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Abstract

Recent global QCD analysis of jet production and other polarized scattering data have found

the presence of negative solutions for the gluon helicity distribution in the proton, ∆g, along with

the traditional ∆g > 0 solutions. We consider polarized semi-inclusive deep-inelastic scattering for

hadrons produced with large transverse momentum as a means of constraining the dependence of

∆g on the parton momentum fraction, x. Focusing on the double longitudinal spin asymmetry,

we identify the kinematics relevant for future experiments at Jefferson Lab and the Electron-Ion

Collider which are particularly sensitive to the polarized gluon channel and could discriminate

between the different ∆g behaviors.
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I. INTRODUCTION

Understanding the proton spin puzzle – the detailed decomposition of the proton’s spin

into its quark and gluon helicity and orbital angular momentum components – has been one

of the major drivers of new experimental programs in the nuclear physics community over the

past three decades [1]. Worldwide efforts at various accelerator facilities have now established

fairly comprehensively the total fraction of the helicity carried by quarks, although some

questions still remain about the detailed flavor decomposition of the sea quark contributions.

A major breakthrough was made with the observation of significant double spin asymmetries

in inclusive jet production in polarized proton–proton collisions at RHIC [2], from which the

first clearly nonzero signal for a polarized gluon distribution was extracted [3]. Subsequent

inclusive jet production data from the STAR [4–6] and PHENIX [7] collaborations have

reaffirmed these observations, leading to a greater confidence that finally both the quark

and gluon helicity content of the proton are relatively well understood.

Recently, the JAM Collaboration [8] revisited the analysis of the jet data to examine

the extent to which these results depend on the theoretical assumptions made in the anal-

ysis, such as SU(3) flavor symmetry for the axial vector charges that constrain nonsinglet

combinations of spin-dependent parton distribution functions (PDFs) [9, 10], and positivity

constraints for unpolarized PDFs [11, 12]. In particular, the analysis found that without

the unpolarized PDF positivity constraints, which are not formally required on theoreti-

cal grounds [12], a second set of solutions is possible for which ∆g < 0, as illustrated in

Fig. 1. This set of solutions is possible because the double spin asymmetry for inclusive

jet production is quadratic in the parton polarization. That is, the traditional small and

positive ∆g and the positive quark polarization ∆q combine to produce an overall positive

asymmetry, as observed in the STAR data. However, the data also allow negative ∆g with

larger magnitude, which combines with the positive ∆q to produce a cancellation between

a positive contribution from the gluon-gluon channel and a negative contribution from the

quark-gluon channel, giving equally good descriptions of the inclusive jet data.

Earlier, Jäger et al. [13] discussed possible constraints on the sign of ∆g from inclusive

pion production in polarized pp collisions. In particular, they considered PHENIX data [14]

for neutral pions produced with relatively low transverse momentum, 1 < pT < 5 GeV,

within a collinear factorization framework. While the applicability of collinear factorization

2



10−4 10−3 10−2 10−1 100

x

−0.4

−0.2

0.0

0.2

x
∆
g

JAM (∆g > 0)

JAM (∆g < 0)

±g

FIG. 1. Polarized gluon distribution x∆g(x) at Q2 = 10 GeV2 from the recent JAM global QCD

analysis [8], showing separately solutions with ∆g > 0 (red lines) and ∆g < 0 (blue lines), and

compared with ± the unpolarized gluon distribution, xg(x) (green lines).

in this region may be questionable, Jäger et al. extracted a small but negative lower bound

for the double spin asymmetry by finding the extremum of the asymmetry in Mellin space as

a function of the moments of ∆g. They found that the extremum corresponds to a negative

gluon helicity, with associated violations of PDF positivity bounds at higher x values, similar

to those found in the JAM analysis [8].

Moreover, the sign of ∆g was investigated by comparing PHENIX data on inclusive

charged pion production [15, 16]. A positive ∆g was expected to produce an hierarchy

of double spin asymmetries with that for π+ > π0 > π−. In Fig. 2 we show the π+

and π− asymmetries at pp center of mass energies
√
s = 200 and 510 GeV as a function of

xT = 2pT/
√
s, where pT is the transverse momentum of the final state pion in the laboratory

frame, compared with predictions from the recent JAM analysis [8]. While the π+ asymmetry

in particular has the potential to discriminate between the different ∆g solutions, at present

the uncertainties on the data do not exclude either a positive or negative ∆g.

A possible way to resolve this problem would be to identify observables that are linear

in the gluon polarization ∆g, and where the gluon contribution is not suppressed relative to

the quark contribution, as it is in inclusive deep-inelastic scattering (DIS). One candidate

process is polarized lepton-nucleon semi-inclusive DIS (SIDIS), with production of hadrons
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FIG. 2. Inclusive double spin asymmetry for π+ (left column) and π− (right column) production

from the PHENIX experiment [15, 16] at
√
s = 200 GeV (top row) and 510 GeV (bottom row) as a

function of xT = 2pT /
√
s, compared with the predictions from the JAM analysis [8] with positive

(red) and negative (blue) gluon helicity.

in the final state with large transverse momentum. Here, the contribution in which the hard

scattering involves an initial state gluon enters at the same order in the strong coupling αs

as the quark scattering contribution. One therefore expects greater sensitivity to the ∆g

PDF at high transverse momentum than at low transverse momentum.

In this paper, we examine the polarized SIDIS process for the production of charged

pions at large transverse momentum, with the aim of assessing its potential impact on ∆g.

In Sec. II we outline the theoretical framework used in our analysis, including cross section

definitions and the results within collinear factorization in terms of PDFs and fragmentation

functions. The perturbative calculation of the hard scattering amplitudes is presented in

Sec. III for both spin-averaged and spin-dependent scattering. In Sec. IV we discuss the

results of our numerical simulations at kinematics relevant for Jefferson Lab with the current

12 GeV and a possible future energy upgraded 22 GeV electron beam, as well as at the EIC,

with emphasis on the efficacy of discriminating the two ∆g solutions in Fig. 1. Finally, in

Sec. V we summarize our findings and discuss possible future extensions of this work.
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II. THEORETICAL FRAMEWORK

In this section we present the theoretical framework which we use to compute the relevant

cross sections in this analysis. After introducing the basic definitions of the observables and

their kinematics, we then specialize to the case where these are computed using the collinear

factorization approximation.

A. Definitions and kinematics

The process that we consider in this work is the leptoproduction of a charged hadron h

in the semi-inclusive deep-inelastic scattering from a nucleon N ,

e (ℓ) +N(P ) → e (ℓ′) + h(Ph) +X, (1)

where ℓ and ℓ′ are the incoming and scattered lepton four-momenta, P and Ph are target

nucleon and produced hadron four-momenta, respectively, and X denotes unobserved final

state particles. The scattering cross section for this reaction can be written as a tensor

product of a leptonic tensor Lµν and a hadronic tensor W µν ,

4P 0
hE

′ dσh

d3ℓ′ d3Ph

=
2α2

sQ4
Lµν W

µν , (2)

where α = e2/4π is the electromagnetic coupling, E ′ and P 0
h are the final state lepton and

hadron energies, respectively, Q2 = −(ℓ− ℓ′)2 is the squared four-momentum transfer to the

nucleon, and s = (ℓ+P )2 is the squared center of mass energy. In terms of Lorentz invariant

variables, Eq. (2) can also be written as

dσh

dx dy dz dP 2
hT

=
π2α2y

2zQ4
Lµν W

µν , (3)

where the transverse momentum of the produced hadron PhT is defined in the “photon

frame”, in which the incoming nucleon and photon are back-to-back. The Bjorken scaling

variable x, lepton inelasticity y, and fragmentation variable z in Eq. (3) are defined as

x =
Q2

2P · q , y =
P · q
P · ℓ , z =

P · Ph

P · q , (4)

respectively. Since we consider the polarizations for the initial lepton and nucleon, both

the leptonic and hadronic tensors can in general be decomposed into helicity-independent
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parts, which are symmetric in the indices {µ, ν}, and helicity-dependent parts, which are

antisymmetric,

Lµν = LS
µν + λℓ L

A
µν , (5a)

W µν = W µν
S + λW µν

A , (5b)

where λℓ and λ are the helicities of the incident lepton and nucleon. Since the products

between symmetric and antisymmetric terms vanish, we can write the tensor product as a

sum of purely symmetric and purely antisymmetric components,

LµνW
µν = LS

µνW
µν
S + λℓ λL

A
µνW

µν
A . (6)

The unpolarized cross section is calculated by averaging over the four possible alignments

of the lepton (→) and nucleon (⇒) helicities,

dσh =
1

4

[
dσ
→⇒
h + dσ

←⇐
h + dσ

→⇐
h + dσ

←⇒
h

]
, (7a)

leaving only the product from the contraction of the symmetric parts of the leptonic and

hadronic tensors. For the polarized cross section, one takes the difference between the aligned

and antialigned spin states,

d∆σh =
1

4

[
dσ
→⇒
h + dσ

←⇐
h − dσ

→⇐
h − dσ

←⇒
h

]
, (7b)

which gives the contribution from the antisymmetric parts.

Since the helicity dependent terms are proportional to λℓλ, one has dσ
→⇒
h = dσ

←⇐
h and

dσ
→⇐
h = dσ

←⇒
h , so that only the relative handedness of the lepton and nucleon are relevant.

Fixing the initial nucleon to be right-handed, λ = 1, we can simplify Eqs. (7) to write the

cross sections in terms of the two possible relative alignments,

dσh =
1

2

[
dσ
→⇒
h + dσ

←⇒
h

]
, (8a)

and

d∆σh =
1

2

[
dσ
→⇒
h − dσ

←⇒
h

]
. (8b)

In the one-photon exchange approximation, the lepton tensor is given by

Lµν = 2(ℓµℓ
′
ν + ℓ′µℓµ − gµνℓ · ℓ′ + iϵµναβs

αqβ). (9)

6



Since the lepton is longitudinally polarized with helicity λℓ, the lepton spin vector can be

written as sµ = λℓ ℓ
µ, and Eq. (9) becomes

Lµν = 2(ℓµℓ
′
ν + ℓ′µℓµ − gµνℓ · ℓ′ − iλℓ ϵµναβℓ

αℓ′β). (10)

Note that we assume a kinematic regime where x and 1/Q are both small enough that we

can neglect the lepton and parton masses. In this study, though, we keep the nucleon and

final state hadron masses, since terms proportional to M/Q and Mh/Q in the calculations

are not necessarily insignificant relative to the massless limit at the lower energy scales of

Electron-Ion Collider (EIC) and Jefferson Lab kinematics.

The hadronic tensor for SIDIS can be written as

W µν =
1

(2π)4

∑
X

∫
d4z eiq·z ⟨P, S| Jµ(z) |Ph, X⟩ ⟨Ph, X| Jν(0) |P, S⟩ , (11)

where Jµ is the electromagnetic current. In DIS and unpolarized SIDIS it is straightforward

to parameterize the hadron tensor in terms of scaling structure functions, however, for

polarized SIDIS the relation between the structure functions and cross section are more

involved.

B. Collinear factorization

The expression for the cross sections simplify considerably at large Q2 and large PhT,

where they can be factorized in terms of partonic subprocesses. In particular, using the

factorization formalism from Wang et al. [17], the hadronic cross sections can be written in

terms of partonic cross sections and the corresponding nonperturbative functions,

4P 0
hE

′ dσh

d3ℓ′d3Ph

=
∑
ij

∫ 1

x

dξ

ξ

∫ 1

z

dζ

ζ2

(
4k0

1E
′ dσ̂ij

d3ℓ′d3k1

)
fi/N(ξ)Dh/j(ζ), (12a)

and

4P 0
hE

′ d∆σh

d3ℓ′d3Ph

=
∑
ij

∫ 1

x

dξ

ξ

∫ 1

z

dζ

ζ2

(
4k0

1E
′ d∆σ̂ij

d3ℓ′d3k1

)
∆fi/N(ξ)Dh/j(ζ), (12b)

for unpolarized and polarized scattering, respectively, where fi/N and ∆fi/N are the spin-

averaged and spin-dependent PDFs of flavor i in the nucleon N , and Dh/j is the fragmen-

tation function for a parton of flavor j to hadronize to the hadron h. The momentum

fractions ξ and ζ are defined in terms of the incident parton momentum p and outgoing
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parton momentum k1 by

p = ξP, k1 =
Ph

ζ
. (13)

In analogy with the hadronic cross section, the partonic cross section can be expressed

in terms of the partonic structure tensor Ŵ µν
ij , which describes the interactions in the hard

scattering process at the parton level,

4k0
1E

′ dσ̂ij

d3ℓ′d3k1

=
2α2

ŝQ4
LµνŴ

µν
ij . (14)

Again, in analogy with the hadronic tensor, the partonic structure tensor is defined as

Ŵ µν
ij =

1

(2π)4

∑
X

∫
d4w eiq·w ⟨pi, s| Jµ(w) |k1j, X⟩ ⟨k1j, X| Jν(0) |pi, s⟩ . (15)

With the factorization theorem in Eqs. (12), for the spin-averaged case we can relate the

(symmetric) hadronic and partonic tensors by

W µν
S =

∑
ij

∫ 1

x

dξ

ξ

∫ 1

z

dζ

ζ2
Ŵ µν

ij fi/P (ξ)Dh/j(ζ), (16)

and similarly for the (antisymmetric) spin-dependent tensors. Since the hadronic quantities

are calculated from partonic quantities, it is useful to introduce the partonic variables

x̂ ≡ Q2

2p · q =
x

ξ
, ẑ ≡ p · k1

p · q =
z

ζ
, k1T ≡ PhT

ζ
. (17)

Additionally, it will be convenient to define the scaled transverse momentum variable

qT =
PhT

z
, (18)

which provides a scale separation relative to Q, so that in the regime where qT/Q ∼ 1 one

can analyze the reaction using the collinear framework.

III. HARD SCATTERING AMPLITUDES

The factorized form of the relations in Eqs. (12) allows us to compute the SIDIS cross sec-

tion from the parton level in terms of the partonic structure tensor (15) and the appropriate

PDFs and fragmentation functions. In this study, the partonic structure tensor, including

phase space constraints,

Ŵ µν
ij =

∫
dΠMµ†

i Mν
j , (19)
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is calculated directly at leading order (LO) in the strong coupling for the 2 → 2 scattering

process. The four tree level diagrams contributing to the partonic structure tensor are

shown in Fig. 4. Note that the incoming photon and parton momenta are denoted as q and

p, respectively, the fragmenting parton has momentum k1, while the other outgoing parton

has momentum k2.

From momentum conservation, the outgoing two particle phase space is represented by

dΠ =
d3k2

(2π)2k0
2

δ(2)(q + p− k1 − k2). (20)

Integrating over k2, we have∫
dΠ = 2πδ+(k

2
2) =

2πx̂

Q2
δ

(
(1− x̂)(1− ẑ)− x̂ẑq2T

Q2

)
, (21)

where the δ function imposes a strict relationship between ζ and ξ that depends on the

hadronic kinematics, and the subscript “+” denotes the positive energy solution for k0
2.

Solving Eq. (21), we find

ζ = z

[
1 +

x

ξ − x

q2T
Q2

]
. (22)

Noting that ζ monotonically decreases as a function of ξ, the lower bound for the factoriza-

tion integral in ξ is given by

ξmin = x

[
1 +

z

1− z

q2T
Q2

]
. (23)

In calculating the partonic cross sections, it will be convenient to use the Mandelstam

variables,

s = (p+ q)2 = 2p · q −Q2, (24a)

t = (q − k1)
2 = −2q · k1 −Q2, (24b)

u = (p− k1)
2 = −2p · k1, (24c)

where we have taken the partons to be massless, with q2 = −Q2. From Eqs. (24) it is

straightforward to verify that s+t+u = −Q2. When calculating the partonic cross sections,

it is more natural to use partonic momentum fractions, which are more directly related to

our hadronic phase space variables. In terms of these, the relevant Mandelstam variables

9
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FIG. 3. Sketch of the diagram representing SIDIS of a lepton (momentum ℓ) from a proton (P )

in the one-photon (q) exchange approximation, with p the momentum of the initial parton in the

proton and k1 the momentum of the parton fragmenting to the hadron h (with momentum Ph).

The lower blob represents the soft part of the scattering process, the central blob represents the

hard part of the scattering process, and the upper blob represents the parton fragmentation to the

produced hadron h.

are given by

s =
(1− x̂)

x̂
Q2, (25a)

t = −Q2 + ẑ
(
Q2 − q2T

)
, (25b)

u = − ẑ

x̂
Q2. (25c)

Also, when evaluating the spin-dependent cross sections, we use the spinor convention

u(p)ū(p) =
1

2

(
1 + λ̂γ5

)
/p (26)

for quarks, and the polarization vector notation [18],

εµ(p)ε∗ν(p) =
1

2

(
− gµν +

iλ̂

p ·XϵµναβpαXβ

)
, (27)
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FIG. 4. Diagrams representing squared amplitudes for virtual Compton scattering from a parton

to a two-parton final state, for a quark (or antiquark) initial state, with quark (or antiquark) (a)

or gluon (b) fragmentation (represented by the black circle), and for a gluon initial state with

quark (c) or antiquark (d) fragmentation. The grey blobs represent the possible connections

within the diagrams, with the virtual photon (q), initial parton (p), fragmentating parton (k1) and

nonfragmenting parton (k2) momenta labeled.

for gluons, where λ̂ is the helicity of the incoming parton, which is not necessarily the same

as λ defined above to be the initial state nucleon helicity, and X is an arbitrary four vector

which does not appear in the final squared amplitudes.

In our calculation of the unpolarized and polarized partonic differential cross sections we

may bring the leptonic tensor inside the phase space integration of Eq. (19) and contract

directly with the scattering amplitudes calculated from the graphs in Fig. 4,

LµνŴ
µν =

∫
dΠHij, (28)
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where Hij = LµνMµ†
i Mν

j . Note that we may write

Mµ†
i Mν

j =
(
Mµ†

i Mν
j

)U
+ λ̂

(
Mµ†

i Mν
j

)P
, (29)

where U and P represent helicity-independent and helicity-dependent pieces of the scattering

amplitude, respectively, since Eqs. (26) and (27) are sums of terms independent of and

linearly proportional to λ̂. It is then possible to write

Hij = HU
ij + λ̂HP

ij, (30)

where

HU
ij = Lµν

(
Mµ†

i Mν
j

)U
, (31a)

and

HP
ij = Lµν

(
Mµ†

i Mν
j

)P
. (31b)

The unpolarized contributions to Hij for each of the channels in Fig. 4(a)–4(d) are given by

dHU
qq

dx̂ dy dẑ dP 2
hT

=
64πα2

s

3x̂(1− x̂)y2Q2
1

[
(1 + x̂2ẑ2)(1 + ȳ2)Q4 + 8x̂2ẑ2ȳ Q2q2T

+ x̂2ẑ2(1 + ȳ2) q4T

]
, (32a)

dHU
qg

dx̂ dy dẑ dP 2
hT

=
64πα2

s

3(1− x̂)y2Q2
2

[(
(2 + x̂2ẑ2)(1 + ȳ2)− 4x̂ẑȳ − 2x̂y2

(
1− x̂(1− ẑ)

))
Q4

+2x̂ẑ
(
4x̂ẑȳ + x̂y2 − 1− ȳ2

)
Q2q2T + x̂2ẑ2(1 + ȳ2) q4T

]
, (32b)

dHU
gq

dx̂ dy dẑ dP 2
hT

=
8πα2

s Q
2

x̂y2Q2
1Q2

2

[(
(1 + 2x̂2ẑ2)(1 + ȳ2) + 2x̂2y2(1− ẑ)− 4x̂ẑȳ − 2x̂y2

)
Q4

+2x̂ẑ
(
8x̂ẑȳ + x̂y2 − 1− ȳ2

)
Q2q2T + 2x̂2ẑ2(1 + ȳ2) q4T

]
, (32c)

for the qq, qg and gq channels, respectively, where αs is the strong coupling constant. For

shorthand here we have defined

Q2
1 ≡ Q2(1− ẑ) + ẑq2T , Q2

2 ≡ Q2
(
1− x̂(1− ẑ)

)
− x̂ẑq2T , (33)

and ȳ ≡ 1 − y. For the polarized case, the corresponding partonic cross sections are given

12



by

dHP
qq

dx̂ dy dẑ dP 2
hT

= −64πα2
s (2− y)

3x̂(1− x̂)yQ2
1

[
(1 + x̂2ẑ2)Q4 − x̂2ẑ2q4T

]
, (34a)

dHP
qg

dx̂ dy dẑ dP 2
hT

= −64πα2
s x̂(2− y)

3(1− x̂)yQ2
2

[(
2 + x̂ẑ2 − 2x̂ẑ

)
Q4 + 2ẑ(1− x̂)Q2q2T − x̂ẑ2q4T

]
, (34b)

dHP
gq

dx̂ dy dẑ dP 2
hT

=
8πα2

s (2− y)Q2

x̂yQ2
1Q2

2

[
(2x̂2ẑ2 − 2x̂2ẑ + 2x̂− 1)Q4

+2x̂ẑ(1− x̂)Q2q2T − 2x̂2ẑ2 q4T

]
. (34c)

Furthermore, since we neglect parton masses in our calculations, the expressions for both

the γg → qq̄ and γg → q̄q channels of Figs. 4(c)–4(d) are given by Eqs. (32c) and (34c).

With these results for the hard scattering cross sections, we can proceed to compute the

physical cross sections for the polarized SIDIS production of hadron h, which we turn to in

the next section.

IV. NUMERICAL SIMULATIONS

Typically in experiments involving polarization of initial or final state particles, one

defines asymmetries between cross sections for spin-aligned and anti-aligned configurations.

The relevant asymmetry for the polarized semi-inclusive electroproduction of a hadron H

can be defined in terms of the differential cross sections dσh and d∆σh from Sec. IIA,

Ah
LL =

d∆σh

dσh

. (35)

The results presented in this section will focus on the SIDIS process for a polarized proton

with production of charged pions in the final state at energies accessible at possible future

20–24 GeV Jefferson Lab and EIC kinematics.

A. Phase space restrictions

The kinematic phase space for the SIDIS reaction is four dimensional. We must impose

boundaries for each of the kinematic variables x, y, z and PhT to take into account theoretical

and physical conditions as well as constraints imposed by relevant experimental conditions.

For the fragmentation variable, following previous analyses of SIDIS data [19, 20], we impose
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the restriction 0.2 < z < 0.8, over which good descriptions of data in terms of leading twist

fragmentation functions can be obtained within the JAM global QCD analysis framework.

For the four-momentum transfer squared, Q2, we impose a lower bound at the mass of the

charm quark, Q2 > m2
c = (1.28 GeV)2. Furthermore, imposing a cut on the invariant mass

squared of the final hadronic state, W 2 = (P + q)2 = M2 +Q2(1− x)/x > W 2
min = 4 GeV2,

we obtain the further restriction, Q2 > (W 2
min − M2)x/(1 − x). For EIC kinematics with

center of mass energy
√
s = 140 GeV, at each value of x the minimum allowed value of Q2

is the maximum of these two conditions. For Jefferson Lab kinematics at a current center of

mass energy
√
s = 4.8 GeV and a possible future energy of

√
s = 6.5 GeV (corresponding to

electron beam energies of 12 and 22 GeV in the laboratory frame, respectively), we impose

a third condition on Q2, noting that the CLAS12 detector can detect electrons scattered at

angles as low as θ ≳ θmin ≈ 5◦, which implies

Q2 > Q2
min =

2E2(1− cos θmin)

1 + (E/Mx)(1− cos θmin)
, (36)

where θmin is the minimum scattering angle and E is the energy of the electron beam in the

laboratory frame. At these kinematics the minimum value of Q2 is then the maximum of

these three values at each x. A strict upper bound for Q2 at each x is obtained simply by

requiring that y < 1, giving

Q2 < Q2
max = (s−M2)x. (37)

The values of xmin and xmax are defined as the points where the Q2 range shrinks to zero,

Q2
min = Q2

max. In the neighborhood of xmin, we have Q2
min = m2

c , so that

xmin =
m2

c

(s−M2)
, (38)

while in the neighborhood of xmax, we have Q2
min = (W 2 −M2)x/(1− x), so that

xmax =
s−W 2

s−M2
. (39)

Finally, to avoid regions of low hadron transverse momenta, where a TMD description

would be more appropriate, we require qT ≳ Q. An upper bound on qT is derived by

requiring the mass of the unobserved hadronic final state, W 2
SIDIS = (P + q − Ph)

2, to be at

least the proton mass. This gives

W 2
SIDIS = M2 +M2

h +
Q2 (1− x− z)

x
+

2Q2z

ρ2 − 1

(
ρ

√
1− (ρ2 − 1)

M2
hT

Q2z2
− 1

)
, (40)
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where M2
hT ≡ M2 + P 2

hT is the transverse mass squared of the produced hadron, and we

define ρ2 ≡ 1 + 4M2x2/Q2. Solving the inequality W 2
SIDIS > M2 for qT/Q gives then a

condition on the maximal value of qT relative to Q,

qT
Q

<

√
1

ρ2 − 1

[
1− (ρ2 − 1)

M2

Q2z2

]
− (ρ2 − 1)

4ρ2z2

[
1− x− z

x
+

M2
h

Q2
− 2z

ρ2 − 1

]2
. (41)

B. Statistical errors and kinematic bins

The statistical uncertainty for the double-spin asymmetry, defined in Eq. (35), is given

by

δAh
LL =

√
1 + (Ah

LL)
2

N
≈ 1√

N
if Ah

LL ≪ 1, (42)

where N is the number of events in the kinematic bin in which the asymmetry is calculated,

and is related to the unpolarized cross section σh by

N = Lσh = L
∫
bin

dx d y dz dP 2
hT

dσh

dx d y dz dP 2
hT

≈ L∆x∆ y∆z∆P 2
hT

(
dσh

dx d y dz dP 2
hT

)
center

,

(43)

where L is the integrated luminosity for the scattering events. The approximation made for

the integral giving the total unpolarized cross section is valid assuming that the differential

unpolarized cross section is roughly constant in a given bin.

The kinematic bins are then constructed by first generating a 4× 4 grid as [xmin, xmax]×
[Q2

min, Q
2
max] × [zmin, zmax] × [qT,min, qT,max] for the absolute minima and maxima for each

kinematic variable at a given
√
s value. The z domain is divided into 10 bins, and the qT

range is divided into bins of width 1 GeV. The x and Q2 ranges are divided into an equal

number of bins, nbins, with equal widths in log-space,

nbins =
1

∆(log x)
log
(xmax

xmin

)
, (44)

rounded up to the next integer. For the bin width we choose ∆(log x) = 0.1. The domain

is then truncated such that the midpoint of each bin is kinematically valid with respect to

the phase space restrictions outlined in Sec. IVA.

Plots of these allowed bins in the (x,Q2), (x, qT ), and (z, qT ) planes relevant for present

and future facilities are shown in Fig. 5. Displayed are the kinematics for Jefferson Lab with
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FIG. 5. Available kinematics at Jefferson Lab with a 12 GeV (top row) and 22 GeV (middle row)

electron beam and at the EIC (bottom row) with
√
s = 140 GeV. The boxes indicate the available

kinematic bins, as discussed in Sec. IVB, and the blue dots represent the centers of the bins at

which the asymmetries are calculated in our analysis (see Fig. 6).

the current 12 GeV electron beam (corresponding to center of mass energy
√
s = 4.8 GeV),

and for a possible future 22 GeV electron beam energy (
√
s = 6.5 GeV), as well as for the

planned EIC with the projected center of mass energy of
√
s = 140 GeV. The asymmetry

Aπ+

LL is calculated at the center of the kinematic bins, indicated in Fig. 5 by a blue dot

at the center of each bin (corresponding approximately to best case scenarios), along with

statistical uncertainties for the asymmetry given by Eq. (42). Essentially, the size of the

asymmetry and uncertainties associated with the asymmetry are simultaneously maximized

and minimized, respectively, in a kinematic neighborhood of the bins for each chosen center

of mass energy in Fig. 5.

In Fig. 6 we show the projected Aπ+

LL asymmetries at the Jefferson Lab 12 GeV and 22 GeV,
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FIG. 6. Double longitudinal spin asymmetry Aπ+

LL for semi-inclusive π+ production from a proton,

at kinematics indicated in Fig. 5 at Jefferson Lab (JLab) with both a 12 GeV and 22 GeV electron

beam and at the EIC with
√
s = 140 GeV. Note that the heights of the colored boxes give a

1σ uncertainty in the asymmetry from the PDF replicas, while the error bars give the statistical

uncertainty of the asymmetry from Eq. (42).
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and EIC kinematics. For the statistical uncertainties on the Jefferson Lab projections, we

take a luminosity of dL/dt = 10−35 cm−2s−1, which for 10 days of running would correspond

to an integrated luminosity of ≈ 86 fb−1. For the EIC statistical uncertainties, we assume

an integrated luminosity of L = 10 fb−1, which is expected to be the achievable luminosity

for SIDIS experiments such as those presented here [21]. The asymmetries produced at

Jefferson Lab 12 GeV kinematics are relatively large, while their statistical uncertainties are

quite small compared to the scale of the asymmetries. For most kinematics, the asymmetry

bands with positive and negative polarized gluons overlap significantly, which would make

it difficult to discriminate between the positive and negative ∆g solutions. The separation

between the positive and negative bands becomes clearer at smaller x values, however, the

current 12 GeV electron energy restricts the range of x down to which the asymmetries can

be probed.

A larger portion of the intermediate- and low-x region can be accessed, on the other

hand, with an energy upgraded 22 GeV electron beam. At this energy, and with the same

luminosity, the asymmetry is still sizable and retains the small statistical uncertainties as

for the 12 GeV case. However, significantly better discrimination between the positive and

negative asymmetry bands is found in this case, with a clearer separation between the means

and the boundaries of the 1σ region of the two bands.

At the EIC, on the other hand, the calculated double spin asymmetries are some one to

two orders of magnitude smaller than the largest asymmetries at Jefferson Lab, for either the

12 or 22 GeV beam energies. Furthermore, with the lower available luminosity, the statistical

uncertainties on the asymmetry are quite large relative to the size of the asymmetries and

the separation between the positive and negative ∆g bands.

These two observed behaviors are intimately related to each other through the scaling of

the asymmetry with the center of mass energy,
√
s. In the convolution integrals of Eqs. (12),

the PDFs and fragmentation functions do not depend on
√
s, so the scale dependence of the

unpolarized and polarized cross sections can only arise from the hard scattering amplitudes

in Eqs. (32) and (34) or the kinematic factors multiplying the product between the leptonic

and hadronic tensors in Eq. (3). In fact, both of these depend on the lepton inelasticity y,

which is related to the center of mass energy by y = Q2/[x(s −M2)]. Since the kinematic

factors in Eq. (3) are the same for both the unpolarized and polarized cross sections, they

naturally cancel in the asymmetry. However, it is clear from the unpolarized and polarized

18



0.08 0.10 0.12 0.14 0.16
x

10−17

10−16

10−15

10−14

10−13

d
(∆

)σ
/d
x

d
y

d
z

d
q T

(f
b

G
eV
−

1
)

JLab22

EIC

FIG. 7. Unpolarized (solid bands) and polarized (hatched bands) differential cross sections calcu-

lated for semi-inclusive π+ production at the (x,Q2, z, qT ) kinematics displayed in Fig. 5 for JLab

with a 22 GeV beam energy (green bands) and EIC center of mass energy
√
s = 140 GeV (blue

bands).

hard scattering amplitudes that the asymmetry possesses a strong scale dependence. In the

unpolarized expressions there is a common factor of 1/y2, while in the polarized expressions

the common factor is (2− y)/y, giving an overall factor (2− y)y for the asymmetry.

A comparison of the unpolarized and polarized SIDIS π+ production cross sections, cal-

culated at the Jefferson Lab 22 GeV and EIC kinematics, is shown in Fig. 7. The polarized

cross section here displays a relatively weak dependence on
√
s, while the unpolarized cross

section depends strongly on
√
s, increasing with larger center of mass energies. Combined,

these behaviors act to suppresses the double spin asymmetry at larger
√
s. The size of

the statistical uncertainties for the EIC asymmetry in Fig. 6 can also be understood by

considering at the relative uncertainty of the asymmetry, which is given as

δAh
LL

Ah
LL

=
1

Ah
LL

√
Lσ

=
1

∆σ

√
σ

L . (45)

It immediately follows then that the scaling of the relative uncertainty of the asymmetry is

dominated by the scaling of
√
σ with

√
s.

While a 1%−5% asymmetry is certainly measurable, at luminosities of the order of 10 fb−1
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the resolution of the positive and negative asymmetry bands becomes quite poor. In order

to discriminate between the two sets of gluon PDFs at low x, one would require integrated

luminosities of at least one order of magnitude larger than what is currently projected for

the SIDIS process at the EIC.

V. CONCLUSION

The proton spin decomposition has remained a fundamental challenge for nuclear physics

for over 3 decades, even with the remarkable progress made on both the experimental and

theoretical sides of the problem. The quest for its understanding at the QCD level contin-

ues to generate surprises, such as the recent realization that the conventional picture of a

positive gluon polarization may hinge on theoretical assumptions about PDF positivity [8],

the relaxation of which reveals the possibility of solutions with negative ∆g that describe

existing data equally well.

In this study we have considered the double spin asymmetry for charged pions produced

with large transverse momentum in the polarized SIDIS process, which is particularly sen-

sitive to the gluon channel, as a means of discriminating between positive and negative ∆g

distributions. In particular, we compared the constraining power of current and future elec-

tron scattering facilities, including Jefferson Lab and the EIC, and found that an ≈ 20 GeV

beam at the high luminosity Jefferson Lab is especially well-suited for the discrimination

between the positive and negative solutions. Because of the scaling behavior of the asymme-

try with
√
s, significantly larger integrated luminosities would be required at EIC energies

to overcome the suppression of the asymmetry and relatively large statistical uncertainties

at these higher energies. Further work is needed to understand which observables will allow

maximal utilization of the EIC’s reach into low-x kinematics, and ability to constrain ∆g in

this region through future global QCD analyses [21, 22].

Independent pathways towards constraining the polarization of the glue could involve

inclusive charm meson production in polarized DIS through the photon-gluon fusion pro-

cess [23, 24]. Alternatively, lattice data on matrix elements that are sensitive to the shape

and sign of ∆g [25] may be fitted simultaneously with experimental data in future global

QCD analyses in order to obtain a consistent picture of the role of gluon polarization in the

proton spin decomposition.
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