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Lorentz- and CPT-violating effects initiating two-body electromagnetic flavor-changing decays of
charged leptons are studied in the framework of Lorentz-violating effective field theory. An analysis
of data from experiments at the Paul Scherrer Institute and at the Stanford Linear Accelerator
measuring the branching ratios of these decays provides 576 constraints on independent flavor-
changing effects in the charged-lepton sector, consistent with no Lorentz and CPT violation at the
level of parts in 10−13 GeV−1 to 10−9 GeV−1.

For many decades now, flavor-changing effects have
played a central role in the discovery of new physics vi-
olating fundamental symmetries of nature, including the
discrete symmetries charge conjugation C, parity inver-
sion P, and time reversal T and the continuous inter-
nal symmetries of the minimal Standard Model (SM). In
the SM, for example, charged weak interactions change
fermion flavor, converting charged leptons to neutrinos or
mixing quarks of different flavors. These effects underlie
the observation of P violation in weak decays [1] and the
detection of CP violation in kaon oscillations [2]. Also,
flavor oscillations of neutrinos have provided evidence of
physics beyond the SM [3, 4], involving breaking of the
accidental SM global Ue(1)×Uµ(1)×Uτ (1) invariance by
right-handed neutrino fields.

A key symmetry in nature is Lorentz invariance, which
ensures that physical laws are unchanged under rota-
tions or boosts and is accompanied by CPT invariance.
While these invariances hold to an excellent approxima-
tion, they could be broken in an underlying theory that
combines gravity and quantum physics such as strings
[5], thereby leading to tiny observable effects of Lorentz
violation (LV) at present energy scales. Although exten-
sive experimental investigations of this idea have been
performed [6], comparatively little is known about flavor-
changing LV interactions. Instead, most studies of flavor-
changing LV effects involve propagation. For example,
neutral-meson oscillations are sensitive to Lorentz- and
CPT-violating effects that are otherwise challenging to
detect [7], but in these experiments the flavor changes
are driven by known weak interactions while the Lorentz
and CPT violation is diagonal in quark flavor.

The present work addresses this gap in the literature by
investigating flavor-changing LV interactions that induce
charged-lepton decays, in particular electromagnetic de-
cays of the muon and tau. In conventional Lorentz-
invariant models, flavor-changing decays of charged lep-
tons occur only via suppressed one-loop processes with
branching ratios <∼ 10−54 [8], so these processes offer ex-
ceptionally clean probes of new physics. Here, we per-
form a model-independent analysis of experimental data
to search for dominant LV effects in these decays. Our
results are consistent with no effects in 576 indepen-

dent coefficients for LV, thereby excluding electromag-
netic flavor-changing LV interactions of leptons at parts
in 10−13 GeV−1 to 10−9 GeV−1.

Given the absence of compelling evidence for LV to
date, model-independent techniques are desirable and ap-
propriate for analyses of prospective low-energy signals.
A model-independent framework based on effective field
theory, known as the Standard-Model Extension (SME)
[9, 10], offers a powerful and widely adopted approach
for experimental searches for LV [6, 11]. In Minkowski
spacetime, the Lagrange density of the SME contains
the SM extended by adding all observer-invariant terms
formed by contracting LV operators with controlling co-
efficients. In effective field theory, CPT violation im-
plies LV [9, 12], so the SME also describes all CPT-
violating effects. Despite the substantial body of exist-
ing experimental measurements [6], many coefficients for
LV remain unconstrained to date. Their magnitudes are
generically undetermined by theory, with some “counter-
shaded” ones challenging to detect despite being large
[13], so model-independent experimental searches with-
out prior assumptions about coefficient magnitudes ac-
quire particular importance in this context.

The presence of LV allows the electromagnetic decays
ℓA → ℓB + γ of a charged lepton ℓA into a charged lep-
ton ℓB and a photon γ to proceed directly at tree level,
in contrast to the suppressed loop-level decays in con-
ventional Lorentz-invariant models. Since the decays are
governed by energy scales on the order of mA, SME op-
erators of low mass dimension are expected to provide
the dominant experimental signals in these and related
processes [9, 14–22]. All terms in the SME Lagrange
density with operators of mass dimension up to six are
explicitly known [23]. In the lepton-photon sector, some
of these operators affect propagation while others repre-
sent pure interactions. The former involve bilinears in
the lepton fields and their spacetime derivatives. Set-
ting the photon field to zero establishes the free-fermion
Lagrange density and determines the propagating flavor
eigenstates of the hamiltonian. By construction, these
eigenstates represent the physical electron, muon, and
tau fields relevant for laboratory experiments, and so
during free propagation they preserve the corresponding
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TABLE I. Dimension-five terms with Fµν couplings. Note (−)µ ≡ + for µ = 0 and (−)µ ≡ − for µ = 1, 2, 3.

Term Number C P T CP CPT

−
1
2
(m

(5)
F )αβ

ABFαβψAψB 54 − (−)α(−)β −(−)α(−)β −(−)α(−)β +

−
1
2
i(m

(5)
5F )αβ

ABFαβψAγ5ψB 54 − −(−)α(−)β (−)α(−)β (−)α(−)β +

−
1
2
(a

(5)
F )µαβ

AB FαβψAγµψB 216 + (−)µ(−)α(−)β −(−)µ(−)α(−)β (−)µ(−)α(−)β −

−
1
2
(b

(5)
F )µαβ

AB FαβψAγµγ5ψB 216 − −(−)µ(−)α(−)β −(−)µ(−)α(−)β (−)µ(−)α(−)β −

−
1
4
(H

(5)
F )µναβ

AB FαβψAσµνψB 324 + (−)µ(−)ν(−)α(−)β (−)µ(−)ν(−)α(−)β (−)µ(−)ν(−)α(−)β +

lepton numbers without flavor changes despite the pres-
ence of LV. With the photon reintroduced, the spacetime
derivatives in all operators affecting propagation are co-
variant and symmetrized [23], so the photon fields ap-
pearing in these bilinears also preserve the eigenstates
during propagation. It follows that no tree-level electro-
magnetic flavor-changing decays of the physical charged
leptons can occur from these covariant-derivative cou-
plings, contrary to the assumptions of pioneering works
on these decays that adopted experimentally unphysical
eigenstates for calculations. This flavor-conserving fea-
ture has the same origin as its analogue in the SM, and it
can be understood as a consequence of the global symme-
try Ue(1)×Uµ(1)×Uτ (1) of the free-fermion theory that
is transmitted to any photon couplings associated with
covariant derivatives.

Since we are interested in operators that change the
flavor of a physical eigenstate while emitting a photon,
the effects relevant here must instead involve direct cou-
plings of the electromagnetic field strength to lepton bi-
linears. All such operators are independent of the prop-
agation terms in the Lagrange density, so they can be
off-diagonal in flavor space even in the basis of physi-
cal eigenstates relevant for experiments. They therefore
can violate the Ue(1)×Uµ(1)×Uτ (1) symmetry, inducing
observable charged-lepton decays in detectors. The dom-
inant operators of this form have mass dimension five and
are the focus of this work. Since the lepton decay rates
contain the square of the decay amplitude, which itself
is already at leading order in LV, any LV effects in prop-
agation and the associated modifications of phase-space
factors can be disregarded in what follows.

The dimension-five terms of interest in the Lagrange
density [23] are listed in the first column of Table I. The
lepton fields are denoted ψA, A = e, µ, τ , and the elec-
tromagnetic field strength is Fµν . The behaviors of the
terms under C, P, T, CP, and CPT are also displayed in
the table. The results reveal the prospect of novel sources
of discrete-symmetry breakdown in the presence of LV,
including possible violations of the CPT theorem [24].

The coefficients for LV (m
(5)
F )αβAB , (m

(5)
5F )

αβ
AB, (a

(5)
F )µαβAB ,

(b
(5)
F )µαβAB , (H

(5)
F )µναβAB have units of GeV−1 and by con-

struction are antisymmetric on the index pairs (α, β) and

(µ, ν). They can be viewed as complex matrices in flavor
space, constrained by hermiticity of the Lagrange den-
sity. The number of independent real components of each
coefficient is given in the second column of the table.

The SME coefficients transform as covariant tensors
under observer Lorentz transformations and as scalars
under particle transformations, so the terms in the first
column generically violate Lorentz invariance [9]. How-
ever, some of the coefficients can contain components
proportional to products of the Minkowski metric ηµν
and the Levi-Civita tensor ǫµνρσ, which are Lorentz-
group invariants, and hence the corresponding terms
are Lorentz invariant. For example, the coefficients

(H
(5)
F )µναβAB contain two Lorentz-invariant pieces yield-

ing the Lorentz-invariant terms −(H
(5)
F,1)ABF

µνψAσµνψB

and −(H
(5)
F,2)ABF̃

µνψAσµνψB, where F̃
µν ≡ ǫµναβFαβ/2

is the dual field strength. These terms describe anoma-
lous magnetic and electric dipole moments. They corre-
spond to the leading operators in the Low-energy Effec-
tive Field Theory (LEFT) [25, 26] for the decay ℓA →
ℓB + γ, which derive from dimension-six effects in the
Standard-Model Effective Field Theory (SMEFT) upon
matching operators at the electroweak scale [27]. For
the magnetic dipole term in the two-flavor electron-muon
limit, for instance, the connection appears explicitly by
expanding the SME results into chiral field components
and matching to the LEFT and SMEFT operators. More
generally, the SMEFT can be viewed as a restriction of
the SME to the Lorentz-invariant sector in Minkowski
spacetime, SME ⊃ SMEFT ⊃ LEFT, with every SMEFT
Wilson coefficient being a Lorentz-invariant combination
of nonminimal SME coefficients in Minkowski spacetime
and an appropriate power of the high-energy scale repre-
senting the onset of new physics.

The terms listed in Table I generate novel three-point
vertex functions allowing the decays ℓA → ℓB +γ. These
terms leave unaffected the free propagation of the fermion
and photon fields, so standard quantization techniques
apply [28]. If ℓA has momentum pµ and spin projection
s, ℓB has momentum p′µ and spin projection s′, and the
photon has momentum kµ and helicity λ, then the con-

tribution to the decay amplitude M(s,s′,λ)
AB (p, p′, k) from
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a given term in the table takes the form

M(s,s′,λ)
AB =

{
u
(s)
B (p′)V β

BA(k)u
(s′)
A (p)ǫ

(λ)∗
β (k),

v
(s)
A (p)V β

AB(k)v
(s′)
B (p′)ǫ

(λ)∗
β (k),

(1)

where the first line holds for particle decay and the second
for antiparticle decay. The quantity V β

AB(k) = (V β
BA(k))

∗

is the member of the set {(m(5)
F )αβABkα, i(m

(5)
5F )

αβ
ABγ5kα,

(a
(5)
F )µαβAB γµkα, (b

(5)
F )µαβAB γµγ5kα,

1
2 (H

(5)
F )µναβAB σµνkα} cor-

responding to the chosen term in Table I. Note that the
Ward identity ensuring gauge invariance of the amplitude

(1) is enforced through the vanishing of M(s,s′,λ)
AB (p, p′, k)

under the replacement ǫ
(λ)∗
β (k) → kβ .

Existing experimental limits on charged-lepton transi-
tions are stringent and hence well suited for constrain-
ing small deviations from known physics. Tight bounds
on flavor violations involving muons come from stud-
ies of two-body decays by the Mu to Electron Gamma
(MEG) collaboration at the Paul Scherrer Institute [29],
BR(µ+ → e+ + γ) ≤ 4.2 × 10−13. The BABAR col-
laboration at the Stanford Linear Accelerator obtained
constraints [30] both on decays of taus into muons,
BR(τ± → µ± + γ) ≤ 4.4 × 10−8, and on decays into
electrons, BR(τ± → e± + γ) ≤ 3.3× 10−8.
In the MEG experiment [31], polarized antimuons in

a beam are stopped in a plastic target and subsequently
decay at rest, producing back-to-back positrons and pho-
tons each carrying energy mµ/2 ≃ 52.83 MeV. The sig-
nal process therefore involves the calculation of the in-
tegrated decay rate of a polarized antimuon at rest to
a positron and photon. The direction dependence aris-
ing from LV means that the calculation must take into
account the restricted solid-angle acceptance window for
the signal photon in the MEG detector and allow for all
possible spin configurations in the final state. It is con-
venient to identify the beam direction as the detector z
axis. Approximately ≃ 11% of the full phase space is ac-
cessible, and the limits on detector polar and azimuthal
angles are θ ∈ (1.21, 1.93), φ ∈ (2π3 ,

4π
3 ). For our pur-

poses it suffices to approximate the antimuons as having
initial polarization Pµ = −1. In practice a small depo-
larization of the beam occurs during propagation, which
could be taken into account in a future detailed data re-
construction. The polarized decay rate is therefore given
by

Γ ≈ 1

64π2mµ

∫ θmax

θmin

∫ φmax

φmin

sin θdθdφ |Mµe(θ, φ)|2, (2)

where the antiparticle decay amplitude (1) is chosen. The
explicit expression for |Mµe(θ, φ)|2 is obtained directly
from Eq. (1) but is lengthy and omitted here. Multiplying
the result by the muon lifetime τµ ≃ 2.2 × 10−6 s gives
the theoretical branching ratio in terms of the coefficients
for LV appearing in Table I, expressed in the frame of the
MEG detector.

In the BABAR experiment [32, 33], the τ± are produced
via unpolarized and asymmetric e+e− → τ+τ− collisions
near the Υ(4S) resonance. The emerging tau pairs retain
nonzero longitudinal momentum, so their rest frame dif-
fers from the detector frame. However, the boost factor
γ ≈ √

s/(2mτ ) ≃ O(1) between the two frames is com-
paratively small and can be disregarded in studying LV
effects, so the rest frame of the tau pairs can reasonably
be taken as the detector frame. For present purposes it
suffices to approximate the fiducial volume of the BABAR

detector as spanning the full 4π steradians. In practice
small cones involving ≃ 10% of the volume along the col-
lider beamline directions are unavailable, and this could
be incorporated into a future data analysis. The decay
rates for the processes τ± → (µ±, e±) + γ are therefore
given by

Γ±
AB ≈ 1

64π2mτ

∫

4π

dΩ
∑

s,s′,λ

1
2 |M

±(s,s′,λ)
AB (θ, φ)|2, (3)

where θ, φ are the polar and azimuthal angles of the pho-
ton with respect to the +z axis of the detector frame,
A = τ and B = µ or e, and the signs ± correspond
to the lepton charge in the process. The full integrand
|M(θ, φ)|2 is lengthy, but if attention is restricted to any
given operator in Table I then it takes the form

|M(θ, φ)|2 = − 1
2ηµνTr

[
(/p∓mA)V

µ
AB(/p

′∓mB)V
†ν
AB

]
. (4)

Explicit evaluation gives
∑

|M
m

(5)
F

|2 = 2(mAmB + p · p′)(m(5)
F )kµAB(m

(5)
F )∗ABµ

k,
∑

|M
m

(5)
5F

|2 = 2(mAmB − p · p′)(m(5)
5F )

kµ
AB(m

(5)
5F )

∗
ABµ

k,
∑

|M
a
(5)
F

|2 = 2(mAmB − p · p′)(a(5)F )µνkAB (a
(5)
F )∗ABµν

k

−2
(
(a

(5)
F )pkνAB (a

(5)
F )∗p

′k
AB ν + h.c.

)
,

∑
|M

b
(5)
F

|2 = 2(mAmB + p · p′)(b(5)F )µνkAB (b
(5)
F )∗ABµν

k

−2
(
(b

(5)
F )pkνAB (b

(5)
F )∗p

′k
AB ν + h.c.

)
,

∑
|M

H
(5)
F

|2 = 1
2 (mAmB + p · p′)

×(H
(5)
F )µναkAB (H

(5)
F )∗ABνµα

k

+2
(
(H

(5)
F )µpkνAB (H

(5)
F )∗ABµ

p′k
ν + h.c.

)
, (5)

where the sums are over spins and indices p, p′, k repre-
sent contraction with the corresponding momenta. Sub-
stituting these expressions into the decay rate (3) and
multiplying by the tau lifetime ττ ≃ 2.9× 10−13 s yields
the theoretical branching ratio in terms of coefficients for
LV, expressed in the detector frame.
The presence of LV means that the explicit values of

the coefficients listed in Table I are frame dependent,
so experimental results must be reported in a specified
frame. The coefficients can be taken as spacetime con-
stants in cartesian inertial frames near the Earth [10].
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TABLE II. Constraints deduced from Ref. [29].

Coefficients Constraint (GeV−1)

(m
(5)
F )TJ

µe , (m
(5)
F )JZ

µe , (m
(5)
5F )

TJ
µe , (m

(5)
5F )

JZ
µe , < 6.0 × 10−13

(a
(5)
F )TTJ

µe , (a
(5)
F )TJZ

µe , (a
(5)
F )JTJ

µe , (a
(5)
F )JTK

µe ,

(a
(5)
F )JJZ

µe , (a
(5)
F )JKZ

µe , (a
(5)
F )ZTJ

µe , (a
(5)
F )ZJZ

µe ,

(b
(5)
F )TTJ

µe , (b
(5)
F )TJZ

µe , (b
(5)
F )JTJ

µe , (b
(5)
F )JTK

µe ,

(b
(5)
F )JJZ

µe , (b
(5)
F )JKZ

µe , (b
(5)
F )ZTJ

µe , (b
(5)
F )ZJZ

µe ,

(H
(5)
F )TJTJ

µe , (H
(5)
F )TJTK

µe , (H
(5)
F )TJJZ

µe ,

(H
(5)
F )TJKZ

µe , (H
(5)
F )TZTJ

µe , (H
(5)
F )TZJZ

µe ,

(H
(5)
F )JKTJ

µe , (H
(5)
F )JKJZ

µe , (H
(5)
F )JZTJ

µe ,

(H
(5)
F )JZTK

µe , (H
(5)
F )JZJZ

µe , (H
(5)
F )JZKZ

µe

(m
(5)
F )TZ

µe , (m
(5)
F )JK

µe , (m
(5)
5F )

TZ
µe , (m

(5)
5F )

JK
µe , < 6.4 × 10−13

(a
(5)
F )TTZ

µe , (a
(5)
F )TJK

µe , (a
(5)
F )JTZ

µe , (a
(5)
F )JJK

µe ,

(a
(5)
F )ZTZ

µe , (a
(5)
F )ZJK

µe , (b
(5)
F )TTZ

µe , (b
(5)
F )TJK

µe ,

(b
(5)
F )JTZ

µe , (b
(5)
F )JJK

µe , (b
(5)
F )ZTZ

µe , (b
(5)
F )ZJK

µe ,

(H
(5)
F )TJTZ

µe , (H
(5)
F )TZTZ

µe , (H
(5)
F )JKTZ

µe ,

(H
(5)
F )JZTZ

µe , (H
(5)
F )TJJK

µe , (H
(5)
F )TZJK

µe ,

(H
(5)
F )JKJK

µe , (H
(5)
F )JZJK

µe

The canonical frame adopted in the literature is the Sun-
centered frame (SCF) with right-handed cartesian coor-
dinates (T,X, Y, Z), where T is zero at the 2000 vernal
equinox, the Z axis is parallel to the Earth’s rotation axis,
and the X axis points from the Earth to the Sun at T = 0
[34]. The Earth’s rotation makes all laboratory frames
noninertial and so the coefficients expressed in the labo-
ratory frame are time dependent, oscillating at harmonics
of the Earth’s sidereal frequency ω⊕ ≃ 2π/(23 h 56 min)
[7]. Neglecting the Earth’s boost, the transformation
from the SCF to a standard laboratory frame with x
axis pointing to the south, y axis to the east, and z axis
to the local zenith is

R =



cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ − sinχ

− sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ


 , (6)

where the angle χ is the colatitude of the laboratory,
which is χ ≃ 42.5◦ for MEG and χ ≃ 52.6◦ for BABAR.
The laboratory sidereal time T⊕ ≡ T −T0 is shifted rela-
tive to T [35], with T0 ≃ 3.9 h for MEG and T0 ≃ 12.5 h
for BABAR. Neither the MEG nor the BABAR detector
frames coincide with the standard laboratory frame, so
matching requires an extra rotation of ψ about the z axis
followed by an improper rotation (x, y, z) → (−x, z,+y),

Rdetector =



−1 0 0

0 0 1

0 +1 0







cosψ sinψ 0

− sinψ cosψ 0

0 0 1


 , (7)

where ψ ≃ −30◦ for MEG and ψ ≃ −50◦ for BABAR.

TABLE III. Constraints deduced from Ref. [30].

Coefficients Constraint (GeV−1)

(m
(5)
F )TJ

τµ , (m
(5)
F )TZ

τµ , (m
(5)
F )JK

τµ , (m
(5)
F )JZ

τµ < 1.8× 10−9

(m
(5)
5F )

TJ
τµ , (m

(5)
5F )

TZ
τµ , (m

(5)
5F )

JK
τµ , (m

(5)
5F )

JZ
τµ < 2.0× 10−9

(a
(5)
F )TTJ

τµ , (a
(5)
F )TTZ

τµ , (a
(5)
F )TJK

τµ , (a
(5)
F )TJZ

τµ , < 2.2× 10−9

(b
(5)
F )JTJ

τµ , (b
(5)
F )JTK

τµ , (b
(5)
F )JTZ

τµ , (b
(5)
F )JJK

τµ ,

(b
(5)
F )JJZ

τµ , (b
(5)
F )JKZ

τµ , (b
(5)
F )ZTJ

τµ , (b
(5)
F )ZTZ

τµ ,

(b
(5)
F )ZJK

τµ , (b
(5)
F )ZJZ

τµ , (H
(5)
F )JKTJ

τµ ,

(H
(5)
F )JKJZ

τµ , (H
(5)
F )JZTJ

τµ , (H
(5)
F )JZTK

τµ ,

(H
(5)
F )JZJZ

τµ , (H
(5)
F )JZKZ

τµ , (H
(5)
F )JZTZ

τµ ,

(H
(5)
F )JZJK

τµ , (H
(5)
F )JKTZ

τµ , (H
(5)
F )JKJK

τµ

(a
(5)
F )JTJ

τµ , (a
(5)
F )JTK

τµ , (a
(5)
F )JTZ

τµ , (a
(5)
F )JJK

τµ , < 2.5× 10−9

(a
(5)
F )JJZ

τµ , (a
(5)
F )JKZ

τµ , (a
(5)
F )ZTJ

τµ , (a
(5)
F )ZTZ

τµ ,

(a
(5)
F )ZJK

τµ , (a
(5)
F )ZJZ

τµ , (b
(5)
F )TTJ

τµ , (b
(5)
F )TTZ

τµ ,

(b
(5)
F )TJK

τµ , (b
(5)
F )TJZ

τµ , (H
(5)
F )TJTJ

τµ ,

(H
(5)
F )TJTK

τµ , (H
(5)
F )TJJZ

τµ , (H
(5)
F )TJKZ

τµ ,

(H
(5)
F )TZTJ

τµ , (H
(5)
F )TZJZ

τµ , (H
(5)
F )TJTZ

τµ ,

(H
(5)
F )TJJK

τµ , (H
(5)
F )TZTZ

τµ , (H
(5)
F )TZJK

τµ

(m
(5)
F )TJ

τe , (m
(5)
F )TZ

τe , (m
(5)
F )JK

τe , (m
(5)
F )JZ

τe , < 1.6× 10−9

(m
(5)
5F )

TJ
τe , (m

(5)
5F )

TZ
τe , (m

(5)
5F )

JK
τe , (m

(5)
5F )

JZ
τe

(a
(5)
F )TTJ

τe , (a
(5)
F )TTZ

τe , (a
(5)
F )TJK

τe , (a
(5)
F )TJZ

τe < 1.9× 10−9

(a
(5)
F )JTJ

τe , (a
(5)
F )JTK

τe , (a
(5)
F )JTZ

τe , (a
(5)
F )JJK

τe , < 2.1× 10−9

(a
(5)
F )JJZ

τe , (a
(5)
F )JKZ

τe , (a
(5)
F )ZTJ

τe , (a
(5)
F )ZTZ

τe ,

(a
(5)
F )ZJK

τe , (a
(5)
F )ZJZ

τe

(b
(5)
F )TTJ

τe , (b
(5)
F )TTZ

τe , (b
(5)
F )TJK

τe , (b
(5)
F )TJZ

τe , < 2.0× 10−9

(b
(5)
F )JTJ

τe , (b
(5)
F )JTK

τe , (b
(5)
F )JTZ

τe , (b
(5)
F )JJK

τe ,

(b
(5)
F )JJZ

τe , (b
(5)
F )JKZ

τe , (b
(5)
F )ZTJ

τe , (b
(5)
F )ZTZ

τe ,

(b
(5)
F )ZJK

τe , (b
(5)
F )ZJZ

τe , (H
(5)
F )TJTJ

τe ,

(H
(5)
F )TJTK

τe , (H
(5)
F )TJJZ

τe , (H
(5)
F )TJKZ

τe ,

(H
(5)
F )TZTJ

τe , (H
(5)
F )TZJZ

τe , (H
(5)
F )TJTZ

τe ,

(H
(5)
F )TJJK

τe , (H
(5)
F )TZTZ

τe , (H
(5)
F )TZJK

τe ,

(H
(5)
F )JKTJ

τe , (H
(5)
F )JKJZ

τe , (H
(5)
F )JZTJ

τe ,

(H
(5)
F )JZTK

τe , (H
(5)
F )JZJZ

τe , (H
(5)
F )JZKZ

τe ,

(H
(5)
F )JZTZ

τe , (H
(5)
F )JZJK

τe , (H
(5)
F )JKTZ

τe ,

(H
(5)
F )JKJK

τe

Experiments searching for LV aim to measure the co-
efficients for LV in the SCF. The above transformations
show that the experimental observables in the detector
frame are functions of χ, ψ, T⊕, and the SCF coefficients
and that a given coefficient with n Lorentz indices is
generically accompanied by oscillations in T⊕ involving
from zero to n harmonics. As a result, data taken with
time stamps can be binned in sidereal time and used to
extract the amplitudes and phases of the various har-
monics, yielding a series of independent constraints on
the SCF coefficients. The dependence on colatitude and
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longitude implies that different experiments are sensitive
to distinct coefficient combinations.

For the MEG and BABAR experiments, the published
limits on the branching ratios can be viewed as time-
averaged measurements. The time averages of the results
(2) and (3) involve only rotation-invariant combinations
of the SCF coefficients appearing in Table I, although
they can still depend on the experiment colatitude χ and
detector orientation ψ. Note also that the integration
(3) over the full final-state phase space means that the
decay rate for BABAR is unaffected by the rotation to the
SCF. The three published limits [29, 30] on the decays
yield three constraints on the combinations of SME co-
efficients in the SCF given in Eqs. (2) and (3). They
are compatible with the three recent bounds obtained

[16] on combinations of trace components of (a
(5)
F )µαβAB

and (b
(5)
F )µαβAB , provided the propagating eigenstates are

taken to match the physical ones appropriate for experi-
ments. Calculation reveals that all types of independent
coefficients in Table I contribute to the time-averaged
signals. Following standard procedure in the field [6],
we can transform the three experimental constraints into
limits on independent coefficient components taken one
at a time. This procedure yields the 576 constraints on
LV presented in Tables II and III. Of these, the entries

involving the coefficients (a
(5)
F )µαβAB and (b

(5)
F )µαβAB also are

bounds on CPT violation. Each entry is a constraint at
the 90% confidence level on the modulus of the real and
imaginary parts of a coefficient component in the SCF,
with indices J and K 6= J taking the values X or Y .

To summarize, an analysis of published data from
the MEG and BABAR experiments places constraints on
576 independent coefficients for electromagnetic flavor-
changing Lorentz and CPT violation in the charged-
lepton sector. The results are consistent with no flavor-
changing Lorentz violation in the range of parts in 10−13

GeV−1 to 10−9 GeV−1, and they establish a bar exclud-
ing flavor-changing LV effects on these scales. Excellent
prospects exist for future improvements on these results,
both via analyses incorporating sidereal and annual time
variations and via increased sensitivities to ℓA → ℓB + γ
and related decays in upcoming experiments [36–40].
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