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We perform perturbative computations in a lattice gauge theory with a conformal measure that
is quadratic in a non-compact abelian gauge field and is nonlocal, as inspired by the induced gauge
action in massless QED3. In a previous work, we showed that coupling fermion sources to the gauge
model led to nontrivial conformal data in the correlation functions of fermion bilinears that are
functions of charge q of the fermion. In this paper, we compute such gauge invariant fermionic ob-
servables to order q2 in lattice perturbation theory with the same conformal measure. We reproduce
the expectations for scalar anomalous dimension from previous estimates in dimensional regular-
ization. We address the issue of the lattice regulator dependence of the amplitudes of correlation
functions.

I. INTRODUCTION

Numerical evidence [1–3] from recent works point to the scale-invariance of the parity invariant noncompact
QED in three dimensions with 2Nf flavors of massless two-component fermions. Motivated by these numerical
results and pioneering studies in perturbative QED that shows the presence of an infra-red fixed point [4–7] in
the large-Nf limit, a lattice gauge model was studied in [8] which was expected and numerically shown to be
conformal at length scales much larger in units of lattice spacing. The gauge measure on an infinite lattice is
given by

[dA]e−S ; S =
1

2

∑
x

3∑
j,k=1

Fjk(x)

[
1√
2
Fjk

]
(x); Fjk(x) = (∂jAk)(x)− (∂kAj)(x); 2 = ∂†k∂k, (1)

where ∂k is the lattice forward derivative. The lattice action is apparently nonlocal, but the rationale behind
studying such an action was the possibility to mimic the most dominant piece of the gauge-action that is
induced by the massless fermion determinant in QED3. The non-compact gauge field, Aj(x) ∈ R, is on the link

connecting x and x+ ĵ. To make the theory to be a U(1) gauge theory, only observables constructed out of the
U(1) valued gauge links given by

Uj(x) = eiqAj(x), (2)

were measured. In the above equation, q is an arbitrary real-valued charge. At O(q2), the charge can be
identified with 16/Nf in the large-Nf limit of QED3, and such an identification breaks down at higher orders
of q but the lattice model is well-defined nevertheless. Using such gauge links, one can define the so-called
pure gauge observables such a Wilson loops and their correlators. For example, the expression for a planar
rectangular Wilson loop of size `× t; `, t ∈ I, is

q2W(`, t) = − ln

〈
exp

(
iq
∑
x∈`×t

Fij(x)

)〉
=

q2

2π3

∫ π

−π
d3p

sin2 p1`
2 sin2 p2t

2√∑3
k=1 sin2 pk

2

[
1

sin2 p1
2

+
1

sin2 p2
2

]
. (3)

The asymptotic conformal behavior (that only depends linearly on the aspect ratio of the Wilson loop) after
eliminating a perimeter term is given by

W(`, t)−W
(
`+ t

2
,
`+ t

2

)
∼ −0.0820

(
`

t
+
t

`

)
;

`

t
→∞ or

t

`
→∞, (4)

and the constant obtained by numerically evaluating the integral is universal.
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In addition to the pure-gauge observables, the conformal behavior of fermionic observables was found to have
nontrivial dependencies on q. In order to define such fermionic observables and n-point functions, the partition
function of the lattice gauge model coupled to massless fermion sources ψ± in a parity-invariant manner was
given by,

Z(ψ̄±, ψ±) =

∫
[dA]e−S(A)+ψ̄+Gψ++ψ̄−G†ψ− , (5)

where G is the lattice massless fermion propagator coupled to charge-q gauge links. From this, the flavor triplet
scalar (Γ = 1) and vector (Γ = σk) operators can be defined as differential operators acting on Z:

O±Γ (x) ≡ ∂

∂ψ̄±(x)
Γ

∂

∂ψ∓(x)
; O0

Γ(x) ≡ 1√
2

(
∂

∂ψ̄+(x)
Γ

∂

∂ψ+(x)
+

∂

∂ψ̄−(x)
Γ

∂

∂ψ−(x)

)
. (6)

Given a lattice Dirac operator, one can compute correlations functions of scalar and vector operators,

S(q;x) = 〈O+
1 (0)O−1 (x)〉, Vij(q;x) = 〈O+

σi(0)O−σj (x)〉 (7)

respectively, as examples of gauge invariant correlators. The separation x will be integer valued and for |x| � 1
on an infinite lattice, the correlators will be given by

S(q;x) ∼ CS(q)

|x|4−2γS(q)
; Vij(q;x) ∼

CV (q)
(
δij − 2x

ixj

x2

)
|x|4

. (8)

Numerical analysis of the lattice conformal model [8] studied over a range of q resulted in fits of the form

γS(q) = 0.076(11)q2 + 0.0117(15)q4 +O(q6);
CV (q)

CV (0)
= 1− 0.0478(7)q2 + 0.0011(2)q4 +O(q6). (9)

The coefficient of the leading term in γS(q) from the lattice regularized method is consistent with 2
3π2 obtained

in [9] using continuum perturbation theory with a dimensional regularization based ultra-violet cutoff. On the
other hand the coefficient of the leading correction to CV (q) is not consistent with a computation in continuum

perturbation theory using dimensional regularization [10], namely,
CdV (q)

CdV (0)
= 1 +

(
23

9π2 − 1
4

)
q2 + · · · . In addition

to correlators, the L−1−γS type finite size scaling of the low-lying eigenvalues Λi of the Hermitian operator,
−iG, on large enough L3 boxes also give information on the scalar scaling dimension γS .

This paper is a follow-up to the numerical work that we summarized above. The aim of this work is two-fold.
Namely, (a) the observation that the nonperturbative lattice results for various quantities were empirically
found to be power expandable as a series in q that is rapidly convergent motivated us to develop a perturbative
framework for the lattice regulated model to avoid Monte Carlo methods. This work develops the perturbative
setup at O(q2). The method presented can be developed further for higher-orders in q and thereby with a
possibility of performing interesting computations such as of the three-point function conformal data in the
model at larger lattice sizes than practically possible in a Monte Carlo computation. (b) Unlike a typical lattice
QFT with a well defined free-field-like UV continuum limit that removes any lattice regulator dependencies
(and with a possible conformality at long-distances), the behavior of the present lattice model is different. As
noted above, the conformality in the lattice regulated model automatically emerges in the long-distance limits
of correlation functions and finite size scaling of eigenvalues. However, due to the absence of a UV continuum
limit, it is not immediately clear which of the conformal data are universal with respect to the lattice regulator
(e.g., type and parameters of lattice Dirac operator). In this work, within the perturbative framework, we
address this question.

II. LATTICE PERTURBATION THEORY

The perturbation theory computation will be on a L3 lattice. The gauge field will obey periodic boundary
conditions and the gauge fixed action with a source term for the gauge fields is

S =
1

L3

′∑
p

∑
jk

Ã∗j (p)
22(p)δjk +

(
1
ξ − 1

)
hj(p)h

∗
k(p)

g2(1−n)2n(p)
Ak(p) +

∑
x,k

Jk(x)Ak(x) (10)

where the prime over the sum implies that p = 0 is excluded; the Fourier transforms are defined by

Ãj(p) =
∑
x

Aj(x)ei
2πx·p
L ; Ãj(p+ L) = Ãj(p); Ãj(0) = 0; A∗j (p) = Aj(−p); pk ∈ [0, L− 1]; k = 1, 2, 3;

(11)
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and

hk(p) = e−i
2πpk
L − 1; 2(p) = 2

√∑
k

sin2 πpk
L
. (12)

The lattice model is conformal when n = 1; the usual Maxwell action when n = 0 and a gauge action for a
Thirring model when n = 2. The gauge fixing term maintains the conformal nature when n = 1. The generating
functional for computing gauge field correlations is

Z(J) = exp

1

2

∑
x,y

∑
jk

Jj(x)Gjk(x− y)Jk(y)

 ;

Gjk(x) =
1

L3

∑
p

G̃jk(p)e−i
2πx·p
L ; G̃jk(p) =

22(p)δjk − (1− ξ)hj(p)h∗k(p)

2g2(n−1)24−n(p)
. (13)

It is sufficient to perform the perturbation theory with overlap fermions [2] to compare with Eq. (9). To this
end, we provide the pertinent details for Wilson fermion kernel followed by details for overlap fermions in the
next two sub-sections.

A. Wilson fermion kernel

Fermions will obey anti-periodic boundary conditions and the Wilson fermion operator, D, is defined as

D(x1, x2) = 3δx2,x1
−
∑
i

[
pi+e

iqAi(x1)δx2,x1+î + pi−e
−iqAi(x2)δx2,x1−î

]
; pi± =

1∓ σi
2

. (14)

In order to perform perturbation theory, we write

D(x1, x2) = D0(x1, x2) +DI(x1, x2) (15)

where

D0(x1, x2) = 3δx2,x1
−
∑
i

[
pi+δx2,x1+î + pi−δx2,x1−î

]
;

DI(x1, x2) =
∑
i

[
pi+ti+(x1)δx2,x1+î + pi−ti−(x2)δx2,x1−î

]
; ti±(x) =

[
1− e±iqAi(x)

]
. (16)

We will set up the perturbation theory computation in momentum space and use the unitary transformation

U(x, p) =
1

L
3
2

e−i[
2πx·p
L +πx·a

L ]; a = (1, 1, 1) (17)

to go between coordinate and momentum space. The free fermion operator is

D̃0(p1, p2) = D̃0(p1)δ(p1 − p2); D̃0(p) = 2
∑
k

sin2
[πpk
L

+
π

2L

]
− i
∑
k

σk sin

[
2πpk
L

+
π

L

]
. (18)

We write the interaction term as

D̃I(p1, p2) = −qD̃1(p1, p2)− q2

2
D̃2(p1, p2), (19)

where

D̃1(p1, p2) =
i

L3

∑
j

W1j(p1, p2)Ãsj(p1 − p2); W1j(p1, p2) = pj+rj(p2)− pj−r∗j (p1);

D̃2(p1, p2) =
1

L3

∑
j

W2j(p1, p2)Ãcj(p1 − p2); W2j(p1, p2) = pj+rj(p2) + pj−r
∗
j (p1). (20)

and

Ãsj(p) =
1

q

∑
x

sin[qAj(x)]ei
2πx·p
L ; Ãcj(p) =

2

q2

∑
x

(cos[qAj(x)]− 1) ei
2πx·p
L ; rj(p) = e

−i
[

2πpj
L + π

L

]
. (21)
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B. Overlap fermions

Perturbation theory has been developed in the past for overlap fermions [11, 12]. Since it is not as well known
as the one for Wilson fermions, we provide some technical details in the subsection. The massless overlap Dirac
operator is defined by [2]

Do =
1 + V

2
V = X

1√
X†X

; V V † = 1; X = D −mw; mw ∈ (0, 2). (22)

The propagator is given by

Go =
1− V
1 + V

; G†o = −Go. (23)

We start by writing

X = X0 − qD1 −
q2

2
D2; X0 = D0 −mw;

1√
X†X

= Q0 + qQ1 + q2Q2 + · · · (24)

and obtain

Q0 =
1√
X†0X0

; Q1
1

Q0
+

1

Q0
Q1 = Q0

(
X†0D1 +D†1X0

)
Q0;

Q2
1

Q0
+

1

Q0
Q2 = − 1

Q0
Q2

1

1

Q0
+

(
Q1

1

Q0
+

1

Q0
Q1

)2

+
1

2
Q0

(
X†0D2 +D†2X0 − 2D†1D1

)
Q0. (25)

If we write

V = V0 − 2qV1 − 2q2V2 + · · · , (26)

we can use Eq. (22) and obtain

V0 = X0Q0; V1 =
D1Q0 −X0Q1

2
; V2 =

D2Q0 + 2D1Q1 − 2X0Q2

4
; · · · . (27)

The resulting perturbative expansion for the overlap propagator in Eq. (23) is

Go = Ge + qGiV1Gi + q2GiV2Gi + q2GiV1GiV1Gi + · · · . (28)

where

Ge =
1− V0

1 + V0
; Gi = 1 +Ge =

2

1 + V0
; G†i = V0Gi = GiV0. (29)

Upon going to momentum space,

Ṽ0(q1, q2) = Ṽ0(q1)δ(q1 − q2); Ṽ0(q) =
X̃0(q)

Sw(q)
; X̃0(q) = β(q)− i

∑
k

(
σk sin

[
2πqk
L

+
π

L

])
(30)

where

β(q) = 2
∑
k

sin2
[πpk
L

+
π

2L

]
−mw; S2

w(q) = β2(q) +
∑
k

sin2

[
2πqk
L

+
π

L

]
. (31)

The external and internal free propagators are

G̃e(q) =
i
∑
k

(
σk sin

[
2πqk
L + π

L

])
Sw(q) + β(q)

, G̃i(q) =
Sw(q) + β(q) + i

∑
k

(
σk sin

[
2πqk
L + π

L

])
Sw(q) + β(q)

, (32)

respectively. The expression for V1 in momentum space is given by

Ṽ1(q1, q2) =
i

2L3

∑
j

V1j(q1, q2)Ãsj(q1 − q2)
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V1j(q1, q2) =
W1j(q1, q2) + Ṽ0(q1)W †1j(q2, q1)Ṽ0(q2)

[Sw(q1) + Sw(q2)]
. (33)

The expression for V2 in momentum space is given by

Ṽ2(q1, q2) =
1

2L3

∑
j

{
−V2j(q1, q2)Ãcj(q1 − q2)

}
+

1

L3

∑
q3,j,k

{
V2jk(q1, q2, q3)Ãsj(q1 − q3)Ãsk(q3 − q2)

}
V2j(q1, q2) =

−W2j(q1, q2) + Ṽ0(q1)W †2j(q2, q1)Ṽ0(q2)

2 [Sw(q1) + Sw(q2)]

V2jk(q1, q2, q3) =

[
X̃0(q1)W †1j(q3, q1)−W1j(q1, q3)X̃†0(q3)

]
X̃0(q3)

[
X†0(q3)W1k(q3, q2)−W †1k(q2, q3)X0(q2)

]
S2
w(q3) [Sw(q1) + Sw(q2)] [Sw(q1) + Sw(q3)] [Sw(q3) + Sw(q2)]

+
Ṽ0(q1)W †1j(q3, q1)Ṽ0(q3)W †1k(q2, q3)Ṽ0(q2)

Sw(q3) [Sw(q1) + Sw(q2)]
(34)

C. Gauge correlation functions

We will need to compute correlation functions that involve Ãsj(p) and Ãcj(p). Noting that Ãsj(p) is odd in the

gauge field and Ãcj(p) is even in the gauge field, even powers of Ãsj(p) with any power of Ãcj(p) will result in

non-zero correlation functions. All of them will have a power series in q2. For our purpose, we only need

〈Ãcj(p)〉 = −L3Gc(0)δ(p); Gc(0) =
2L3

q2

[
1− e−

q2

2 g(0)

]
; g(0) =

2 + ξ

3L3g2(n−1)

′∑
p

1

22−n(p)
, (35)

and

〈Ãsj1(p1)Ãsj2(p2)〉 = L3G̃sj1j2(p1)δ(p1 + p2); G̃sjk(p) =
1

q2
e−q

2g(0)
∑
x

sinh[q2Gjk(x)]ei
2πx·p
L . (36)

Note that

G̃sjk(−p) = G̃skj(p) =
[
Gsjk(p)

]∗
. (37)

The compactness of the gauge field coupled to fermions have been maintained in obtaining the above correlation
functions. Since gauge invariance in perturbation theory is only valid order by order in q2, the above correlation
functions have be expanded in q2 to extract gauge invariant coefficients.

III. MESON CORRELATION FUNCTION

The fermion operator discussed in Section II B acts on two component fermions. We will assume that we
have two copies of two component fermions, with the associated operators, Do and D†o. We will be interested in
meson correlation functions. With this mind let us associate two component fermions, ψ, ψ̄; with the operator
Do and another set of two component fermions, χ, χ̄; with the operator D†o. Let us denote the propagators by

〈ψ(x1)ψ̄(x2)〉 = Go(x1, x2); 〈χ(x1)χ̄(x2)〉 = −Go(x2, x1) (38)

and we have used Eq. (23). Type of mesons we will consider are

Oi(x) = ψ̄(x)Γiχ(x); Ōi(x) = χ̄(x)Γiψ(x) (39)

where Γi = 1, σi. To be clear, as the theory does not have dynamical fermions per se, the above equation in
terms of fermion operators is actually made rigorous in terms of fermion sources as discussed in Eq. (6). The
correlation functions are

M ij(x1, x2) = 〈Ōi(x1)Oj(x2)〉 = 〈χ̄(x1)Γiψ(x1)ψ̄(x2)Γjχ(x2)〉 = tr [ΓiGo(x1, x2)ΓjGo(x1, x2)] (40)

where the trace is only on the spin indices. A transformation to momentum space yields

M̃ ij(p1, p2) =
1

L3

∑
q1,q2

tr
[
ΓiG̃o(q1, q2)ΓjG̃o(q1 − p1, q2 − p2)

]
. (41)
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Integrating over the gauge fields results in

M̃ ij(p1, p2) = M̃ ij(p)δ(p1, p2), (42)

where

M̃ ij(p) = M̃ ij
0 (p) + q2

[
M̃ ij

1t(p) + M̃ ij
1d(p) + M̃ ij

1c(p)
]

+O(q4) (43)

where M̃ ij
1t(p) is the tadpole term, M̃ ij

1d(p) is the disconnected term and M̃ ij
1c(p) is the connected term. The

leading term is

M̃ ij
0 (p) =

1

L3

∑
q

tr
[
ΓiG̃e(q)ΓjG̃e(q − p)

]
(44)

In order to compute the tadpole term we note that upon gauge averaging

〈V2(q1, q2)〉 = O2(q1)δ(q1 − q2); O2(q) =
Gc(0)

2

∑
j

V2j(q, q) +
1

2L3

∑
r,j,k

(
V2jk(q, q, r)G̃sjk(q − r)

)
, (45)

and this leads to

M̃1t(p) =
1

L3

∑
q

tr
[
G̃i(q)O2(q)G̃i(q)

(
ΓjG̃e(q − p)Γi + ΓiG̃e(q + p)Γj

)]
. (46)

In order to compute the disconnected term, we note that upon gauge averaging

∑
q3

〈Ṽ1(q1, q3)G̃i(q3)Ṽ1(q3, q2)〉 = −

 1

4L3

∑
q3,i1,i2

V1i1(q1, q3)G̃i(q3)V1i2(q3, q2)G̃si1,i2(q1 − q3)

 δ(q1 − q2)

≡ −f̃o(q1)δ(q1 − q2), (47)

and this leads to

M̃1d(p) = − 1

L3

∑
q

tr
[
G̃i(q)f̃o(q)G̃i(q)

(
ΓjG̃e(q − p)Γi + ΓiG̃e(q + p)Γj

)]
. (48)

The connected term is

M̃1c(p)

= − 1

4L6

∑
q1,q2,i1,i2

tr
[
ΓiG̃i(q1)V1i1(q1, q2)G̃i(q2)ΓjG̃i(q2 − p)V1i2(q2 − p, q1 − p)G̃i(q1 − p)

]
Gsi1,i2(q1 − q2).

(49)

A. Scaling of the numerical sums

The dependence of the gauge propagators appearing in Section II C appear in the exponents. Since gauge
invariance is only assured to order O(q2) for the meson propagators, we expand Gc(0) and G̃sj1j2(p) to the
leading order given by

Gc(0) = L3g(0) +O(q2); G̃sjk(p) = G̃jk(p). (50)

We store the fermion and gauge propagators in momentum space for a fixed L and this computation scales like
L3. Both the computation of M̃ ij

0 (p) for all p and its Fourier transform to M ij
0 (x) for all x scale like L6. The

full computations of Õ2(q), f̃o(p), M̃
ij
1t(p), M̃

ij
1d(p), M̃

ij
1t(x) and M̃ ij

1d(x) scale like L6.

The computation of M̃ ij
1c(p) for all p scales like L9 and this dominates the computational time. To reduce

this computational time, we consider two types of meson propagators in coordinate space, namely,

M ij
z (x) =

1

L

∑
p

M̃ ij(0, 0, p)e−i
2πxp
L and M ij

p (x) = M ij(0, 0, x). (51)
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These two correlators will be sufficient to study the asymptotic behavior of relevance. Since M̃ ij
1c(0, 0, p) will

scale like L7 our computation has been significantly reduced. Focussing on the expression for M̃1c(p) in Eq.
(49), we note that

M1c(x) = − 1

4L6

∑
q1,q2,i1,i2

tr
[
ΓiG̃i(q1)V1i1(q1, q2)G̃i(q2)Γje

−i 2πx·q2L hi2(q1 − q2, x)
]
Gi1,i2(q1 − q2), (52)

where

hj(q, x) =
1

L3

∑
r

ei
2πx·r
L G̃i(r)V1j(r, q + r)G̃i(q + r). (53)

With the separation in coordinate space restricted to (0, 0, x), we note that both the computations of hi2(q, x)

and M̃1c(x) scales like L7.

IV. RESULTS FROM LATTICE PERTURBATION THEORY

Our aim is to extract the O(q2) corrections to the anomalous dimensions and the two-point function ampli-
tudes, which are γ1

S , C1
S and C1

V . To minimize computations, we will consider two correlators. In the first case,
we will set the separation to an on-lattice-axis value x = (x1, 0, 0), which we denote using a subscript z as

Sz(q;x1) =
Cs(q)

|x1|4−2γS(q)
; Vz(q;x1) =

3∑
i=1

Vii(q;x1) =
CV (q)

|x1|4
. (54)

Note that we have summed over all directions for the vector correlator above. Assuming the scaling of correlators
to be valid for all x = (x1, x2, x3), we will also consider correlators at zero spatial momentum, denoted by a
subscript p as,

Sp(q;x1) =

∫ ∞
−∞

dx2dx3Sz(q;x) =
πCS(q)

(1− γS(q)) |x1|2−2γS(q)
; Vp(q;x1) =

∫ ∞
−∞

dx2dx3Vz(q;x) =
πCV (q)

|x1|2
.

(55)
Writing the anomalous dimension and the amplitudes order by order,

γS(q) = γ1
Sq

2 + · · · ; CS(q) = C0
S + C1

Sq
2; CV (q) = C0

V + C1
V q

2 + · · · , (56)

we have for ratios of correlators at non-zero q with respect to that in free field as

Sz(q;x1)

Sz(0;x1)
= 1 +

[
C1
S

C0
S

+ 2γ1
S ln |x1|

]
q2 ≡ 1 + q2RzS ;

Sp(q;x1)

Sp(0;x1)
= 1 +

[
C1
S

C0
S

+ γ1
S + 2γ1

S ln |x1|
]
q2 ≡ 1 + q2RpS ;

Vz(q;x1)

Vz(0;x1)
= 1 +

C1
V

C0
V

q2 ≡ 1 + q2RzV ;

Vp(q;x1)

Vp(0;x1)
= 1 +

C1
V

C0
V

q2 ≡ 1 + q2RpV . (57)

with the equalities above valid only up to O(q2). On a finite lattice of size L3, all the quantities above have
an implicit dependence on L and one needs to perform L→∞ extrapolation at fixed |x|. We will perform the
following limits for the ratios above as

Rz,pS (x1) = lim
L→∞

Rz,pS (x1, L); Rz,pV (x1) = lim
L→∞

Rz,pV (x1, L). (58)

using expansions in x/L as

Rz,p(x, L) = Rz,pNS (x) +

N∑
n=1

aNn (x)
( x
L

)2n

. (59)

Since the fit is at a fixed x, grouping in powers of x/L is just for convenience and a fit in even powers of L is
based on emperical observation. We will use N = 7 and N = 8 to establish the stability of the leading term,
Rz,pN (x). We computed the momentum sums on even lattices in the range L ∈ [4, 50]. Keeping all L > 2|x|, we
extracted the ratios at L→∞ for x1 ∈ [1, 16]. For sake of brevity, henceforth, we will denote the x-coordinate
x1 simply as x, and should not to be confused with the vector x = (x1, x2, x3) as in the discussion above.
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FIG. 1. Analysis details to study scaling dimension of the scalar using the difference between the zero spatial momentum
correlator and the point-to-point correlator of the scalar meson using overlap fermion with mw = 1.0. The left panel

shows sample behavior of RpS(x, L) − RzS(x, L) − 2
3π2 as a function of

(
x
L

)2
and the associated two different fits. The

value of RpS(x)−RzS(x)− 2
3π2 that is extracted for all values of x ∈ [6, 15] are shown along with the extrapolation errors

in the right panel. The limit as x → ∞, using single exponential fits of the type c1e
−c2x shown as curves in the right

panel, is consistent with zero.
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FIG. 2. Analysis details to study the absence of perturbative corrections to the scaling dimension of the vector using the
difference of the zero spatial momentum correlator and the point-to-point correlator of the vector meson obtained using

overlap fermion with mw = 1.0. The left panel shows a sample behavior of RpV (x, L) − RzV (x, L) as a function of
(
x
L

)2
at x = 8 and the associated fits with two different orders N . The value of RpS(x)− RzS(x) so extracted for all values of
x ∈ [8, 14] are shown along with the extrapolation errors in the right panel. The limit as x→∞ using single exponential
fit, as for the scalar case above, is consistent with zero.

A. Scaling dimensions

We first concentrate on the scaling dimensions of scalar and the vector within the lattice perturbation theory
at O(q2), and can be obtained from RS and RV is the above equations. For the isotriplet vector, one expects
there to be no corrections from interaction to its free field scaling dimension. The combinations,

RpS(x)−RzS(x) ∼ γ1
Sq

2; RpV (x)−RzV (x) ∼ 0, (60)

for |x| � 1, can be seen to be good observables to extract the O(q2) corrections to the scaling dimensions.
We study the above quantity for the scalar correlator using overlap fermion with mw = 1.0 in Figure 1. From

the dimensional regulatization computation, it is known that γ1
S = 2

3π2 . Therefore, we consider the combination

RpS(x, L)−RzS(x, L)− 2
3π2 . The left panel shows its behavior as a function of

(
x
L

)2
for a sample case of x = 8.

The infinite volume limits at each each fixed x were obtained using the Ansatz of the type in Eq. (59). Such
infinite volume extrapolated values at each x with N = 7, 8 are plotted in the right panel as a function of x. It
can be seen that the limit x→∞ is consistent with zero and a single exponential fit, c1e

−c2x, matches the data
reasonably well. Thus, we have shown that the result of γ1

S for the lattice model agrees with the expectation from
dimensional regularization in the continuum at O(q2). In addition to such a universality between continuum
and lattice regulators, we also checked that the results for γ1

S from different mw in overlap fermion agree.
For the vector operator, we expect its scaling dimension to be uncorrected from the free field value to all

orders in q2. We demonstrate this using a similar strategy as for the scalar as shown in Figure 2. The left panel
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FIG. 3. Analysis details to obtain the scalar two-point function amplitude using overlap fermion with mw = 0.5. The

left panel shows sample behavior of RpS(x, L) as a function of
(
x
L

)2
and the associated two different fits of the type in

Eq. (59) with N = 7 and 8. The value of RpS(x)− 4
3π2 ln(x) so extracted for all values of x ∈ [4, 13] are shown along with

the extrapolation errors in the right panel. The single exponential fits to extract the amplitude in x→∞ limit are also
shown as the curves.
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FIG. 4. A comparison of the results for overlap fermions with mw = 0.5 and mw = 1.0. The left panel shows a sample

behavior of ∆RpS(x, L) as a function of
(
x
L

)2
and the associated two different fits. The value of ∆RpS(x) so extracted for

all values of x ∈ [2, 12] are shown along with the errors in the right panel. The limit as x → ∞ is not zero and finite
showing that the amplitude of the two-point function depends on the regulator parameter.

shows the behavior of RpV (x, L) − RzV (x, L) as a function of
(
x
L

)2
for x = 8. The infinite volume extrapolated

values at each x with N = 7, 8 are plotted in the right panel as a function of x. Again, we find the limit x→∞
is consistent with zero and a single exponential fit matches the data reasonably well. The estimated value at
x = 14 from N = 7 and N = 8 fall on either side of zero. This implies that Eq. (60) for the vector is reproduced
without any regulator dependence.

B. Two-point function amplitudes

1. Regulator dependence

We start our analysis by focussing on overlap fermion with mw = 0.5. The details are shown in Figure
3. The left panel shows the data for RpS(x, L) for overlap fermion with mw = 0.5. The data is plotted as a

function of
(
x
L

)2
for a sample case of x = 6. The extrapolated values at L = ∞ are Rp7S (6) = −0.66913 and

Rp8S (6) = −0.66903 and there is only a small systematic change in the fit values when one goes from N = 7 to
N = 8. Assuming that γ1

S = 2
3π2 , we plot RpS(x) − 4

3π2 lnx in the right panel for N = 7, 8 using the infinite
volume extrapolated values at different x. We see that the limit as x→∞ is finite and non-zero. A fit with a
constant and single exponential fits the data well and we find that

C1
S

C0
S

∣∣∣∣∣
mw=0.5

= −0.9885(6), (61)



10

mw
C1
S

C0
S

∣∣∣∣∣
mw

− C1
S

C0
S

∣∣∣∣∣
0.5

Tadpole corrected result

0.25 -1.3328(37) -0.1390(37)

0.75 0.44590(10) 0.04797(10)

1.0 0.66976(6) 0.07286(6)

1.25 0.80593(9) 0.08965(9)

1.5 0.89843(43) 0.10256(43)

1.75 0.9678(18) 0.1151(18)

TABLE I. Table showing the dependence of the scalar meson amplitude ratio on the regulator for overlap fermions. The
second column is using the unimproved gauge links, and the third column is using tadpole improved gauge links (see
text).

by comparing with Eq. (57). The error in the numerical value on the right hand side of the above equation
comes from the difference in the N = 7 and N = 8 values.

Next, we investigate the regulator dependence of the amplitude. To this end, we vary the Wilson mass
parameter, mw, within overlap fermions. If the result is independent of the regulator, the difference in the
results for two different choices of mw should go to zero as x→∞. Let,

∆RpS(x, L) = RpS(x, L;mw)−RpS(x, L;mw = 0.5), (62)

denote the difference between two different regulators. Comparison of overlap fermion with mw = 1.0 to
overlap fermion with mw = 0.5 is analyzed in Figure 4. The right panel shows the data for ∆RpS(x, L) where
the difference is obtained by subtracting the ratio for overlap fermion with mw = 0.5 from overlap fermion with

mw = 1.0. The data is plotted as a function of
(
x
L

)2
for x = 5. A fit of the form in Eq. (59) with N = 4 and

N = 5 are also shown. The extrapolated values at L = ∞ are ∆Rp4S (5) = 0.651420 and ∆Rp5S (5) = 0.651440,
thereby showing only a small systematic dependence on the extrapolation ansatz. The systematic change in the
fit values between the two choices of extrapolations is small. The extrapolated values, ∆Rp4S (x) and ∆Rp5S (x),
are plotted as a function of x ∈ [2, 12] in the right panel. The x → ∞ limit is approached exponentially and
the data is fit using a constant and a single exponential. The limits are non-zero and finite, which clearly shows
that the amplitude depends on the regulator parameter. The dependence of the amplitude on mw are shown
in the second column of Table I.

Our analysis of vector mesons mirrors the one for scalar mesons. We start our analysis by focusing on overlap
fermion with mw = 0.5 to extract the amplitude. The details are shown in Figure 5. The left panel shows the

data for RpV (x, L) for overlap fermion with mw = 0.5. The data is plotted as a function of
(
x
L

)2
for x = 6.

We needed to use N = 7 and N = 8 in Eq. (59) (the form of fit is same for vector and scalar mesons) to

best fit the data and these are also shown. The extrapolated values at L = ∞ are Rp7S (6) = −0.910487 and

Rp7S (6) = −0.910450. We plot RpV (x) in the right panel for N = 7, 8. We see that the limit as x → ∞ is finite
and non-zero. A fit with a constant and single exponential fits the data well and we find that

C1
V

C0
V

∣∣∣∣∣
mw=0.5

= −0.92254(13). (63)

Like in the case of scalar mesons, we investigate the regulator dependence of the amplitude by varying the
Wilson mass parameter, mw, within overlap fermions. Comparison of overlap fermion with mw = 1.0 to overlap
fermion with mw = 0.5 is analyzed in Figure 6. The right panel shows the data for ∆RpV (x, L) where the
difference is obtained by subtracting the ratio for overlap fermion with mw = 0.5 from overlap fermion with

mw = 1.0. The data is plotted as a function of
(
x
L

)2
for x = 5. A fit of the form in Eq. (59) with N = 4 and

N = 5 are also shown. The extrapolated values at L = ∞ are ∆Rp4V (5) = 0.608857 and ∆Rp5V (5) = 0.608873.
We see only a small systematic change in the fit values when one goes from N = 4 to N = 5. The extrapolated
values, ∆Rp4V (x) and ∆Rp5V (x), are plotted as a function of x ∈ [2, 13] in the right panel. The x → ∞ limit
is approached exponentially and the data is fit using a constant and a single exponential. The limits are non-
zero and finite clearly showing that the amplitude of vector two-point function also depends on the regulator
parameter. The dependence of the amplitude on mw are shown in the second column of Table II.
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FIG. 5. Analysis details for the zero spatial momentum projected vector correlator using overlap fermion with mw = 0.5.

The left panel shows sample behavior of RpV (x, L)as a function of
(
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)2
at a sample x = 5, and the associated two

different infinite volume extrapolation fits. The value of RpV (x) so extracted for all values of x ∈ [4, 13] are shown along
with the errors in the right panel. The fits to extract the leading correction to the amplitude are also shown.
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and the associated two different fits. The value of ∆RpV (x) so extracted

for all values of x ∈ [2, 12] are shown along with the errors in the right panel. The limit as x→∞ is not zero and finite
showing that the amplitude of the two-point function depends on the regulator parameter.

2. Partial restoration of universality with tadpole improvement

The regulator dependence of the two-point functions seen in Table I and Table II in the lattice model is a
curious aspect of this lattice gauge model, which approaches the continuum behavior simply at distance scales
much larger than one lattice unit without any fine tuning. The regulator dependence of amplitudes is to be
understood by the fact that the plaquette value in this model never approaches 1 due to the absence of the
traditional continuum limit at a field field fixed point. Thus, we wanted to check whether by “improving” the
Dirac operator by using gauge links that are closer to unity subdues the regulator dependence of the amplitudes.
A well known method to achieve this is via tadpole improvement, namely, the replacement of the massless free
Wilson-Dirac operator in Eq. (16) by

D0(x1, x2) = 3δx2,x1
− uo

∑
i

[
pi+δx2,x1+î + pi−δx2,x1−î

]
(64)

where u4
0 is the expectation value of the compact plaquette with charge q. A simple computation yields,

u0 = exp

[
− q2

24L3

′∑
p

2(p)

]
= e−αq

2

; α = 0.0994834. (65)

This amounts to a change in the Wilson mass parameter by

mw →
mw − 3(1− u0)

u0
. (66)
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mw
C1
V

C0
V

∣∣∣∣∣
mw

− C1
V

C0
V

∣∣∣∣∣
0.5

Tadpole corrected result

0.25 -1.3072(44) -0.1134(44)

0.75 0.42461(7) 0.02668(7)

1.0 0.630541(7) 0.033641(6)

1.25 0.75052(7) 0.03424(7)

1.5 0.8276(6) 0.0317(6)

1.75 0.8824(18) 0.0297(18)

TABLE II. Table showing the dependence of the vector meson amplitude ratio on the regulator for overlap fermions.
The second column is using the unimproved gauge links, and the third column is using tadpole improved gauge links
(see text).

Since the free massless overlap propagator behaves as

G̃e(q) = 2mw
iσkpk
p2

; pk =
2πqk
L
→ 0 (67)

the induced wavefunction normalization is 1
2mw

for each fermion propagator. Since mw has a tadpole correction

given by Eq. (66), we conclude that all ratios defined in Eq. (57) should be multiplied by[
u0

1− 3(1−u0)
mw

]2

=

[
1 +

2(3−mw)α

mw
q2 + · · ·

]
. (68)

This amounts to

C1
S,V

C0
S,V

→
C1
S,V

C0
S,V

+
2(3−mw)α

mw
(69)

resulting in

C1
S

C0
S

∣∣∣∣∣
mw=0.5

+ 10α = 0.0063(6), (70)

as the tadpole corrected amplitude ratio at mw = 0.5 and

C1
S

C0
S

∣∣∣∣∣
mw

− C1
S

C0
S

∣∣∣∣∣
mw=0.5

+
6(1− 2mw)α

mw
(71)

as the tadpole corrected difference of the amplitude ratio. These are shown in the third column of Table I.
Since the logic of the tadpole correction carries over to vector mesons, we can use Eq. (71) to include a tadpole
correction resulting in

C1
V

C0
V

∣∣∣∣∣
mw=0.5

+ 10α = 0.07229(13), (72)

and the third column in Table II. In both the scalar and vector cases, the regulator dependence in the tadpole
improved case is indeed weaker.

V. CONCLUSIONS

It is useful to compute corrections to conformal correlation functions in a perturbation theory that maintains
conformal invariance [9, 10], with the possibility of performing N -point functions beyond N = 2 on larger lattices
without a Monte Carlo effort. Naively, only the anomalous scaling dimensions of operators and amplitudes of
three point functions and higher (with the amplitudes of 2-point function set to unity as the normalization
condition) are physical. There are situations that involve conserved operators where the amplitude of two point
functions become physical. One such quantity is the vector current in conformal three dimensional QED. A
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lattice model to reproduce results in conformal three dimensional QED was proposed in [8]. We studied this
model using lattice perturbation theory in this paper. We computed corrections to the scalar and vector two
point functions. We showed that the scalar anomalous dimension is correctly reproduced and is independent of
the regulator, thereby validating further future efforts within a lattice perturbation theory setup. On the other
hand, we showed that the corrections to the amplitude of the scalar and vector two point function depends
on the lattice regulator. In particular, we found that the amplitude of the vector correlator depends on the
lattice regulator. This observation demands one to numerically revisit the verification [8] of the conjectured
self-duality of three dimensional QED with four flavors of two component fermions [13–15] within the framework
of the lattice conformal model via the degeneracy of flavor current and topological current correlators; in the
work [8], the regulator dependence was not explored. Since such a degeneracy between the correlators was
also seen to arise within statistical errors in a conventional simulation of three dimensional QED [3] with a
well-defined continuum limit, we suspect that the value of q in the lattice model where the flavor and vector
currents coincide might turn out to be a universal value independent of the regulator. For this, one might need
to use the induced Chern-Simons terms from massive fermions to compute the topological current correlator,
wherein similar regulator dependence could be induced in the correlators of the fermion-based definition of the
topological currents as well. Such a scenario conjectured by us needs to be studied further. In the future, it
would also be interested to use the model to study scaling dimensions of monopoles by coupling the lattice
model to the gauge field qA+AQ, with A being the dynamical gauge field and AQ being the background gauge
field for a flux Q monopole-antimonopole pair as studied in [16, 17], and ask if they match the values found in
different Nf flavor QED3.
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