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We explore machine learning-based jet and event identification at the future Electron-Ion Collider
(EIC). We study the effectiveness of machine learning-based classifiers at the relatively low EIC
energies, focusing on (i) identifying the quark flavor of the jet and (ii) identifying the hard-scattering
process. We propose applications of our machine learning-based jet identification in the key research
areas at the future EIC and current RHIC program, including the extraction of (transverse momen-
tum dependent) parton distribution functions, improving experimental access to transverse spin
asymmetries, and quantifying the modification of hadrons and jets in the cold nuclear matter envi-
ronment in electron-nucleus collisions. We establish first benchmarks and contrast the performance
of flavor tagging at the EIC with that at the Large Hadron Collider. We perform studies relevant for
the detector design including particle identification, charge information, and minimum transverse
momentum requirements. Additionally, we study the impact of using full event information instead
of using only information associated with the identified jet.
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I. INTRODUCTION

The future Electron-Ion Collider (EIC) will map out
in detail the structure of nucleons and nuclei and allow
for novel studies of hadronization, jets and cold nuclear
matter [1]. The EIC center-of-mass (CM) energy of up
to

√
s = 141 GeV will allow for detailed QCD studies

using jets, which are highly energetic collimated sprays of
particles observed in the detector. The measured energy
and the direction of a jet represent good proxies of the
corresponding quantities at the level of quarks and gluons
that initiate the observed jet. This close correspondence
between partons and jets was explored in Refs. [2, 3] for
the expected EIC kinematics. In this work, we explore
the use of machine learning to classify different jets as
well as entire events using A.I. and machine learning. In
addition, we outline specific applications that we envision
at the future EIC. We expect that the tools and appli-
cations discussed in this work are also relevant for the
ongoing experimental program at the Relativisitic Heavy
Ion Collider (RHIC).

The rapid progress in A.I. and machine learning over
the last decade has led to various applications in nuclear
and high energy physics. See Ref. [4, 5] and references
therein for recent developments in the areas of classifica-
tion, generative modeling [6–8], regression and inference.
In the context of the EIC, machine learning techniques
have been proposed for example to determine kinematic
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variables in Deep Inelastic Scattering (DIS) [9, 10] and
to extract quantum correlation functions such as PDFs,
TMDs, GPDs, and fragmentation functions [11? ].

In high-energy collider physics, the classification of
quark vs. gluon jets or QCD vs. W/Z jets has been stud-
ied with increasing sophistication over the past years [12].
An important goal of these studies is to increase the
sensitivity to potential signals of physics beyond the Stan-
dard Model. Examples of machine learning architectures
to classify jets include Convolutional Neural Networks
(CNNs) [13, 14], deep sets [15], and transformer mod-
els [16]. Compared to tagging algorithms based on tra-
ditional observables, algorithms based on supervised ma-
chine learning algorithms have both benefits and draw-
backs. The principal benefit is the ability of the machine
learning algorithm to take advantage of the full informa-
tion at hand and thereby significantly outperform algo-
rithms based on traditional observables. The drawbacks
in doing so are that the results can be difficult to interpret
and connect to first principles since it is unclear what the
machine is learning, and that the (simulated or experi-
mental) data used in the training process may contain
biases. At the LHC, machine learning based jet taggers
have succeeded in significantly outperforming traditional
jet taggers. At the same time, numerous efforts have
been taken to address the limitations of machine learning
based algorithms, both to improve the interpretability
of machine learned results and bring under control the
biases of the training data set. For example, in Refs. [17–
20] complete bases of jet substructure observables were
introduced which span the phase space of emissions inside
jets. This large set of observables can rival the perfor-
mance of successful machine learning algorithms, which
has allowed for insights into how machines learn and an
improved understanding of their good performance. In
this way, machine learning based algorithms have driven
progress both in the performance of the classification
tasks but also in pushing traditional approaches forward.
A key question at the EIC is understanding how large
an improvement in performance machine learning based
tagging algorithms can provide, and to identify applica-
tions of machine learning based algorithms that can drive
forward the physics goals of the EIC, as it has at the
LHC.

In this work, we will address the following three topics.
First, we explore the application of machine learning-
based classifiers at the comparatively low EIC energies.
Typically, jet classification studies are carried out at
LHC energies where the jet’s transverse momentum is
O(100 GeV). Instead, at the EIC, jets will be produced
predominantly with 10-30 GeV. Moreover, an important
aspect of machine learning for jets is the sparsity of the
data compared to typical tasks in computer vision. Due
to the relatively low number of hadrons that make up EIC
jets, we expect an increased level of sparsity compared to
LHC jets. We will explore if the reduced energy and in-
creased sparsity of jets at the EIC affect the performance
of machine learning based classifiers.

Second, we explore both quark flavor jet tagging and
quark vs. gluon jet tagging. As examples, we consider
the binary classification tasks: u vs. d quark [21], ud
vs. s and uds vs. c jet tagging and we compare to the
jet charge [22, 23] as a reference. We expect that the
flavor tagging of jets will be an important component to
constrain collinear and transverse momentum dependent
parton distribution functions (PDFs), which we discuss
more below.

Third, we will investigate how the performance can be
improved by not only making use of the particles inside
the jet but also out-of-jet particles to classify the hard-
scattering event. Out-of-jet radiation patterns include
subleading jets or soft particles in the event. By mak-
ing use of this additional information, we extend the jet
classification task to event classification. For typical appli-
cations that we foresee at the future EIC, the classification
of the hard-scattering event can improve measurements
that are not necessarily limited to in-jet dynamics. Event-
wide classification algorithms can help to improve the
measurement of spin asymmetries and studies of cold
nuclear matter. The machine learned event-wide informa-
tion can also be mapped to traditional observables like
N -jettiness ratios [24] or the jet pull [25, 26].

We foresee several specific applications of machine learn-
ing based jet and event classification to some of the major
physics goals of the EIC:

(i) Strengthening constraints on (transverse momentum
dependent) PDFs. We expect that the flavor tagging of
jets will be an important component to constrain collinear
and transverse momentum dependent parton distribution
functions (PDFs), which we discuss more below. For ex-
ample, in Ref. [27] charm-tagged jets were proposed to
increase the sensitivity to the (collinear) strange quark
PDF in charged current events. In Ref. [28], the authors
considered jet substructure observables to constrain the
gluon PDF at the LHC. See also Refs. [29–33] for further
theoretical work on the flavor of jets. We generally find
that machine learning-based classifiers outperform tra-
ditional observables like the jet charge and therefore we
expect that machine learning can significantly enhance the
science potential of the EIC. Directly including machine-
learned event-by-event classifiers in a global analysis of
quantum correlation functions like PDFs may require ad-
ditional investigations, which are beyond the scope of
this work. Alternatively, the machine learned classifier
can be considered as an upper bound on the information
content [18] and subsequently a suitable high-level ob-
servable that is calculable in perturbative QCD may be
identified using for example lasso regression [16, 34] or
other symbolic regression techniques [35].

(ii) Enhancing transverse single spin asymmetries.
Transverse Single Spin Asymmetries (TSSAs) constitute
some of the hallmark measurements at RHIC and the
future EIC and they provide constraints on the spin struc-
ture of the proton. TSSAs are defined as the difference of
cross sections where the incoming protons have different
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transverse spin orientations

AUT = dσ↑ − dσ↓

dσ↑ + dσ↓ . (1)

However, due to experimental constraints, it has generally
been challenging to measure non-zero TSSAs. See Ref. [?
] for recent measurements by the STAR Collaboration
in p↑ + p → di-jet+X correlation events where the jet
charge was used as an additional measurement to increase
the size of the asymmetry. See also Refs. [36–41] for
further experimental results. Here we propose that an
enhancement of TSSAs

max
θ

AUT (θ) , (2)

can be achieved by including an additional machine-
learned measurement, which is here given by the parame-
ters θ. This can be achieved by formulating this regression
task as a classification problem of jets (or events) that are
obtained in scattering processes with differently polarized
protons (↑↓) in the initial state. By applying a classi-
fier trained on distinguishing jets in events with different
initial spin orientations as an additional measurement,
similar to the jet charge, larger spin asymmetries may
be obtained, which can provide better constraints on the
corresponding quantum correlation functions in global
analyses.

(iii) Elucidating cold nuclear matter effects. One of
the goals of the EIC is to achieve an understanding of
the transport coefficients of nuclear matter such as by
comparing observables in eA collisions to those in ep colli-
sions, similar to the jet quenching program comparing AA
and pp collisions at RHIC and the LHC. The entire basis
for extracting such properties of nuclear matter is the
difference between eA and ep observables. By training ma-
chine learning methods to distinguish these two classes of
events, one can use interpretable machine learning meth-
ods to gain insight into the type of information responsible
for these differences, and thereby make connections to
calculable observables in perturbative QCD [34].

The remainder of this work is organized as follows. In
section III, we discuss the event generation and present the
different machine learning algorithms used in this work.
In section IV we present results for jet flavor classification
at the EIC. In section V, we extend the jet classification
to full events and compare the performance of machine
learned results. In section VI, we draw conclusions and
provide an outlook. (Need to list “theory section” here.)

II. MACHINE LEARNING APPLICATIONS TO
HADRON STRUCTURE AND SPIN PHYSICS

A. Applications of jet tagging

Due to the large cancellations between different PDFs
and fragmentation functions, jet flavor classification may

help to significantly improve the measurement of spin-
dependent observables. We note that the techniques
discussed here do not only apply to TSSAs but they can
be applied are more generally:

• Quark flavor and quark vs. gluon jet identification
can help to improve the sensitivity to the longitudi-
nally polarized gluon distribution ∆g. See Refs. [42–
46] for recent discussions and experimental results.

• Quark vs. gluon jet classification may help to im-
prove measurements of the gluon Sivers function at
RHIC and the future EIC [47].

• The techniques discussed here may also improve
searches of physics beyond the Standard Model at
the EIC [48–50]. For example, in Ref. [51] jet charge
weighted TSSAs were proposed in this context.

• Exclusive, diffractive processes with jets, GPDs,
Wigner functions [52–54] ... Still need to extend
this and can also write a whole paragraph about it.

We leave a more detailed exploration of machine learning
applications for these topics for future work [55].

B. Enhancing spin asymmetries

Transverse Single Spin Asymmetries (TSSA) where an
incoming proton is transversely polarized

AUT = dσ↑ − dσ↓

dσ↑ + dσ↓ , (3)

are an important component of the spin physics program
at RHIC and the future EIC. However, experimental
measurements are challenging and due to the relatively
large uncertainties the asymmetries are often small or
consistent with zero. Examples at RHIC include asym-
metries in di-jet correlations p↑ + p → dijets + X. See
Refs. [37? ] for measurements from the STAR Collabora-
tion and Refs. [56–58] for recent theoretical results. Other
examples include single-inclusive measurements of pions
p↑ + p → π + X. Similar measurements have been per-
formed using jets, open heavy-flavor mesons and photons.
See Refs. [38–41] for recent from the STAR and PHENIX
Collaborations.

The reason that these asymmetries are small is the can-
cellation of contributions with opposite sign from different
partons. Within QCD factorization, this can be traced
back to PDFs or fragmentation functions of partons with
different flavor. We will discuss two examples in more
detail below where for example different quark PDFs con-
tribute to the asymmetry with opposite sign and similar
magnitude. Therefore, in Ref. [? ], the STAR collabora-
tion used the jet charge to tag jets with a specific quark
flavor and a non-vanishing asymmetry was obtained. As
demonstrated also in previous sections, machine learning-
based jet or event classification outperforms traditional



4

observables. Therefore, we propose to enhance the mea-
surement of TSSAs using an additional machine learned
classifier or observable

max
θ

AUT (θ) . (4)

Here the additional machine learned classifier is given in
terms of the set of parameters θ. The regression problem
in Eq. (4), can be formulated as a classification task where
the machine learning techniques discussed in previous sec-
tions can be directly applied. By training a classifier that
distinguishes jets produced in events where the incoming
proton has opposite transverse polarization (↑↓), we can
find a classifier that maximizes the TSSA AUT . This
approach is similar to the discrimination task between
jets in proton-proton and heavy-ion collisions where the
trained classifier can be used to maximize the nuclear
modification factor

max
θ

RAA(θ) = max
θ

dσAA

dσpp
(θ) . (5)

See Refs. [] for more details. The identification of a ma-
chine learned-classifier can be performed directly on data
before unfolding [34] or using corrected full events [59].
Subsequently, an observable can be identified that is cal-
culable in perturbative QCD and that approximates the
performance of the machine learned-classifier. For exam-
ple, this can be achieved using complete sets of observables
such as the N -subjettiness basis or EFPs discussed above.
Using this observable, an unfolding procedure can be ap-
plied and the data can eventually be included in a global
analyses of quantum correlation functions. We note that
the target or loss function of the regression problem in
Eq. (4) is at the hadron or observable level. However,
within QCD factorization we can establish a direct con-
nection to parton-level PDFs or fragmentation functions,
which we will discuss in the following for two specific
examples.

As discussed above, machine learning based classifiers
that can distinguish jets or events that originate from
different quark flavors (and gluons) can assist the spin
physics program at RHIC and the future EIC. In particu-
lar, measurements of Sivers [60] and Collins [61] asymme-
tries are often close to zero due to large cancellations be-
tween different PDFs and fragmentation functions. These
approximate cancellations can be understood from mo-
mentum sum rules. In the following, we will consider the
Schäfer-Teryaev sum rule [62, 63] and the Burkardt [64–
66] sum rule that are satisfied by the Collins and Sivers
functions, respectively. Both of these sum rules state
that average transverse momentum should sum to zero
when summed over either the outgoing hadron flavors
(Collins) or incoming quark flavors (Sivers). We note that
the derivation of these sum rules involves bare quark and
gluon operators and it is therefore unknown how much
the sum rules are violated due to renormalization. Nev-
ertheless, they provide an intuitive understanding of the
large cancellations between different quark flavors to first
order.

First, we consider the Sivers function f⊥a
1T (x, k⃗2

T ), which
describes the longitudinal x and transverse momentum
kT anisotropy of partons inside a transversely polarized
proton. Here the superscript a = q, q̄, g denotes the
parton inside the proton. Including appropriate prefactors
and formally integrating over the transverse momentum
dependence, we find

f
⊥(1)a
1T (x) =

∫
d2k⃗T

k⃗2
T

2M2 f⊥a
1T (x, k⃗2

T ) . (6)

The Burkardt sum rule for the Sivers function states that
the following integral vanishes []

∑
a=q,q̄,g

∫ 1

0
dxf

⊥(1)a
1T (x) = 0 . (7)

Under the assumption that the valence quarks distribu-
tions dominate, the Burkardt sum rule leads to u and
d-quark Sivers function that have opposite sign and sim-
ilar magnitude. This expected behavior of the u and
d quark Sivers functions has been confirmed by several
global analyses [? ].

Second, we consider the Collins fragmentation function
H⊥

1,h/q(z, P⃗ 2
⊥) as an example of spin-dependent dynamics

in the final state where large flavor cancellations are
expected. It describes the longitudinal z and transverse
momentum P⊥ distribution of a final-state hadron that
originates from a transversely polarized parton. After
integrating out the transverse momentum dependence, we
find

H
⊥(3)
1,h/q(z) =

∫
d2P⃗⊥

P⃗ 2
⊥

Mh
H⊥

1,h/q(z, P⃗ 2
⊥) . (8)

The Schäfer-Teryaev sum rule for the Collins function
states that the integral over the longitudinal momentum
fraction vanishes after we sum over all hadron species []

∑
h

∫ 1

0
dz H

⊥(3)
1,h/q(z) = 0 . (9)

For simplicity, we now assume that isospin symmetry
holds and we assume that the light partons-to-pion frag-
mentation process dominates. In this case, only two frag-
mentation channels remain. The favored fragmentation
functions are pion fragmentation functions for a valence
parton u or d, i.e. H⊥

1,π+/u or H⊥
1,π−/d, respectively, and

the unfavored fragmentation functions are pion fragmenta-
tion functions of u or d that are not a valence partons, i.e.
H⊥

1,π−/u or H⊥
1,π+/d). According to the Schäfer-Teryaev

sum rule, these two channels then need to have opposite
sign. Therefore, experimental measurements are tradi-
tionally carried out with identified hadrons to achieve
a flavor separation and avoid the approximate cancella-
tion of different fragmentation functions. Achieving a
flavor separation using the jet charge was investigated in
Refs. [67, 68] and, analogously, we expect that machine
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FIG. 1. Illustration of the jet production processes considered in this work. Left: High-Q2 electron-proton scattering. At leading
order, the final state consists of the scattered electron and a single jet originating from different quark flavors. Right: Low-Q2

photoproduction, where we include both the direct and the resolved contribution. At leading order, the final state consists of
the scattered electron in the forward direction / close to the beam axis and a di-jet pair, which can be initiated by both quarks
and gluons. In both cases, the transverse momentum of the jets is measured relative to the beam axis in the laboratory frame.

learning-based observables can lead to new opportunities.
Moreover, multi-differential measurements of identified
hadrons and machine learning-based observables may also
provide new insights, which we plan to investigate in the
future.

III. SIMULATION AND TRAINING SETUP

To perform our studies, we generate simulated events
using the Monte Carlo event generator PYTHIA6 [], which
serves as the training data for the (supervised) machine
learning based classification algorithms. In the following,
we describe the simulated event sample and the machine
learning architecture.

A. Event generation

We generate two data sets for the following studies,
both using PYTHIA6. See Fig. 1 for an illustration of
the two processes.

First, we generate jet samples using leading-order DIS
as the hard-scattering process for the jet flavor tagging
studies discussed in section IV. At leading order, the final
state consists of the scattered electron and a single jet
originating from different quark flavors. The leading-order
DIS process is given the process number 99 according
to PYTHIA6. We then identify the jet flavor with the
flavor of the underlying quark in the leading-order DIS
process (q → q). We require the photon virtuality and
inelasticity to be in the intervals 25 < Q2 < 1000 GeV2

and 0.1 < y < 0.85, respectively.
Since gluons do not contribute at leading order in DIS,

we generate a second data set for quark vs. gluon jet
tagging using di-jet events in low-Q2 photoproduction
events, including both the direct and resolved contribu-
tions. At leading order, the final state consists of the
scattered electron in the forward direction close to the
beam axis and a di-jet pair, which can be initiated by

both quarks and gluons. We require low 10−5 < Q2 <
1 GeV2, while maintaining the same cut on the inelas-
ticity 0.1 < y < 0.85. We identify quark and gluon jets
in the photoproduction events using the PYTHIA6 re-
solved processes 11 (qq → qq), 12 (qq̄ → qq̄), 53 (gg → qq̄)
and 13 (qq̄ → gg), 68 (gg → gg) and the direct photon-
gluon fusion processes 135 (γ∗

T g → qq̄), 136 (γ∗
Lg → qq̄).

In order to avoid ambiguity in labeling processes with qg
final states, we neglect the resolved process 28 (qg → qg)
and the direct QCDC processes 131 (γ∗

T q → qg) and
132 (γ∗

Lq → qg) and save these for future study.
In accordance with experimental particle detection ca-

pabilities, we include all particles in the event and in the
jet reconstruction with a lifetime of cτ > 1 cm. This
includes

γ, e−, µ−, π−, p, n, K0
L, K0

S , K−,

Λ0, Ξ0, Ξ−, Σ±, Ω− , (10)

and the corresponding anti-particles. Particles with
cτ < 1 cm, such as neutral pions π0, are decayed un-
til daughters with cτ > 1 cm are produced. The scattered
electron is identified as the leading electron in the event
and removed before we run the jet clustering algorithm.
From the scattered electron we determine the virtuality
Q2 of the exchanged photon. We leave the implemen-
tation of a simulated detector response for future work,
and as a first step we will instead examine the impact
of particle identification information, charge information,
and minimum transverse momentum requirements on the
performance of these taggers in Sections IV and V.

Jets are reconstructed in the laboratory frame with
the anti-kT algorithm [69]. We choose a jet radius pa-
rameter of R = 1.0 and we consider the rapidity range
|ηlab| < 4. For the single jets identified in the DIS events,
we require the transverse momentum of the identified
jets to be pT > 10 GeV. We consider a sample of 14M
events satisfying these criteria, corresponding to an in-
tegrated luminosity of approximately 3 fb−1 (Check the
number of jets per inverse femtobarn (see discussion w
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Brian)), corresponding to approximately a few months
of EIC runtime (estimated at approximately 10 fb−1 per
year [1]. For the di-jets identified in the low-Q2 photopro-
duction events, we require the transverse momentum of
the leading jet to be pT > 8 GeV and the subleading jet
to be pT > 5 GeV. We consider a sample of approximately
0.3M events satisfying these criteria, corresponding to
an integrated luminosity of approximately XXXX fb−1

(Check the number of di-jets per inverse femtobarn). The
size of the sample is determined by studying when the
classification performance approximately saturates as the
statistics are increased. We adopt a “UV definition” of
the jet flavor content throughout this paper analogous to
various machine learning studies of jet classification at
the LHC.

We use supervised training throughout this work. In
order to deploy supervised models on real data, one can
either perform training on simulations or on experimental
data itself. Training models on Monte Carlo simulations
may be viable at the EIC if event simulations based on
parton showers are sufficiently reliable in the sense that
the machine learning algorithms can be trained on a suite
of simulations and deployed on data. On the other hand,
related data driven methods [70] and weakly supervised
learning [71] may be suitable at the EIC as well. In
addition, some of the studies proposed here can be per-
formed on data before unfolding of detector effects. This
will allow for the identification of suitable observable for
which unfolding can be performed afterwards. Further-
more, recent advances in unfolding methods may allow
one to unfold entire events [59]. We leave a more detailed
exploration of these aspects for future work.

B. Machine learning algorithms

In the next sections, we will study the binary classi-
fication of jets with different quark flavor and quark vs.
gluon jets using machine learning algorithms. For this
task we choose deep sets [72–74] as our default classi-
fier, which were introduced as Particle Flow Networks
(PFNs) [15] for data obtained in high-energy collisions in
particle and nuclear physics. The information about the
particles in a jet or collider event can be considered as a
set of four vectors with variable length event-by-event. A
deep set / PFN is a neural network, which is invariant
with respect to permutations of the input variables and
it can naturally handle input with different length. This
choice of machine learning architecture appears to be
natural for data in collider physics since the number of
particles varies event-by-event and there is no inherent
ordering of the particles inside a jet or of the particles in
the entire event. We note that other machine learning
based classifiers were found to perform similarly or worse
for analogous tasks at LHC energies [15, 16]. The PFNs
take as input the information of all the particles inside
a reconstructed jet. We represent the per-particle input

variables as

pi = (zi, ηi, ϕi, PIDi) , (11)

where zi = pT i/pjet
T is the normalized transverse momen-

tum of particle i with respect to the beam axis, and ηi, ϕi

are its rapidity and azimuthal angle. Following Ref. [15],
we take ηi, ϕi relative to the (E-scheme [75]) jet axis.
Lastly, PIDi in Eq. (11) denotes the particle identification
number. See Eq. (10) for the different particles in our
data set. We map the PIDs to numerical values in an
interval around zero. The numerical values are separated
by 0.1 and particles (anti particles) are assigned positive
(negative) values. A deep set / PFN takes as input the
kinematics of the N particles in the event f(p1, . . . , pN ).
It is constructed such that it satisfies f(pπ(1), . . . , pπ(N)),
where π denotes the permutation operator. The required
permutation invariance can be achieved by expressing f
as [72]

f(p1, . . . , pN ) = F

( N∑
i=1

Φ(pi)
)

. (12)

Here Φ, F denote fully connected feed-forward neural
networks with a certain number of hidden layers. The
connections between hidden layers are parametrized in
terms of weights and each node has a bias term. The per-
particle neural network Φ : R4 → Rd maps the input to a
d-dimensional latent space. The summation operation in
latent space leads to the permutation invariance of f . The
second neural network is a map between the latent space
and the final output of the binary classifier F : Rd → R.

We parametrize the functions Φ and F in Eqs. (??)
and (??) in terms of DNNs, using the EnergyFlow pack-
age [15] with Keras [76]/TensorFlow [77]. For Φ we use
two hidden layers with 100 nodes each and a latent space
dimension of d = 256. For F we include three layers with
100 nodes each. For each dense layer we use the ReLU
activation function [78] and we use the softmax activation
function for the final output layer of the classifier. We
train the neural networks using the Adam optimizer [79]
and the binary cross entropy loss function [80], and train
for 10 epochs with a batch size of 500. We reserve 20% of
the training sample as a validation set, and an additional
20% as a test set on which all metrics are reported. We
train the models using an NVIDIA A100 GPU on the
Perlmutter supercomputer [].

The performance of a classifier is typically assessed
by analyzing the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC). The
ROC curve shows the cumulative distribution functions
of the true positive rate vs. the false positive rate as
the decision threshold is varied. In our case we define
“positive” to refer to e.g. u jets. A random classifier
follows a diagonal line with AUC= 0.5 and the better a
classifier is, the closer the curve is to the upper left edge
of the plot, with a perfect classifier having AUC= 1.
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FIG. 2. The jet charge distribution for EIC jets with pT > 10 GeV produced in high-Q2 events as shown on the left side of
Fig. 1. The three panels show the results for different flavor discrimination: u vs. d (left), ud vs. s (middle), and uds vs. c
(right) for a jet charge parameter of κ = 0.5, see Eq. (13). The jet charge is able to distinguish u from d, s reasonably well,
whereas it is a relatively poor discriminator for u vs. c or q vs. g. Note that a peak at Qκ = 0 arises from jets that contain only
neutral particles.

IV. JET FLAVOR TAGGING

Using the LO DIS events described in Sec. III A, we now
study various binary classifications of quark-jet flavors.
We consider several different classification groupings: u vs.
d, ud vs. s, and uds vs. c. We will study the role of PID
information, charge information, and minimum particle
transverse momentum thresholds on the performance of
the classifiers, as well as the role of both in-jet and out-
of-jet particles.

We will benchmark our ML-based algorithms against
the energy-weighted jet charge [81]

Qκ =
∑
i∈jet

zκ
i Qi , (13)

where zi = pT i/pjet
T denotes the longitudinal momentum

fraction of the hadrons i inside the jet and Qi is their elec-
tric charge. The weighting factor zκ

i reduces the sensitivity
to experimental uncertainties and κ is a free parameter
that we will vary in our numerical studies below. The
jet charge is soft safe but collinear unsafe, which means
that theoretical calculations require a nonperturbative
input that needs to be determined from experiment. The-
oretical calculations of the jet charge were performed in
Ref. [22, 23]. Extensions of the jet charge definition in
Eq. (13) were proposed in Refs. [21, 82]. Experimental
measurements at the LHC can be found in Refs. [83–85].
In Fig. 2, we show the jet charge distributions for the LO
DIS jets considered in this section. The jet charge is able
to distinguish u from d, s reasonably well, whereas it is a
relatively poor discriminator for u vs. c since they have
the same electric charge, and similarly for q vs. g (not
shown here). The jet charge thereby serves as a reference
to which the performance of our ML-based algorithms
can be compared.

In order to study the role of PID information and
charge information, we consider three variations of the
information input to the PFN training:

• “PFN with PID”: pi = (zi, ηi, ϕi, PIDi) ,

• “PFN with charge”: pi = (zi, ηi, ϕi, Qi) ,

• “PFN without PID”: pi = (zi, ηi, ϕi) .

We note that the “PFN with charge” classifier uses the
same experimental information as the jet charge, whereas
the “PFN with charge” uses full PID information, which is
not used by the jet charge. Similarly, we consider varying
the minimum transverse momentum of jet constituents
input to the PFN training, varying between pT = 0.1−0.4
GeV. While we do not consider the exact PID capabilities
or single-particle efficiencies of the proposed EIC detec-
tors, these variations provide a first-order estimate of
the importance of PID and minimum particle transverse
momentum detection capabilities and serve as an initial
quantification of the value that may or may not be gained
in jet tagging performance by investing in improved PID
or minimum particle transverse momentum capabilities.

A. u vs. d

To begin, we consider the classification of u vs. d initi-
ated jets. Our results are shown in Fig. 3. We find that
while the jet charge is a fairly good discriminator of u vs.
d jets, the PFN (which uses the full four-vector informa-
tion of the final-state particles) improves the performance
when either charge information is included or even more
so when PID information is included. When neither PID
nor charge information is included, the classifier cannot
significantly distinguish u jets from d jets in PYTHIA6.
Interestingly, the increase in performance when adding
PID information rather than charge information is rather
modest, considering the substantial experimental effort
required to assign PID information to all constituents,
especially noting that experimental PID capabilities are
not perfectly efficient as assumed in our studies.

Next, we consider the role of the minimum transverse
momentum of jet constituents input to the PFN training.
Figure 4 shows the results when varying the minimum
threshold between pT,particle > 0.1 − 0.4 GeV. We find
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pT,particle > 0.1 GeV. We consider three variations of the input
to the PFN, providing either PID information for all particles,
charge information for all particles, or neither.
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FIG. 4. ROC curves for u vs. d jet flavor tagging using
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and different cuts on the minimum pT,particle required of jet
constituents.

only a minor difference in the classifier performance when
varying the minimum pT,particle between 0.1 GeV and 0.4
GeV, suggesting that the minimum pT,particle detector
requirements are not essential for classifying jet flavor
using the in-jet information. We will see, however, in
the next section that this has a stronger impact when
considering the out-of-jet particles.

B. Out-of-jet information

In this section, we investigate how the performance
can be improved by not only making use of the particles
inside the jet but also out-of-jet particles to classify the
jet flavor. While we have used a relatively large jet ra-
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FIG. 5. ROC curves for u vs. d jet flavor tagging using PFNs
with PID information for jets with pT > 10 GeV, using either
in-jet information as input or using both in-jet and out-of-jet
information as input. We consider two different cuts on the
minimum pT required of jet constituents, which illustrate that
soft out-of-jet particles play a significant role in boosting the
classification performance.

dius R = 1.0 in these studies, this choice is somewhat
arbitrary and neglects the role of large-angle radiation
and correlations across the entire event. We therefore
compare the performance of a PFN supplied with only
in-jet particles to that of a PFN supplied with both in-jet
and out-of-jet particles. Figure 5 shows the results of this
comparison. We show the comparison for two different
minimum pT,particle thresholds, 0.1 GeV and 0.4 GeV We
find that the difference between the in-jet classifier and
the in-jet + out-of-jet classifier is significant for the case
pT,particle > 0.1 GeV, whereas the difference is almost
negligible for pT,particle > 0.4 GeV. This suggests that the
soft out-of-jet particles play a significant role in boosting
the classification performance – despite that the soft in-jet
particles had little impact (see Fig. 4). This motivates
further study of the origin and role of out-of-jet radiation,
since our results suggest it can provide a significant boost
in jet flavor tagging performance.

C. Strange and charm

We now turn to the identification of strange- and charm-
quark initiated jets. Since strange- and charm-initiated
jets are considerably more rare than up- or down-initiated
jets (for our kinematics, the relative u:d:s:c ratios are
approximately 33:5:2:1), we quantify the classification
performance using both the ROC curve and the precision-
recall curve. In fact, strange jets are even more rare than
charm jets, since despite that the proton PDF contains a
larger quantity of strange than charm, the overall cross
section for charm is larger due to its larger electric charge.

Strange and charm jets also differ from up and down
jets in that strange and charm hadrons have limited decay
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lifetimes. In the case of strange quarks, there are a
variety of weakly decaying strange hadrons with lifetimes
1 cm < cτ < 10 cm (namely K0

S , Λ0, Ξ0, Ξ−, Σ±, Ω−

and their associated antiparticles) which therefore decay
on a length scale comparable to the size of the innermost
tracking layers of collider experiments. We therefore
will contrast the classification performance depending
on whether the PFN is provided the undecayed strange
hadrons or only the decay products of these hadrons. In
the case of charm quarks, on the other hand, all charm
hadrons decay with lifetimes much shorter than cτ = 1
cm, and cannot be directly detected by experiments but
rather must be reconstructed using the invariant mass of
decay products of exclusive charm hadrons or by tagging
displaced vertices. A large literature exists on charm-
jet tagging algorithms, which we do not pursue further
here [].

Figure 6 shows the results for ud vs. s jet classification
with final-state particle decay lifetimes of cτ >1cm and
cτ > 10cm, respectively. We find several notable differ-
ences compared to the u vs. d classification. First, the
PFN with PID dramatically outperforms the jet charge.
We also provide as a reference a simple “strange tagger”
which classifies the jet flavor purely based on whether
a strange hadron is included in the jet. The PFN also
dramatically outperforms this. This provides a clear illus-
tration of the value of ML-based jet flavor identification.
Second, the overall performance of ud vs. s tagging is
significantly improved when PID information is provided
relative to charge information, especially when the weakly
decaying strange hadrons with cτ > 1 cm are included as
input to the PFN. If only charge information is supplied,
the performance decreases substantially. This provides
a clear illustration that PID information is highly valu-
able to obtaining the best possible strange-jet tagging
performance. We leave further study, such as whether
providing PID information of the leading particle rather
than all particles, which could substantially lessen the
experimental efforts, to future work. Third, if neither
PID nor charge information is provided, the performance
is yet again substantially worse – however it is still no-
tably better than in the u vs. d case. This illustrate the
importance of particle identification vs. fragmentation
in determining the jet flavor – since when neither PID
nor charge information is provided the ML algorithm can
only learn from the differences in fragmentation between
ud and s jets.

Figure 7 shows the results for uds vs. c jet classifica-
tion. In this case, the jet charge is not expected to be
a good discriminator, since u (which dominates the uds
sample) and c jets have the same electric charge. We find
similarly strong performance of the PFN classifier when
PID information is included, with an even larger benefit
of providing PID information relative to charge informa-
tion. Additionally, we note that the PFN that is supplied
with neither PID nor charge information performs better
than the previous cases, illustrating that the amount of
information in the fragmentation pattern unrelated to

particle PID or charge plays an increasing role for heavier
quarks.

V. HARD-SCATTERING EVENT TAGGING

The motivation of machine learned-jet classification at
the EIC and RHIC is quite different compared to the
LHC. For example, at the LHC dijet reference processes
can be used as calibration and the resulting classifier can
be applied to identify jets in multi-jet events to search for
physics beyond the Standard Model. Instead, at RHIC
and the EIC the focus will be on improving for example
measurements of spin asymmetries as discussed below
or to improve constraints on cold nuclear matter effects.
Therefore, at RHIC and the EIC, the classifier does not
need to be limited to the particles inside the identified jet.
Often, the classification of the hard-scattering event is of
primary interest instead of the classification of a single
jet. Therefore, we propose to not only utilize the particles
inside the reconstructed jet but to also take as input parti-
cles outside the jet. Note that we still require a jet with a
given transverse momentum to identify the entire event to
ensure the presence of a hard-scale, which allows for the
interpretation or applicability of perturbative techniques
in QCD. We illustrate the difference of jet vs. event
classification for the leading-order DIS process in Fig. 8.
We expect that the additional information contained in
the dynamics of particles outside the reconstructed jet
can generally increase the performance of the machine
learning algorithm. We note that event type classifica-
tion using triggers and machine learning was discussed
in Ref. [4] and references therein. Different than Ref. [4],
we aim here at identifying the hard-scattering event at
parton level. As discussed in section III B above, the
in-jet information that is used to train machine learned
classifiers can be captured by complete sets of observables
like N -subjettiness and EFPs. Similar observable bases
can be constructed for out-of-jet information and corre-
lations between jets (such as in photoproduction events,
see Fig. 1 can be captured by observables like the jet
pull [25, 26].

We consider two examples of event classification in this
section. In both cases, we use low-Q2 photoproduction
events that contain a di-jet with the transverse momen-
tum of the leading jet required to be pT > 8 GeV and the
subleading jet to be pT > 5 GeV, as described in Sec. III A.
First, we consider the classification quark vs. gluon jet
topologies by discriminating qq or qq̄ di-jet topologies
from gg topologies. Second, we consider the classification
of direct vs. resolved photoproduction processes. Sim-
ilar to the in-jet particles, we normalize the transverse
momentum of out-of-jet particles relative to the leading
jet transverse momentum zi = pT i/pjet

T 1. Since we divide
by the transverse momentum of the leading jet in the
event, we have zi < 1 for both in-jet and out-of-jet parti-
cles. Moreover, we count the values (ηi, ϕi) of out-of-jet
particles relative to the leading jet axis.
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FIG. 6. ROC curves for ud vs s jet flavor tagging using the jet charge and PFNs for jets with pT > 10 GeV and pT,particle > 0.1
GeV. The left panel is constructed from particles with a decay length cτ > 1 cm (in which the weakly-decaying strange hadrons
K0

S , Λ0, Ξ0, Ξ−, Σ±, Ω− and their associated antiparticles are undecayed), whereas the right panel is constructed from particles
with a decay length cτ > 10 cm (in which the above weakly-decaying strange hadrons are decayed). We consider three variations
of the input to the PFN, providing either PID information for all particles, charge information for all particles, or neither.
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A. Quark vs. gluon jet tagging

We consider events with quark and gluon di-jet topolo-
gies by considering both direct and resolved processes
that result in qq-, qq̄-, or gg-initiated di-jets, as described
in Sec. III A. We then train PFNs using either (i) the
leading jet particles, (ii) both the leading and subleading
jet particles, or (iii) All particles in jets with pT,jet > 2
GeV.

Figure 9 shows the classification performance of quark
vs. gluon jet event topologies. The PFN trained with
only the leading jet particles corresponds most closely to

FIG. 8. Illustration of particles inside the jet (black) and
out-of-jet radiation (red), which we also take into account to
classify the hard-scattering event as discussed in section V.
As an example, we show jet production in a high-Q2 DIS
scattering process.

previous studies of the classification of quark vs. gluon
single jets[]. While the performance at the low EIC jet
energies considered here is lower than quark vs. gluon
classification with high-pT jets at the LHC, the PFN still
is able to achieve substantial classification performance.
As the subleading jet particles and out-of-di-jet particles
are added to the PFN training input, the performance
gradually increases.

B. Direct vs. resolved processes and improved
constraints on photon structure

Next, we consider discriminating events that arise from
direct vs. resolved photoproduction processes. We con-
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Q2 protoproduction events containing di-jets with leading jet
required to be pT > 8 GeV and the subleading jet to be
pT > 5 GeV, see Fig. 1.

sider events with the same quark and gluon di-jet topolo-
gies described in the previous section except additionally
including qg-initiated di-jets in addition to qg-, qq̄-, and
gg-initiated di-jets. The direct processes correspond to
those initiated by the virtual photon, whereas the resolved
processes are initiated by partons emanating from the
virtual photon. In this way, classifying direct vs. resolved
processes can improve constraints on the photon structure,
in particular the parton-in-photon PDF. (Mention also
polarized parton-in-photon PDF, see Elke’s paper [86? ?
? ].)

Figure 10 shows the classification performance of direct
vs. resolved photoproduction processes. We find that
the performance is worse than the quark vs. gluon di-
jet topology classification shown in the previous section,
which is unsurprising given that the direct and resolved
contributions both contain both quark and gluon jets.
We furthermore find that the impact of supplying PID
information to the PFN is almost negligible in this case.

VI. CONCLUSIONS AND OUTLOOK

We have presented first studies of machine learning
based jet and event classification using simulated events
at the Electron-Ion Collider. While the performance
of jet flavor classification is more challenging than with
high transverse momentum jets at the LHC, ML-based
classification algorithms offer important advantages in
performance and many prospects for interpretability. We
found that machine learning algorithms outperform tra-
ditional observables used to identify jet flavor, such as
the jet charge. In order to provide input to the detec-
tor specifications at the EIC, we investigated the impact
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FIG. 10. ROC curves for direct vs. resolved process tagging
at the EIC. Here we consider quark and gluon jets produced
in low-Q2 photoproduction events, see Fig. 1.

of PID information, charge information, and minimum
particle transverse momentum requirements. We found
that providing charge information is sufficient for u vs.
d jet classification, but that PID information gives large
improvement to strange and charm jet tagging capability.
We found that soft particles with 0.1 < pT < 0.4 GeV
have only minor impact when jet flavor classification is
performed using in-jet particles, but that out-of-jet soft
particles give substantial improvement to the classification
performance.

These methods will play an important role in multiple
areas of the EIC science program. Jet flavor tagging can
lead to improved constraints of transverse momentum
dependent parton distribution functions, and hard event
tagging provides opportunities to increase experimental
access to transverse single spin asymmetries. Additionally,
the methods outlined here can be applied to classify ep vs.
eA collisions and provide new insight to cold nuclear mat-
ter effects, and can be extended to produce increasingly
interpretable results []. The studies performed here can
be extended to a full detector simulation as well as addi-
tional Monte Carlo event generators and can eventually
potentially be deployed on experimental data itself.
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