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Recent observations of a narrow peak in the me+e− invariant mass spectra in the nuclear decays
8Be

∗ → 8Be + e+e− and 4He
∗ → 4He + e+e− have been suggested as due to the creation and

subsequent decay to an electron-positron pair of a new light particle with a mass of ∼ 17 MeV. In
this work, we present the calculation of the invariant mass me+e− spectrum in the electromagnetic
transition process of an excited state of 4He, 4He

∗
(E∗) → 4He + γ∗ → 4He + e+e−, where E∗ is

the excited state energy, and estimate the differential and total width of this decay. We investigate
the possibility of a new electromagnetic transition in the helium nucleus due to the proposed 12-
quark color singlet Fock state in the 4He nuclear wavefunction (the “hexadiquark”) as the source
of the signal and find we can fit the shape of the signal with a Gaussian form factor and a new
excited state of 4He at ∼ 17.9 MeV. We address the physical issues with the fit parameters using
QCD-based hexadiquark transitions. In light of this work, we emphasize the need for independent
experimental confirmation or refutation of the ATOMKI results as well as further experiments to
detect the proposed new excitation of 4He.

Introduction

The observation of a narrow peak in the electron-positron pair invariant mass spectra by the ATOMKI collaboration
in the nuclear decays 8Be

∗ → 8Be + e+e− [1] and 4He
∗ → 4He + e+e− [2, 3] may be explained by the creation and

subsequent decay to an e+e− pair of a new light particle with mass of ∼ 17 MeV, dubbed the X17 or simply X.
Recently the same group reported observations of the X17 anomaly in the 7Li(p, e+e−)8Be direct proton-capture
reaction [4]. Our work focuses on the 4He experimental data in which the precise mass was found to be mX =
16.94± 0.12( stat. )± 0.21 (syst.) MeV. The Feynman diagram for this transition is shown in Fig. 1. Experimentally
the signal is a narrow Gaussian peak with a mean value ∼ 17 MeV and σ ∼ 0.7 MeV (see Fig. 2). The peak has
generated a great deal of theoretical interest in both the particle and nuclear physics communities [5–19].

In this work on the ATOMKI anomalies, we present a successful QCD-based fit to their data. We begin with
a calculation of the invariant mass me+e− spectrum in the electromagnetic transition of an excited state of 4He,
4He

∗
(E∗) → 4He + γ∗ → 4He + e+e−, where E∗ is the excited state energy. The mass difference between the first

known excited state and the ground state of the helium nucleus is 20.21 MeV [20] and E∗ is initially fixed to this
value. It is subsequently allowed to float due to the possibility of the new 12-quark Fock state in the 4He nuclear
wavefunction [21]. The spin-parity of the excited state 4He

∗
(20.21) and ground state 4He is JP = 0+ which simplifies

the calculation of the matrix element previously carried out [11]. The invariant mass me+e− distribution has not been
calculated until now. The results of our calculations show that excitations caused by the hexadiquark Fock state
in the nuclear wavefunction of 4He can describe the observed signal and, in fact, are to be expected from this new
“hidden color” QCD state.

Nuclear decay amplitude for 4He
∗ → 4He + e+e−

The square of the amplitude for the electromagnetic decay 4He∗ → 4He + e+e− is [11] is given by

|M|2 =
∑
spin

|M |2 =
e4 C2

E0

Λ4

[
2(p+ · p0)(p− · p0)−m2

0(p+ · p−)−m2
em

2
0

]
, (1)

where p+ and p− are the 4-momenta of the positron and electron respectively, p0 and m0 are the 4-momentum and
mass of the ground state of 4He, me is the electron mass and final state spins have been summed over. The definitions
of Λ as the nuclear energy scale and C2

E0 as the Wilson coefficient of the decay operator are contained in [11]. These



2

 

age

ftp.adf

to

FIG. 1. Feynman diagram for the electromagnetic/X-boson transition 4He∗ → 4He + e+e−.

FIG. 2. Invariant mass me+e− distribution in the nuclear decay 4He
∗ → 4He + e+e− from [2, 3]. Error bars are 1σ. The signal

is in red, the background is black.

constants are not relevant for the analysis carried out in this work.

The matrix element depends on only two kinematical variables, q2 and cos θ∗, where q = p++p− is the 4-momentum
of the virtual photon, q2 = m2

e+e− is the e+e− invariant mass squared and θ∗ is the electron angle in the virtual photon
center of mass system. Rewriting Eq.1 in terms of these variables gives

∣∣M(q2, cos θ∗)
∣∣2 =

α2C2
E0

Λ4

(4π)2

8q2
[
q2 − cos2 θ∗(q2 − 4m2

e)
] [
m4 + (m2

0 − q2)2 − 2m(m2
0 + q2)

]
(2)

where m is the mass of the excited 4He∗ state.

The differential width dΓ for the three body decay is given by

dΓ =
1

(2π)5
1

16m2
|M|2 |p∗e||p0|dme+e−dΩ∗edΩ0 (3)

where dΩ = dφ d cos θ, (|p∗e| ,Ω∗e) is the electron momentum in the center of mass of the electron-positron pair,
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(|p0| ,Ω0) is the 4He momentum in the rest frame of the 4He
∗
.

The |p∗e||p0| product in terms of the kinematical variables is

|p∗e||p0| =
√

(q2 − 4m2
e) (m2 − (m0 − q)2) (m2 − (m0 + q)2)

4m
(4)

and is plotted in Fig. 3. The minimum value of the me+e− invariant mass is 2me and maximum value is determined
by the mass difference between excited and ground 4He states ∆m =20.21 MeV.
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FIG. 3. The phase space |p∗e ||p0| of the process 4He∗ → 4He + e+e−.

The maximum value for the ratio q2/m2 < (m−m0)2/m2 = 3 · 10−5 � 1. Taking into account this small ratio and
in the limit me = 0 the phase space becomes

|p∗e||p0| =
q

2

√
∆m2 − q2. (5)

The integration of the matrix element
∣∣M(q2, cos θ∗)

∣∣2 over angles dΩ∗eΩ0 gives

∣∣Mq(q
2)
∣∣2 =

∫ ∣∣M(q2, cos θ∗)
∣∣2 dΩ∗edΩ0 =

α2C2
E0

Λ4

(4π)4

12q2
(q2 + 2m2

e)
[
m4 + (m2

0 − q2)2 − 2m2(m2
0 + q2)

]
. (6)

The matrix element
∣∣Mq(q

2)
∣∣2 is simplified in the limit me = 0, to become

∣∣Mq(q
2)
∣∣2 =

α2C2
E0

Λ4

(4π)4

12

[
m4 + (m2

0 − q2)2 − 2m2(m2
0 + q2)

]
. (7)

There is only one variable left, the invariant electron-positron mass me+e− =
√
q2 =

√
(p+ + p−)2, and we find

dΓ =
1

(2π)5
1

16m2
|Mq|2 |p∗e||p0|dme+e− . (8)

The numerical integration over the three-body phase space is

ΓE0 =

∫ m−m0

2me

dme+e−
∣∣Mq(q

2)
∣∣2 |p∗e||pHe| = α2C2

E0

Λ4
(7.0627 MeV)

5
. (9)
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FIG. 4. The matrix element
∣∣Mq(q2)

∣∣2 for the process 4He∗ → 4He + e+e−. Blue: Exact result, Red: The calculation in the
limit me → 0.

We can rewrite it in more convenient way

ΓE0 =

∫ m−m0

2me

dme+e−
∣∣Mq(q

2)
∣∣2 |p∗e||pHe| = α2C2

E0

Λ4

∆m5

60π
0.982, (10)

and with an accuracy of 2% this coincides with the approximate solution (Eq. 13, below).

In the approximation q2/m2 < ∆m2/m2 = 3 · 10−5 � 1, the matrix element and differential width dΓ/dme+e− are

|Mq(q
2)|2 =

α2C2
E0

Λ4

(4π)4

3
m2
[
∆m2 − q2

]
(11)

and

dΓ

dme+e−
=
α2C2

E0

12πΛ4
me+e−

(
∆m2 −m2

e+e−

) 3
2 . (12)

The full width has an analytic solution in this case,

ΓE0 =
α2C2

E0

12πΛ4

∫ m−m0

2me

me+e−
(
∆m2 −m2

e+e−

) 3
2 dme+e−

=
α2C2

E0

Λ4

(
∆m2 − 4m2

e

) 5
2

60π
≈ α2C2

E0

Λ4

∆m5

60π

(13)

that with 2% accuracy corresponds to the exact solution of Eq. 10.

The matrix element from Eq. 6 (exact solution) and Eq. 7 (approximation with me=0), integrated over cos θ∗ and
normalized to one, is presented in Fig. 4.

The unintegrated matrix element (Eq. 2) for two values, cos θ∗ = 0 and cos θ∗ = 1, is presented in Fig. 5. The
experimental data [2, 3] were taken with cos θ∗ ∼ 0. There is no evidence for any structure near me+e− = 17 MeV in
both Fig. 4 and 5.

The differential width dΓ/dme+e− from Eq. 2, integrated over cos θ∗ and normalized to one, is presented in Fig. 6.
The distribution is very smooth from the minimum value of me+e− = 2me up to maximum ∆m =20.21 MeV. Thus
we conclude that the ATOMKI signal cannot arise from the straightforward analysis carried out in this section.
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FIG. 5. The matrix element |M(q, cos θ∗)|2 squared for the process 4He∗ → 4He + e+e−. Red: cos θ∗ = 0, Blue: cos θ∗ = 1.
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FIG. 6. The differential width dΓ/dme+e− for the process 4He∗ → 4He + e+e−.

Electromagnetic transition form factors F (q2) in the reaction 4He
∗ → 4He + e+e−

The analysis carried out in the previous section implicitly assumed a form factor F (q2) equal to unity. A more
realistic F (q2) could significantly change the me+e− invariant mass distribution in the nuclear decay 4He

∗ → 4He +
e+e−. The amplitude squared with the explicit form factor is given by

|M|2 =
∑
spin

|M |2 =
e4 C2

E0

Λ4

[
2(p+ · p0)(p− · p0)−m2

0(p+ · p−)−m2
em

2
0

] ∣∣F (q2)
∣∣2 . (14)

The experimental me+e− distribution is not given in the published paper. In order to compare the theoretical work
in this section to the data, we first extract the ATOMKI data, plot them and confirm that we can replicate their
results. To this end, we’ve used the extracted signal and background distributions from Fig. 2 and made a fit with
two functions to describe the signal observed in the experiment and background distributions. Fig. 7 presents our fit
with a Gaussian function to describe the signal. The background was fitted independently because the experiment
measured the background distribution with much higher accuracy than the signal. The fit has 3 parameters: the peak
position, σ and overall normalization. Our fit is very close to the published one (see Fig. 2). The differences are very
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small and do not affect our conclusions. We are confident that this procedure was carried out correctly and can move
onto fitting the results theoretically.
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FIG. 7. Fit by Gaussian function (in red) and background distribution (in black) of the published ATOMKI m(e+e−) invariant
mass distribution. The signal alone is shown in blue.

Several realistic form factor models are tested in our attempt to model the experimental data. Fig. 8 presents the
comparison of the differential width dΓ/dme+e− for the electromagnetic transition with form factor F (q2) = 1 (in
blue) and with F (q2) ∝ q2. The low mass region is indeed suppressed by the form factor and the distribution has
a peak near the value of me+e− = 17 MeV. However the comparison with the experimental signal, shown in black,
suggests that the width of the curve with F (q2) ∝ q2 is much larger in comparison to the Gaussian peak (m =17
MeV, σ =0.7 MeV) published by the ATOMKI group.

Fig.9 presents the result of the fit with an electromagnetic transition form factor F (q2) ∝ q2. The background
function is the same as in Fig. 7. This fit has only one parameter, the normalization factor of the theoretical function.
The fit is not satisfactory. The observed signal is too narrow in comparison with the theoretical curve as it is shown
in the Fig. 8, compare red plot (theoretical curve) and black curve (experimentally observed signal).

Fig. 10 presents the comparison of the differential width dΓ/dme+e− for the electromagnetic transition with form
factor F (q2) = 1 (in blue) and with F (q2) ∝ exp−(q/λ)2 with λ = 11 MeV. As in the case with form factor
F (q2) ∝ q2, we can get a distribution with the maximum near 17 MeV. However the width of the distribution is too
large to obtain a satisfactory description of the experimental distribution.

Fig.11 presents the result of the fit with electromagnetic transition form factor F (q2) ∝ exp−(q/λ)2. The back-
ground function is the same as in Fig. 7. This fit has two parameters, λ = 11± 1 MeV and the normalization factor
of the theoretical function. The fit is not satisfactory. The observed signal is too narrow in comparison with the theo-
retical curve as it is shown in the Fig. 10, comparing the red plot (theoretical curve) and black curve (experimentally
observed signal).

One of the reasons for the unsatisfactory fit to the data with different form factor models is the position and width
of the X17 signal. The X17 mass is 4σ away from the kinematical limit 20.21 MeV. If the signal is coming from the
decay of new excited 4He∗ state with mass difference of 18 MeV the fit will be successful. This situation is realized
in the decay 8Be

∗ → 8Be + e+e− [1] where the mass difference between excited state and the ground state is only
18.15 MeV. The 8Be ATOMKI enhancement has been described by an electromagnetic transition with a form factor
included [12]. The momentum scale of the form factor was around 20 MeV with a length scale on the order of tens of
fm. The authors of that work noted that the natural form factor scale should be close to 200 MeV, the QCD energy
scale. This differs by an order of magnitude from the fit to the experimental data.

We now introduce a new parameter, the mass of a new excited 4He∗ state, into our model. We motivate this state
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by the proposed 12-quark color singlet Fock state model of 4He nucleus in which the 4He wavefunction is dominated
by a linear combination of |nnpp〉 and the 12-quark “hexadiquark” QCD state [21]. The result of the fit with form
factor F (q2) ∝ exp−(q/λ)2 is presented in Fig. 12. There are three parameters of the fit, the mass of the new excited
state 4He∗ m = 17.9 ± 1 MeV, the form factor parameter λ = 6.2 ± 0.2 MeV and the overall normalization. The
model describes the data very well. Our parameter λ = 6.2 ± 0.2 MeV is close to the momentum scale found in
earlier work on nuclear transitions [12]. We have managed to describe the ATOMKI signal with the introduction of
a new excited 4He∗(17.9) state but there are serious physical issues that must be addressed. First, the energy of the
electron-positron pair in this case has to be 17.9 MeV with high accuracy. This is 1.6σ away from the lower limit of
the selection of the positrons and electrons with total energy in the region (19.5, 22.0) MeV and is a state that has
never been observed. In addition, the form factor parameter λ is an order of magnitude smaller than expected for a
typical nuclear transition. We address both of these points in the following section.
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FIG. 8. The differential width dΓ/dme+e− for the transition 4He∗(20.21)→ 4He + e+e− . Blue: F (q2) = 1 , Red: F (q2) ∝ q2,
Black: Gaussian distribution with m =17 MeV and σ =0.7 MeV. The functions are normalized such that the peak values are
the same for all curves.

FIG. 9. Fit by electromagnetic transition function with form factor F (q2) ∝ q2 (in red) and background distribution (in
black). The signal alone is shown in blue.
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FIG. 10. The differential width dΓ/dme+e− for the transition 4He∗(20.21) → 4He + e+e− . Blue: F (q2) = 1 Red: F (q2) ∝
exp−(q/λ)2 with λ = 11 MeV.

FIG. 11. Fit by electromagnetic transition function with form factor F (q2) ∝ exp−(q/λ)2 (in red) and background distribution
(in black). The signal alone is shown in blue.

Hexadiquark excitations

The hexadiquark (HdQ) is a “hidden color” [23, 24] QCD state in the 4He nuclear wavefunction [21] consisting of
six scalar [ud] diquarks [25, 26] in a color singlet configuration. Excitation of a subset of diquarks, either radial or
angular momentum excitations, can give rise to nuclear transitions with unconventional decays. To illustrate this, we
consider the electron scattering experiment e+ 4He→ e′ +X.

In conventional nuclear physics, the collision will produce hadronic excitations of 4He, e.g., a proton + tritium, in an
excited radial or orbital state: e+ 4He→ e′+ 4He∗ → e′+ p+ 3H. Similarly, conventional nuclear physics excitations
4He∗ can be observed in a proton beam experiment, such as p+4He→ p′+4He∗(20.21)→ p′+p′′+3H. However, if an
electron or proton scatters on the hexadiquark Fock state of 4He, it can produce orbital or radial excitations between
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FIG. 12. Fit by electromagnetic transition function 4He∗(17.9)→ 4He + (e+e−) with form factor F (q2) ∝ exp−(q/λ)2 (in red)
and background distribution (in black). The signal alone is shown in blue.

any two of the [ud] diquarks; e.g. ([ud] + [ud]) + [[ud][ud][ud][ud]]. Typically such excitations would be at energies
near 300 MeV, in analogy to the N∗ and ∆ excited states of nucleons. Excitations of single diquarks from spin-0
isospin-0 to spin-1 isospin-1 have energies of the order 100 MeV. However, the HdQ is an unusual QCD state because
it is built with three symmetric and repulsive 3̄× 3̄→ 6̄ of SU(3)C interactions at the duodiquark stage of the build,
[ud][ud]. While the full build of the HdQ is strongly bound with color factor CF = −5, the QCD potential between

diquarks in a duodiquark is repulsive and given by V (r) = − 1
3
g2s
4πr . An L = 1 excitation between diquarks in the

repulsive duodiquark is a viable low mass excitation. (This is in contrast to the strongly bound attractive 3× 3̄→ 1 of

the quark-diquark bond in baryons, with short-range QCD potential V (r) = + 4
3
g2s
4πr .) Such a color-singlet excitation

of the HdQ would not easily decay to a conventional nuclear physics state; however, it can decay to the 4He ground
state by emitting a virtual photon which makes an e+e− pair. The HdQ thus could be the origin of a previously
missed 4He∗(17.9) excited state. It can be observed in e+ 4He→ e′ + 4He∗(17.9)→ e′ + 4He + [e+e−].

The mass scale of the transition form factor F (q2) producing the timelike lepton pair HdQ∗ → HdQ + γ∗ should
be small, since it reflects the large size structure of the HdQ and its excitations such as [ud][[ud] + [ud][ud][ud][ud]],
allowing for the λ parameter of order 10 MeV as our fit requires. The spin-parity of the lepton pair could be either
JPC = 0++ or 1−−. In either case, F (q2 = 0) = 0. The conclusion from these arguments is that an excitation of the
HdQ can account for the excellent fit and parameters in Fig.12 to the ATOMKI data given in Fig.7. We note that
the hexadiquark state has been proposed as a hidden color state within every nucleus containing an alpha particle
and therefore this decay will also be observed in 9Be and 12C.

We propose tests of the HdQ description of the ATOMKI signals. The hexadiquark composition of 4He could be
observed as a peak in the missing mass in e+ 4He→ e′+ X and by observing e+ 4He→ e′+ [ud] + X which produces
a [ud]-diquark jet [22] opposite the scattered electron.

Conclusions

We have presented a hidden color QCD solution to the ATOMKI anamoly. The calculation of the invariant mass
me+e− spectrum in the electromagnetic transition process 4He

∗
(E∗) → 4He + γ∗ → 4He + e+e− and the estimated

the differential and total width of the decay can be fit by new diquark excitations of 4He. Taking into account the
small mass difference ∆m between the excited and ground states of the 4He nuclei in comparison with the nuclear
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mass (m−m0)2/m2 = 3 · 10−5 � 1, we found a simple expression for the differential width of this decay

dΓ

dme+e−
∝ me+e−

(
∆m2 −m2

e+e−

) 3
2 .

The total width depends only on the mass difference ΓE0 ∝ ∆m5 in the limit of negligible electron mass. The me+e−

distribution is a smooth function between the limits of 2me and ∆m. We’ve demonstrated that it is not possible to
describe the published ATOMKI excesses [1] by the electromagnetic decay 4He

∗
(20.21) → 4He + γ∗ → 4He + e+e−.

While introducing a form factor to the electromagnetic transition with definite parameters creates a peak close to 17
MeV as required, the width of the distribution is different from the experimental value σ = 0.7 MeV. This attempt
to fit ATOMKI data with various plausible form factor models fails to describe the experimental data.

It is possible to obtain the shape of the ATOMKI signal by introducing a new excited 4He∗ state with mass 17.9
MeV above the ground state, motivated by the proposed color singlet hexadiquark Fock state model of the nuclear
wavefunction of 4He [21]. The energy of the electron-positron pair in this case has to be very close to 17.9 MeV, a
value which is 1.6σ from the lower limit of the selection of the positrons and electrons with energy in the region (19.5,
22.0) MeV. While the nuclear energy scale for a 4He decay is of the order λ ∼ 200 MeV, an order of magnitude larger
than the energy coming from our fit, excitations of the three repulsive interaction duodiquarks within the hexadiquark
state are naturally at these energy and length scales. The existence of the ATOMKI X17 lepton pair events requires
that there must also be a peak near 17.9 MeV in 4He.
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