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Macroscopic quantum phenomena, such as observed in superfluids and superconductors, have
led to promising technological advancements and some of the most important tests of fundamental
physics [1–3]. At present, quantum detection of light is mostly relegated to the microscale, where
avalanche photodiodes are very sensitive to distinguishing single-photon events from vacuum but
cannot differentiate between larger photon-number events [4]. Beyond this, the ability to perform
measurements to resolve photon numbers is highly desirable for a variety of quantum information ap-
plications including computation [5–7], sensing [8–10], and cryptography [11]. True photon-number
resolving detectors do exist, but they are currently limited to the ability to resolve on the order of
10 photons [12, 13], which is too small for certain proposals [14, 15]. In this work, we extend photon
measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing
highly quantum-efficient transition-edge sensors to accurately resolve photon numbers between zero
and 100. We then demonstrate the use of our system by implementing a quantum random number
generator with no inherent bias. This method is based on sampling a coherent state in the photon-
number basis and is robust against environmental noise, phase and amplitude fluctuations in the
laser, loss and detector inefficiency as well as eavesdropping. Beyond true random number genera-
tion, our detection scheme serves as a means to implement quantum measurement and engineering
techniques valuable for photonic quantum information processing [16–18].

I. MAIN

The nature of quantum mechanics dictates a funda-
mental wave-particle duality for physical systems, which
was first recognized by Einstein through the understand-
ing that light is composed of individual energy quanta
known as photons [19]. The ability to accurately mea-
sure photons has led to checking the validity of the no-
tion of ‘spooky action at a distance’ [20] and tremen-
dous technological advancement in quantum communi-
cation [21], quantum metrology [22–24], and quantum
computation [6, 7]. Much of this progress relies on
the ability to measure single photons, such as through
the use of avalanche photodiodes (APDs)[4]; however,
the ability to resolve arbitrary numbers of photons be-
yond simply distinguishing vacuum from non-vacuum is
highly desirable for many quantum information applica-
tions [7, 18, 25, 26]. The process of projecting a subset of
modes of an entangled state onto the Fock-basis can allow
for engineering non-Gaussian quantum states with neg-
ative Wigner functions [17, 27, 28] — a requirement for
any quantum speed-up in continuous-variable quantum
information [29]. Recent claims of quantum supremacy
with Gaussian boson sampling devices [6] can be chal-
lenged with substantially greater ease when threshold de-
tectors are used in place of photon-number-resolving de-
tectors (PNRDs) [30]. Finally, sampling photon-number
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of a wave-like superposition such as a coherent state re-
veals fundamentally random outcomes that can be used
to generate true random numbers [31–33].

The transition-edge sensor (TES), which is based on
a calorimeter formed from a superconducting wafer held
just below the critical temperature, has arisen as a vi-
able PNRD with quantum efficiency approaching unity
and entirely negligible dark counts [12, 34, 35]. Current
TES systems demonstrate the potential to count photons
in the low double-digits(∼ 16) [13], but certain proposals
necessitate considerably higher detection events for con-
ditional state preparation. One particularly salient ex-
ample is the preparation of a cubic-phase state to com-
plete a universal gate set for continuous-variable quan-
tum computation [14]. In order for the numerical approx-
imations used in this formalism to hold, one must detect
a large number of photons — simulations suggest 50 or
more [15]. The detection scheme we demonstrate here
now easily surpasses this previously unreachable mile-
stone.

In this work, we extend the resolving capabilities of in-
dividual TES detectors to a maximum of 37 photons per
detection channel. We then multiplex three detectors
into a system capable of resolving 0-100 photons with
detector quantum efficiencies above 90%. Furthermore,
we illustrate the utility of our scheme toward quantum
cryptography applications by creating a quantum ran-
dom number generator (QRNG). The need for random
numbers arises in many applications including cryptog-
raphy, simulation, and games of chance. Pseudo-random
number generators (PRNG) are not truly random and
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FIG. 1. (a) Experimental setup. A pulsed sources is evenly split into three segments and each is coupled to a TES detector
channel. (b) Example event (blue) following the pulse trigger (green). Pulse parameters including area and height are recorded
if the signal passes a specified threshold. (c) Histogram of measured signal areas of 108 events for a single TES channel where
a sum of Gaussians (dashed red line) is used to fit the data to determine binning for photon-number resolution. Bins are set
at the intersection of between the normalized Gaussians as shown in (d).

can, for example, lead to erroneous results in Monte Carlo
simulations [36]. The stochastic nature of quantum me-
chanics leads to true randomness, but many current im-
plementations sample random events from a non-uniform
distribution which can lead to bias that must be cor-
rected classically [37, 38]. Our method to implement a
QRNG is based on sampling the photon statistics of a
coherent state and is fundamentally unbiased, robust to
experimental and environmental noise, and invulnerable
to eavesdropping.

The detection system used here is constructed by split-
ting a laser pulse equally across three paths and send-
ing each to a TES as shown in Fig. 1(a). Each TES is
a PNRD that makes use of the extremely temperature-
dependent resistance of a superconductor near the phase
transition. Our TESs are comprised of superconducting
tungsten wafers that operate with a critical temperature
near 100 mK. When light is incident on a chip, the ther-
mal energy of an absorbed photon acts to locally break

the superconducting state and induce a spot of non-zero
resistance, which increases nearly linearly with absorbed
energy [12]. This change in resistance is detected by a
series of highly sensitive superconducting quantum in-
terference devices (SQuIDs) and is then amplified and
converted to an output voltage that is sent to an ex-
ternal field-programmable gate array (FPGA) to extract
key signal parameters on the fly (system details in Meth-
ods). The detectors used were optimized to be highly
absorptive at the desired wavelength, and while our de-
tectors achieve above 90% quantum efficiency at the tar-
get wavelength of 1064 nm (details in Methods), TES
systems have achieved efficiencies of η = 0.98 [34] and
show the potential to reach η > 0.99 [39].
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II. TRUE PHOTON-NUMBER RESOLVING
MEASUREMENTS

In order to resolve absorbed photon number, informa-
tion to distinguish different outputs must be extracted
from the signal received by the FPGA. An example sig-
nal is depicted in Fig. 1(b). Traditionally, peak height
has been used for an indicator as the magnitude of the
voltage is proportional to the energy absorbed for low-
photon numbers [35]. However, this technique limits in-
dividual detector resolution due to the saturation of the
peak magnitudes beyond several photons, so recently, al-
ternative methods have been explored for extracting use-
ful information [13]. Although the maximum voltage of
the peak saturates, the electrical resistance of the TES
continues to change as it re-cools back to the supercon-
ducting state, suggesting useful information is contained
beyond the peak as the cooling time will also depend
on the energy absorbed. Integrating the signal in the
region above a pre-defined noise threshold yields infor-
mation about both the maximum voltage and the time
to cool the TES; this peak area thus allows the resolution
of many more photons than height alone.

For a single TES channel, the histogram of areas for
108 measurement events of a pulsed coherent state is
shown in Fig. 1(c). As the pulse area monotonically
increases with absorbed energy, the distinctly separated
bins correspond exactly to quanta of energy detected and
can be used to inform the number of photons measured.
The location of these bins can be determined by fitting
the obtained histogram to a sum of Gaussian functions
(red dotted line in the figure), where the intersection of
each normalized Gaussian gives the location of the bin
edge. The reason for a Gaussian distribution within each
bin is due to variations in the peak areas resulting from
electronic and thermal noise on the cooling tail of signal
peaks. The Gaussian fitting breaks down for large areas
beyond the black dashed line in Fig. 1(c) indicating the
photon-number can no longer be accurately determined
for this detector. The number of events beyond the de-
tector resolution across all three TES channels accounts
for less than 0.3% of events.

The normalized Gaussian fits to the histogram are dis-
played in the bottom panel, Fig. 1(d), where it can be
seen that the overlap of neighboring Gaussian peaks is
quite small for the majority bins, indicating a high con-
fidence in correctly determining the true photon number
for a given area measurement. The confidence rate de-
creases with photon number but remains above 90% for
photon numbers from 0-20 in Fig. 1(d). If one is will-
ing to post-select and slightly reduced count rates, the
accuracy of a given photon-number assignment can be
substantially increased by defining regions of uncertainty
near the bin edges. If an event area is recorded in this un-
certainty region, then the event is discarded and not con-
sidered in the statistics. Provided the regions of uncer-
tainty are scaled in terms of the fitted Gaussian widths,
σn, then the measured probability distribution will not

deviate from the true distribution and the accuracy of in-
dividual photon-number assignment will increase. If the
regions of uncertainty are defined beyond ±σn, then 32%
of the data is discarded, but the confidence rates increase
to 99% or higher for the first 20 photons. If area events
are only kept within ± 1

2σn of each peak, then confidence
rates further increases to 99% out to 31 photons. The
area histograms, Gaussian fits, and quantitative overlap
errors for each of the three detection channels are given
in the Extended Data.

III. QUANTUM RANDOM NUMBER
GENERATION

The prototypical photonic QRNG is based on send-
ing a single photon to a balanced beamsplitter and plac-
ing detectors on the output to determine whether the
photon was transmitted or reflected [40, 41]. This is a
truly random coin-flip in the ideal case, but it comes with
limitations, such as the need for on-demand single pho-
tons, a perfectly balanced beamsplitter, and ideal detec-
tors. Other optical techniques, such as homodyne mea-
surements to detector random vacuum fluctuations [42]
or a variation on the first method where weak light is
spread across a sensor array [43] can also be used, but
these methods also suffer from physical limitations and
noise that lead to randomness with bias. The randomness
achieved is not sampled from a uniform distribution and
therefore systematic bias must be removed with classical
algorithms [44, 45]. Beyond reducing data and requiring
vulnerable classical schemes, systems with inherent bias
are at risk to quantum hacking [46], where an adversary
can effectively change the calibrated bias and use this to
their advanced to break encryption.

Here, we implement a QRNG making use of the inher-
ent randomness present in the parity of the Poissonian
distribution of a coherent state [32, 33]. When sampling
the parity of the photon-number distribution, the inher-
ent bias vanishes exponentially quickly with increasing
coherent state intensity and asymptotically approaches a
true coin flip. To generate the random numbers we sim-
ply convert a photon number detection to a binary out-
put, where each even photon-number event is assigned
an outcome of ‘0’ and odd photon-numbers are assigned
a ‘1’. This method is unaffected by experimental imper-
fections such as photon loss, detector inefficiency, phase
and amplitude noise, and contamination by environmen-
tal noise.

For the parity operator given by Π̂ = (−1)n̂ = eiπn̂

where n̂ = â†â is the photon-number operator and the
operators â† and â are the respective bosonic creation and
annihilation operators, we can examine the expectation
value of parity for a coherent state,

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 . (1)
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FIG. 2. Experimental photon number distribution obtained by splitting a coherent state of mean photon number n̄ = 57 across
three TES channels over 108 events. The red dashed line indicates the theoretical Poissonian distribution with a mean of 57.
Error bars are obtained from finite sampling and photon-number binning errors. The plot inset shows the measured parity
coherent states begins near one (vacuum) but tends to zero as the amplitude increases. The measured parity for the n̄ = 57

coheret state is 〈Π̂〉 = −7× 10−5 ± 10−4.

If n̄ = 〈n̂〉 is the mean photon number of the coherent
state, then the expectation of parity is given by

〈Π̂〉 = Pe − Po = e−2n̄, (2)

where Pe and Po are the respective probabilities to detect
either even or odd photon numbers.

In Fig. 2, we show the experimentally measured proba-
bility distribution for a large coherent state with n̄ = 57,
which allows use to make full use of our PNRD and
clearly resolve out to 100 photons. Although the theoret-
ical parity of this state is e−114 ∼ 10−50, we cannot hope
to reach this precision due to finite sampling. With 108

measurement events, we achieve a parity of zero to within
uncertainty, with the measured value of −7×10−5±10−4.
Additionally, we first verify the parity of weaker coherent
states as shown in the inset of Fig. 2. As expected, the
parity of vacuum is 1, and we are clearly able to match
the trend of e−2n̄ for increasing n̄.

One unfortunate downside of a TES detection systems
is the slow detector response leading to lower genera-
tion rates. Recent advances show that superconducting
nanowire single-photon detectors (SNSPDs) have the po-
tential to be used as PNRDs that are orders of magnitude
faster than TESs [47], but until this technology matures,
we implement an alternative method to increasing ran-
dom bit generation rates. As opposed to binning the pho-
ton number result by parity, a uniformly random distri-
bution can also be obtained by taking the measurement
result and binning according to photon-number modulo
2d where d ∈ Z. In this way, we can generate a bit
string of size d for each measurement. As d increases,
the residual bias of the QRNG still asymptotes to zero
with increasing n̄, but a larger coherent state amplitude
is needed to achieve a similarly negligible bias. In this
work with a maximum detection of 100 photons, we find
that the residual bias for a coherent state with n̄ = 57 is
equivalent for d ∈ {1, 2, 3}, so we use modulo 8 binning
to generate random numbers.

We subject the ∼ 3×108 random bits generated by our
protocol to a series of tests taken from the NIST suite of
randomness tests. The proportion (i.e. the percentage of
tests that pass a given test) is plotted in Fig. 3 for each
test, given a significance level of α = 0.01. In comput-
ing the confidence interval for Fig. 3 (dashed blue lines),
we do not make the standard approximation that the
distribution of error about the binomially-weighted ob-
servation is given by that of a normal distribution, since
our sample size is small enough that such an approxima-
tion will be unreliable. Instead we use the Wilson score
interval, which has been shown to be reliable for smaller
sample sizes. The findings in Fig. 3 demonstrates that
our measurements indicate randomness across all tests
considered (all proportions lie above the lower confidence
bound). We additionally show the results of random-
ness measures for binning with d ∈ [1, 5] in the Extended
Data.

A. Robust nature of proposed method

Upon closer examination we can see how our method
here proves to be quite robust against various sources of
error. First, we can consider phase and amplitude fluc-
tuations originating either from the laser or any other
experimental instability. This can be modeled by assum-
ing that a statistical mixture of coherent states impinges
up the detector. We find that phase fluctuations have ab-
solutely no bearing on the randomness and still lead to
the same residual bias of e−2n̄, which we experimentally
verify as shown in the Extended Data. Amplitude fluctu-
ations similarly provide negligible impact. Suppose the
coherent state has mean photon number of n̄ and there
is a small intensity fluctuation of δ. The expectation of
parity becomes e−2(n̄±δ) ≈ e−2n̄(1 ± δ) which tends to
zero for sufficiently large n̄.

Next, we can consider the effects of loss, detector in-

Approved for Public Release; Distribution Unlimited. PA#: AFRL-2022-1834



A Robust nature of proposed method 5

FIG. 3. Randomness tests for the resultant bit strings from 108 events based on assigning three bits of information to each
event by taking the measured photon number modulo 8. Data was broken into segments of 7.5× 105 bits and each string was
tested for randomness. The proportion (red markers), i.e. the percentage of trials that pass a test given a significance level of
α=0.01, falls within the corresponding confidence interval for all tests considered indicating evidence of true randomness. The
error bars correspond to the probability range for which the proportion is likely to fall given many samples.

efficiency, and uneven splitting between the TES chan-
nels with imperfect beamsplitters. We can always model
an inefficient detector by inserting a loss channel in the
form of a beamsplitter of transmittivity η before a per-
fect detector and performing a partial trace over the un-
measured output port (Methods). As the coherent state,
|α〉, maps to the smaller coherent state,

∣∣√ηα〉, after
this loss, an imperfect detector still measures a Pois-
sonian photon-number distribution. Thus, in order to
achieve quality randomness with low residual bias, the
coherent state used must be chosen such that n̄′ = ηn̄ is
sufficiently large. As for uneven splitting or differing de-
tector efficiencies between channels, we can equivalently
model the process of measuring a single coherent state
distribution as the discrete convolution of three smaller
coherent state distributions. As all beamsplitter outputs
are still detected, changing the beamsplitter reflectivities
just acts to redistribute the photons amongst the TES
channels. Provided no single channel saturates, which
is easily recognizable through monitoring areas measure-
ments, sampling the summed output of all channels will
still yield a Poissonian distribution.

An additional concern of any quantum mechanical ex-
periment is that of unintentional coupling to the environ-
ment. One possible effect of such coupling is photon loss
as addressed in the previous paragraph. Another effect
is the addition of photons, such as coupling to an exter-
nal thermal bath, or some malicious observer attempting

to inject light. In place of measuring a coherent state,
suppose that the detector is sent the density operator
ρ = ρα⊗ρenv, where ρα = |α〉 〈α| is the density operator
for the coherent state and ρenv is the density operator for
some unknown quantum state, not necessarily pure, orig-
inating from the environment. The expectation value of
parity for the whole system is given by 〈eiπ

∑
n̂k〉, where

subscript k denotes the different subsystems. This leads
to an overall parity of

〈Π̂〉 = e−2n̄〈Π̂〉env, (3)

where 〈Π̂〉env is the parity of the environment alone and
is bounded between 1 and -1. Thus environmental mixing
will not degrade the quality of the QRNG.

As a final concern, consider an eavesdropper attempt-
ing to determine information about the random numbers.
Suppose an eavesdropper uses a beamsplitter to sample
the coherent light in an attempt to predict the random
number measured by the user. Due to the nature of co-
herent states, the two beamsplitter outputs remain in
a product state, hence are not correlated. Thus no in-
formation about the results at one output port can be
used to determine the results at the other, preventing
the eavesdropper from attaining useful information. Re-
cently, there has been some emphasis on the use of Bell
inequality violations to certify the quantum nature of a
device and ensure private randomness [37, 38, 48]. Al-
though this concept has merit, it requires closing all ex-
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A Theoretical background 6

perimental loopholes to eliminate a local hidden variable
theory before it can truly validate a black box as a quan-
tum device. Furthermore, trust must be given at some
point during any realistic experiment as the classical sig-
nal used to enact Bell measurements may themselves be
spoofed. In our implementation, the quantum nature of
the experiment is verified by the area histograms shown
in Fig. 1(c). The origin of the separation between area
measurements is the fundamental energy quantization of
photons. An entirely classical signal would yield a sin-
gle broad Guassian peak centered about the average en-
ergy of the beam of light spanning a swath of areas due
to classical noise fluctuations as opposed to the multiple
Gaussian fits for each TES channel.

In this Article, we have demonstrated drastic improve-
ment to the photon-number resolving capabilities of high
quantum efficiency TES systems and can accurately re-
solve 0-100 photons. By post-selecting data, one can
achieve error rates below 1% on photon-number measure-
ments beyond 30 photons per detection channel without
impacting the measurement distribution. These results
have far-reaching implications for quantum information
applications by opening up avenues in quantum sensing,
such as reaching the Heisenberg limit with large photon-
number parity detection [49], or through uses in photonic
quantum computation, such as efficiently simulating in-
teractions in quantum field theory [50]. Furthermore, we
demonstrated the utility of our detection scheme to make
an unbiased QRNG by sampling the parity of a coherent
state. This technique is robust to a variety of exper-
imental imperfections, and bit generation rates can be
improved through binning with photon-number modulo
2d.

IV. METHODS

A. Theoretical background

1. Origin of randomness

The photon-number parity of a coherent state tends
towards a uniform distribution as the energy of the
state increases. For a coherent state given by |α〉 =

e−
1
2 |α|

2 ∑∞
n=0

αn
√
n!
|n〉 and parity operator given by Π̂ =

(−1)n̂ = eiπn̂ where n̂ = â†â is the photon-number oper-

ator. We can derive

〈α| Π̂ |α〉 = 〈α| eiπn̂ |α〉

= e−|α|
2
∞∑

n,n′=0

α∗n
′
αn√

n′!n!
〈n′| eiπn̂ |n〉

= e−|α|
2
∞∑

n,n′=0

α∗n
′
αn√

n′!n!
eiπn 〈n′|n〉

= e−|α|
2
∞∑
n=0

(|α|2eiπ)n

n!

= e−2n̄

where n̄ = 〈α| n̂ |α〉 = |α|2.

From this we see that for large n̄, the parity expecta-
tion value can be arbitrarily close to zero. To generate
the random numbers we simply output ‘0’ whenever we
measure an even number or ‘1’ whenever we measure odd.

2. Phase and amplitude fluctuations

First, we consider phase fluctuations. Suppose we do
not have a pure coherent state, but a statistical mixture
of coherent states with the same amplitude and a random
phase,

ρcoh =
1

2π

∫ 2π

0

dφ
∣∣reiφ〉 〈reiφ∣∣ , (4)

where r = |α| =
√
n̄.

This yields

〈Π̂〉 = Tr[ρcohΠ̂]

=
1

2π

∫ 2π

0

dφ

∞∑
n=0

〈
n
∣∣reiφ〉 〈reiφ∣∣ eiπn̂ |n〉

=
1

2π

∫ 2π

0

dφ
∞∑
n=0

eiπn
∣∣〈n∣∣reiφ〉∣∣2

=
1

2π

∫ 2π

0

dφ

∞∑
n=0

(−1)n

∣∣∣∣∣e− 1
2 n̄
∞∑
i=0

(
√
n̄eiφ)i√
i!

∣∣∣∣∣
2

=
1

2π

∫ 2π

0

dφ

∞∑
n=0

(−1)ne−n̄
n̄n

n!

= e−2n̄

which shows that phase noise does not affect the parity
expectation value.

Second, we consider amplitude fluctuations. Changes
in the amplitude of the coherent state amount to changes
in the mean photon number n̄. For a change δ in the
mean photon number, the parity expectation value
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becomes e−2(n̄±δ) which is approximately e−2n̄ for small
δ.

3. Environmental noise

We now look at the expectation value of the parity
operator on the whole system where ρ = ρcoh⊗ρenv with
ρcoh = |α〉 〈α| . Deriving the expectation value of the
new parity operator, eiπ

∑
n̂i , where subscript i denotes

the different subsystems, we obtain

〈eiπ
∑
n̂i〉 = Tr[eiπn̂1ρcoh ⊗ eiπn̂2ρenv] (5)

= Tr[〈α| eiπn̂1 |α〉 ⊗ eiπn̂2ρenv]

= Tr[e−2n̄ ⊗ eiπn̂2ρenv]

= e−2n̄〈Π̂〉env, (6)

where 〈Π̂〉env is bounded between 1 and -1. For large
enough n̄, the whole expectation value goes to zero re-
gardless of the form of ρenv.

4. Loss and detector inefficiency

Consider an imperfect detector with quantum effi-
ciency η < 1. This can be modeled by placing a ficti-
tious ‘loss beamsplitter’ with reflectivity r =

√
1− η and

transmittivity t =
√
η such that r2 + t2 = 1 in front of

a perfect detector and performing a partial trace over
the reflected mode. The beamsplitter operator acting on
bosonic modes a and b is given by

B̂ab = eθ(âb̂
†−â†b̂), (7)

where r = cos θ, t = sin θ. Sending a coherent state, |α〉,
to an imperfect detector is then the same as sending the
density operator

ρ = Trb

[
B̂ab (|α〉 〈α|)a ⊗ (|0〉 〈0|)b B̂

†
ab

]
(8)

= Trb

[
(|√ηα〉 〈√ηα|)a ⊗

(∣∣∣√1− ηα
〉〈√

1− ηα
∣∣∣)
b

]
(9)

= (|√ηα〉 〈√ηα|)a (10)

to a perfect detector. Thus, for coherent states, all mea-
surements made with PNRDs having η < 1 can instead
be treated as ideal detectors where the measured state is
just a different coherent state.

5. Unbalanced splitting and efficiency

Suppose we send the coherent state |α〉 to our three-
detector system. Due to unbalanced splitting between
different paths or small variations in detector efficiency,

each TES may see a different signal. Together, the statis-
tics of the photon number summed across all three chan-
nels will still be that of a coherent state but with poten-
tially different effective amplitude.

For an input coherent state and vacuum in the unused
beamsplitter ports, |α〉a |0〉b |0〉c, the beamsplitter system
shown in Fig. 1(a) transforms the state to

B̂acB̂ab |α〉a |0〉b |0〉c = |t1t2α〉a |r1α〉b |t1r2α〉c , (11)

where rk, tk are the beamsplitter coefficients for beam-
splitter k. Suppose now that the three detectors have
quantum efficiencies ηa, ηb, and ηc. Using Eq. 8 for each
mode, the effective state sent to three perfect detectors
is then

|ψ〉 = |βa〉a |βb〉b |βc〉c (12)

= e−
1
2 |βaβbβc|2

∞∑
na=0

∞∑
nb=0

∞∑
nc=0

βna
a βnb

b βnc
c√

na!nb!nc!
|na〉a |nb〉b |nc〉c

(13)

where

βa =
√
ηat1t2α, (14)

βb =
√
ηbr1α, (15)

βc =
√
ηct1r2α. (16)

The probability to measure the total photon number
summed across all detectors, m = na + nb + nc, is given
by

P (m) = e−|βaβbβc|2
m∑

na=0

m−na∑
nb=0

|βa|2na |βb|2nb |βc|2(m−na−nb)

na!nb!(m− na − nb)!
(17)

= e−|βaβbβc|2
(
|βa|2 + |βb|2 + |βc|2

)m
m!

, (18)

which is the same probability distribution that would be
obtained by measuring a coherent state of amplitude α′ =√
|βa|2 + |βb|2 + |βc|2 with a single detector of efficiency

η = 1.

B. Experimental Methods

The coherent state sent to the PNRD is generated
by pulsing a continuous-wave 1064 nm laser using an
acousto-optical modulator (AOM) as an optical switch.
The pulse duration is set to be less than 100 ns, which is
well-within the rising-edge time of the detection signal.
The pulses are sent at a repetition rate of 12.5 kHz to
ensure that the detector has re-cooled and thermal noise
is at a minimum. This rate can be increased to 50 kHz
without incurring substantial ill-effects. Each split pulse
is coupled to a TES channel through standard single-
mode optical fiber. Details on TES operation within a
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cryostat can be found in Refs. [24, 35]. In this work, we
additionally filter the output signal to remove the DC
component and implement a low-noise external amplifier
to bring the signal to within a 500 mV range.

1. Data acquisition

The amplified output signal is sent to a custom-
built Ethernet-based flash analog-to-digital converter
(EFADC) capable of collecting and processing TES sig-
nals for up to 8 channels. The device is based on a field-
programmable gate array (FPGA) which samples a signal
with 12-bit resolution at a rate of 250 MHz. The internal
memory and processing speed allows the device to collect
up to 32 µs worth of signal points, perform rudimentary
calculations on the data to determine key parameters,
and transfer the calculated parameters to a hard disk all
before the next signal pulse arrives.

The EFADC is triggered by an external pulse signal
corresponding to the arrival time of each coherent state
pulse. If the incoming signal rises above a user-defined
noise threshold, the EFADC begins integrating waveform
until the signal falls below a second threshold that can
be set to account for hysteresis. The integrated signal
area, maximum peak height, signal duration, timestamp
of signal start, and timestamp of signal maximum are all
recorded. All parameters can be used for additional sig-
nal characterization in post-processing, but we find that
pulse area is sufficient to achieve large photon-number
resolution.

2. Efficiency calibration

Transition-edge sensors have managed to reach up to
98% quantum efficiency (QE) [34], but it is important
to characterize the precise response of our detection sys-
tem at 1064 nm. The power in a given pulse sent to
each TES detector is on the order of several pW, so care
must be taken to accurately calibrate the QE. First, we
constructed and characterized a high-amplification pho-
todetection circuit with a low-power sensitivity threshold
at approximately 200 pW. Calibration for this detector
was based on a Scientech pyroelectric calorimeter and a
series of precision attenuators. The home-build photode-
tector was then used in conjunction with the attenuators
to calibrate each TES channel individually. Laser-light
was split at a 95:5 beamsplitter where the stronger por-
tion was sent to the photodetector and the weaker por-
tion was further attenuated and sent to the TES. This
calibrated attenuation included the effects of imperfect
fiber coupling so the TES quantum efficiency could be
directly measured.

For each detector, 106 pulses were sent simultaneously
to the photodetector and the TES channel under test.
The mean photon number was extracted from the PNRD
and compared with the classical signal power to deter-

mine the QE. We measured a QE of 97(5)% for Channel
1, 93(5)% for Channel 2, and 91(5)% for Channel 3. The
5% uncertainly originates from the absolute error on the
Scientech pyroelectric calorimeter, uncertainty on split-
ting ratio, and error on the attenuation calibration. All
channels used were thus measured to have a QE above
90%.

3. Phase randomization

Fig. 9 in the Extended Data shows the randomness
tests for data where phase noise has been introduced to
the coherent state. This is achieved by driving a mirror-
mounted piezoelectric actuator (PZT) to change the op-
tical path length over a range of one wavelength, or 1064
nm. The PZT was driven with a 100 Hz triangle-wave
function, which was chosen to be much slower than the
pulse repetition rate to ensure all phases over the range
from 0 to 2π where equally represented amongst the en-
tire data set.

4. Randomness characterization

Here we will follow the work detailed in [33] on how
the photon-number counts were binned to generate mul-
tiplicatively longer bit sequences as well as how the bit
sequence was tested for randomness. We start with the
case of mod(2) binning, in which each detection event
corresponds to an outcome of even(0) or odd(1), the mea-
surement probabilities are given by

P
(2)
0(1) = 〈P̂ (2)

0(1)〉 = 1
2

(
1± e−2n̄

)
→ P

(2)
k = 1

2

(
1 + (−1)

k
e−2n̄

)
, (19)

where n̄ is the average photon number of the coherent
state and

P̂
(2)
k =

∞∑
m=0

|2m+ k〉 〈2m+ k| , (20)

are the even (k=0) and odd (k=1) projection opera-
tors. For large average photon numbers, the balance-
ment between even/odd probabilities is maintained (i.e.
e−2n̄ → 0). In terms of these projectors, the correspond-

ing parity operator is given by Π̂ = P̂
(2)
0 −P̂

(2)
1 . Similarly,

we can define projectors for the case of mod(4) binning

P̂
(4)
k =

∞∑
m=0

|4m+ k〉 〈4m+ k| , (21)

where each mod(2) bin is further broken down into bins
containing every other even/odd photon count. For ex-
ample, the k = 0 bin is comprised of the photon number
counts {0, 4, 8, ...} while the k = 2 bins counts {2, 6, 10, ..}
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and likewise for the odd counts. In this sense, mod(4)
binning is akin to a higher order parity measurement. It
is clear then that the parity operator can be expressed as

Π̂ = P̂
(4)
0 + P̂

(4)
2 −

(
P̂

(4)
1 + P̂

(4)
3

)
≡ P̂ (2)

0 − P̂ (2)
1 , (22)

and the binning probabilities are in turn given by

P
(4)
k = 〈P̂ (4)

k 〉 = e−n̄
∞∑
n=0

n̄4n+k

(4n+ k)!

=
1

4

(
1 + 2e−n̄ cos

(
n̄− kπ

2

)
+ (−1)

k
e−2n̄

)
.

(23)

The length of the bit sequence can then be made longer
by taking the remainders and mapping them to the dual-
bit values according to {0, 1, 2, 3} → {00, 01, 10, 11}.
This same form of mapping holds for higher modulo bin-
ning. Note the largest biasing term in Eq. 23 is larger
than the mod(2) biasing term by a square root. This
implies a trade-off when binning the data: larger bit se-
quence generation comes at the cost of requiring a higher
coherent state average photon number. This procedure
can be generalized for mod(Q) where the projectors are
given by

P̂
(Q)
k =

∞∑
m=0

|Qm+ k〉 〈Qm+ k| , (24)

and the corresponding parity operator can in turn be
constructed as

Π̂ =

Q−1∑
k=0

(−1)kP̂
(Q)
k ≡ P̂ (2)

0 − P̂ (2)
1 . (25)

For the case of a coherent state of average photon number
n̄ ≈ 57, we expect the balancement of binning probabil-
ities to hold for up to mod(8) binning. Any higher mod
binning will subsequently result in a generated bit se-
quence that does not display randomness as there will
be a significant amount of bias in the higher-order parity
probabilities.

The tested data is based off of 107911769 photon-
number counts from a coherent source of average pho-
ton number n̄ ≈ 57. For a trial size of 7.5 × 105, this
corresponds to M = {143, 287, 431, 575, 719} trials for
mod{2, 4, 8, 16, 32}, respectively. We subject this data to
a series of NIST randomness tests in order to demonstrate
that the generated bit sequence is truly random. In Fig. 8
we plot the results of these tests for mod{2, 4, 16, 32}.
Note the mod(8) result can be found within the main
body text. Due to the large number of tests available
for judging whether a sequence is random or not, there is
no ‘complete’ or systematic approach to proving random-
ness. Instead, one relies on providing sufficient evidence
that a given sequence is indeed random. For each trial, a
series of tests are performed and a P -value is obtained for
each test corresponding to the probability that a perfect

random number generator would produce a sequence less
random than the sequence being tested. If this P -value
is greater than the chosen significance level of α = 0.01
(1%), the test is considered passed and the trial is ac-
cepted as random. The proportion is then defined as the
ratio of successful trials to the total number of trials (i.e.
the success rate). Included in our analysis is the confi-
dence interval (CI), i.e. the range of estimation for the
success rate of a particular test given a 99% confidence
level. Typically, the CI for a set of Bernoulli trials with
a success rate of p̂ can be fairly approximated by that of
the normal distribution

CI ≈ p̂± z
√
p̂ (1− p̂)

n
, (26)

where n is the total number of trials and z is the 1 − α
2

quantile probit function (i.e. the inverse cumulative dis-
tribution function for the normal distribution). However,
this approximation to the binomial distribution, which
is more representative of a set of Bernoulli trials, is only
valid when the number of trials is on the order of n & 104

and/or where the success rates are sufficiently far away
from the boundary values of 0, 1. This proves to be an
insufficient approximation for our data. We instead turn
to the asymmetric Wilson score approximation to the
normal distribution given by

CIws =
n

n+ z2

(
p̂+

z2

2n

)
± zn

n+ z2

√
p̂ (1− p̂)

n
+

z2

4n2
.

(27)
The Wilson score confidence interval, CIws, for a 99%
confidence level are represented by horizontal dashed blue
lines in Figs. 3,8 and 9. In addition, we plot for each test
the equivalent definition of the CIws estimating the range
of each success rate

CIws =
ns + 1

2z
2

n+ z2
± z

n+ z2

√
nsnf
n

+
z2

4
, (28)

where ns, nf are the success/failure rates, respectively.
This measure provides a range for each test for which the
mean proportion is likely to fall given repeated testing of
the bit generation method (i.e. more trials performed).
Sufficient evidence of randomness exists if the proportion
lies above the lower bound of the CI for all tests consid-
ered. By this criterion, we conclude that the generated
bit sequence for the cases of mod{2, 4, 8} binning are ran-
dom while the generated bit sequence for mod{16, 32, ..}
binning are not random. We reiterate that higher-order
modulo binning can lead to multiplicatively longer ran-
dom bit sequences provided one has access to a coherent
source of larger average photon number, as detailed in
the theory above.

C. Additional Data

Further analyses of experimental data are shown in
Sec. VIII. The effect of error-rate reduction through bin-
ning modifications is shown in Fig. 4 with the normalized
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Gaussian fitting for all three TES channels displayed in
Fig. 5. Specific error rates for different photon-number
measurements on each channel based on different his-
togram binning is shown in Fig. 6. Theoretical resid-
ual bias for photon-number measurements modulo d with
an upper limit of 100 resolveable photons are shown in
Fig. 7, and full characterization of the randomness tests
on all data is shown in Figs. 8 and 9.

V. DATA AVAILABILITY

The data presented within this study can be obtained
from the corresponding authors on reasonable request.
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VIII. EXTENDED DATA

FIG. 4. Error-rate reduction on photon-number resolution through post-selection of data. (a) By excluding data points with
measured areas further from the center of each bin, the portion of overlap from neighboring Gaussians can be substantially
reduced. The location of the new binning thresholds must be the same fraction of the Gaussian peak width, σn, for each
bin. Here, 2σn is chosen. (b) Error rate to incorrectly characterize a true 25 photon event as a function of the proportion of
measurement data kept.
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FIG. 5. Normalized Gaussian fits for the histogrammed areas measurements TES channel 1 (a), 2 (b), and 3 (c). Note that
for channels 1 and 3, the FPGA thresholds are set above the electronics noise such that zero photon events have a measured
area of zero. For channel 2, electronics noise can drift slightly above the set voltage threshold so that small, non-zero areas are
recorded for zero photon events.
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FIG. 6. Error rates for all detection channels depending on binning. Error percentages indicate the probability to incorrectly
count a measurement that was a true n photon event. Errorall includes all areas and uses the Gaussian intersections to place
bins. Error2σ discards area events occurring outsides of a 2σ width centered around each Gaussian in the histogram fit. The
thrown-out events account for 32% of all measurements. The Error1σ discards area events occurring outsides of a 1σ width
centered around each Gaussian in the histogram fit. This removes 62% of the measured data but drastically reduces counting
errors.
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FIG. 7. Residual bias based on modulo binning of a photon number distribution for coherent state of mean photon number n̄.
Markers indicate the theoretical deviation from a uniformly random distribution if one had infinite photon-number resolving
capability while solid lines give the expected bias with a truncation of the photon number distribution beyond 100 photons.
The vertical dashed line indicates a coherent state with n̄ = 57 such as used in this experiment where the residual bias for mod
2, mod 4, and mod 8 binning are the same. The two plots are identical with the plot at left showing log scale.

FIG. 8. Randomness tests for the resultant bit strings based on how the measured data is binned (Mod 8 data shown in the
main text). Mod 2, Mod 4, and Mod 8 tests all indicate randomness, while some tests begin to fail for Mod 16 and Mod 32.
This is expected due to the non-zero residual biases for a coherent state distribution with mean photon number n̄ = 57 and a
PNRD limit of 100 photons.
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FIG. 9. Randomness tests for bit strings obtained from modulo 2 binning the sampled photon number from a mixture of
coherent states with randomized phase. All tests pass indicating phase stability has no bearing on the quality of QRNG.
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