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1 Introduction

Transverse-momentum-dependent parton distribution functions (TMDPDFs) generalize
the collinear PDFs to incorporate the transverse momentum dependence of partons inside
the hadrons, and thus play a crucial role in characterizing the three-dimensional structure
of hadrons. They are also important inputs for describing multi-scale, noninclusive observ-
ables at high-energy colliders such as the LHC [1]. Understanding the TMDPDFs has been
an important goal of many experimental facilities around the world, such as COMPASS
at CERN, JLab 12GeV upgrade, RHIC, and in particular, the forthcoming Electron-Ion
Collider in U.S. and China. So far, our knowledge of TMDPDFs mainly comes from the
measurements of semi-inclusive deep-inelastic scattering (SIDIS) and Drell-Yan processes,
for which the TMD factorization has been proven to hold [2–4]. Based on these data,
various fittings have been carried out to extract the TMDPDFs (see, e.g., [5–10]). How-
ever, the SIDIS and Drell-Yan processes are primarily induced by quarks/antiquarks, the
information that can be extracted from them is mostly about the quark TMDPDFs. Our
knowledge of gluon TMDPDFs is still very limited. Despite that several processes have been
proposed to extract gluon TMDPDFs (see, e.g., refs. [11–13] and references therein), we are
lacking of experimental data on such processes. Therefore, theoretical calculations of the
TMDPDFs, in particular of the gluon TMDPDFs, can play an important complementary
role to phenomenological approaches.

Calculating the TMDPDFs from theory has been a long-standing challenge in hadron
physics, primarily because they are nonperturbative quantities defined in terms of light-
cone correlations. A few pioneer calculations were carried out based on the Lorentz in-
variance approach, see, e.g., [14–16]. In the past few years, significant progress [17–30]
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has been made within the framework of large-momentum effective theory (LaMET) [31–
33], which allows us to calculate the quark TMDPDFs from first-principles lattice QCD.
The calculation begins with the so-called quark quasi-TMDPDFs defined as the hadron
matrix elements of suitable quark bilinear operators with a staple-shaped gauge link of
finite length along the spacelike direction. The finite link length regulates the pinch-pole
singularity associated with infinitely long gauge links [33]. By combining with the square
root of a Euclidean Wilson loop and suitable short-distance matrix elements [28, 29], the
result is free of ultraviolet (UV) divergences. The renormalized quark quasi-TMDPDF can
then be factorized into the standard TMDPDF associated with a perturbative hard kernel,
a Collins-Soper evolution part and a “reduced soft function”, up to power suppressed con-
tributions [19, 23, 33]. So far, considerable attention [34–39] has been paid to the lattice
calculation of quark TMDPDFs, although the complete lattice result is not yet available.
In contrast, much less is known about the calculation of gluon TMDPDFs.

In this paper, we consider the extraction strategy of gluon TMDPDFs from lattice
simulations.1 Among all eight leading-twist gluon TMDPDFs, we take the unpolarized and
helicity ones as an example, as their perturbative calculation does not require the transverse
momentum of external states. Based on one-loop results of the gluon quasi-TMDPDFs
and TMDPDFs, we demonstrate that the matching relation between them takes a similar
form as in the quark case, and give the explicit expression of the perturbative matching
kernel up to one-loop, where the gluon quasi-TMDPDFs are renormalized in a scheme that
facilitates lattice calculations [28, 29]. Moreover, note that the quasi-TMDPDFs can be
viewed, in a sense, as the definition of TMDPDFs with the hadron momentum being a
rapidity regulator [33]. The finite link length is then kept as a regulator of the pinch-
pole singularity, and used in perturbative calculations in the literature. This makes such
calculations very complicated. Actually, as will be seen below, the same result can be
obtained by employing a different prescription for the pinch-pole singularity, e.g., the δ-
prescription, in perturbative calculations, indicating independence of the result on the
pinch-pole singularity regulator. This observation has the potential to greatly facilitate
calculations of the hard matching kernel.

The rest of the paper is organized as follows. In section 2 we set up our notations and
conventions. In section 3 and section 4 we present the one-loop calculation for the gluon
TMDPDFs and quasi-TMDPDFs, respectively. In section 5 we compare the results of two
different prescriptions for the pinch-pole singularity, and discuss their implications. Sec-
tion 6 contains the matching formula connecting the renormalized gluon quasi-TMDPDFs
and TMDPDFs. We conclude in section 7. Some useful formulas are listed in the appendix.

2 Notations and conventions

In this section, we set up our notations and conventions. To describe a fast-moving hadron,
we introduce two light-cone vectors

nµ = 1√
2

(1,~0⊥,−1), n̄µ = 1√
2

(1,~0⊥, 1), (2.1)

1While this work is in progress, another paper [40] appears, where a conclusion similar to ours has been
obtained, but the formulas are slightly different due to different choices of gluon quasi-TMDPDF operators.
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Figure 1. Schematic diagram of gluon TMDPDFs.

which satisfy n2 = n̄2 = 0 and n · n̄ = 1. Any four-vector can then be decomposed as

kµ = (k0,~k⊥, k
z) = k+n̄µ + k−nµ + kµ⊥, (2.2)

where the light-cone components are expressed as k+ = n · k = 1√
2(k0 + kz) and k− =

n̄ · k = 1√
2(k0 − kz). Thus, the momentum of the fast-moving hadron Pµ = (P 0,~0⊥, P z)

can be rewritten as Pµ = P+n̄µ + P−nµ with P+ � P− = M2/(2P+), where M is the
hadron mass and is much smaller than the hadron momentum.

To project out the transverse components, it is useful to define the transverse metric
and the anti-symmetric tensor as

gµν⊥ = gµν − nµn̄ν − n̄µnν , εµν⊥ = nαn̄βε
αβµν . (2.3)

The gluon TMDPDFs are defined in terms of nonlocal gluon bilinear operators. A
schematic diagram of them is shown in figure 1. To preserve gauge invariance, a gauge link
is inserted between the gluon fields at different spacetime points. For gluon TMDPDFs,
the following gauge link W±∞ is employed

W±∞(b, a) =W†n (bµ,±∞)W†T
(
±∞nµ; bµ⊥, a

µ
⊥
)
Wn (aµ,±∞) , (2.4)

where the gauge links in any light-cone ni-direction and transverse direction are given
respectively by

Wni (aµ,±∞) = Pe∓ig
∫∞

0 dsni·A(aµ+snµi ), (2.5)

WT

(
yµ; bµ⊥, a

µ
⊥
)

= Pe−ig
∫ ~b⊥
~a⊥

d~sT · ~AT (yµ+sµT )
, (2.6)

and they are defined in the adjoint representation.
Analogously, for gluon quasi-TMDPDFs that can be accessed from Euclidean lattice

QCD, one chooses the following spatial gauge link W̃±L with a finite longitudinal length L

W̃±L(b, a) = W̃†v (bµ,±L) W̃†T
(
±Lvµ; bµ⊥, a

µ
⊥
)
W̃v (aµ,±L) , (2.7)

where the gauge links in any off light-cone vi-direction and transverse direction are

W̃vi (aµ,±L) = Pe∓ig
∫ L

0 dsvi·A(aµ+svµi ), (2.8)

W̃T

(
yµ; bµ⊥, a

µ
⊥
)

=WT

(
yµ; bµ⊥, a

µ
⊥
)
. (2.9)

For later convenience, we have already introduced two new off-light-cone vectors

vµ = (0,~0⊥,−1), v̄µ = (1,~0⊥, 0). (2.10)
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3 Gluon TMDPDFs at one-loop

3.1 Definition

To study the leading-twist gluon TMDPDFs, we begin with the following non-local corre-
lator

Φµν,ρσ(ξ, P, S) =
〈
PS

∣∣∣∣Fµν (ξ2
)
W−∞

(
ξ

2 ,−
ξ

2

)
F ρσ

(
−ξ2

)∣∣∣∣PS〉 , (3.1)

where we have taken the past-pointing gauge link W−∞ as an example, the analysis of the
future-pointing case is similar. |PS〉 denotes an external hadron with momentum Pµ =
P+n̄µ +P−nµ and spin Sµ = SL(P+n̄µ−P−nµ)/(2M) + Sµ⊥ with S ·P = 0 and S2 = −1.
The two gluon field tensors are separated with ξµ = (0, b−,~b⊥), and b± = 1/

√
2(b0 ± bz)

are the light-cone coordinates.
The Fourier transform of eq. (3.1)

Φµν,ρσ(x,~k⊥, S) = 1
xn · P

∫
db−d2~b⊥

(2π)3 e−ik·ξΦµν,ρσ(ξ, P, S) (3.2)

defines eight leading-twist gluon TMDPDFs [41, 42]

Φni,ni(x,~k⊥, S)=fg1 (x,~k 2
⊥)− ε

ij
⊥k

i
⊥S

j
⊥

M
f⊥g1T (x,~k 2

⊥),

iεij⊥Φni,nj(x,~k⊥, S)=λgg1L(x,~k 2
⊥) + ki⊥S

i
⊥

M
gg1T (x,~k 2

⊥),

−ŜΦni,nj(x,~k⊥, S)=− Ŝk
i
⊥k

j
⊥

2M2 h⊥g1 (x,~k 2
⊥) + λŜεjk⊥ k

i
⊥k

k
⊥

2M2 h⊥g1L (x,~k 2
⊥) + Ŝεjk⊥ k

i
⊥S

k
⊥

2M hg1T (x,~k 2
⊥)

+ Ŝεjk⊥ k
i
⊥k

k
⊥k

m
⊥S

m
⊥

2M3 h⊥g1T (x,~k 2
⊥), (3.3)

where k+ = xP+, and Ŝ denotes the symmetric and traceless part of the correlator.
Throughout this paper, we consider the unpolarized and helicity TMDPDFs fg1 and gg1L, as
their perturbative calculation does not require transverse momentum of the external state.
The remaining TMDPDFs will be considered in future work.

The TMDPDFs defined above contains rapidity divergences associated with infinitely-
long light-like gauge links, which need to be regularized by introducing an appropriate
regulator. Various rapidity regulators have been proposed in the literature (for a summary
see ref. [23]). Here we follow ref. [3] to adopt the δ-regulator. The rapidity divergences
in the TMDPDFs then appear as logarithms of δ. Such divergences can be removed by
introducing a soft function which is defined as the vacuum expectation value of the following
Wilson loop

S(~b⊥, µ) = 1
N2
c − 1

〈
0
∣∣∣∣∣W†n̄

(
bµ⊥
2 ,−∞

)
W†T

(
−∞n̄µ; b

µ
⊥
2 ,−

bµ⊥
2

)
W†n̄

(
−
bµ⊥
2 ,−∞

)

×Wn

(
bµ⊥
2 ,−∞

)
WT

(
−∞nµ; b

µ
⊥
2 ,−

bµ⊥
2

)
W†n

(
−
bµ⊥
2 ,−∞

)∣∣∣∣∣ 0
〉
, (3.4)
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where Wn and Wn̄ are the gauge links including the soft gluon radiations along the light-
cone directions n and n̄, respectively. µ is the renormalization scale in the MS scheme.
In the calculation below, we will work in the Feynman gauge. Thus, the transverse gauge
links at infinity do not contribute [43]. The physical TMDPDFs are then defined as

fsub(x,~k 2
⊥, µ) =

∫
d2~b⊥
(2π)2 e

i~k⊥·~b⊥fsub(x,~b 2
⊥, µ). (3.5)

with

fsub(x,~b 2
⊥, µ) = f(x,~b 2

⊥, µ)√
S(~b⊥, µ)

. (3.6)

In the following, we will refer to f and fsub as the unsubtracted and subtracted TMDPDFs,
respectively.

3.2 Unsubtracted TMDPDF

Now we consider the perturbative calculation of the unsubtracted TMDPDF. To start
with, we replace the hadron state |P 〉 with an on-shell gluon state |g(p)〉 with p denoting
its momentum. Both the ultraviolet (UV) and infrared (IR) divergences are regularized
with dimensional regularization with D = 4− 2ε.

In Feynman gauge, the relevant one-loop diagrams for the unsubtracted gluon TMD-
PDFs are shown in figures 2 and 3. They can be categorized into two groups: the ones with
and the ones without Wilson line interactions. In the following, we present the detailed
calculation for the unpolarized gluon TMDPDF fg1 . The calculation of gg1L is similar, we
will give the final result only.

Let us first look at the ladder diagram shown in figure 2. The matrix element of the
operator Fα1β1Fα2β2 is given by〈

p, ε∗
∣∣∣∣Fα1β1

(
ξ

2

)
Fα2β2

(
−ξ2

)∣∣∣∣ p, ε〉 ∣∣∣∣
2(a)

= µ̃2ε
∫

dDk

(2π)D e
ik·ξ(−gfa1b1c1)[(p+ k)γ1gµ1ν1 + (−2k + p)µ1gν1γ1 + (k − 2p)ν1gµ1γ1 ]δb1b2

× (−gfa2c1bc)[(p+ k)γ2gµ2ν2 + (p− 2k)µ2gν2γ2 + (k − 2p)ν2gµ2γ2 ]

× (−i)(kα1gν
′
1β1 − kβ1gν

′
1α1)i(kα2gν

′
2β2 − kβ2gν

′
2α2)

×
−igν2ν′2

k2
−igν1ν′1

k2
−igγ1γ2

(p− k)2 εµ1ε
∗
µ2

δa1a2

N2
c − 1 , (3.7)

where µ̃ ≡ µ
√

eγE
4π and γE is the Euler constant. The vector ξ can be decomposed as

ξ = b−n+~b⊥. ε and ε∗ are the polarization vectors of the initial and final states, respectively.
The gluons are on-shell and transverse, i.e., p2 = 0, p ·ε = 0, so the matrix element above is
gauge invariant. The unpolarized gluon TMDPDF is obtained by making the replacement
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(b) (c) (d) (e)

(f)

(a)

(g) (h)

Figure 2. One-loop Feynman diagrams for the gluon TMDPDFs without gauge link interactions.

(a) (b) (c) (d) (e)

Figure 3. One-loop Feynman diagrams for the gluon TMDPDFs with gauge link interactions.

εµ1ε
∗
µ2 → −g⊥,µ1µ2/(D − 2). A direct calculation yields

xf
g,(1)
1 (x,~k 2

⊥)|2(a) = αsCA
2π2

(2πµ̃)2ε

~k 2
⊥

(2− 2x+ 3x2 − 2x3)θ(0 < x < 1). (3.8)

We note the support of the TMDPDF is 0 < x < 1. In the following, we omit the Heaviside
theta functions in our expressions for simplicity.

The calculations of the remaining diagrams are similar, and the results read

xf
g,(1)
1 (x,~k 2

⊥)|2(c) = xf
g,(1)
1 (x,~k 2

⊥)|2(d) = −αsCA4π2 (2πµ̃)2ε 1
~k 2
⊥
x(1 +x), (3.9)

xf
g,(1)
1 (x,~k 2

⊥)|2(f) = xf
g,(1)
1 (x,~k 2

⊥)|2(g) = −3αsCA
8π δ(1−x)δ2(~k⊥)

(
1
εUV
− 1
εIR

+ ln µ
2
UV
µ2

IR

)
.

(3.10)

The contribution from gluon self energy diagrams is

xf
g,(1)
1 (x,~k 2

⊥)
∣∣∣∣
2(h)+h.c.

=αs
π
δ(1− x)δ(2)(~k⊥)

( 5
12CA −

1
3TFnf

)( 1
εUV
− 1
εIR

+ ln µ
2
UV
µ2

IR

)
,

(3.11)
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where CA = Nc is the number of colors, TF = 1/2 and nf is the number of quark flavors.
There are no contributions from figure 2(b) and figure 2(e).

Figure 3 contains the diagrams with gauge link interactions which are more interest-
ing, since the Wilson lines along the lightcone direction lead to rapidity divergences. To
regularize these divergences, we adopt the δ-regularization [44, 45], in which the Wilson
line propagator becomes

i

k± ± i0 →
i

k± ± iδ±
. (3.12)

Both the unsubtracted TMDPDF and the soft function depend on δ, but the regulator
dependence shall cancel out in the ratio in eq. (3.6), as we will see below.

For figure 3(a) and 3(b), we have

xf
g,(1)
1 (x,~k 2

⊥)
∣∣∣∣
3(a)+3(b)

= αsCA
4π2 (2πµ)2ε 1

~k 2
⊥

[(
x(1 + x)

1− x

)
+

+ δ(1− x)
(
−2 ln δ

+

p+ + iπ − 5
2

)]

− αsCA
4π δ(1− x)δ2(~k⊥)

(
1
εUV
− 1
εIR

+ ln µ
2
UV
µ2

IR

)(
−2 ln δ

+

p+ + iπ − 5
2

)
+ h.c., (3.13)

whereas the contributions of figure 3(c)–3(e) are zero.
The above results are given in (x,~k⊥) space. They can also be Fourier transformed

into (x,~b⊥) space with the help of the formulas in the appendix, and the total result for
the unsubtracted unpolarized gluon TMDPDF in (x,~b⊥) space is

xfg1 (x,~b 2
⊥) = δ(1− x) + αs

2πCA

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)
xPgg

+
(

1
εUV

+ ln µ
2~b 2
⊥e

2γE

4

)(
2 ln δ

+

p+ + β0
2CA

)
δ(1− x)

}
, (3.14)

where we have set µUV = µIR = µ, and β0 = 11CA−4TFnf
3 . Pgg is the gluon-gluon splitting

kernel

Pgg = 2CA
[

x

(1− x)+
+ 1− x

x
+ x(1− x)

]
+ β0

2 δ(1− x). (3.15)

From the above expression, one can see that the rapidity divergence exhibits itself as
logarithms of δ+. To cancel this singularity, we need to include the contribution of the soft
function.

3.3 Soft function and subtracted TMDPDF

In this subsection, we calculate the soft function defined in eq. (3.4). The relevant one-loop
Feynman diagrams are plotted in figure 4. At one-loop, the calculation of the soft function
required for the gluon TMDPDFs is essentially the same as that of the soft function required

– 7 –
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z
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Figure 4. One-loop Feynman diagrams for the soft function, where the double-lines denote
gauge links.

for the quark TMDPDFs, except that the color factors are different. Here we first calculate
in ~k⊥ space and then Fourier transform to ~b⊥ space. The contribution of figure 4(a) and
its conjugate diagram is

S(~k⊥, µ, δ+, δ−)
∣∣∣∣
figure 4(a)+conj.

= −αsCA2π δ(2)
(
~k⊥
)( 2

ε2UV
− 2
εUV

ln 2δ+δ−

µ2
UV

+ ln2 2δ+δ−

µ2
UV

+ π2

2

)
. (3.16)

Again, the δ-regularization is used to deal with rapidity divergences. Here we choose δ+ and
δ− to regularize the rapidity divergence along the lightcone directions n and n̄, respectively.
The double UV pole 1/ε2UV is a reflection of the cusp singularity.

Figure 4(b) and its conjugate diagram yield

S(~k⊥, µ, δ+, δ−)
∣∣∣∣
figure 4(b)+conj.

= −αsCA
π2

(2πµ̃)2−2ε

~k2
⊥ − 2δ+δ−

ln 2δ+δ−

~k2
⊥

. (3.17)

Adding the two contributions together and doing the Fourier transform, we obtain the soft
function in ~b⊥ space

S(~b⊥, µ, δ+, δ−) = 1 + αsCA
2π

(
− 2
ε2UV

+ 2
εUV

ln 2δ+δ−

µ2 + ln2 µ
2~b 2
⊥e

2γE

4

+2 ln µ
2~b 2
⊥e

2γE

4 ln 2δ+δ−

µ2 + π2

6

)
. (3.18)

It differs from the soft function in the fundamental representation [4] only by a color factor.
As one can see from the expression above, the rapidity-regulator-dependent terms have the
same structure as that in the unsubtracted gluon TMDPDF. By combining them, we have
the final result for the subtracted gluon TMDPDF

xfg1,sub

(
x,~b 2

⊥, ε, ζ
)

= δ(1− x) + αs
2π

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)
xPgg

+CA

[
1
ε2UV

+
(

1
εUV

+ ln µ
2~b 2
⊥e

2γE

4

)(
β0

2CA
+ ln µ

2

ζ

)

−1
2 ln2 µ

2~b 2
⊥e

2γE

4 − π2

12

]
δ(1− x)

}
, (3.19)
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where ζ = 2(p+)2 δ−
δ+ = 2(p+)2 = 2(xP+)2 with δ− = δ+ stands for the Collins-Soper scale.

In the MS scheme, the UV divergences can be removed by the renormalization factor

Z(µ, ζ, ε) = 1− αs
2πCA

[
1
ε2UV

+ 1
εUV

(
β0

2CA
+ ln µ

2

ζ

)]
. (3.20)

Then the renormalized gluon TMDPDF reads

xfg1,sub

(
x,~b 2

⊥, µ, ζ
)

= δ(1− x) + αs(µ)
2π

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)
xPgg

+CA

[
ln µ

2~b 2
⊥e

2γE

4

(
β0

2CA
+ ln µ

2

ζ

)
− 1

2 ln2 µ
2~b 2
⊥e

2γE

4 − π2

12

]
δ(1− x)

}
. (3.21)

At last, we also calculate the polarized gluon TMDPDF gg1L(x,~k⊥) at one-loop level,
with external states being polarized gluon states. We make the replacement εµ1ε

∗
µ2 →

− i
2ε⊥,µ1µ2 in our calculation. The final result can be expressed as eq. (3.21) with the

replacement Pgg → ∆Pgg, where

∆Pgg = 2CA
[
2(1− x) + x

(1− x)+

]
+ β0

2 δ(1− x) (3.22)

is the gluon-gluon splitting kernel for the polarized PDFs.

4 Gluon quasi-TMDPDFs at one-loop

4.1 Definition

The gluon quasi-TMDPDFs can be defined in terms of the following equal-time non-local
correlator

Φ̃µν,ρσ(η, P, S) = lim
L→∞

〈PS|Fµν
(η

2
)
W̃−L

(η
2 ,−

η
2
)
F ρσ

(
−η

2
)
|PS〉√

ZE(2L, |~b⊥|)
, (4.1)

where the hadron momentum Pµ = (P 0,~0⊥, P z) is finite, and ηµ = (0,~b⊥, bz) is a purely
spatial vector. W̃−L is the spatial gauge link of finite length inserted to ensure gauge
invariance of the equal-time non-local correlator, which has been defined in eq. (2.7).

Note that in the above correlator, the hadron momentum is finite and the gauge link
is along the spatial direction. Thus, no additional rapidity regulator is needed. The finite
link length is introduced to regulate the so-called pinch-pole singularity associated with
infinitely long Wilson lines. In a cutoff regularization such as lattice regularization, it is
also associated with linear divergences from the Wilson lines. Nevertheless, the dependence
on the length L is cancelled by dividing by the square root of a Euclidean flat rectangular
Wilson loop

ZE(2L, |~b⊥|, µ) = 1
N2
c − 1

〈
0
∣∣∣∣∣W̃−2L

(
bµ⊥
2 + Lvµ,−

bµ⊥
2 + Lvµ

)
WT

(
Lvµ;−b

µ
⊥
2 ,

bµ⊥
2

)∣∣∣∣∣ 0
〉

(4.2)
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in eq. (4.1), so that we can take the limit L → ∞. The introduction of ZE also removes
additional contributions arising from the transverse gauge link.

In ref. [46], it has been identified that there are four gluon quasi-PDF operators that
are multiplicatively renormalized [46, 47]. Similar conclusion also applies to the gluon
quasi-TMDPDF operators. We find that the following operators can be renormalized
multiplicatively

O(1) = F 0i
(
η

2

)
W̃
(
η

2 ,−
η

2

)
F 0j

(
−η2

)
, (4.3)

O(2) = F 3i
(
η

2

)
W̃
(
η

2 ,−
η

2

)
F 3j

(
−η2

)
, (4.4)

O(3) = 1
2F

0i
(
η

2

)
W̃
(
η

2 ,−
η

2

)
F 3j

(
−η2

)
+ 1

2F
3i
(
η

2

)
W̃
(
η

2 ,−
η

2

)
F 0j

(
−η2

)
, (4.5)

O(4) = F 3µ
(
η

2

)
W̃
(
η

2 ,−
η

2

)
F 3ν

(
−η2

)
, (4.6)

where i, j denote the transverse components, while µ, ν denote all four Lorentz compo-
nents. For illustration purposes, we choose O(1) for our calculation.2 It also facilitates the
nonperturbative renormalization to be discussed below.

The Fourier transform of eq. (4.1)

Φ̃µν,ρσ(x,~k⊥, S, P z) = N

x

∫
dbzd2~b⊥
(2π)3 e−ik·ηΦ̃µν,ρσ(η, P, S) (4.7)

defines the quasi-TMDPDF counterparts of the gluon TMDPDFs, where kz = xP z, N is a
normalization factor depending on the choice of the operator. N = v·P/(v̄·P )2 = P z/(P 0)2

for O(1) with v and v̄ being the spacelike and timelike vectors defined in eq. (2.10), and
the relevant quasi-TMDPDFs are given by

Φ̃0i,0i(x,~k⊥, S, P z) = f̃g1 (x,~k 2
⊥, P

z)− εij⊥k
i
⊥S

i
⊥

M
f̃⊥g1T (x,~k 2

⊥, P
z), (4.8)

iεij⊥Φ̃0i,0j(x,~k⊥, S, P z) = λg̃g1L(x,~k 2
⊥, P

z) + ki⊥S
i
⊥

M
g̃g1T (x,~k 2

⊥, P
z), (4.9)

−ŜΦ̃0i,0j(x,~k⊥, S, P z) = − Ŝk
i
⊥k

j
⊥

2M2 h̃⊥g1 (x,~k 2
⊥, P

z) + λŜεjk⊥ k
i
⊥k

k
⊥

2M2 h̃⊥g1L (x,~k 2
⊥, P

z)

+ Ŝεjk⊥ k
i
⊥S

k
⊥

2M h̃g1T (x,~k 2
⊥, P

z) + Ŝεjk⊥ k
i
⊥k

k
⊥k

m
⊥S

m
⊥

2M3 h̃g1T (x,~k 2
⊥, P

z).

(4.10)

4.2 Quasi-TMDPDF and renormalization

We begin with the unpolarized gluon quasi-TMDPDF defined by the operator O(1), which
is given in η space as

h̃1(η, P z) =
〈P |F 0i(η2 )W̃−L(η2 ,−

η
2 )F 0i(−η

2 )|P 〉√
ZE(2L, |~b⊥|, µ)

. (4.11)

2In contrast, the authors of ref. [40] choose the operator F +i ( η
2

)
W̃
(
η
2 ,− η2

)
F +i (− η2 ) which is, however,

not multiplicatively renormalized.
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The calculation of the gluon quasi-TMDPDF is similar to that of the TMDPDF, and
shares the same Feynman diagrams in figures 2–3. For the diagrams without gauge links,
we find the same result for the gluon quasi-TMDPDF as for the gluon TMDPDF at the
leading power

xf̃
g,(1)
1 (x,~b 2

⊥, p
z)|2(a−h) = xf

g,(1)
1 (x,~b 2

⊥)|2(a−h). (4.12)

The quasi-TMDPDF outside the support [0, 1] is nonzero, but is power suppressed by pz.
Therefore, the quasi-TMDPDFs also have support [0, 1] at the leading power. For the sake
of simplicity, we also omit the theta function θ(0 < x < 1) here.

The diagrams with gauge link interactions yield non-trivial contributions, which are

xf̃
g,(1)
1 (x,~k 2

⊥, p
z)|3,(a)+(b)

= αsCA
2π

{
(2πµ̃)2ε

π~k 2
⊥

[
x(1 + x)

1− x

]
+
− δ(1− x)(2πµ̃)2ε

π~k 2
⊥

(
ln

~k 2
⊥

(2pz)2 + 5
2

)

+δ(1− x)δ2(~k⊥)
[

1
2

(
1
εUV

+ ln µ2
UV

(2pz)2

)
− 1
ε2IR
− 1
εIR

(
ln µ2

IR
(2pz)2 + 5

2

)

−1
2 ln2 µ2

IR
(2pz)2 −

5
2 ln µ2

IR
(2pz)2 + π2

12 − 4
]}

. (4.13)

One can Fourier transform this result from ~k⊥-space to ~b⊥-space, with the help of the
formulas listed in appendix A. The result is

xf̃
g,(1)
1 (x,~b 2

⊥, p
z)|3(a)+3(b) = αsCA

2π

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)[
x(1 + x)

1− x

]
+

(4.14)

+δ(1− x)
[

1
2

(
1
εUV

+ ln µ2
UV

(2pz)2

)
− 1

2 ln2((pz)2~b 2
⊥e

2γE) + 5
2 ln((pz)2~b 2

⊥e
2γE)− 4

]}
.

In ~b⊥ space, the collinear and soft poles in the δ(1 − x) term, which appear as 1/εIR
and 1/ε2IR, are canceled. This result can also be derived in coordinate space representation,
by using the same trick as used in ref. [23] for the quark quasi-TMDPDF calculation.

There is no contribution from figure 3(d) and 3(e). The self-energy of the Wilson line
shown in figure 3(c) is more conveniently calculated in ~b⊥ space, which gives

xf̃
g,(1)
1 (x,~b 2

⊥, L)|3(c) = αsCA
2π δ(1− x)

(
3
εUV

+ 3 ln µ
2
UV
~b 2
⊥e

2γE

4 + 2 + 2πL
|~b⊥|

)
. (4.15)

It differs from the Wilson line self-energy in the fundamental representation only by a color
factor. The pinch-pole singularity is regularized by L as L/|~b⊥|.

The Feynman diagrams for the factor ZE(2L,~b⊥, µ) are shown in figure 5. The calcu-
lation is straightforward, and gives the following result

Z
(1)
E (2L,~b 2

⊥, µUV)|5 =2αsCA
π

(
1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4 + 1 + πL

|~b⊥|

)
. (4.16)
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z

�b⊥

z

�b⊥

z

�b⊥

z

�b⊥

Figure 5. One-loop Feynman diagrams for ZE(2L,~b⊥, µ) in the definition of quasi-TMDPDFs.

Again, it differs from the result in the fundamental representation only by a color factor.
Note that the pinch-pole singularity cancels between eq. (4.15) and the square root of

√
ZE

at O(αs).
In total, the gluon quasi-TMDPDF defined by operator O(1) reads

xf̃g1 (x,~b 2
⊥, p

z) = xf̃
g,(0)
1 (x,~b 2

⊥, p
z) + xf̃

g,(1)
1 (x,~b 2

⊥, p
z)− 1

2δ(1− x)Z(1)
E

= δ(1− x) + αs
2π

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)
xPgg

+δ(1− x)CA

[(
β0

2CA
− 1

)( 1
εUV

+ ln µ
2~b 2
⊥e

2γE

4

)
− 1

2 ln2((pz)2~b 2
⊥e

2γE)

+ 2 ln((pz)2~b 2
⊥e

2γE)− 4
]}

. (4.17)

The above quasi-TMDPDFs still contain UV divergences that need to be renormalized.
This is because, the square root of ZE cancels the pinch-pole singularity and the cusp
divergences (as well as the linear divergences if lattice regularization is employed) of the
numerator in eq. (4.11), while leaving intact the local UV divergences arising from the
gluon-Wilson line vertices at the endpoints of the bilinear operator. If we work in the MS
scheme, the remaining local UV divergences in eq. (4.17) can be removed by the following
renormalization factor

Z̃1(µ, ε) = 1− αs
4π (β0 − 2CA) 1

εUV
, (4.18)

so that the MS renormalized quasi-TMDPDF becomes

xf̃g1,MS(x,~b 2
⊥, µ, p

z) = δ(1− x) + αs
2π

{
−
(

1
εIR

+ ln µ
2~b 2
⊥e

2γE

4

)
xPgg (4.19)

+δ(1− x)CA

[(
β0

2CA
− 1

)
ln µ

2~b 2
⊥e

2γE

4 − 1
2 ln2((pz)2~b 2

⊥e
2γE) + 2 ln((pz)2~b 2

⊥e
2γE)− 4

]}
.
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However, when calculating the quasi-TMDPDFs on lattice, one has to choose a dif-
ferent renormalization scheme. In refs. [28, 29], two schemes have been proposed for the
renormalization of the quark quasi-TMDPDF. They can be generalized to the gluon case
by noting the different kinematic dependence and IR structure of the zero momentum ma-
trix element. In the first scheme, we can do the renormalization by dividing by the matrix
element in the rest frame in eq. (4.11) at small η = η0 = (0,~b⊥,0, bz0),

ZO,1 = 1
(P 0)2 h̃1(η = η0, P

z = 0). (4.20)

To simplify the calculation, we take bz0 = 0. However, the matrix element in eq. (4.20) con-
tains IR divergences, which are identical to those in the local matrix element 1

(P+)2h(0) =
1

(P+)2 〈P |F+i(0)F+i(0)|P 〉. Therefore, we can factorize the above renormalized quasi-
TMDPDF to the standard TMDPDF normalized to 1

(P+)2h(0). In the second scheme,
we can divide by a ratio function formed by the straight line gauge link matrix elements

ZO,2 = 1
(P 0)2

h̃2
1(η0/2, P z = 0)|~b⊥,0=0

h̃1(η0, P z = 0)|~b⊥,0=0
. (4.21)

For illustration purposes, we will choose the first scheme in the discussion below. The
fully renormalized gluon quasi-TMDPDF is then given by

h̃1,R(η, η0, P
z) = Z−1

O,1h̃1(η, P z), (4.22)

which can also be converted to the MS scheme by multiplying a conversion factor:

h̃1,MS(η, P z, µ) = 1
(P 0)2 h̃

MS
1,R(η0, P

z = 0, µ)h̃1,R(η, η0, P
z), (4.23)

where the result of the conversion factor up to one-loop is

1
(P 0)2 h̃

MS
1,R(η0, P

z = 0, µ)

= 1 + αs
2π

(
β0
2 − CA

)
ln
µ2~b 2

⊥,0e
2γE

4 + αs
π

1
3TFnf

 1
εIR

+ ln
µ2

IR
~b 2
⊥,0e

2γE

4

+O(α2
s).

(4.24)

From the above results, one can see that both the quasi-TMDPDF and the TMDPDF
have identical collinear IR structures which enables a matching formula between them.
The different UV structure can be understood as that a large but finite momentum P z is
employed in the quasi-TMDPDF while the physical TMDPDF requests P z go to infinity. In
the case of TMDPDFs, the rapidity singularity appears in the physical TMDPDF because
of the infinitely long light-like Wilson line. One has to introduce a regulator, say, δ, to
regularize the rapidity singularity. In contrast, no rapidity regulator is required in the
quasi-TMDPDF because the Wilson line is of infinite length and space-like. However, the
quasi-TMDPDF depends on lnP z so that the P z → ∞ limit cannot be taken smoothly.
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Thus, a matching coefficient is needed to take the P z → ∞ limit and compensate the
difference at the large rapidity. Our observations are consistent with previous discussions
on quark quasi-TMDPDFs [23, 30] as well as on gluon quasi-TMDPDFs [40].

One can derive a P z evolution equation for the quasi-TMDPDF

P z
d

dP z
ln f̃g1,R(x,~b 2

⊥, µ, P
z) = K(~b 2

⊥, µ) + F
(

(P z)2

µ2

)
, (4.25)

where the subscript R denotes the renormalized result, and the parton momentum has
been expressed in terms of the hadron momentum as pz = xP z. Here the kernel K(~b 2

⊥, µ)
is identical to the Collins-Soper kernel in the ζ-evolution equation of the gluon TMDPDFs.
At one-loop, the Collins-Soper kernel takes the form

K(~b 2
⊥, µ) = −αsCA

π
ln µ

2~b 2
⊥e

2γE

4 , (4.26)

and F is independent of the transverse coordinate

F
(

(P z)2

µ2

)
= αsCA

π

(
− ln (2xP z)2

µ2 + 2
)
. (4.27)

Note that the Collins-Soper kernel has been calculated to the four-loop order [48, 49].
To explicitly express the difference between the gluon quasi-TMDPDF and TMDPDF,

we form the following ratio between the MS results

f̃g1,MS(x,~b 2
⊥, P

z)

fg1,MS(x,~b 2
⊥)

= 1 + αsCA
2π

[
− ln µ

2~b 2
⊥e

2γE

4 ln (2xP z)2

ζ
+ ln µ

2~b 2
⊥e

2γE

4 − 1
2 ln2 (2xP z)2

µ2

+2 ln (2xP z)2

µ2 + π2

12 − 4
]
. (4.28)

As can be seen from the equation, apart from the ln µ2~b 2
⊥e

2γE

4 ln (2xP z)2

ζ term that can be

resummed by the P z evolution equation, there is an extra logarithmic term CA ln µ2~b 2
⊥e

2γE

4
which can be non-perturbative when |~b⊥| gets large (or |~k⊥| gets small), and thus potentially
invalidates the existence of a factorization. In the case of quark quasi-TMDPDFs, this is
cured by including a so-called reduced soft function, which serves the purpose of removing
the rapidity scheme dependence. We can do the same here by introducing the reduced
soft function for the gluon quasi-TMDPDFs, which can be extracted by studying the large
rapidity behavior of the soft function in the off-light-cone regularization scheme [33]

S
(
~b 2
⊥, µ, Y, Y

′
)

=

〈
0
∣∣∣W+nY ′

(
~b⊥
)
W†+n̄Y

(
~b⊥
)∣∣∣ 0〉

(N2
c − 1)

√
Z ′E
√
ZE

, (4.29)

where the off-light-cone vectors nY ′ = n − e−2Y ′ n̄ and n̄Y = n̄ − e−2Y n. ZE and Z ′E are
introduced to remove the pinch-pole singularities. Asymptotically, the off-light-cone soft
function behaves like

S
(
~b 2
⊥, µ, Y, Y

′
)

= e(Y+Y ′)K(~b 2
⊥,µ)+D(~b 2

⊥,µ) +O
(
e−(Y+Y ′)

)
, (4.30)

– 14 –



J
H
E
P
0
2
(
2
0
2
3
)
1
1
4

from which we obtain the reduced soft function

Sr
(
~b 2
⊥, µ

)
= e−D(~b⊥,µ), (4.31)

with

D
(
~b 2
⊥, µ

)
= αsCA

π

(
1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4

)
(4.32)

at perturbative one-loop order. It exactly cancels the extra logarithmic term in eq. (4.28)
if we set µUV = µ.

With similar calculations, one can also derive the one-loop result of the polarized gluon
quasi-TMDPDF g̃g1L, which can be obtained from the unpolarized one by replacing Pgg with
∆Pgg, e.g., in eq. (4.19).

It is worth mentioning at this stage that we have also calculated the mixing diagrams
between gluons and quarks, which yield the same result for the quasi-TMDPDF and TMD-
PDF, in agreement with ref. [30]. Thus, such contributions do not affect the factorization
to be discussed below.

5 Quasi-TMDPDFs with δ-regularization and scheme independence

Before presenting the factorization formula connecting the gluon quasi-TMDPDFs and
TMDPDFs, we discuss the quasi-TMDPDF result with a different pinch-pole regulator
and its implications. Besides the finite gauge link length regulator, we also perform a
calculation with the δ-regulator. In this regularization scheme, the length of the gauge link
is infinite but the denominator of the gauge link propagator changes as n ·k±i0→ n ·k±iδ.
There is no contribution from the transverse gauge link at infinity. Because there is no
gauge link interaction in figure 2, the results are the same between different schemes. While
for figure 3(a) and 3(b), we get

xf̃
g,(1)
1 (x,~b 2

⊥, p
z)|3(a)+(b) = αsCA

2π

{
−
(

1
εIR

+ ln µ
2
IR
~b 2
⊥e

2γE

4

)[
x(1 + x)

1− x

]
+

(5.1)

+δ(1− x)
[

1
2εUV

+ 1
2 ln µ2

UV
(2pz)2 + 5

2 ln((pz)2~b 2
⊥e

2γE)− 1
2 ln2((pz)2~b 2

⊥e
2γE)− 4

]}
.

The result is independent of δ as expected. For figure 3(c), one has

xf̃
g,(1)
1 (x,~b 2

⊥, p
z, δ)|3(c) =αs

2πCA

(
π

δ|~b⊥|
+ 1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4

)
δ(1− x), (5.2)

where the pinch-pole singularity is regularized by 1/δ. On the other hand, the one-loop
correction to the factor ZE is

ZE = 1 + αs
π
CA

π

δ|~b⊥|
. (5.3)
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Therefore, after
√
ZE subtraction, eq. (5.2) becomes

xf̃
g,(1)
1 (x,~b 2

⊥, p
z)|3(c) →

αs
2πCA

(
1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4

)
δ(1− x), (5.4)

which means that the pinch-pole singularity is canceled, and there is no δ-dependence in
the subtracted result.

For the unsubtracted soft function, we have

αsCA
π

(
1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4

)
(1− Y − Y ′) + αs

2πCA
π

δ

√√√√ n̄′2Y
~b 2
⊥

+ αs
2πCA

π

δ

√√√√n2
Y

~b 2
⊥
. (5.5)

Subtracted with
√
ZEZ ′E , one obtains

αsCA
π

(
1
εUV

+ ln µ
2
UV
~b 2
⊥e

2γE

4

)
(1− Y − Y ′), (5.6)

in which the δ-dependence cancels. So, the reduced soft function at one-loop level is

S(1)
r

(
~b 2
⊥, µ

)
= −αsCA

π

(
1
εUV

+ ln µ
2~b 2
⊥e

2γE

4

)
, (5.7)

which completely cancels the contribution in eq. (5.4).
From the above discussion, one can demonstrate that the one-loop results are indepen-

dent of the pinch-pole regulator. This observation has the potential to greatly facilitate
perturbative calculations, since we do not need to keep a finite gauge link length for per-
turbative calculations, which makes the latter very complicated. Instead, we can choose
simpler regulators such as the δ-regulator.

6 Factorization of gluon quasi-TMDPDFs

We are now ready to write down the matching formula between the gluon quasi-TMDPDFs
and TMDPDFs as

f̃g1,R

(
x,~b 2

⊥,
~b 2
⊥,0, ζz

)
S

1
2
r

(
~b 2
⊥, µ

)
= HR

(
ζz
µ2 , µ

2~b 2
⊥,0

)
e

ln ζz
ζ
K(~b 2

⊥,µ)f̄g1
(
x,~b 2

⊥, µ, ζ
)

+ p.c.,

(6.1)

where f̃g1,R denotes the renormalized quasi-TMDPDF matrix element using the method
in section 4.2. f̄g1 = (P+)2fg1 /h(0) is the normalized MS TMDPDF from which we can
extract the physical TMDPDF fg1 , p.c. stands for power corrections. Sr is the reduced
soft function that can be calculated from a meson form factor [33, 50, 51] and converted
to the MS scheme. Here we assume it has been converted to the MS scheme. HR is the
hard matching kernel, which can be calculated perturbatively order by order. Up to the
next-to-leading order, we have

HR

(
ζz
µ2 ,

~b 2
⊥,0

)
= 1 + αsCA

2π

−1
2 ln2 ζz

µ2 + 2 ln ζz
µ2 −

5
6 ln

µ2~b 2
⊥,0e

2γE

4 + π2

12 − 4

 , (6.2)
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where ζz ≡ (2xP z)2. The hard kernel satisfies the renormalization group equation

µ
d

dµ
lnHR

(
ζz
µ2

)
= Γcusp ln ζz

µ2 + γC + γR , (6.3)

where Γ(1)
cusp = αsCA

π , γ(1)
C = −2αsCA

π and γ(1)
R = −5

6
αsCA
π . Note that the hard kernel may

depend on the operator choice of the gluon quasi-TMDPDFs. Our result here is different
from that in [40]. This is because, on the one hand, we have used different operators for the
gluon quasi-TMDPDFs, and the corresponding gluon-Wilson-line vertices have different UV
behavior, thus yielding different contributions to the matching kernel; on the other hand,
our renormalization is carried out in the ratio scheme, which facilitates practical lattice
calculations.

For comparison, we also present the matching relation for the MS renormalized quasi-
TMDPDF, which is

f̃g1,MS

(
x,~b 2

⊥, µ, ζz
)
S

1
2
r

(
~b 2
⊥, µ

)
= HMS

(
ζz
µ2

)
e

ln ζz
ζ
K(~b 2

⊥,µ)fg1
(
x,~b 2

⊥, µ, ζ
)

+ p.c., (6.4)

and the corresponding matching kernel reads

HMS

(
ζz
µ2

)
= 1 + αsCA

2π

(
−1

2 ln2 ζz
µ2 + 2 ln ζz

µ2 + π2

12 − 4
)
, (6.5)

and satisfies the renormalization group equation

µ
d

dµ
lnHMS

(
ζz
µ2

)
= Γcusp ln ζz

µ2 + γC . (6.6)

We have also calculated the one-loop result of gg1L and g̃g1L. We find that their results
differ from fg1 and f̃g1 only by the splitting kernels. The splitting kernels are associated with
the IR part. They are completely canceled in the matching. The factorization formulas
for spin-dependent TMDs are in the same form as eq. (6.1) (see, e.g., ref. [30]). Thus,
the matching kernel for the polarized gluon quasi-TMDPDFs is the same as that for the
unpolarized one. The matching coefficient for the linearly polarized gluon TMD at one-
loop is also the same one [52]. In the case of quark quasi-TMDPDF, it has been observed
that the matching coefficient for helicity and transversity distributions are equal to the
one for the unpolarized TMDPDF [26]. A similar factorization formula for the quark
quasi-TMDPDFs has also been derived by employing the soft-collinear effective theory in
ref. [27], and the matching coefficients are independent of the spin structure. We expect
the same conclusion for the leading-twist gluon quasi-TMDPDFs. Of course, to confirm
this, further investigations and calculations of the matching formula are required. We leave
this to future work.

7 Conclusion

In this paper, we have studied the lattice calculation strategy of gluon TMDPDFs. By
taking the unpolarized and helicity gluon TMDPDFs as an example, we have performed
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a perturbative one-loop calculation for both the quasi-TMDPDFs and the TMDPDFs,
and presented some lattice-friendly renormalization schemes for the former, which can be
converted to the MS scheme through a conversion factor. We then present a matching
formula between the gluon quasi-TMDPDFs and TMDPDFs, which takes a similar form
as in the quark case. Our results also indicate an independence of the regulator for the
pinch-pole singularity. This observation has the potential to greatly facilitate calculations
of the perturbative hard matching kernel.
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A Fourier transform integrals

Some useful integrals for Fourier transform from transverse momentum to transverse coor-
dinate are listed in the following:

∫
d2−2εk⊥

e−i
~k⊥·~b⊥

~k 2
⊥

= π

(
~b 2
⊥

4π

)ε
Γ(−ε) ,

∫
d2k⊥

~k 2
⊥

~k4
⊥ + Λ4

e−i
~k⊥·~b⊥ |Λ→0 = −π ln Λ2~b 2

⊥e
2γE

4 ,

∫
d2k⊥

1
~k 2
⊥ + Λ2

ln Λ2

~k 2
⊥
e−i

~k⊥·~b⊥ |Λ→0 = −π
(

1
2 ln2 Λ2~b 2

⊥e
2γE

4 + π2

3

)
,

∫
d2−2εk⊥

ln~k 2
⊥

~k 2
⊥
e−i

~k⊥·~b⊥ = −π
(
~b 2
⊥

4π

)ε
Γ(−ε)

[
γE + ln

~b 2
⊥
4 − ψ

(0)(−ε)
]
,

(A.1)

where ψ(n) is the polygamma function of order n.
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