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Development of ML FPGA filter for particle
identification and tracking in real time
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Abstract—Real-time data processing is a frontier field in
experimental particle physics. Machine Learning methods are
widely used and have proven to be very powerful in particle
physics.

The growing computational power of modern FPGA boards
allows us to add more sophisticated algorithms for real time
data processing. Many tasks could be solved using modern
Machine Learning (ML) algorithms which are naturally suited
for FPGA architectures. The FPGA-based machine learning
algorithm provides an extremely low, sub-microsecond, latency
decision and makes information-rich data sets for event selection.

Work has started to evaluate an FPGA based Machine Learn-
ing (ML) algorithm for a real-time particle identification and
tracking with Transition Radiation detector and E/M Calorime-
ter.

Index Terms—FPGA, GEMTRD, HLS4ML, machine learning,
neural network, particle physics

I. INTRODUCTION

With the increased luminosity of accelerator colliders,
alongside an increased granularity of detectors for particle
physics, more challenges fall on the readout system to transfer
data from front-end detectors to the computer farm and long
term storage. Modern concepts of trigger-less readout and data
streaming will produce a very large data volume to be read
from the detectors ( [1]). From a resource standpoint, it makes
much more sense to perform both the pre-processing of data
and data reduction at earlier stages of acquisition. The growing
computational power of modern FPGA boards allows us to add
more sophisticated algorithms for real-time data processing.
Some tasks, such as clustering and particle identification, could
be solved using modern Machine Learning (ML) algorithms
which are naturally suited for FPGA architectures.

The work described in this report aims to test ML-FPGA
algorithms in a triggered data acquisition system, as well
as in streaming data acquisition, such as in the future EIC
collider. The first target is the GlueX experiment, with a
plan to build a Transition Radiation Detector (TRD) based on
GEM technology (GEM-TRD), to improve the electron-pion
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separation in the GlueX experiment. It will allow to study pre-
cisely reactions with electron-positron pairs in the final states.
Usually, several PID detectors are used in an experiment. For
example, the GEM-TRD and e/m-calorimeter, both provide
separation of electrons and hadrons. ML particle identification
(PID) methods can be applied individually for various subde-
tectors such as: RICH, DIRC, calorimeters, dE/dx in tracking
detectors, transition radiation detectors (TRD), etc. At the first
stage, data from each detector (GEM-TRD, calorimeter, etc) is
processed independently using a dedicated machine learning
algorithm. In the second processing stage, the summation and
processing of joint data from both the GEM-TRD and PbWO4
calorimeter can increase the identification power of these
detectors compared to independent identification by providing
more internal variables for joint processing.

To test the “global PID” performance we work on inte-
gration of the EIC calorimeter prototype (3x3 modules) into
the ML-FPGA setup. Preprocessed data from both detectors
including decision on the particle type will be transferred to
another ML-FPGA board with neural network for global PID
decision.

II. EXPERIMENTAL SETUP

To demonstrate the operating principle of the ML FPGA,
and estimate the performance of the filter, we use input
data from a test beam setup in Hall-D (JLab) as well as a
Geant4 simulation for GEM-TRD and the e/m calorimeter.
The detector prototypes used for ongoing EIC R&D projects
are the ”GEM based Transition radiation detector (TRD) and
tracker” [3] and a prototype PbWO4 calorimeter with a size
of 3x3 cells [4] were selected as targets for development of
ML algorithms.

Currently, a small 10x10 cm GEMTRD prototype (Fig 1)
is being readout with several fADC125s [5] and can generate
up to 18 GB/s of raw data traffic. This detector, in addition to
electron/hadron separation, is capable of reconstructing tracks
in 3D projections (µTPC mode). Figure 2, shows an example
of a reconstructed 3D track segment measured with the GEM-
TRD prototype. Offline Machine Learning tools (ROOT-based
TMVA [6]) have already been used successfully in the GEM-
TRD project. The ionization along the track was used as input
to a neural network. The particle track drift time of 60 ADC
samples (∼480 ns) was subdivided into 10 slices (sum of 6
FADC samples) and, after preprocessing, was fed into the NN
as an input layer. Figure 3, shows the output of the neural
network for a single GEMTRD module (red - electrons, blue
– pions). For a given electron efficiency, the hadron rejection
factor can be extracted.
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Fig. 1. GEMTRD concept.

Fig. 2. GEMTRD tracking capability: ionization along the track.

III. DEVELOPMENT TOOLS

A. Hardware

In this project we use a standard Xilinx evaluation board
VCU118 to test the ML algorithms, rather than develop a
custom FPGA board. For an application in neural networks,
an important resource of the FPGA is the presence and
number of DSP slices - a digital signal processing logic
element - to perform different kinds of arithmetic operations,
including a multiply-accumulator, multiply-adder, etc. Xilinx
Virtex UltraScale+ FPGA XCVU9P has 6,840 DSP slices and
supports high speed I/O interfaces including Ethernet and 180
high speed transceivers that can operate in excess of 30 Gbps.

The evaluation board’s communication section uses an on-
board Ethernet PHY (low-level physical interface) to pass data
through a custom TCP/IP bridge over to a local bus interface.
This allows access to register space for slow controls, event
building, or data injection for testing. In order to expand
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Fig. 3. emCAL NN.

resources for pre-processing and additional sub-system data
integration, this communications section can also be used on a
separate board to communicate with the original board through
a fiber interface. Here we can use a fixed latency serial protocol
developed at JLAB for the Hall B RICH detector. This protocol
uses the same bus interface mentioned above.

The data from the detectors after pre-processing and pre-
selection in ML-FPGA are sent to the farm running the online
physics event reconstruction software - JANA2 [7]. It is a
modern C++ multi-threaded framework for offline and online
applications. Fig 4 shows data flow in the experiment.

B. Software

The Xilinx Vivado HLS (High-Level Synthesis) tool pro-
vides a higher level of abstraction for the user by synthesizing
functions written in C,C++ into IP blocks, by generating the
appropriate low-level VHDL and Verilog code. Then those
blocks can be integrated into a real hardware system. High-
level synthesis bridges hardware and software domains and
significantly decreases development time. A neural network
trained in ROOT/TMVA can be exported to C/C++ code. The
C/C++ code of the trained network, including weights, is used
as input for Vivado HLS.

An offline trained neural network is usually far from optimal
for an FPGA application, with its limited resources in terms
of network size and computational accuracy. Now there is
a software package HLS4ML that helps in the design and
optimization of a neural network for FPGA [8]. HLS4ML sup-
ports common layer architectures and model software, highly
customizable output for different latency and size needs, and
a simple workflow to allow quick translation to HLS.

IV. RESULTS

To understand the logic of processing the data from GEM-
TRD, here is a short summary of GEM-TRD principles. The
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Fig. 4. Data processing chain.

electron/pion separation in the GEM-TRD detector is based on
measuring the ionization along the particle track. For electrons,
the ionization is higher due to the absorption of transition
radiation photons, generated in the radiator. While for a single
track it not a problem, in a real experiment, GEM-TRD will
have multiple tracks (see Fig.5). Therefore we will need a fast
algorithm for pattern recognition in the FPGA, as well as for
track fitting. Particle identification with a GEM-TRD consists
of several steps:

1) cluster the incoming signals from detector and create
”hits”.

2) ”pattern recognition” - sorting hits by track.
3) finding and fitting a track
4) particle identification by ionization measurement along

a track
5) communicate GEM-TRD track segment to the global

tracking system.

A. Pattern recognition, GNN
Pattern recognition in experimental particle physics is one of

the most resource-intensive tasks. Usually tracks leave ”hits” -
2D or 3D points in space of tracking detectors, so in order to
reconstruct the event and to calculate particle track parameters
(track fitting), we first need to sort the hits by the original
tracks. The de facto standard Kalman filter algorithm works
well, but is very slow due to its iterative nature, so it is
not applicable for triggering or for real-time reconstruction.
Using a neural network can significantly speed up track
reconstruction, and it seems that the first replacement for the
Kalman filter is the Recurrent Neural Network (RNN) or its
variant - LSTM (Long Short Term Memory). The decision
was made to try the Graph Neural Network (GNN) for pattern
recognition, and a recurrent neural network – LSTM, for track
fitting.

As a starting point, we chose the GNN work done for the
LHC [14]. The software uses a high-level Python interface for
several packages: sonnet and graph nets libraries by Deep-
Mind [15], HEP.TrkX [11].
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Fig. 5. Event display with 3 tracks in GEM-TRD. The task of ML is to
reconstruct all tracks and put a PID label on each track.

Graph Neural Networks (GNNs) are well suited for the tasks
of hit classification and segment classification. These models
read a graph of connected hits and compute features on the
nodes and edges. The input and output of GNN is a graph
with a number of features for nodes and edges. In our case
we use the edge classification. A complete graph on N vertices
contains N(N - 1)/2 edges. This will require a lot of resources
which are limited in FPGA. To keep resources under control,
we can construct the graph for a specific geometry and limit
the minimum particle momentum. In our case we have straight
track segments, with a quite narrow angular distribution: ∼15
degrees (see Fig.6). Thus, for the input hits (blue circles),
we connect only those edges that satisfy our geometry, the
momentum of most tracks (red lines) and the spacing between
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hits. The trained GNN processes the input graph and sets the
probability for each edge as output. The Fig.7 shows edges
with a probability greater than 0.7.
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Fig. 6. The initial graph connecting nodes (hits) with edges that satisfy the
detector geometry and tracks kinematics.
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Fig. 7. The final graph after GNN processing, showing only edges with
probability greater than 0.6

This type of graph neural network is not yet supported in
HLS4ML, so we did a manual conversion first to C++ and then
to Verilog using Vitis HLS. This neural network has not been
optimized, so it consumes a lot of FPGA resources ∼ 70%
of DSPs, (4858 of 6840). At the moment it can serve up to
21 hits and 42 edges, or , in our case (GEM-TRD), it will be
3-4 tracks. However, it performs all calculations in 1µs (see
table I, column GNN), providing good purity and efficiency
as shown in Fig.8.

Table I below summarizes

B. Track fitting, LSTM

The hits sorted by tracks from the pattern recognition GNN
are fed into another neural network trained to fit the tracks. We
tested DNN (Deep Neural Network) and RNN/LSTM neural
networks. DNN is faster, but LSTM seems to be more reliable
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Fig. 8. GNN performance for GEMTRD.

TABLE I
FPGA IP SYNTHESIS SUMMARY.

GNN LSTM DNN CNN GarNet
Clock, ns 5 5 5 5 5

Latency, clocks 201 239 13 260 5643
Interval, clocks 202 234 1 245 5643

Latency, ns 1005 1195 65 1300 23215
Utilization DSP (%) 70 27 3 71 3

in the case of a stochastic distribution of hits on the track.
The work on optimization of NN is ongoing. Full size LSTM
network for maximum 26 hits on the track consumes 84%
DPSs and shows a good performance Fig.9. After pruning zero
weights by 67%, LSTM consumes 27% of DSP resources and
has a latency of ∼ 1.2µs (see table I, column LSTM). Fig.10
shows that the pruned network has degraded performance. In
both figures, the ’hls4ml’ version also has a lower precision
for input data and weights - ap fixed < 24, 11 >, while
’keras’ version has a standard double precision.
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Fig. 9. Track fit performance using full size LSTM neural network, left:
track angle, (true vs reconstructed) right: track position

C. Particle identification

1) GEM-TRD: After the track is fit, an area is set around
the track where the ionization along the track will be counted.
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Fig. 10. Track fit performance using pruned by 65% LSTM neural network,
left: track angle, (true vs reconstructed) right: track position

This is necessary to take into account the ionization from
transition radiation photons, which can deviate from the track
by some distance and not lie on the track. The distance along
the track is divided into 10-20 bins, and the ionization energy
in these bins is fed to the input of the MLP neural network.
Fig.11 shows the weight distribution after network pruning by
50%. It did not affect network performance near the working
value ( 90% efficiency), Fig.12.
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Fig. 12. electron/pion separation
performance

DNN for particle identification has a latency of 65 ns and
an interval of 1 clock. It only uses 3% of DPS resources, (see
table I, column DNN).

Another type of neural networks, GarNet/GravNet [16],
shows good offline performance for particle identification
using GEM-TRD. It is supported in HLS4ML and we are
currently working on its implementation for FPGA. The IP
core is synthesized, but the latency is too large for an online
application, so more optimization work is required, (see table
I, column GarNet).

2) E/M Calorimeter: For the 3x3 PbWO4 calorimeter de-
scribed above, a relatively simple DNN can achieve a sufficient
e - π separation level for a single particle incidence [2].
For larger e/m calorimeters a reconstruction algorithm should
be able to process an incidence of multiple particles with
merged clusters. To solve the problem we used a neural
network with variational autoencoder backbone. The input
data corresponds to calorimeter modules and their relative
positions. The output data has the same dimensions as inputs
with each value corresponding to a module where particle
incidence occurred (Fig. 13). In general such a network can
be trained to provide different types of outputs: resulting

TABLE II
E/M CALORIMETER e-π RESULTS

Actual values Predicted results
e π

e 98.8 % 1.2 %
π 2.9 % 97.1 %

energy of a particle, coordinates of incidence, cluster scores
such as e/π probabilities. Using several output channels in
a convolutional decoder allows one to get several types of
output simultaneously. In this work we used a convolutional
encoder with a decoder consisting of dense layers, which
provide e-π separation scores as the output. This was done
to minimize a network size in FPGA and due to current
limitation of HSL4ML of supported network layer types. A
simulation of a window of 11x11 PbWO4 blocks was done
using Geant4. Incident particles had energies ranging from
100MeV to 12GeV. The results are shown in a table II

Fig. 13. Example of the e/m calorimeter event processed with variational
autoencoder composed of convolutional encoder and dense layers decoder.
Input data (left) - merged clusters from two incident particles. Ouput (right)
- two values corresponding to modules where particle incidence occurred.

FPGA synthesis with reuse factor of 2 has a latency of 1.3µs
and an interval of 245 clocks. It uses 71% of DPS resources,
(see table I, column CNN).

D. FPGA test bench

To select and optimize neural networks for effective use
for FPGAs, the recorded data from the test beam as well
as the Monte Carlo data (Geant4) were used. To process
signals from the GEM-TRD detector, 3 FPGA IP cores were
developed: 1) track pattern recognition 2) track fitting 3)
particle identification. To test the logic and performance of
the NN IP blocks, a test design based on Microblaze and AXI
interface was created in Vivado, Fig. 14. We are currently
using Vivado SDK and Vitis as testing tools. For the beam
test, high-speed interfaces will be used to receive and send
data.

V. CONCLUSION

Neural networks were used to speed up the processing of
data from the GEM-TRD detector and the e/m calorimeter.
In particular, neural networks have been used to find tracks
and fit them, as well as for particle identification. Various
types and configurations of neural networks were tested for
their operation in FPGA. Optimization of resource utilization
and latency was carried out. The level 1 trigger in the GlueX
experiment has a fixed latency of 3.3 µs. The results show
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Fig. 14. FPGA test bench. IP cores: GNN - pattern recognition, LSTM - track
fitting, DNN - particle identification. GNN IP is synthesized with vitis hls,
the other two are with vivado hls

that data processing from the GEMTRD and the calorimeter is
achievable within the trigger latency of the GlueX experiment
and using equipment of reasonable complexity. The results of
the work can be used in the upgrade of the GlueX experiment
and in the development of the future EIC experiment.
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