers [31]; see Ref. [32] for a possible theoretical ex-
planation in the context of QCD. When imposed on the
dispersive representation of the FFs, Eq. (26) implies the
relations (so-called superconvergence relations)

1

π

∫ ∞
tthr

dt ImF1(t) = 0, (27)

1

π

∫ ∞
tthr

dt ImF2(t) = 0, (28)

1

π

∫ ∞
tthr

dt t ImF2(t) = 0. (29)

At the level of the densities, these relations constrain the
behavior in the limit b→ 0. This can be derived from the
dispersive representation, Eqs. (18) and (19), by using
the limiting behavior of the modified Bessel functions at
small argument (here z ≡

√
tb),

K0(z) = −
(

1 +
z2

4
+ ...

)
log z + analytic, (30)

K1(z) =
1

z
+
(z

2
+ ...

)
log z + analytic, (31)

where “analytic” denotes the parts that are analytic at
z = 0 (constants or positive powers). Equation (27) im-
plies that

ρ1(b) → finite for b→ 0. (32)

The kernel K0(
√
tb) in Eq. (18) diverges logarithmically

for b → 0 according to Eq. (30); this would cause a log-
arithmic divergence of ρ1(b); however, the coefficient of
the divergent term is zero because of Eq. (27).3 Similarly,
Eqs. (28) and (29) imply that

ρ̃2(b) → 0

dρ̃2
db

(b) → finite

 for b→ 0. (33)

C. Spectral functions

The spectral functions of the isovector nucleon FFs
on the two-pion cut have been computed using various
theoretical approaches, such as analytic continuation of
pion-nucleon amplitudes [10], chiral EFT [13–16], and
Roy-Steiner equations [12]. Here we employ the method
of DIχEFT, which combines general methods of disper-
sion theory (elastic unitarity in the ππ channel, N/D
method) with specific dynamical input from chiral EFT.

3 Such a logarithmic divergence at b→ 0 is observed in the charge
density in the pion, where the FF behaves as Fπ(t) ∼ |t|−1 for
|t| → ∞ and no relation like Eq. (27) exists [33, 34]. The finite-
ness of the charge density in the nucleon at b = 0 appears natural
in the parton picture, as the nucleon is a more composite system
than the pion.

π

π

t

_

I = J = 1

=
N

> 4Mπ
2

N

=

}

2

π

F

Ni

F

F

Γ
i

i

V

π

πΓ

F

i

FIG. 2. Elastic unitarity relation for the two-pion part of the
isovector spectral functions ImFVi (t)[ππ] (i = 1, 2). The first
line shows the relation in the original form with the complex
amplitudes, Eqs. (35); the second line shows it in the explicitly
real form obtained with the N/D method, Eq. (36).

The foundations of the method and its applications to
FFs are described in detail in Refs. [17–19]. Here we
summarize only the main steps and the new features aris-
ing in the present application to densities. The new fea-
tures are: (a) We now construct the spectral functions
ImF1,2(t) as needed for the transverse densities, whereas
in Refs. [18, 19] we worked with ImGE,M (t). (b) We
impose the superconvergence relations resulting from the
asymptotic behavior of F1,2(t), which provide additional
constraints on the high-mass part of the spectral func-
tions. (c) We implement a more flexible parametrization
of the high-mass part of the spectral function to enable
more realistic uncertainty estimates.

The isovector spectral functions are organized as

ImFVi (t) = ImFVi (t)[ππ] Θ(4M2
π < t < tmax)

+ ImFVi (t)[high-mass] Θ(t > tmax)

(i = 1, 2), (34)

where Θ is the step function (1 if the argument is true,
otherwise 0). The first term is the contribution of the
two-pion cut that starts at 4M2

π and extends up to tmax ≈
1 GeV2 (see below); this part is calculated theoretically.
The second term represents the contribution of high-mass
states above tmax of unspecified hadronic composition;
this part is parametrized through effective poles.

The two-pion spectral functions are obtained from the
elastic unitarity relation in the two-pion channel (see
Fig. 2). The relation is written in a manifestly real form
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by applying the N/D method [35–37]

ImFVi (t)[ππ] =
k3cm√
t

Γi(t) F
∗
π (t) (35)

=
k3cm√
t
Ni(t)|Fπ(t)|2, (36)

kcm ≡
√
t/4−M2

π , (37)

Ni(t) ≡
Γi(t)

Fπ(t)
(i = 1, 2). (38)

kcm is the center-of-mass momentum of the ππ state in
t-channel, Γi(t)(i = 1, 2) are the ππ → NN̄ partial-wave
amplitudes, and Fπ(t) is the pion timelike form factor.
The functions Γi(t) and Fπ(t) in Eq. (35) are complex for
t > 4M2

π because of ππ rescattering but have the same
phase. The ratios Ni(t)(i = 1, 2) in Eq. (36) are real for
t > 4M2

π and possess only left-handed singularities; they
are free of ππ rescattering effects and describe the cou-
pling of the ππ system to the nucleon. These function
can be computed in χEFT with good convergence. The
ππ rescattering effects in Eq. (36) are contained in the
squared modulus of the pion form factor |Fπ(t)|2. This
function is measured in e+e− → π+π− exclusive annihi-
lation experiments and can be taken from a parametriza-
tion of the data [38]. In this way Eq. (36) factorizes
the rescattering effects in the ππ channel and permits
chiral EFT-based computation of the spectral functions.
While Eq. (35) and Eq. (36) are strictly valid only up
to the 4-pion threshold t < 16M2

π , the e+e− exclusive
annihilation data indicate that 4-pion and other states
are strongly suppressed up to ∼ 1 GeV2 [38], so that the
elastic unitarity relations can practically be used up to
tmax = 1 GeV2 [10, 35].

We have computed the functions Ni(t) in relativistic
χEFT with N and ∆ intermediate states at LO and NLO
accuracy. Contributions at N2LO accuracy have been es-
timated assuming that the loop corrections have the same
functional form as the tree-level result (partial N2LO, or
pN2LO approximation). The χEFT results for Ni(t) can
be obtained from those of the functions J1

±(t), which ap-
pear in the N/D representation of the unitarity relation
for the GE,M (t) form factors and were calculated in our
earlier studies [18, 19]. The explicit formulas are given
in Appendix B.

The LO and NLO results for the functions Ni(t) are
given in terms of known low-energy constants in the chi-
ral Lagrangian. The pN2LO estimates involve one un-
known parameter, λi, describing the size of the loop cor-
rections relative to the tree-level result. The total results
for the function Ni(t) are thus given by (i = 1, 2)

Ni(t) = Ni(t)[LO] +Ni(t)[NLO] +Ni(t)[pN2LO], (39)

Ni(t)[pN2LO] ≡ λiNi(t)[N2LO-tree]. (40)

The explicit form of Ni(t)[N2LO-tree] is given in
Eq. (B10). In summary, at pN2LO accuracy the two-

pion part of each of the spectral functions in Eq. (34)
involves one free parameter, λi (i = 1, 2).

The high-mass part of the isovector spectral functions
in Eq. (34) is parametrized by effective poles. It is impor-
tant to note that for our calculation of peripheral densi-
ties we need only a summary description of the high-mass
strength of the spectral function, because of the strong
numerical suppression of large t in the dispersion inte-
grals Eqs. (18) and (19). (see Sec. II B). We construct
an appropriate parametrization by making reasonable as-
sumptions about the positions of the poles, treating vari-
ations of the position as part of the theoretical uncer-
tainty, and and fixing the strength of the poles through
the dispersive sum rules Eq. (22) et seq. and Eq. (27) et
seq.

Several observations suggest that the main strength
of the isovector spectral functions beyond the two-pion
region is located around t ≈ 2 GeV2, and that higher
values of t are strongly suppressed. (a) The e+e− →
hadrons exclusive annihilation data show that the cross
section at t > 1 GeV2 is dominated by the 4π channel
and concentrated around t ≈ 2 GeV2 [38]. This sug-
gests similar behavior of the nucleon spectral functions,
even if the connection with the annihilation cross section
is at the amplitude level and cannot be made explicit.
(b) Dispersive fits to the spacelike nucleon FFs with flex-
ible parametrizations of the high-mass states using multi-
ple effective poles find most of the strength in the region
around t ≈ 2 GeV2 [39, 40]. (c) The dual resonance
model describes the isovector spectral functions of the
pion or nucleon FFs through the exchange of vector res-
onances with masses M2

n = M2
ρ (1 + 2n), with M2

0 ≡M2
ρ .

The first resonance after the ρ has mass M2
1 = 3M2

ρ =

1.8 GeV2. If in the nucleon FFs the resonance contribu-
tions decrease rapidly with n, the dominant contribution
beyond the ρ should come from this resonance.

Based on these observations, we parametrize the high-
mass part of the isovector spectral function ImFV1 (t) as

ImFV1 (t)[high-mass]

= πa
(V,0)
1 δ(t− t(V,0)1 )

+ πa
(V,1)
1 δ′(t− t(V,1)1 ). (41)

The first term is a delta function, the second term is the
derivative of a delta function. The pole masses have the
nominal value

t
(V,0)
1 , t

(V,1)
1 [nominal] = 1.8 GeV2 = 3M2

ρ . (42)

Their actual values are considered undetermined and will
be allowed to vary randomly in a plausible range; their
distribution will be constrained by further physical re-
quirements, and the resulting variation in physical quan-
tities will be regarded as a theoretical uncertainty of the
model (see Sec. II D). Note that the sum of the func-
tions in Eq. (41) parametrizes both the “strength” and
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the “shape” of the high-mass spectral function in region
around t ≈ 2 GeV2 in an effective form.4

Combining the two-pion part given by Eqs. (36), (39),
and (40), and the high-mass part given by Eq. (41), the
isovector spectral function ImFV1 (t) contains three un-
known parameters:

λ1, a
(V,0)
1 , a

(V,1)
1 . (43)

We fix these parameters through the sum rules for the
isovector charge and radius, see Eqs. (22) and (23), and
the superconvergence relation for FV1 , see Eq. (27):

1

π

∫ ∞
tthr

dt
ImFV1 (t)

t
= QV , (44)

1

π

∫ ∞
tthr

dt
ImFV1 (t)

t2
=

1

6
〈r2〉V1 , (45)

1

π

∫ ∞
tthr

dt ImFV1 (t) = 0, (46)

where

QV ≡ 1

2
(Qp −Qn) =

1

2
, (47)

〈r2〉V1 ≡
1

2

(
〈r2〉p1 − 〈r2〉n1

)
. (48)

The relations Eqs. (44)–(46) constrain weighted integrals
of the total isovector spectral function ImFV1 (t). The in-
tegrals extend over the two-pion and the high-mass parts
of the spectral functions (here n = 0, 1, 2),∫ ∞

tthr

dt t−n ImFV1 (t)

≡
∫ tmax

tthr

dt t−n ImFV1 (t)[ππ]

+

∫ ∞
tmax

dt t−n ImFV1 (t)[high-mass]. (49)

The integral over the two-pion part is a continuous in-
tegral and computed numerically; the integral over the
high-mass part is a sum of delta function derivative inte-
grals and computed exactly. Since the integrands depend
linearly on the parameters Eq. (43), one obtains a system

4 In dispersive fits of the nucleon isovector FFs, the high-mass
states are traditionally parametrized as a sum of simple delta
functions at different positions. These parametrizations give
clusters of poles around ∼ 2 GeV2 with varying signs and un-
naturally large coefficients � 1 [39], which can effectively be
combined to a sum of a single delta function and delta func-
tion derivatives. In this sense our parametrization Eq. (41) is
equivalent to the traditional sum of simple delta functions. An
advantage of our parametrization is that all coefficients have nat-
ural size ∼ 1, and that one can directly implement the feature
that all the “structures” arise from the same mass region.

of linear equations for the parameters, which can easily
be solved.

In the spectral function ImFV2 (t), we parametrize the
high-mass part as

ImFV2 (t)[high-mass]

= πa
(V,0)
2 δ(t− t(V,0)2 )

+ πa
(V,1)
2 δ′(t− t(V,1)2 )

+ πa
(V,2)
2 δ′′(t− t(V,2)2 ), (50)

which compared to Eq. (41) includes also a term with
a second derivative of a delta function. The three pole
masses again have the nominal value

t
(V,0)
2 , t

(V,1)
2 , t

(V,2)
2 [nominal] = 1.8 GeV2 = 3M2

ρ , (51)

and will be allowed to vary randomly in an interval
around this value (see Sec. II D). The combined spectral
function now contains four unknown parameters:

λ2, a
(V,0)
2 , a

(V,1)
2 , a

(V,2)
2 . (52)

They are fixed through the sum rules for the isovector
magnetic moment and the magnetic radius, see Eqs. (24)
and (25), and by the two superconvergence relations for
F2, see Eqs. (28) and (29):

1

π

∫ ∞
tthr

dt
ImFV2 (t)

t
= κV , (53)

1

π

∫ ∞
tthr

dt
ImFV2 (t)

t2
=

1

6
〈r2〉V2 , (54)

1

π

∫ ∞
tthr

dt ImFV2 (t) = 0, (55)

1

π

∫ ∞
tthr

dt t ImFV2 (t) = 0, (56)

where

κV ≡ 1

2
(κp − κn), (57)

〈r2〉V2 ≡
1

2

(
κp〈r2〉p2 − κn〈r2〉n2

)
. (58)

In our approach the unknown parameters in the spec-
tral functions are fixed by the dispersive sum rules and
expressed in terms of the values and derivatives of the
FFs at t = 0. Since values of the FFs (charges and
magnetic moments) are known, this leaves the deriva-
tives (radii) as the effective parameters of our model.
With the spectral functions determined by the radii, our
approach can then predict the spacelike FFs and the den-
sities in terms of the radii. This particular “information
flow” is made possible by the analytic properties of the
FFs, which relate integrals over the spectral functions to
derivatives of the FF at t = 0.
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FIG. 3. Contributions of the two-pion and high-mass parts
of the spectral function ImFV1 (t), Eq. (34), to the dispersion
integral of the density ρV1 (b) (nominal parameters). Upper
panel: Absolute contributions. Dashed line: ρV1 (b)[ππ]. Dot-
ted line: ρV1 (b)[high-mass]. Solid line: ρV1 (b)[total]. Lower
panel: Relative contributions. Same as in upper panel, but
divided by total density ρV1 (b)[total].

When computing the densities in the dispersive repre-
sentation, Eqs. (18) and (19), the integrals receive contri-
butions from the two-pion and the high-mass parts of the
spectral functions, Eq. (34). An important question is
how the relative contributions depend on the distance b,
which represents an external parameter in the integrals.
Figure 3 shows the two-pion and high-mass contributions
to ρV1 (b) obtained with our spectral functions (here, for
the the nominal parameter values). The top panel shows
the absolute contributions; the bottom panel shows the
relative contributions, i.e., the fractions of ρV1 (b) due to
the two-pion and high-mass parts. One observes that in
ρV1 (b) the two-pion part accounts for > 80% of at b > 1
fm, and > 60% at b > 0.5 fm. Similar relative contribu-
tions are found in the dispersion integral for ρ̃V2 (b) (not
shown in the figure). In ρ̃V2 (b) the two-pion part accounts
for> 97% of at b > 1 fm, and> 50% at b > 0.5 fm. These
findings are central to our approach, as they quantify the
dominance of the two-pion state at large distances and
justify the summary description of the high-mass states
for the purpose of computing the peripheral densities.

In the present study our focus is on the isovector chan-

nel, where the two-pion state in the spectral functions
generates the dominant contributions to the peripheral
nucleon densities. In order to compute the individual
proton and neutron densities in the dispersive represen-
tation, we need also the isoscalar spectral function. A
parametrization of the isoscalar spectral functions, con-
structed along similar lines as for the isovector spectral
function but relying more on empirical information, is
described in Appendix C.

D. Uncertainty estimates

Our dispersive approach allows us to estimate the un-
certainties of the spectral functions and the densities ob-
tained from them. We consider two sources of uncertain-
ties:
(I) Uncertainties due to the parametrization of the

high-mass part of the spectral functions. The high-mass
part of the isovector spectral function is linked to the low-
mass part through the dispersive sum rules, Eqs. (44)–
(46) and Eqs. (53)–(56). The parametrization of the
high-mass part can therefore influence the low-mass part
of spectral functions and indirectly affect observables sen-
sitive to the low-mass part, such as the peripheral den-
sities. We estimate this uncertainty by varying the po-
sitions of the high-mass poles in the isovector spectral
functions, Eqs. (42) and Eqs. (51). As the plausible range
of variation we consider

t
(V,0)
1 , t

(V,1)
1

t
(V,0)
2 , t

(V,1)
2 , t

(V,2)
2

}
= (1.2− 2.4) GeV2 = (2− 4)M2

ρ .

(59)

This range allows for variations of the pole masses with a
maximum/minimum ratio of 2, which is a very significant
change. Eq. (59) covers the entire region of the secondary
peak of the e+e− annihilation cross section above the
ρ resonance [38]. In the context of the dual resonance
model, Eq. (59) corresponds to varying the pole position
from the n = 1 resonance at 3M2

ρ to values that are half
way between this one and the n = 0 or 2 resonances. Note
that we let the mass parameters in the delta functions
vary independently of each other over the given range,
so that the parametrization represents a wide range of
“shapes” of the spectral function.

We further constrain the set of mass parameters by
requiring that the variation of the spacelike form factor
generated by the spectral function be within a certain
range around the nominal value. This is essentially a
stability condition, which eliminates extreme values of
the mass parameters that would lead to large excursions
of the spacelike form factor and can be ruled out on phys-
ical grounds. We implement this by requiring that (here
i = 1, 2)

FVi (tref)[varying pole masses]

FVi (tref)[nominal]
− 1 < ε, (60)
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where tref < 0 is a spacelike t value. In the following ap-
plications we choose tref = −1 GeV2 and ε = 0.1 for both
FV1 and FV2 ; the choice is justified in the following; other
choices are possible. The parameter variation Eq. (59),
supplemented by the stability condition Eq. (60), gener-
ates a functional variation in the high-mass part of the
spectral function which we regard as the theoretical un-
certainty of our model. Note that the stability condition
Eq. (60) restricts the variation of the theoretical FF pre-
diction relative to the nominal value of the model, not rel-
ative to an experimental value; no fitting to the FF data
is performed here. The parameters tref and ε are chosen
such that the resulting theoretical model uncertainty of
the FFs is reasonable and covers the experimental data.
In this way the experimental FF data are used only in
estimating the theoretical uncertainty of the model, not
in determining the nominal model prediction.

To map out the theoretical uncertainty in practice, we
generate a random ensemble of mass parameters in the
range of Eq. (59) and retain those for which the space-
like FFs satisfy the condition Eq. (60). We then use
this restricted ensemble to generate uncertainty bands
in the spectral functions and transverse densities (and
possibly other quantities derived from the spectral func-
tions). Figure 4 illustrates the procedure in the case of
FV2 . One observes that the procedure generates natu-
ral uncertainty bands, which are approximately symmet-
ric around the nominal value. The resulting uncertainty
will be quoted as “high-mass uncertainty” in the results
below.

We emphasize that the procedure respects analyticity
and the dispersive sum rules. Each instance in the ensem-
ble corresponds to a form factor with correct analyticity
in t, and a density with correct asymptotic behavior at
large b. Each instance represents a spectral function that
satisfies the sum rules Eqs. (44)–(46) and Eqs. (53)–(56)
and produces form factors and densities with the cor-
rect normalization. The only differences between the in-
stances are in the form of the high-mass spectral function,
and in the distribution of strength between the low-mass
and high-mass regions.

(II) Uncertainties due to the nucleon radii. The nu-
cleon radii determine the spectral function parameters
through the dispersive sum rules Eqs. (44)–(46) and
Eqs. (53)–(56). We can estimate the resulting uncer-
tainty by varying the value of the radii. The empirical
values of the radii and their uncertainties are summa-
rized in Appendix A. For our uncertainty estimate, we
vary the the radii in a range corresponding to their em-
pirical uncertainty

〈r2〉V1 → 〈r2〉V1 [nominal]× (1± 0.03), (61)

〈r2〉V2 → 〈r2〉V2 [nominal]× (1± 0.02). (62)

We then follow the effect of this variation from the spec-
tral function to the form factors and densities calculated
as dispersive integrals. The resulting uncertainty will be
quoted as “radius uncertainty” in the results below.
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FIG. 4. Illustration of the procedure for estimating the un-
certainty resulting from the high-mass part of the spectral
function ImFV2 (t). A random ensemble of parameters for the
high-mass pole positions Eq. (59) is generated. With these
parameters, the spectral function and the spacelike FF are
computed. The parameter ensemble is then restricted to val-
ues for which the spacelike FF satisfies the stability condition
Eq. (60) (see upper panel, accept/reject). The restricted pa-
rameter ensemble is then used to evaluate the uncertainty of
the spectral function (middle panel) and the density (lower
panel). In all panels, the functions with accepted parameters
by Eq. (60) are shown as solid black lines, the ones with re-
jected parameters as dot-dashed red lines. The functions with
the nominal parameters are shown by the dashed white line.

III. RESULTS

A. Spectral functions

Figure 5 shows our results for the two-pion part of the
isovector spectral functions ImFV1 (t) and ImFV2 (t) and



11

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

3

Im
 F

V 1(
t)

DIXEFT nominal

2

1

0

1

Un
ce

rta
in

ty

Uncertainty high-mass

0.0 0.2 0.4 0.6 0.8 1.0
t [GeV2]

1

0

1

Un
ce

rta
in

ty

Uncertainty radius

0.0 0.2 0.4 0.6 0.8 1.0
5

0

5

10

15

20

Im
 F

V 2(
t)

DIXEFT nominal

10

5

0

5

10

Un
ce

rta
in

ty

Uncertainty high-mass

0.0 0.2 0.4 0.6 0.8 1.0
t [GeV2]

5

0

5

Un
ce

rta
in

ty Uncertainty radius

FIG. 5. Two-pion part of isovector spectral functions ImFV1 (t) (left column) and ImFV2 (t) (right column) obtained in DIχEFT.
In each column: Upper panel: DIχEFT result with nominal parameters. Middle panel: Uncertainties resulting from the
parametrization of high-mass states. Lower panel: Uncertainties resulting from the nucleon isovector radii.

their uncertainties obtained with the methods of Sec. II C
and II D. The upper panels show the spectral functions
obtained with the nominal parameters for the high-mass
poles and the radii. One observes: (a) The spectral func-
tions show the characteristic peak from the ρ resonance
in the ππ channel. This essential feature arises through
the pion timelike form factor in the elastic unitarity re-
lation Eq. (36). (b) Both spectral functions (with the
nominal parameters) change sign and become negative
above the ρ region.

The middle and lower panels of Fig. 5 show the un-
certainties in the two-pion part of the spectral functions
resulting from the parametrization of the high-mass part
and from the nucleon radii, estimated with the proce-
dure of Sec. II D. (Note that the figure shows only the
variation of the two-pion part of the spectral function;
the high-mass part undergoes a corresponding variation
with the parameters, so that the sum rule are satisfied;
this part is not shown in the figure.) One observes: (a)
The uncertainties of the spectral functions are negligible
in the region of t from the threshold at 4M2

π to ∼ 0.4
GeV2. In this region the chiral expansion of the func-
tions Ni(t) is well convergent, and the spectral functions
represent genuine predictions of the theory. Notice that
the enhancement of the spectral functions through ππ
rescattering is already very significant in this region [23].
(b) In the region of the ρ resonance, the spectral func-

tions show significant uncertainties from the high-mass
states and from the radii. The behavior is this region is
mainly constrained by the sum rules, so that the spec-
tral functions become sensitive to the parameters, as ex-
pected. The relative uncertainties are of order unity and
approximately the same in ImFV1 (t) and ImFV2 (t).

In the present study we use the spectral functions to
compute the peripheral densities. The dispersive inte-
grals for the peripheral densities converge rapidly and
sample mostly the two-pion part of the spectral func-
tions; the contribution of high-mass states is strongly
suppressed (see Fig. 3). Our DIχEFT method and un-
certainty estimates aim to provide a realistic description
of the two-pion part, while parametrizing the high-mass
part in summary form. The dispersive integrals for the
spacelike FFs converge more slowly and are more sensi-
tive to the high-mass states. The computation of space-
like FFs therefore generally places stronger demands on
the description of the high-mass states than are needed
in the present study. Still, it is instructive to see how our
simple spectral functions perform in the computation of
the spacelike form factors, for which experimental data
are available.

Figure 6 shows the spacelike FFs F1(t) and F2(t) ob-
tained with our spectral functions. [The plots show
the FFs divided by the standard dipole FF SD(t) ≡
(1 − t/0.71 GeV2)−2.] The top panels show the pre-
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FIG. 6. Isovector nucleon form factors FV1 (t) (left column) and FV2 (t) (right column) at spacelike t < 0 obtained from the
DIχEFT spectral functions. In each column: Upper panel, solid line: DIχEFT result with nominal parameters. Middle panel:
Uncertainty resulting from the parametrization of high-mass states. Lower panel: Uncertainty resulting from the nucleon
isovector radii. Upper panel, dotted line: Empirical FFs [41]. All FFs are shown divided by the standard dipole FF.

dictions with the nominal values of the high-mass pole
position and the nucleon radii. One observes that the
nominal predictions agree very well with the empirical
FFs extracted from experimental data [41]. This indi-
cates that our assumptions made in parametrizing the
high-mass part of the spectral function (in particular,
the rapid saturation at low masses t ≈ 3M2

ρ ) are realistic
at the quantitative level. The middle and lower panels
show the uncertainties of the predictions due to the posi-
tion of the high-mass poles and the values of the nucleon
radii, estimated with the procedure of Sec. II D. One ob-
serves that the procedure gives a reasonable uncertainty
estimate of the spacelike FFs that is approximately sym-
metric around the nominal value (by design of the proce-
dure) and covers the experimental values. We emphasize
that our goal here is not to predict or analyze the space-
like FFs, but just to validate that our spectral function
results are compatible with the spacelike FF data. It is
clear that a much more accurate description of the space-
like FFs could be achieved within our framework if the
value of the high-mass poles were used as fit parameters,
as is commonly done in dispersive fits [39, 40].

B. Isovector densities

Figures 7 and 8 show our results for the isovector trans-
verse densities ρV1 (b) and ρ̃V2 (b), obtained by evaluating
the dispersive integrals Eqs. (18)–(19) with the spectral

functions of Sec. II C, and quantifying the uncertainties
with the procedure of Sec. II D. These densities are the
principal objective of the present study. Figure 7 shows
the densities ρV1 (b) and −ρ̃V2 (b) on a logarithmic scale
and their relative uncertainties. Figure 8 shows the ra-
dial densities 2πbρV1 (b) and −2πbρ̃V2 (b) on a linear scale
and their absolute uncertainties.

One observes: (a) The densities exhibit an exponential
decrease at b & 0.5 fm, as dictated by the analytic prop-
erties of the form factor (see Sec. II B). This behavior
is naturally obtained from the dispersive representation
and is the principal reason for the use of this method for
the computation of peripheral densities. (b) The uncer-
tainties of the densities resulting from the high-mass part
of the spectral function and from the nucleon radii show
a characteristic dependence on b (nodes, maxima). This
dependence is explained by the way in which these pa-
rameters influence the low-mass and high-mass parts of
the spectral functions through the dispersive sum rules
(see Sec. II C). (c) The uncertainty bands are bounded at
large distances and permit stable estimates of the uncer-
tainties of the peripheral densities. In both ρV1 (b) and
ρ̃V2 (b), the estimated relative uncertainties from high-
mass states and radii are . 10% at distances b > 0.5 fm.
(d) At b > 0.5 fm the relative uncertainties of ρV1 and ρ̃V2
are comparable. At b < 0.5 fm, the relative uncertainty
of ρ̃V2 is larger than that of ρV1 . This happens because
at small b the dispersion integral samples the high-mass
part of the spectral function, and our parametrization of
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FIG. 7. Isovector densities ρV1 (b) (left column) and −ρ̃V2 (b) (right column) and their relative uncertainties obtained with the
DIχEFT spectral functions. In each column: Upper panel, solid line: DIχEFT prediction with nominal parameters. Middle
panel: Relative uncertainty from high-mass states. Lower panel: Relative uncertainty from nucleon isovector radii. Upper
panel, dotted line: Density from empirical FFs [41].
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FIG. 8. Same as Fig. 7, but showing the radial densities 2πbρV1 (b) (left column) and −2πbρ̃V2 (b) (right column) and their
absolute uncertainties.
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ImFV2 allows for more variation than that of ImFV1 .
We emphasize that our theoretical calculations are

aimed only at the “peripheral” densities, with the bound-
ary in b determined by the uncertainty estimates. Our
results for both the densities and uncertainty estimates
are to be understood in this sense. At distances b . 0.3
fm the densities become sensitive to the details of the
high-mass states in spectral function. Our effective de-
scription is not expected to be accurate in this region but
still allows us to estimate the uncertainty and demon-
strate its increase.

Figures 7 and 8 also show the empirical densities, com-
puted as Fourier transforms of the FF fit of Ref. [41], see
Eqs. (4) and (8). Because it is difficult to quantify the
uncertainties of the Fourier transform densities at large
b (see discussion in Sec. III A), we show only their cen-
tral value. One observes that our theoretical results show
excellent agreement with the empirical densities at dis-
tances b & 0.5 fm, where our calculations are accurate ac-
cording to our intrinsic uncertainty estimates. Our result
obtained with the nominal parameters follow the empiri-
cal densities even down to b→ 0. This strongly indicates
that our assumptions made in parametrizing the high-
mass part of the spectral function are realistic regarding
the nominal values, and that the uncertainty of our pre-
dictions at small b could be reduced by constraining the
variation of the high-mass part through further theoret-
ical arguments or empirical information.

C. Proton and neutron densities

The DIχEFT method allows us to predict the isovector
densities, which contain the effect of the two-pion states
and dominate peripheral nucleon structure. In order to
compute the individual proton and neutron densities in
the dispersive representation we need also the isoscalar
spectral functions. For the purposes of this study we use
the parametrization of Appendix C, which describes the
isoscalar spectral function through effective poles and im-
plements the dispersive sum rules in a similar manner as
in the isovector sector. The parameters are fixed in terms
of the isoscalar nucleon radii and their uncertainties. The
proton and neutron densities and their uncertainties are
obtained by combining the isovector and isoscalar den-
sities. As the high-mass uncertainty of the proton and
neutron densities we take only the one resulting from the
isovector densities estimated in Sec. III B, which is ex-
pected to be dominant. As the radius uncertainty of the
proton and neutron densities we quote the change of the
density under variation of the nucleon’s “own” radius,
i.e., 〈r2〉p1,2 for the proton and 〈r2〉n1,2 for the neutron,
corresponding to a simultaneous change of the isovector
and isoscalar radii. This is the dominant radius uncer-
tainty in most of the densities. The only exception is the
neutron charge density, where the uncertainty resulting
from the change of the neutron radius is smaller than that
resulting from the proton radius, through its combined

effect on the isovector and isoscalar densities.
Figures 9 and 10 show the densities ρp,n1 (b) and ρ̃p,n2 (b)

densities and their uncertainties obtained in this way.
One observes: (a) The calculation predicts the periph-
eral nucleon densities with good accuracy. In the proton
charge density ρp1, and the proton and neutron magne-
tization densities ρ̃p,n2 , the relative uncertainties are es-
timated at . 10% at b > 0.5 fm (these densities are
uniformly positive or negative, so that one can sensi-
bly quote the relative uncertainty). (b) In the neutron
charge density ρn1 , the absolute uncertainty is estimated
at > 50% near the positive maximum at b = 0.65 fm,
and rapidly decreasing at larger b (this density has differ-
ent sign in different regions). (c) The nominal DIχEFT
predictions agree well with the empirical densities at
b & 0.5 fm. In particular, the theoretical calculation
reproduces the behavior of the neutron density, which
changes from negative values at b & 1.5 fm to positive
values at 1.5 & b & 0.35 fm to negative values at b . 0.35
fm [4, 28]. This behavior arises as the result of a deli-
cate cancellation of isovector and isoscalar densities in
the different regions of b.

D. Current densities in polarized nucleon

Combining our results for the densities ρ1(b) and ρ̃2(b),
we can compute the J+ current density in the trans-
versely polarized nucleon, Eq. (7). In order to display
the theoretical uncertainties it is useful to show a one-
dimensional projection of the two-dimensional current
density. We consider the current density Eq. (7) in the
nucleon with Sy = +1/2 on the transverse x axis, where
b = (bx, 0) with bx < 0 or > 0, which is given by

〈J+(bx)〉localized = (...) [ρ1(|bx|) + sign(bx) ρ̃2(|bx|)].
(63)

This function describes the current density to the “left”
and “right” when looking at the nucleon from z = +∞
(see Fig. 1). Notwithstanding its piecewise definition in
Eq. (63), it is a smooth function of bx because ρ̃2(|bx| =
0) = 0.

Figure 11 shows the J+ current density Eq. (63) in the
proton and neutron obtained from our DIχEFT results,
including its theoretical uncertainty. [The plot shows the
expression in the square bracket in Eq. (63) without the
normalization factor denoted by (...).] In the high-mass
uncertainties we have added the uncertainty bands in
ρ1(b) and ρ̃2(b) assuming no correlation between the two
(the positions of the effective high-mass poles in ImFV1
and ImFV2 are not related, and their variation in Sec. II D
is performed independently). In the radius uncertainty
we show separately the variations of the density under
the changes of the nucleon’s radii 〈r2〉1 and 〈r2〉2. One
observes: (a) The numerical densities behave smoothly
at bx = 0, as they should. (b) The J+ current densities
in the proton and the neutron exhibit a strong left-right
asymmetry. In the context of the parton picture, this
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FIG. 9. Transverse charge density ρ1(b) in the proton (left column) and neutron (right column) obtained from the DIχEFT
results (see text). In each column, the panels show the nominal DIχEFT results and their absolute uncertainties from high-mass
states and from the nucleon radii. The empirical densities are obtained from the FF parametrizations of Ref. [41].
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FIG. 10. Transverse magnetization density ρ̃2(b) in the proton (left column) and neutron (right column) obtained from the
DIχEFT results (see text). In each column, the panels show the nominal DIχEFT results and their absolute uncertainties from
high-mass states and from the nucleon radii. The empirical densities are obtained from the FF parametrizations of Ref. [41].
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FIG. 11. The J+ current density on the x-axis, Eq. (63), in the transversely polarized proton (left column) and neutron (right
column) with Sy = +1/2. In each column: Upper panel: Nominal DIχEFT result. Middle panel: Absolute uncertainty from
high-mass states. Lower panel: Absolute uncertainty from nucleon radii.

shows that the internal motion due to the nucleon spin
causes a significant distortion of the plus momentum dis-
tribution and attests to the essentially relativistic char-
acter of the system. A “mechanical” interpretation of the
left-right asymmetry of the peripheral densities in tradi-
tional chiral EFT, as arising from the motion of a soft
pion in the nucleon’s periphery, has been developed in
Refs. [8, 9, 42, 43].

IV. DISCUSSION

In the present work we have computed the peripheral
transverse charge and magnetization densities in the nu-
cleon using the DIχEFT method and quantified their
uncertainties. The main findings are: (a) The disper-
sive representation permits stable calculation of the pe-
ripheral densities. The densities exhibit the exponential
decrease implied by analyticity of the form factor and
depend smoothly on the parameters of the spectral func-
tion. (b) Uncertainties can be estimated by allowing for
variation of the spectral function (functional form, pa-
rameters) and following its effect on the densities. The
procedure makes use of the particular “information flow”
implied by analyticity and relates the peripheral den-
sities to the spacelike form factor in a controlled man-

ner. (c) Using a minimal parametrization of the high-
mass part of the isovector spectral function, the isovec-
tor densities are computed with an estimated accuracy
of ∼ ±10% at b & 0.3 fm.

In the present calculation we have not used any space-
like form factor data beyond the nucleon radii (FF deriva-
tives at t = 0) to constrain the isovector spectral func-
tions. In particular, we do not fit the high-mass part of
the spectral function to the spacelike form factor data,
as is done is dispersive fits. [The stability condition
Eq. (60), controlling the variation of the high-mass spec-
tral function, applies to the variation relative to the nom-
inal theoretical prediction, not relative to the FF data.]
Our results represent theoretical predictions based on a
minimal parametrization of the high-mass spectral func-
tion, and our uncertainty estimates should be understood
in this sense. It is clear that a much more accurate de-
scription could be achieved if spacelike FF data were used
to constrain the high-mass part of the isovector spectral
functions. Our estimates of the high-mass uncertainty
therefore should not be regarded as “final,” but rather as
showing how far one can go without fitting spacelike FF
data.

The methods developed here enable an EFT-based
computation of the transverse densities down to distances
b & 0.5 fm. At such distances the transverse densities can
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be described in approaches using other effective degrees
of freedom, e.g. quark models. This makes it possible
to match the EFT-based description with quark model
predictions of the transverse densities at “intermediate”
distances and explore quark-hadron duality in new ways.
While quark models may not be able to accurately repro-
duce the absolute densities, they can predict qualitative
features such as the spin/isospin dependence and flavor
decomposition of the densities, which can lead to inter-
esting conclusions when matched with the EFT descrip-
tion. We plan to explore the use of transverse densities
for quark-hadron duality studies in a separate work.

Some comments are in order regarding the interpre-
tation of our results in terms of a “pion cloud” of the
nucleon. It is true that the isovector densities at dis-
tances & 0.5 fm are generated mostly by the two-pion
states in the dispersive representation (see Fig. 3). One
might be tempted to explain this in a picture where a
bare nucleon fluctuates into a pion-nucleon state, and the
peripheral structure arises from the propagation of that
pion. Such a picture is indeed obtained in traditional
chiral EFT, where the pion and nucleon are pointlike,
and the peripheral densities emerge from the propagation
of the pointlike pions. However, in our unitarity-based
approach the pion is not pointlike and has an extended
structure of the same range as the nucleon, as required by
unitarity. The results of our approach should therefore
not be interpreted in terms of the traditional pion could
picture. The space-time interpretation of the densities in
the unitarity-based approach is an interesting question
which we plan to investigate in a future study.

In the present study we have applied our unitarity-
based approach to the peripheral densities associated
with the nucleon matrix element of the electromag-
netic current operator. The approach could be extended
to compute the peripheral densities of other operators
whose form factors possess a two-pion cut, such as the
QCD energy momentum tensor (spin-2 operator) or the
leading-twist QCD operators whose matrix elements de-
termine the moments of the GPDs (twist-2, spin-n op-
erators, n ≥ 1). This would allow one to “deconstruct”
not only the nucleon’s electromagnetic current but also
its peripheral partonic structure in terms of EFT degrees
of freedom. One difference between the electromagnetic
and the generalized form factors is that for the latter the
“radii” (derivatives at t = 0) are generally not known
from independent measurements, so that one has to ad-
just the procedure of fixing the parameters of the spectral
functions and recruit new sources of information.

Appendix A: Nucleon radii

In this appendix we list the values of the nucleon radii
used as parameters in the DIχEFT calculation of the
spectral functions. The Dirac and Pauli radii of the pro-

Type 〈r2〉 [fm2] δ〈r2〉 [fm2] δ〈r2〉/〈r2〉
〈r2〉p1 0.5906 0.0168 0.0285

〈r2〉n1 0.0102 0.0022 0.2157

〈r2〉p2 0.7961 0.0281 0.0353

〈r2〉n2 0.7518 0.0156 0.0207

〈r2〉V1 0.2902 0.0085 0.0293

〈r2〉S1 0.3004 0.0085 0.0283

〈r2〉V2 1.4328 0.0293 0.0204

〈r2〉S2 −0.0054 0.0293 −5.3759

TABLE I. Nucleon Dirac and Pauli radii and their uncertain-
ties used as input in DIχEFT calculation.

ton and neutron are defined in terms of the FF derivatives

dF p1
dt

(0) =
1

6
〈r2〉p1,

dF p2
dt

(0) =
1

6
κp 〈r2〉p2 (A1)

(same for p → n). They are related to the conventional
electric and magnetic radii by

〈r2〉p1 = 〈r2〉pE −
3κp

2m2
N

, (A2)

κp〈r2〉p2 = − 〈r2〉pE + µp 〈r2〉pM +
3κp

2m2
N

(A3)

(same for p→ n). Here κp,n are the anomalous magnetic
moments, and µp,n = Qp,n + κp,n = (2.793,−1.913) are
the ordinary magnetic moments of the nucleons.

We estimate the values of 〈r2〉1,2 and their uncertain-
ties from the empirical values of 〈r2〉E,M and their uncer-
tainties, neglecting correlations between the uncertainties
of 〈r2〉E and 〈r2〉M . We use the following numbers and
sources: 〈r2〉pE = (0.7090 ± 0.0168) fm2 [22], 〈r2〉nE =
(−0.1161 ± 0.0022) fm2 [44], 〈r2〉pM = (0.7225 ± 0.0170)
fm2 [22], 〈r2〉nM = (0.7465±0.0156) fm2 [44]. The proton
and neutron radii 〈r2〉1,2 thus obtained are summarized
in Table I.

We also list in Table I the isovector and isoscalar com-
binations of the radii, defined by Eqs. (47)–(48) and (57)–
(58), and Eqs. (C6)–(C7) and (C8)–(C9), which enter in
the sum rules for the isovector and isoscalar spectral func-
tions. In calculating the uncertainties we neglect correla-
tions between the uncertainties of the proton and neutron
radii. Note that the isovector/isoscalar combinations of
〈r2〉2 defined by Eqs. (57)–(58) and (C8)–(C9) involve
the nucleon anomalous magnetic moments and cannot
directly be interpreted as nucleon radii.

Appendix B: N functions

In this appendix we give the expressions for the Ni(t)
functions appearing in the unitarity relations for the
isovector spectral functions, ImFV1,2(t) Eqs. (36) and
(38). We do not compute these functions explicitly but
express them in terms of our earlier results for the J1

±(t)
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functions appearing in the unitarity relations for the
ImGVE,M (t) spectral functions [18].

The Dirac/Pauli FFs F1,2(t) and the electric/magnetic
FFs GE,M (t) are related by

GE(t) = F1(t) +
t

4m2
N

F2(t), (B1)

GM (t) = F1(t) + F2(t), (B2)

or, inversely,

F1(t) =

[
GE(t)− t

4m2
N

GM (t)

]/(
1− t

4m2
N

)
, (B3)

F2(t) =

[
−GE(t) +GM (t)

]/(
1− t

4m2
N

)
, (B4)

which hold for any complex t. The elastic unitarity rela-
tion for ImGE,M (t), in its manifestly real form analogous
to Eq. (36), is written as (here t > 4M2

π)

ImGVE(t)[ππ] =
k3cm
mN

√
t
J1
+(t) |Fπ(t)|2, (B5)

ImGVM (t)[ππ] =
k3cm√

2t
J1
−(t) |Fπ(t)|2, (B6)

where kcm is given in Eq. (37). The relation between the
functions N1,2(t) and J1

±(t) is

N1(t) =

[
J1
+(t)

mN
− t

4m2
N

J1
−(t)

]/(
1− t

4m2
N

)
, (B7)

N2(t) =

[
−
J1
+(t)

mN
+
J1
−(t)
√

2

]/(
1− t

4m2
N

)
. (B8)

Note that

1− t

4m2
N

=
p̃2cm
m2
N

(B9)

where p̃cm =
√
m2
N − t/4 is the unphysical nucleon

center-of-mass momentum in the ππ → NN̄ process in
the t-channel.

The explicit expressions for the J1
±(t) functions in chi-

ral EFT at LO and NLO accuracy are given in Ref. [18].
The expressions for the functions N1,2(t) at this order
can be obtained from those results using Eqs. (B7) and
(B8). Note that in this procedure Eqs. (B7) and (B8)
are evaluated only in the region of elastic unitarity in the
two-pion channel, t < tmax ≈ 1 GeV2, far away from the
singularity at t = 4m2

N .
In our calculation at pN2LO accuracy we approximate

the full N2LO corrections to the N1,2(t) functions by
rescaling the tree-level N2LO result, see Eq. (40). For
the N2LO tree-level result we use the simplified form

Ni(t)[N2LO-tree] ∝ t, (B10)

the overall coefficients are irrelevant since they are ab-
sorbed by the parameters λi in Eq. (40). Equation (B10)
differs from the exact N2LO tree-level result [as obtained
from Eqs. (B7) and (B8) and the N2LO tree level re-
sult for the J1

±(t)] only by additive terms ∝ M2
π with

coefficient of order unity, which are numerically small at
t = 20–50 M2

π where the pN2LO term Eq. (40) is signif-
icant. The simplified form Eq. (B10) ensures that each
of the functions N1,2(t) gets an pN2LO term with its
own parameter λ1,2, which can then be fixed through the
dispersive sum rules.

Appendix C: Isoscalar parametrization

In this appendix we present a simple parametriza-
tion of the isoscalar spectral functions, which is used in
the dispersive calculations of the individual proton and
neutron densities. The isoscalar spectral functions are
constructed along similar lines as the isovector ones in
Sec. II C, but relying more on empirical information.

The isoscalar spectral function starts with the 3π chan-
nel and can be organized in a similar way as Eq. (34)
(here i = 1, 2),

ImFSi (t) = ImFSi (t)[πππ] + ImFSi (t)[high-mass].
(C1)

The strength in the 3π channel is overwhelmingly con-
centrated in the ω resonance at t = M2

ω = 0.61 GeV2;
for an estimate of non-resonant 3π contributions in chiral
EFT, see Ref. [45]. We parametrize the 3π part of the
spectral function as (i = 1, 2)

ImFSi (t)[πππ] = πaωi δ(t−M2
ω). (C2)

High-mass strength appears at t & 1 GeV2 through the
KK̄ channel and the φ resonance, as well as through
other hadronic states such as πρ [46, 47]. We assume
that the high-mass part of the isoscalar spectral function
is approximately exhausted by these states at t ∼ 1 GeV2

and parametrize the spectral functions as

ImFS1 (t)[high-mass]

= πa
(S,0)
1 δ(t− t(S))

+ πa
(S,1)
1 δ′(t− t(S)) (C3)

and

ImFS2 (t)[high-mass]

= πa
(S,0)
2 δ(t− t(S))

+ πa
(S,1)
2 δ′(t− t(S))

+ πa
(S,2)
2 δ′′(t− t(S)), (C4)

where the effective pole mass is chosen as

t(S) = M2
φ = 1.04 GeV2 (C5)
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FIG. 12. Isoscalar form factors FS1 (t) and FS2 (t) obtained
with our parametrization of the isoscalar spectral functions
Eqs. (C3) and (C4). Solid lines: Nominal parameters. Bands:
Uncertainty resulting from the variation of the isoscalar radii
〈r2〉S1 and 〈r2〉S2 in the range given in Table I. Dashed lines:
Empirical form factors of Ref. [41]. All FFs are shown divided
by the standard dipole FF.

The pole strengths aω1 , a
(S,0)
1 , and a

(S,1)
1 in ImFS1 , and

aω2 , a
(S,0)
2 , a

(S,1)
2 , and a

(S,2)
2 in ImFS2 , are then determined

by imposing the dispersive sum rules for the isoscalar
spectral functions. These sum rules are given by the for-

mulas analogous to Eqs. (44)–(46) and Eqs. (53)–(56)
with V → S, in which the quantities on the right-hand
side are now the isoscalar charge and radius,

QS ≡ 1

2
(Qp +Qn) =

1

2
, (C6)

〈r2〉S1 ≡
1

2

(
〈r2〉p1 + 〈r2〉n1

)
, (C7)

and the isoscalar anomalous magnetic moment and ra-
dius

κS ≡ 1

2
(κp + κn), (C8)

〈r2〉S2 ≡
1

2

(
κp〈r2〉p2 + κn〈r2〉n2

)
. (C9)

The isoscalar spectral functions defined by Eq. (C1) et
seq. generate remarkably accurate isoscalar nucleon form
factors (see Fig. 12) and provide a sufficient description
of the isoscalar sector for the purposes of our study.

In the applications in Sec. III, we take into account
the uncertainty in the isoscalar spectral function result-
ing from the nucleon radii. We do not attempt to assign
a theoretical uncertainty to the high-mass part of the
isoscalar parametrization; this uncertainty could be esti-
mated empirically from dispersive fits to the data [39, 40].
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