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Abstract

We calculate the target normal single-spin asymmetry caused by two-photon exchange in inclusive electron-nucleon scattering in
the resonance region. Our analysis uses the 1/Nc expansion of low-energy QCD and combines N and ∆ intermediate and final
states using the contracted SU(4) spin-flavor symmetry. The normal spin asymmetry obtained in leading-order accuracy in 1/Nc

has magnitude ∼10−2 and different sign in ep and en scattering. It can be measured in electron scattering at lab energies ∼0.5–1.5
GeV and provides a clean probe of two-photon exchange dynamics.

1. Introduction

Electron scattering represents a principal tool for exploring
hadron structure and strong interaction dynamics. The process
is traditionally described in leading order of the electromag-
netic coupling (one-photon exchange approximation), where
the amplitude is proportional to the transition matrix element
of the electromagnetic current operator between the hadronic
states. Recent developments in experiment and theory point
to the need of including higher-order interactions between the
electron and the hadronic system (two-photon exchange) in cer-
tain observables [1]. Measurements of the proton form factor
ratio Gp

E/G
p
M at Jefferson Lab using the Rosenbluth separation

and polarization transfer methods show discrepancies that have
been associated with two-photon exchange [2, 3, 4]. A di-
rect demonstration of two-photon exchange becomes possible
through comparison of electron and positron scattering in ex-
periments at DESY [5, 6] and Jefferson Lab [7]. Two-photon
exchange is also discussed in connection with muon scatter-
ing at MUSE [8] and plays an important role in radiative cor-
rections to parity-violating electron scattering [9]. Two-photon
exchange has thus become as field of research in its own right.

A particularly interesting observable is the target spin depen-
dence in inclusive electron-nucleon scattering,

e(ki) + N↑(pi, ai)→ e(kf) + X(pf), (1)

where X denotes the hadronic final states accessible at the in-
cident energy, which are summed over. If the electron is un-
polarized, and the nucleon is polarized with a spin 4-vector ai,
with a2

i = −1 for complete polarization, the dependence of the
differential cross section on the nucleon spin is of the form [10]

dσ
dΓf

=
dσU

dΓf
− eµNaiµ

dσN

dΓf
(2)
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(dΓf denotes the invariant phase space element of the final elec-
tron and will be specified below). Here eN is the normalized
pseudovector formed from the initial and final electron mo-
menta and the initial nucleon momentum (ε0123 = 1),

eµN ≡
Nµ

√
−N2

, Nµ ≡ −εµαβγpiαkfβkiγ, e2
N = −1. (3)

In the nucleon rest frame, pi = 0, the spin 4-vector is ai =

(0, 2Si), with |Si| = 1/2 for complete polarization, and eN is the
normal vector to the scattering plane, so that the cross section
Eq. (2) depends on the normal component of the nucleon spin,

eN = (0, eN), eN =
kf × ki

|kf × ki|
, −eµNaiµ = 2eN · Si (4)

[this form applies in any frame where the 3-momenta ki, kf
and pi lie in a plane, e.g. the electron-nucleon center-of-mass
(CM) frame, where pi + ki = 0]. The spin-dependent cross
section in Eq. (2) is zero in one-photon exchange approxima-
tion, as a consequence of P and T invariance, and represents
a pure two-photon exchange observable [11, 12]. It is propor-
tional to the imaginary (absorptive) part of the eN → eX two-
photon exchange amplitude, which is given by the product of
on-shell matrix elements between the initial, intermediate, and
final electron-hadron states. Unlike the real (dispersive) part,
the imaginary part of the two-photon exchange amplitude is
infrared–finite and can be considered separately from real pho-
ton emission into the final state [10].

Measurements of the normal spin asymmetry (the ratio of the
N and U cross sections) have been performed in deep-inelastic
electron scattering (DIS) on proton [13] and 3He targets [14].
Theoretical calculations in this kinematics have employed the
parton picture and QCD interactions and produced a wide range
of estimates [10, 15, 16, 17]. Further measurements at few-
GeV energies are planned at Jefferson Lab [18]. Calculations
in the resonance region need to account for the contributions of
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individual hadronic channels to the inclusive cross section, in-
cluding elastic scattering and resonance excitation, and require
appropriate methods.

In this work we analyze the normal spin dependence of in-
clusive eN scattering in the resonance region using the 1/Nc ex-
pansion. The method organizes low-energy dynamics (hadron
masses, couplings, form factors) based on the scaling proper-
ties in the limit of a large number of colors in QCD and has
been successfully applied in many areas of hadronic physics
[19, 20, 21, 22, 23, 24, 25]. Low-lying baryon states are orga-
nized in multiplets of the emerging contracted SU(4) spin-flavor
symmetry, with the baryon masses O(Nc) and the splitting in-
side multiplets O(N−1

c ). The ground-state multiplet contains the
N and ∆, and transitions between them are governed by the
symmetry and can be computed using group-theoretical tech-
niques, with the parameters for the N–∆ and ∆–∆ transitions
fixed in terms of the measurable N–N transitions.

The 1/Nc expansion offers specific advantages for studying
two-photon exchange in inclusive scattering. The method treats
N and ∆ states on the same basis and enables a consistent de-
scription of inelastic channels and inclusive scattering in the
resonance region. The group-theoretical techniques permit effi-
cient calculation of the sums over channels in intermediate and
final states. The parametric ordering of the kinematic variables
gives rise to a physical picture that enables an intuitive under-
standing of the two-photon exchange process.

In this letter we present the leading-order 1/Nc expansion and
describe the calculational techniques and physical picture spe-
cific to this situation. A full analysis, including 1/Nc correc-
tions and suppressed structures, will be presented in a forth-
coming article.

2. Method

2.1. Kinematics and final states
Inclusive electron scattering Eq. (1) is characterized by three

independent kinematic variables, corresponding to the incident
energy, the momentum transfer, and the energy transfer of the
process. They can be chosen as the invariant variables

s ≡ (ki + pi)2 = (kf + pf)2, (5)

t ≡ (ki − kf)2 = (pf − pi)2 = q2, (6)

m2
X = (q + pi)2 = p2

f , (7)

where q ≡ ki − kf = pf − pi is the 4-momentum transfer. In the
following we use the CM frame, where the 3-momenta in the
initial and final states are pi = −ki, pf = −kf , with

|ki| =
s − m2

2
√

s
, |kf | =

s − m2
X

2
√

s
, (8)

t = −2|kf ||ki|(1 − cos θ), θ ≡ angle(kf , ki), (9)

where m is the nucleon mass.
When analyzing the process Eq. (1) in the 1/Nc-expansion,

we have to specify the scaling behavior of the kinematic vari-
ables in the parameter 1/Nc. Different choices are possible,

leading to different types of expansions. Here we consider the
domain where the initial and final CM momenta are

|ki|, |kf | = O(N0
c ), (10)

corresponding to
√

s = O(Nc) and
√

s − m = O(N0
c ). For the

final-state masses we consider values such that

mX − m = O(N−1
c ), m,mX = O(Nc). (11)

In this domain the only accessible final states are the ground-
state baryon multiplet containing the N and ∆ states, X = N +∆;
other baryon multiplets have masses mX − m = O(N0

c ) and are
not accessible as final states. Together, Eqs. (10) and (11) imply

|ki| − |kf | =
m2

X − m2

2
√

s
= O(N−1

c ) � |kf |, |ki|. (12)

In leading order of 1/Nc we can therefore neglect the difference
between |ki| and |kf | and use the common CM momentum

k ≡ |ki| = |kf | + O(N−1
c ). (13)

For the CM scattering angle we consider values θ = O(N0
c ),

which together with Eq. (10) implies

t = O(N0
c ). (14)

The parametric ordering in 1/Nc adopted here gives rise to a
definite physical picture of the scattering process. The electron
with energy O(N0

c ) scatters from the heavy nucleon with mass
O(Nc), losing a small fraction O(N−1

c ) of its energy. The nu-
cleon remains intact or gets excited to a ∆ by absorbing a small
energy O(N−1

c ). The velocity of the initial/final baryons is small
O(N−1

c ), and their kinetic energy is negligible compared to the
electron energy. However, the momentum transfer is O(N0

c ), so
that the process probes the internal structure of the baryons.

In the parametric domain considered here, inelastic scattering
consists simply in the transition from N to ∆ states, which can
be regarded as stable in leading order of 1/Nc (the ∆ width is
suppressed). This corresponds to the physical situation that πN
final states are predominantly produced through ∆ resonance
decay. Non-resonant πN states do not appear explicitly at lead-
ing order in 1/Nc in the domain considered here.

2.2. Currents and amplitudes
In the group-theoretical formulation of large-Nc QCD, the N

and ∆ are states in the SU(4) multiplet of ground-state baryons,
characterized by the spin/isospin S = I = 1/2 and 3/2, the
spin projection S 3, and the isospin projection I3, denoted col-
lectively by B ≡ {S , S 3, I3}. The electron scattering process
takes the form of a transition between baryon states 〈Bf |...|Bi〉.
We denote the electron-baryon scattering amplitude by

M(k, nf , ni|λ, Bf , Bi) ≡ Mf i, (15)

where k is the common CM momentum Eq. (13), and

ni ≡ ki/|ki|, nf ≡ kf/|kf | (16)
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are the unit vectors along the initial/final electron CM momenta.
In our convention the electron states have covariant normaliza-
tion, while the baryon states have non-covariant normalization;
in this way the baryon mass does not appear in the expressions
for the phase space integral Eq. (25) and cross section Eq. (26),
which is natural for the 1/Nc expansion. In Eq. (15), λ is the
electron helicity (spin projection on ni and nf), which is con-
served in the scattering process. The baryon spins are quantized
along a fixed direction in the CM frame; in this way the initial
and final states have the same quantization axis, and the spin
transitions can be computed using algebraic identities [24, 25].1

The amplitude Eq. (15) can be computed as an expansion in
the electromagnetic coupling,

Mf i = M(e2)
f i + M(e4)

f i + . . . (17)

The e2 term (one-photon exchange) is given by the product of
the electron and baryon currents,

M(e2)
f i = −

e2

tf i
( jµ)f i(Jµ)f i, (18)

tf i = −2k2(1 − nf ni), (19)

( jµ)f i = ū(nf , λ) γµ u(ni, λ), (20)

(Jµ)f i = 〈−nf , Bf |Ĵµ|−ni, Bi〉. (21)

The minus sign in Eq. (18) comes from the negative electric
charge of the electron. The electron current Eq. (20) is the stan-
dard current of the spin-1/2 particle; its explicit form can be
derived from the spinors in the CM frame. The baryon current
Eq. (21) can be constructed using the large-Nc SU(4) spin-flavor
symmetry and expanded in the generators {1̂, Îa, Ŝ i, Ĝia}(i, a =

1, 2, 3) [24, 25, 26]. Their matrix elements are of the order

〈Bf |{1̂, Îa, Ŝ i}|Bi〉 = O(N0
c ), 〈Bf |Ĝia|Bi〉 = O(Nc). (22)

The full 1/Nc expansion of the current is given in Ref. [26]. In
the present study we focus on the leading-order contribution to
the cross sections, which is produced by the isovector magnetic
current proportional to Ĝi3. This current is given by

(J0)f i = 0, (Ji)f i = ik ε i jk (nf − ni) j 〈Bf |Ĝk3|Bi〉 F(tf i). (23)

It satisfies the transversality condition qµ(Jµ)f i = 0 for all tran-
sitions between multiplet states, without corrections in 1/Nc.

The function F(t) in Eq. (23) (dimension mass−1) is the large-
Nc form factor, which describes the dynamical response of the
large-Nc baryon to the momentum transfer t = O(N0

c ). It can
be determined by matching the N → N matrix element of the
large-Nc current Eq. (23) with the physical nucleon current at
Nc = 3. At leading order in 1/Nc one obtains

F(t) =
GV

M(t)
m

∣∣∣∣∣∣
phys

, (24)

1The following calculation does not refer to a specific coordinate system.
For definiteness we can imagine using a system where nf + ni defines the +x-
direction, and nf − ni the +z-direction, and quantize the baryon spin along the
+z-direction; in this system the normal vector eN , Eq. (4), points in the +y
direction, and the spin density matrix Eq. (28) is σy/2.
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Figure 1: Inclusive eN scattering in the 1/Nc expansion in the domain Eqs. (10)
and (11). (a) Spin-independent cross section from square of e2 amplitudes.
(b) Spin-dependent cross section from interference of e4 and e2 amplitudes.
(c) Interference of real photon emission from electron and baryon.

where GV
M(t) ≡ 1

2 [Gp
M(t)−Gn

M(t)] is the physical nucleon isovec-
tor magnetic form factor, whose value at t = 0 is given by the
proton and neutron magnetic moments, GV

M(0) = 1
2 (µp − µn),

and m is the physical nucleon mass. In this way the spin-flavor
symmetry fixes the N–∆ and ∆–∆ form factors in terms of the
empirical N–N form factor, showing the predictive power of the
1/Nc expansion.

The e4 term in the electron-baryon scattering amplitude
Eq. (17) results from two-photon exchange interactions. The
absorptive part arises from on-shell rescattering and can be
computed as the product of two e2 amplitudes, integrated over
the phase space of the intermediate state (see Fig. 1b),

M(e4)
f i =

ik
4π

∫
dΩn

4π

∑
Bn

M(e2)
fn M(e2)

ni . (25)

We use the shorthand notation Eq. (15) for the amplitudes of the
i→ n and n→ f transitions. The integral is over the momentum
direction nn in the intermediate state, and the summation is over
the full set of baryon quantum numbers Bn, including N and ∆

states. The prefactor in Eq. (25) is specific to our convention
for the amplitude (see above).

Some comments are in order regarding the inelasticity in the
intermediate states of the two-photon exchange amplitude. In
the parametric domain considered here, the scattering energy is
√

s − m = O(N0
c ), so that the intermediate states in principle in-

clude baryons with masses mB − m = O(N0
c ) (N∗ states), larger

than those of the final states with mX − m = O(N−1
c ). However,

the electromagnetic couplings of such N∗ states to the ground
state multiplet are suppressed by 1/

√
Nc relative to those be-

tween ground state baryons [27, 28]. In leading order of the
1/Nc expansion it is thus justified to retain only ground state
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baryons N and ∆ as intermediate states. Note also that the two-
photon exchange amplitude Eq. (25) is free of collinear diver-
gences, because the large-Nc baryon currents in the i → n and
n → f amplitudes satisfy the transversality conditions without
corrections in 1/Nc [10].

2.3. Cross section
The cross section for inclusive eN scattering Eq. (1) in the

1/Nc expansion in the domain Eq. (10) and (11) is obtained
from the amplitude Eq. (15) as

dσ
dΩf

=
1

16π2

1
2

∑
λ

∑
S3i
′ S3i

ρ(S3i, S3i
′ )

×
∑
Bf

M∗f i(λ, Bf , Bi
′ ) Mf i(λ, Bf , Bi). (26)

We write the cross section as differential in the solid angle
of nf , similar to elastic scattering. The inclusive scattering is
expressed through the summation over the final baryon states
Bf = N,∆. The initial baryon is a nucleon, Bi = { 12 , S3i, I3i} and
Bi
′ = { 12 , S3i

′ , I3i}, with I3i = ± 1
2 for proton/neutron. The spin

projections are averaged with the nucleon spin density matrix
ρ, normalized as tr ρ = 1, which consists of an unpolarized and
a polarized part, ρ = ρU + ρN . The unpolarized part is

ρU =
1
2
δ(S3i, S3i

′ ). (27)

In the case of polarization along the unit vector eN , Eq. (3), the
polarized part is (σk are the Pauli matrices)

ρN =
1
2

ek
Nσ

k(S3i, S3i
′ ), (28)

such that the expectation value of the spin operator is∑
S3i
′ S3i

ρN(S3i, S3i
′ ) 〈S3i

′ | Ŝ k |S3i〉 =
1
2

ek
N . (29)

The spin-independent cross section of Eq. (2) is obtained
from the product of e2 amplitudes in Eq. (26) (see Fig. 1a),

dσU

dΩf
=

1
16π2

1
2

∑
λ

∑
S3i
′ S3i

ρU

∑
Bf

M(e2)∗
f i M(e2)

f i ; (30)

the expression will be evaluated further below. For the spin-
dependent cross section, one can easily verify that it is zero at
the same order in e2, because the e2 amplitude is real and the
average with Eq. (28) requires an imaginary part in one of the
amplitudes [11, 12]. The spin-dependent cross section appears
instead from the product of e2 and e4 amplitudes, i.e., the inter-
ference of one- and two-photon exchange (see Fig. 1b)

dσN

dΩf
=

1
16π2

1
2

∑
λ

∑
S3i
′ S3i

ρN

×
∑
Bf

[
M(e2)∗

f i M(e4)
f i + M(e4)∗

f i M(e2)
f i

]
. (31)

With the e4 amplitude given by Eq. (25), the spin-dependent
cross section is completely expressed in terms of the e2 ampli-
tude Eq. (18), and thus in terms of the large-Nc baryon current
matrix elements.

3. Results

3.1. Spin-dependent cross section and asymmetry
We now extract the leading 1/Nc term of the spin-dependent

cross section. It results from the isovector magnetic current
Eq. (23) proportional to the spin-flavor generator Ĝi3. The e2

amplitude Eq. (18) produced by this current is

M(e2)
f i =

e2F(tf i)
1 − nf ni

bi
f i〈Bf |Ĝi3|Bi〉, (32)

bi
f i ≡ iε i jk(nf − ni) j jkf i

2k
, (33)

where jkf i is the spatial part of the electron current Eq. (20). The
product of e2 and e4 amplitudes in Eq. (31) then becomes

M(e2)∗
f i M(e4)

f i =
ie6k
4π

∫
dΩn

4π
Ff iFfnFni bk∗

f i b j
fn bi

ni

(1 − nf ni)(1 − nf nn)(1 − nnni)

×
∑
Bf

∑
Bn

〈Bi
′ |Ĝk3|Bf〉〈Bf |Ĝ j3|Bn〉〈Bn|Ĝi3|Bi〉, (34)

where Ff i ≡ F(tf i), etc. It represents a sequence of isovector
magnetic transitions, with a tensor structure governed by the
electron current and the transition geometry. We evaluate it us-
ing algebraic methods based on t-channel angular momentum
considerations. For the intermediate states in the e4 amplitude,
we sum over Bn = N + ∆ using the completeness relation in the
ground state representation,∑

Bn

|Bn〉〈Bn| = 1, (35)

and the product in the last line of Eq. (34) becomes∑
Bf

〈Bi
′ |Ĝk3|Bf〉〈Bf |Ĝ j3Ĝi3|Bi〉. (36)

For the final states, we distinguish two cases:
(i) Nucleon final state, Bf = N. In this case the matrix ele-

ment of Ĝi3Ĝ j3 in Eq. (36) is a 1
2 →

1
2 spin transition, and the

tensor formed by the operator product can only have t-channel
angular momentum J = 0 or 1. The J = 1 part is antisymmet-
ric in i j and suppressed in 1/Nc, because the commutator of the
operators is [Ĝi3, Ĝ j3] = O(N0

c ). The tensor can therefore be
projected on J = 0, which in leading order in 1/Nc gives

Ĝ j3Ĝi3 →
1
3
δ ji Ĝl3Ĝl3 =

1
3
δ ji N2

c

16
, (37)

and Eq. (36) becomes

1
3
δ ji N2

c

16
〈Bi
′ |Ĝk3|Bi〉. (38)

(ii) Sum of nucleon and Delta final states, Bf = N +∆. In this
case the summation over Bf can be performed with the com-
pleteness relation, see Eq. (35), and Eq. (36) becomes

〈Bi
′ |Ĝk3Ĝ j3Ĝi3|Bi〉 ≡ T k ji. (39)
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Because the commutator of the Ĝi3 operators is suppressed in
1/Nc, see above, the tensor T k ji can be regarded as completely
symmetric in leading order. As such it can be projected on over-
all J = 1 using

T k ji →
1
5

(δk jT i + δkiT j + δ jiT k), (40)

T k ≡ T kll =
N2

c

16
〈Bi
′ |Ĝk3|Bi〉. (41)

The two cases thus lead to similar contractions of the tensor
Eq. (36). The remaining matrix element of Ĝk3 in Eqs. (38) and
(41) is proportional to the initial nucleon spin and isospin, and
in leading order of 1/Nc evaluates to

〈Bi
′ |Ĝk3|Bi〉 =

Nc

6
〈S3i
′ |Ŝ k |S3i〉 (2I3i), (42)

which can be averaged with the spin density matrix using
Eq. (29). Altogether, we obtain the spin-dependent cross sec-
tion in leading order of 1/Nc

dσN

dΩf
=

(2I3i)α3N3
c k Ff i

96 (1 − nf ni)

∫
dΩn

4π
FfnFni Φ

(1 − nf nn)(1 − nnni)
, (43)

Φ = Re
1
2

∑
λ

i
3

ek
Nbk∗

f i bl
fnbl

ni (for N final state), (44)

Φ = Re
1
2

∑
λ

i
5

ek
N

(
bk∗

f i bl
fnbl

ni + bl∗
f ib

k
fnbl

ni + bl∗
f ib

l
fnbk

ni

)
(for N + ∆ final state). (45)

Here α ≡ e2/4π is the fine structure constant. The angular func-
tions Φ can be evaluated using the explicit form of the axial vec-
tors bi

f i etc., Eq. (33). The spin-dependent cross section Eq. (43)
is proportional to the initial nucleon isospin (2I3i) = ±1 and has
different sign for ep and en scattering

dσN = dσN[ep] = −dσN[en]. (46)

We also compute the spin asymmetry

AN ≡
dσN

dΩf

/
dσU

dΩf
, (47)

by dividing by the unpolarized cross section computed in the
same approximation. In leading order of 1/Nc, the unpolarized
cross section Eq. (30) arises from the isovector magnetic cur-
rent in the e2 amplitude. In the case of summation over N and
∆ final states, Bf = N + ∆, the result is

dσU

dΩf
=

α2 N2
c F2

f i

24 (1 − nf ni)2

1
2

∑
λ

bi∗
f ib

i
f i (48)

=
α2 N2

c (3 − nf ni) F2
f i

48 (1 − nf ni)
. (49)

The spin-independent cross section in this approximation is
independent of the initial nucleon isospin; the asymmetry

0 /2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

A N
(1

0
2 )

N final, k = 0.4 GeV
N +  final
N final, k = 0.6 GeV
N +  final

Figure 2: Target normal single-spin asymmetry AN in inclusive eN scattering,
Eq. (47), in leading order of the 1/Nc expansion, for two values of the CM
momentum k, as a function of the CM scattering angle θ. Dashed lines: AN
with N final state in σN in the numerator. Solid lines: AN with N + ∆ final
states in σN . In both cases, σU in the denominator is with N + ∆ final states.

Eq. (47) therefore has the same isospin dependence as the spin-
dependent cross section in the numerator,

AN = AN[ep] = −AN[en]. (50)

Some comments on these result from the perspective of the
1/Nc expansion are in order. First, the spin-dependent cross
section is parametrically large in Nc, as it arises from the max-
imal product of isovector magnetic currents with matrix ele-
ments O(Nc). Second, our calculation provides an example of
the “I = J rule” of large-Nc QCD, according to which lead-
ing structures appear with t-channel quantum numbers I = J
[29, 30, 31]. The spin-dependent cross section, as a matrix ele-
ment between the initial nucleon states 〈Bi

′ |...|Bi〉, is a structure
with overall J = 1, and its leading large-Nc result has I = 1.
It arises as the product of an e2 amplitude with I = J = 1 (for
both N and ∆ final states) with an e4 amplitude that is either
projected on I = J = 0 (for N final) or on I = J = 2 (for ∆

final), as can be observed in the algebraic calculation above.

3.2. Numerical results
We now evaluate the asymmetry numerically and study its

kinematic dependence using the leading-order 1/Nc expansion
results, Eqs. (43)–(45) and Eq. (49). The large-Nc form fac-
tors F(t) appearing in the expressions are fixed by the match-
ing condition Eq. (24), and we use the standard dipole form
(1 − t/0.71 GeV2)−2 to model the empirical t-dependence.

Figure 2 shows AN for two values of the CM momentum k, as
a function of the CM scattering angle θ = angle(nf ni). Results
are shown for the cases of N and N + ∆ final states in σN in
the numerator; σU in the denominator is always for N + ∆ final
states; in this way one can add/subtract the results for AN in the
graph and see the contributions of the various channels to σN .
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(The intermediate states in the two-photon exchange amplitude
in σN are always the sum N + ∆.)

One observes: (i) AN vanishes at θ = 0 and π, which is
natural, as at these angles the normal vector n2 × n1 vanishes.
(ii) The contribution of ∆ final states (the difference of the re-
sults for N+∆ and N final states) is small at small θ but becomes
significant at θ ∼ π/2, causing the AN for final N + ∆ to be sev-
eral times larger than that for final N. (iii) AN reaches values
∼ 10−2 at θ ∼ π/2 and k ∼ 0.6 GeV.

Some comments on the region of applicability of the large-Nc

expressions are in order. (i) The 1/Nc expansion in the domain
Eq. (11) assumes that the ∆ channel is open. The expressions
should therefore be applied at CM energies above the physical
∆ threshold

√
s = 1.23 GeV. (ii) The calculation relies on the

1/Nc suppression of N∗ states with masses mB − m = O(N0
c ) as

intermediate states in the two-photon exchange amplitude. This
should be reasonable at energies up to and moderately above
the N∗ threshold

√
s ∼ 1.5 GeV, but not substantially above

it. (iii) The leading-order results for σN and AN arise entirely
from magnetic currents, which are proportional to the momen-
tum transfers at the vertices. They are not expected to be accu-
rate at small θ � π/2 and k � 1 GeV, where the momentum
transfers are kinematically suppressed and contributions from
electric currents are important (those can be computed as part
of the 1/Nc corrections). Altogether, we expect the leading-
order 1/Nc result to be a fair approximation at CM momenta
k ∼ 0.3–0.6 GeV and large angles θ ∼ π/2. In this kinematics
the accuracy of the leading-order 1/Nc result is naively esti-
mated to be of the order ∼ 1/3, as observed in other hadronic
observables. A more quantitative assessment of the accuracy
will become possible with the computation of 1/Nc corrections.

We note that the numerical results for σN and AN in the 1/Nc

expansion are strongly affected by the presence of the form fac-
tors in the integral in Eq. (43). This indicates that the two-
photon exchange observables are sensitive to baryon structure
in the domain considered here.

4. Extensions

We have studied the target normal single-spin asymmetry in
inclusive eN scattering in leading order of the 1/Nc expansion,
in the parametric domain where the energy transfer is O(N−1

c )
and allows for ∆ excitation, and the momentum transfer is
O(N0

c ) and probes the internal structure of the baryons. The
results can be extended and applied in several ways.

The method developed here, particularly the algebraic ap-
proach in Sec. 3, can be used to compute 1/Nc corrections to
the leading-order result. These corrections will quantify the nu-
merical accuracy of the leading-order result for the isovector
σN , and provide estimates of the isoscalar σN , which appears
only at subleading order.

In the parametric domain considered here, the intermedi-
ate states in the two-photon exchange amplitude have ener-
gies

√
s − m = O(N0

c ) and include N∗ baryons with masses
mB−m = O(N0

c ). In the present analysis we have neglected such
intermediate states because their electromagnetic couplings to

the initial/final N and ∆ states are suppressed by factors 1/
√

Nc.
When such N∗ states are included, they can enhance the re-
gion of quasi-real photon exchange (collinear to the electron
momenta) in the two-photon exchange integral, which could re-
sult in numerically enhanced contributions. This effect needs to
be analyzed in the context of the higher-order 1/Nc expansion.

The cross section for inclusive eN scattering includes also
real photon emission into the final state (Fig. 1c). This process
can be analyzed in the 1/Nc expansion in the same manner as
two-photon exchange (Fig. 1b). If the intermediate state is a
∆, the emitted photon momentum is kγ = O(N−1

c ), because its
energy is given by the mass difference m∆ − m = O(N−1

c ). In
this situation the coupling through the leading magnetic ver-
tex is suppressed, and we expect real photon emission to be
suppressed in leading order of the 1/Nc expansion. If the inter-
mediate state is a N∗ with mass difference mB − m = O(N0

c ),
as becomes possible in higher orders in 1/Nc, the emitted pho-
ton momentum is kγ = O(N0

c ), and real emission can contribute
at the same order as two-photon exchange. The higher-order
1/Nc expansion therefore needs to treat two-photon exchange
and real photon emission on the same basis. Overall, the para-
metric expansion in 1/Nc provides definite prescriptions for in-
cluding both N∗ excitation and real photon emission in the in-
clusive normal single-spin asymmetry.

The 1/Nc expansion can also be performed in parametric
domains different from Eqs. (10) and (11). For example, the
choice k = O(N−1

c ) leads to a “low-energy expansion” in which
the electric currents enter in the same order as the magnetic
ones, giving rise to a different physical picture.

The framework of the 1/Nc expansion can also be used to
explore the transition between the resonance and DIS regions
and the realization of quark-hadron duality in two-photon ex-
change observables. Theoretical estimates of AN differ by 1-2
orders of magnitude between the resonance and DIS regions,
because of the large effects of the anomalous magnetic moment
that are present in resonance production but disappear in DIS
[10, 15, 16, 17]. Performing 1/Nc expansions in different kine-
matic domains would help explain how the transition happens.

The methods developed here can be applied to the beam spin
asymmetry in eN scattering, a two-photon exchange effect pro-
portional to the electron mass, which is being studied as a back-
ground to parity-violating electron scattering [32, 33, 34].

This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Nuclear
Physics under contract DE-AC05-06OR23177 (JLG, CWe); by
the National Science Foundation, Grant Number PHY 1913562
(JLG); and by the Fonds de la Recherche Scientifique (FNRS)
(Belgium), Grant Number 4.45.10.08 (CWi).
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