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ABSTRACT

STUDIES OF BONUS12 RADIAL GEM DETECTOR AND TCS BEAM
SPIN ASYMMETRY IN CLAS12

Jiwan Poudel
Old Dominion University, 2022

Director: Dr. Stephen Bueltmann

The Barely Offshell Nucleon Structure (BONuS12) experiment adopted the concept of

spectator tagging technique to study the nearly-free neutron structure function F n
2 in the

CLAS12 of Jefferson Lab. A novel Radial Time Projection Chamber (RTPC) detector was

built, tested and integrated into the CLAS12 system to detect a back-moving low momentum

tagged proton in d(e, ep)X deep-inelastic scattering. It was a 40 cm long gaseous detector

consisting of 3 layers of cylindrical GEM foils for the charge amplification, with the data

readout directly from the surrounding padboard. The RTPC detected the recoiling spectator

proton, in coincidence with the scattered electron in the CLAS12.

Nucleon structure functions are directly related to the partonic functions, quarks mo-

mentum distribution in one dimension. A Generalized Parton Distribution (GPD) came to

the lime-light as it encodes the information of both longitudinal momentum and transverse

position of partons inside the nucleons. Factorization of hard process such as DVCS allows

to access GPDs. Timelike Compton Scattering (TCS), γp → γ∗p, is another process that

allows to access the GPDs. TCS is studied experimentally in the CLAS12 of Jefferson lab

using the quasi-real photoproduction of time-like photon which eventually decays to lepton

pair.

This dissertation presents the concept of spectator tagging in BONuS12, and the research

and development efforts during the BONuS12 preparation leading up to the successful data-

taking during spring and summer 2020. In addition, analysis framework to extract the beam

spin asymmetry of TCS events through the CLAS12 Run group A data is presented.
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CHAPTER 1

INTRODUCTION

Ordinary matter in our visible Universe is understood to be made up of nucleons and

electrons, of which electrons are fundamental particles with a mass 1837 times less than

that of the nucleons. Nucleons, which are protons and neutrons, reside within a nucleus

orbited by electrons to form atoms, and atoms can combine to form molecules as shown

in Fig. 1. Nucleons are the core building blocks of our surroundings such as large stars to

microscopic viruses. Nucleon binding and interactions determine the properties of nuclei,

which further define the dynamics of nuclear reactions at different conditions. Theoretical

and experimental research over the past several decades proved that protons and neutrons

are not fundamental particles, but are composed of quarks bound by the exchange of gluons.

Nuclear and particle physics is still very concerned with the origin and structure of the

nucleus and nucleons. A major goal of modern physics is to understand the structure of the

nucleons directly from the dynamics of the quarks and gluons and their interaction [1, 2].

FIG. 1: Matter decomposing to the fundamental particles, quarks [1].
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Scattering experiments such as in Fig. 2 have played a crucial role in exploring the struc-

ture of the nucleon. Electrons, as point-like fundamental particles, remain a powerful probe

of matter at the most basic level in scattering experiments. The very first evidence for the

structure of the proton came from measurements of the form factors by electron-nucleon

elastic scattering in 1961, which later was awarded with the Nobel prize. The form factors

are directly correlated to the spatial distributions of the electric charge and current density

inside the nucleon. To explore the nuclear scale at the femto meter level, physicists rely

on particle accelerators where high energy particles are generated and collided. These ma-

chines along with particle detector systems serve as microscopes for the core of matter, where

protons and neutrons combine to form the nucleus, and quarks and gluons come together

to build nucleons. In scattering experiments, the analysis of the interactions of particles

depends on how well the particles in the final state are measured. The results are then com-

pared with previous results and also used to make conclusions about theoretical predictions.

If the reactants are also well known, the conclusions are more precise. Continuous research

efforts of physicists over a half century made us to understand quite well details of these nu-

cleons. However, there is still more unknown about nucleons, neutrons compared to protons.

Neutrons lack charge and have a short life span which makes it difficult to accumulate and

examine enough data on the free neutron.

FIG. 2: Deep Inelastic scattering: Electron probing inside a proton with the exchange of

virtual particle.
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In addition, issues concerning with the quarks and gluons are more appealing such as the

distribution of quarks and their interaction within a nucleon. Mass and spin of the nucleon

still cannot be explained in terms of its constituent quarks and gluons. Experimental study

of the quark distribution requires measurement of the neutron as well. But, details about the

neutron structure can only be extracted from nuclear data disentangling the nuclear effects

that are model dependent. These nucleon structures are governed by the fundamental theory

of strong interaction, quantum chromodynamics (QCD). It describes the structure in terms

of fundamental particles: partons, whose interactions follow from a quantum field theory

(QFT). The partons, quarks and gluons, are observable only in reactions at high momentum

transfers. So, the high Bjorken-x region that corresponds to the higher momentum transfer

(Q2) is a unique and critical testing area for theoretical models of the nucleon.

Different distribution functions such as form factors and parton distributions are available

to describe the structure of nucleons, but they are special cases of a more general concept,

generalized parton distributions (GPDs) in hadronic physics. The concept of GPDs has led

to new methods of imaging the nucleon in the form of 3-D images with 2-D transverse space

and 1-D momentum space. The mapping of the nucleon GPDs and a detailed understanding

of the spatial quark and gluon structure have been widely considered as key objectives in

the coming decades. They can be measured directly in hard exclusive scattering processes

at large momentum transfer.

To expand the understanding of the neutron structure as well as the ratio of down to up

quark (d/u), the Barely Offshell Nucleon Structure (BONuS12) group proposed a tagged

proton experiment to study nearly free neutrons. In this work I am primarily focused on the

BONuS12 motivations and physics, its goals, and the research and development efforts made

to make the BONuS12 experiment ready for data taking in spring 2020 at Hall B of Jefferson

Lab. In addition to the BONuS12 experiment (Run group F), I am also including analysis

of Timelike Compton Scattering (TCS) from CLAS12 Run Group A (RG-A) data (the first

experiment in the CLAS12 of Hall B which is different from the BONuS12 experiment)

which aims to verify the universality of GPDs, accessing the Compton amplitudes. The

next chapter (Chapter 2) includes the motivation and physics formalism of both of these

experiments, and the following two chapters are dedicated to the details of the BONuS12

experiment (Chapter 3) and the TCS analysis (Chapter 4), respectively. I will conclude this

manuscript summarising the accomplishments of my work in Chapter 5.
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CHAPTER 2

PHYSICS MOTIVATION AND FORMALISM

2.1 MOTIVATION OF THE BONUS12 EXPERIMENT

The neutron has no net charge and also has a short decay time (less than 15 minutes)

which makes it impossible to obtain a high density free neutron target. So unlike the proton,

it is very hard to fully understand the structure of neutrons. Usually, the neutron structure

is deduced from experiments on nuclear targets, especially deuterium, tritium and helium-3.

However, the extraction of the neutron structure from a nuclear target requires corrections

due to Fermi motion, bound states of nucleons, Final State Interactions (FSI), which are

model dependent. Therefore large theoretical uncertainties arise in such measurements,

especially when a large fraction of the neutron momentum is carried by a valance quark.

Nearly free neutron structure could be extracted using the spectator tagging technique. The

BONuS12 experiment at Jefferson Lab is designed to significantly reduce the nuclear binding

effects in inclusive electron scattering on loosely bound (almost free) neutrons in deuterium

by tagging low momentum(≤100 MeV/c) backward moving spectator protons in coincidence

with the scattered electrons [3, 4]. The recent upgrade of Jefferson Lab’s electron beam

energy to 12 GeV, and the upgrade of the Hall B CLAS detector extends the interest to

the higher momentum transfer region. Along with the upgraded CLAS12 detector system

to detect the scattered electrons, a new Radial Time Projection Chamber (RTPC) detector

successfully tracks the back-scattered protons.

2.2 PHYSICS FORMALISM OF BONUS12

The structure of the proton and neutron can be represented by their corresponding struc-

ture functions F p
2 (x) and F

n
2 (x). The unavailability of free neutron targets leads to the use

of light nuclei as target for comparative studies of the neutron structure along with the pro-

ton; applying nuclear correction due to Fermi motion, off-shell effects and FSI. Theoretical

uncertainties due to nuclear models, however, plays a significant role extracting the data

from nuclear targets for large values of the Bjorken scaling x. Bjorken scaling x in deep

inelastic scattering represents the fraction of the momentum carried by the struck quark.
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Large uncertainty in the ratio of the neutron to proton structure function as x → 1 along

with different theoretical predictions is shown in Fig. 3. At x→ 1, the valence quark follows

the relation u(x) = 2d(x) in the SU(6) symmetry model providing F n
2 /F

p
2 → 2/3 following

expression 5. With broken SU(6) symmetry, the down quark is suppressed by a gluon ex-

change implying d/u → 0 and F n
2 /F

p
2 → 1/4. In addition, the pQCD helicity conservation

model predicts d/u→ 1/5 and F n
2 /F

p
2 → 3/7.

The BONuS12 experiment is especially designed to study the structure of free neutrons

in Jefferson Lab with comparable detail and precision as achieved for the proton [3] . Hence,

in spite of using a nuclear target (deuterium), the constraint on the spectator proton to very

low momentum and almost backward scattering angle in the BONuS12 experiment ensures

electron scattering from a nearly free neutron and also minimizes the FSI as portrayed in

Fig. 4. So this method reduces the nuclear model uncertainties substantially.

FIG. 3: F n
2 /F

p
2 versus x with different nuclear corrections along with the indication of

different theoretical predictions as x→ 1 [4].
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FIG. 4: Ratio of Final state interaction to the plane wave impulse approximation with

the BONuS12 region highlighted in blue showing a very low effect [4].

To understand the detailed kinematics, invariant expression for the cross section of in-

elastic scattering ep → e′X, as shown in Fig. 5, is expressed using the Lorentz invari-

ant quantities. Some of these quantities are the momentum transfer square Q2 which

is defined as Q2 ≡ −q2 = −qµqµ, invariant mass of the hadronic system W defined as

W 2 ≡ pµ4p4µ = [pµ2 + qµ]2 = M2 − Q2 + 2Mν and the Bjorken scaling x defined by

x ≡ Q2

2pµ2 qµ
= Q2

2Mν
, where qµ = (ν, q⃗) is the four momentum of the virtual photon and M

is the mass of the target proton. The invariant differential cross section for this scattering

is expressed similar to the Rosenbluth formula [5] as

d2σ

dxdQ2
=

4πα2

Q4

[(
1− y − M2y2

Q2

)
F2(x,Q

2)

x
+ y2F1(x,Q

2)

]
(1)

where α is the fine structure constant, y =
pµ2 qµ
pµ2 p1µ

is known as inelasticity and F1(x,Q
2) and

F2(x,Q
2) are two structure functions.
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FIG. 5: Inelastic scattering ep→ e′X.

For deep inelastic scattering (DIS) Q2 >> M2y2, we can write

d2σ

dxdQ2
≈ 4πα2

Q4

[(
1− y

)F2(x,Q
2)

x
+ y2F1(x,Q

2)

]
(2)

Experimentally it was observed that the structure functions F1 and F2 are almost indepen-

dent of Q2 in the DIS regime, so we can write F1(x,Q
2) → F1(x) and F2(x,Q

2) → F2(x).

It is also found that the Callan-Gross relation holds true in this regime, which states

F2(x) = 2xF1(x). So equation (2) can be written only in terms of one structure func-

tion in the deep inelastic region, which allows us to determine the structure functions of the

target particle by measuring the differential cross section in the scattering process.

Furthermore, the Quark-Parton model states that the structure function of nucleons in

the DIS regime can be expressed in the partonic distributions as

F2(x) = x
∑
i

Q2
i qi(x) (3)

where Qi is charge (+2/3 for up and -1/3 for down quark) and qi(x) is the parton distribution

function of particular type of quark within a nucleon. Hence, restricting the sum to the light

flavours of quarks (valence quarks) only, we can write the structure functions of proton and

neutron as

F p
2 ≈ x

(
4

9
u(x) +

1

9
d(x)

)
F n
2 ≈ x

(
4

9
d(x) +

1

9
u(x)

) (4)
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Therefore

d

u
≈ 4F n

2 /F
p
2 − 1

4− F n
2 /F

p
2

(5)

So, if the structure function of the neutron is calculated precisely at higher value of x, it will

help to understand the ratio of down and up quarks (d/u) using the Quark-Parton model.

FIG. 6: d(e, e′ps)X scattering with back-moving spectator proton.

However, we don’t have a free neutron target. So, in case of inclusive Deep Inelastic

Scattering (DIS) e+ d→ e′ + ps +X with the spectator tagging proton as shown in Fig. 6,

the kinematics are changed. This reaction can be expressed using the momentum four

vector of off-shell neutrons pµn ≡ (Md−Es,−p⃗s), momentum four vector of spectator protons

pµs ≡ (Es, p⃗s) and four vector of momentum transfer qµ ≡ (ν, q⃗) with Q2 = −q2. The Bjorken
scaling x∗ and the invariant hadronic mass of the final state W ∗ are then expressed as

x∗ =
Q2

2pµnqµ
≈ Q2

2Mν(2− αs)
(6)

W ∗2 = (pµn + qµ)2 ≈M2 −Q2 + 2Mν(2− αs) (7)

where M is the mass of the off-shell neutron with four momentum pµn and the parameter

αs = Es−p⃗s·q̂
Ms

is known as the light cone momentum fraction of the spectator proton [4, 6].
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Comparing with the previous expression of Bjorken scaling and invariant mass, it is obvious

that x∗ and W ∗ contain correction terms αs obtained from the spectator proton. The effect

of the correction term due to spectator tagging can be seen in Fig. 7, where the spectrum

of electron scattering events for d(e, e′ps)X is plotted against the invariant mass compared

with d(e, e′)X. Therefore, by measuring the spectator proton, one can connect the state of

the neutron in the deuteron and also select events that are unlikely to be affected by FSI.

FIG. 7: Spectrum of electron scattering events from deuteron as a function of corrected

invariant mass W∗ in d(e, e′ps)X compared to invariant mass W in d(e, e′)X [7].

The BONuS12 experiment is expected to contribute the data points for both F n
2 (x)/F

p
n(x)

and d(x)/u(x) at higher Bjorken-x as shown in Fig. 8 with the measurement of nearly-free

neutrons. Additionally, other physics could be accessed using BONuS12 data. A new run

group additional proposal to study the neutron-DVCS with BONuS12 [8] was also approved
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in 2019.

FIG. 8: Expected result of the BONuS12 experiment contributing data to both structure

function (left) and quark ratio at higher Bjorken-x [3].

With the motivation of the extracting the structure function of neutron at large Bjorken-

x, this work details the research and development activities of BONuS12 preparation and

data taking at Jefferson lab in chapter 3. In addition to the instrumentation and laboratory

work, I chose the data analysis of earlier nuclear experiment at Jefferson Lab. The motivation

for the data analysis of Timelike Compton Scattering using the CLAS12 Run group A (RG-

A) experimental data is presented below.

2.3 MOTIVATION OF TIMELIKE COMPTON SCATTERING

Deep inelastic scattering is described in the previous section detailing how the photon

virtuality Q2 much greater than the mass of the nucleon can probe its internal structure. The

structure function (F1(x) and F2(x)) are described in terms of the partonic distributions (u(x)
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and d(x)) that carry the information projected onto the direction of longitudinal momentum

only. These functions miss the correlation with the transverse components. The concept of

Generalized Parton Distributions (GPDs) [9–14], which encodes the unified information of

both partonic distributions and the correlated transverse spatial densities within nucleons,

is widely popular in the theoretical and experimental community of Nuclear and Particle

Physics over the last 25 years. GPDs allow the imaging of the nucleon in three dimensional

tomography. To access the GPDs, hard exclusive processes are important and the simplest

and cleanest process is Deeply Virtual Compton Scattering (DVCS), γ∗p → γp [10, 11].

Experimentally, the spin asymmetries in DVCS gives direct access to the imaginary part of

the scattering amplitude, and hence, access to the GPDs at a specific kinematic point. The

real part of the amplitude, which contains integrals of GPDs, is accessible either in cross

section or in beam charge asymmetry measurements [15, 16].

A reverse process γp → γ∗p, where the final-state photon has a timelike virtuality

(Q′2 > 0), can also access both real and imaginary parts of the GPDs. This reverse process

is known as Timelike Compton Scattering (TCS) for which the leading-twist formalism is

well established as that for DVCS [15, 17]. With circularly polarized photons, TCS can

provide direct access to the imaginary part of the scattering amplitude through the beam

spin asymmetry as in DVCS. With an unpolarized photon beam, the real part of the scatter-

ing amplitude can be accessed through the azimuthal angular asymmetry of the lepton pair

(decay products of the timelike photon). So, TCS is an alternative way to access the GPDs,

which can test the Universality of GPDs; functions that don’t depend on any process. TCS

analysis could also provide additional constraints on the models and parameterizations of the

GPDs. Furthermore, there was a pilot study performed by R. Paremuzyan (see Refs. [18–20])

providing enough evidence that TCS with quasi-real photo-production could be studied with

CLAS12 using 11 GeV electron beam energy in Jefferson Lab.

2.4 PHYSICS FORMALISM OF TCS

TCS with the timelike virtual photon decaying to an electron-positron pair can be ex-

pressed as

γ(q) + p(p) → p(p′) + γ∗(q′) → p(p′) + e−(k−) + e+(k+) (8)

in which the photo-production of timelike photon γ∗ follows q′2 = Q′2 > 0. Here q and

p within the parenthesis are four momenta of the incoming photon and the target proton.

Similarly, k−, k+ and p′ are the final state four-momenta of electron, positron and scattered
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proton, respectively. Detailed theoretical description of the TCS process is presented in

Refs. [15, 17, 21], and the relevant part to this analysis work is described below.

In the region where the timelike virtuality
(
Q′2 ≡ q′2 = (k2+ + k2−)

)
is large and the

invariant momentum transfer square
(
t ≡ (p′ − p)2

)
is small, the TCS amplitude can be

factorized into a hard scattering part calculable using perturbation theory, and a soft non-

perturbative nuclear part representing GPDs parametrization. This condition is mostly

satisfied with Q′2 > 2 GeV2 and −t < 1 GeV2 [17]. Hard and soft parts of the TCS reaction

in the leading order is expressed in the quark handbag diagram in Fig. 9.

FIG. 9: Handbag diagram of the TCS reaction with time-like photon decaying to e−e+

pair.

There are four chiral even nucleon GPDs in the TCS process at leading twist: H, E, H̃

and Ẽ. GPDs depend on three kinematic variables x, ξ, t. In the light cone frame, x+ ξ and

x − ξ define the initial and final quark longitudinal momentum fractions, respectively. In

addition, the process involves a small transverse momentum transfer which is contained in t.

At ξ = 0, GPDs provide access to the probability amplitude to find a quark in the nucleon

with a longitudinal momentum fraction x at a given transverse impact parameter, which

is related to variable t. GPDs entering into the TCS scattering are proton GPDs which is
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the sum of the corresponding quark GPDs [17]. And the quark GPDs are related to parton

distribution via the following model independent relations

Hq(x, 0, 0) =

{
q(x) x > 0

−q̄(−x) x < 0
(9)

H̃q(x, 0, 0) =

{
∆q(x) x > 0

∆q̄(−x) x < 0
(10)

Similarly, form Factors (Dirac, Pauli, Axial and pseudo-scalar) can also be related to the

GPDs through their first x moments:∫ 1

−1

dxHq(x, ξ, t) = F1
q(t) (11)∫ 1

−1

dxEq(x, ξ, t) = F2
q(t) (12)∫ 1

−1

dxH̃q(x, ξ, t) = GA
q(t) (13)∫ 1

−1

dxẼq(x, ξ, t) = GP
q(t) (14)

GPDs enter into the Compton form factors (CFFs): H, E , H̃, Ẽ , as integrals over x as

{H, E , H̃, Ẽ}(ξ) =
∫ 1

−1

dxC±(ξ, x){H,E, H̃, Ẽ}(x, η)|η=−ξ (15)

Coefficient functions for even and odd parity sectors are

ξC∓
(0)i(ξ, x) =

Q2
i

1− x/ξ − i0
∓ Q2

i

1 + x/ξ − i0
(16)

Dealing with the TCS process, the Bethe-Heitler (BH) reaction also has the same final

states (γp → p′l−l+) as shown in Fig. 10, in which the photon splits into a lepton pair and

one of them interacts with the proton. Like in DVCS, the TCS amplitude also interferes

with the BH amplitudes in the calculation. So, the total cross-section of the reaction can be

expressed as σ(γp→ p′l−l+) = σTCS + σBH + σINT
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FIG. 10: Diagram of Bethe-Heitler (BH) process with similar final states as TCS [15].

To express the TCS cross-section, kinematic variables are Mandelstam variables s =

(p + q)2, t = (p′ − p)2, Q′2 = q′2, and the angle θ and ϕ described as shown in Fig. 11. θ

is the angle between the outgoing lepton and proton (angle between k− and p′) in the l+l−

center-of-mass frame, and ϕ is the angle between the reaction plane and the decay plane of

the leptons.

FIG. 11: Angles between the hadronic and leptonic planes in different frames involved in

TCS reactions [15].
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The unpolarized differential cross-section of the reaction γp→ p′e−e+ is expressed as [17]

d4σ

dQ′2dtdΩ
=

1

64(2π)4
1

(2mEγ)2
∣∣T TCS + TBH

∣∣2 (17)

where T TCS and TBH are the amplitude of the TCS and BH processes. Theoretical calcu-

lations [15, 17] show that the TCS cross-section is much smaller than the BH cross-section

individually, which makes it harder to experimentally extract. There is an interference term

hidden in the above expression within
∣∣T TCS + TBH

∣∣2, which shows some inherent property

of the two processes. The amplitude of the TCS and BH process transforms oppositely under

lepton charge reversal. While the exchange of e− and e+ momenta makes the interference

term odd, TCS observables that changes sign with k− ↔ k+ will project out of the interfer-

ence term eliminating the BH contribution. The interference term in γp → p′e−e+ reaction

with the circular polarization of photon ν is expressed as [15]

d4σINT

dQ′2dtd cos θdϕ
= − α3

em

4π2s2
1

−t
M

Q′
1

τ
√
1− τ

L0

L

{[
cosϕ

1 + cos2 θ

sin θ
Re M̃−−

− cos 2ϕ
√
2 cos θRe M̃0− + cos3ϕ sin θRe M̃+− +O

( 1

Q′

)]
+ν

[
sinϕ

1 + cos2 θ

sin θ
Im M̃−− − sin 2ϕ

√
2 cos θ Im M̃0−

+sin 3ϕ sin θ Im M̃+− +O
( 1

Q′

)]}
(18)

where αem is the fine structure constant, η = τ
2−τ

, τ = Q′2

2p·q = Q′2

s−M2 analog to the Bjorken

variable xB = Q2

2p·q in spacelike system. L, L0 are expressed as

L =
[
(q − k−)

2 −m2
l

][
(q − k+)

2 −m2
l

]
=

(Q′2 − t)2 − b2

4
(19)

L0 =
Q′4 sin2 θ

4
(20)

Convention for the amplitude M̃µ′µ are as mentioned in Ref. [15], which contains the com-

bination of Compton form factors, integral of GPDs over x as explained above. In the

interference term, the photon polarization dependent and independent terms are related by

reversing sin ↔ cos and Im ↔ Re. This interference part of the reaction γp → p′e−e+

allows to access both real and imaginary part of the Compton form factor: real part without

polarization, and imaginary part with circular polarization.

The imaginary part of the scattering amplitude is accessed through the calculation of the

beam spin asymmetry using the circularly polarized photon beam as
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A⊙U =
σ+ − σ−

σ+ + σ− (21)

Here ⊙ represents the circularly polarised beam, and U as un-polarized target. Similarly,

positive and negative indicates the cross-section related with right-handed and left-handed

helicity.

FIG. 12: TCS beam spin asymmetry with circularly polarised photon as a function of ϕ

(left) for t = −0.1 GeV2 and Eγ = 10 GeV [21], and as a function of −t (right) for Q′2 = 4

GeV2, Eγ = 10 GeV [22].

The beam spin asymmetry predicted by theoretical calculation [21] is shown in Fig. 12

on the left, which shows the asymmetry for the leading order TCS reactions on the proton

by a dotted line and the next to leading order by a solid line. On the right, beam spin

asymmetry as a function of −t is ploted at different θ with VGG model (theoretical model

by M. Vanderhaegan, P. Guichon and M. Guidal). This plot on right was obtained by the

CLAS12 dilepton group during the data analysis at Jefferson lab. Reference [17] also predicts
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the beam spin asymmetry as shown in Fig. 13 which shows that there is no asymmetry for

BH, separating out the BH contribution from the TCS sample, leading to an easy access

to the imaginary part of the GPDs through asymmetry. Conflicting asymmetry between

these two published theoretical predictions was resolved by the CLAS12 di-lepton group by

contacting an author of Ref. [17], who provided a hint of wrong sign during their calculation.

FIG. 13: TCS beam spin asymmetry as a function of ϕ (left) for Q′2 = 7 GeV2 and

−t = 0.4 GeV2, and as a function of |t| (right) for Q′2 = 7 GeV2 and ϕ = 90◦with θ

integrated over (45◦,135◦) [17].

Preliminary analysis framework to analyze the TCS events and extract the beam spin

asymmetry from the RG-A experimental data is detailed in chapter 4.



18

CHAPTER 3

RTPC AND THE BONUS12 EXPERIMENT

3.1 THE BONUS12 DETECTOR: RTPC WITH GEM FOILS

Different kinds of detectors have been developed and used for the detection of particles in

Nuclear and Particle Physics for many years. Among the different types of detectors, gaseous

detectors are widely used. However, there were several limitations of gaseous detectors as

well, for example; inefficient performance due to low density of gaseous media, modification

of electric field inside due to the presence of large number of ions, not adequate for higher

space and time resolution, damage of readout electronics due to discharge, etc [23, 24]. Gas

Electron Multiplier (GEM) foils help to remove several of these problems by separating the

multiplication and readout functions in two different electrodes. The GEM is a thin polymer

foil known as Kapton (a polyimide), which has a thin metal cladding on both sides and a

high density of small holes. Typically, 50 µm thin insulating polyimide is used with 5 µm

copper coating on both sides and pierced holes of diameter 40-140 µm with a density 50-100

mm−2. For high gain, the hole diameter is comparable to the foil thickness and also two

third of the distance between holes [24–26]. A microscopic picture of a GEM foil is shown

Fig. 14a.

(a) (b)

FIG. 14: GEM foil (a) GEM under electron microscope (b) Electric field lines in GEM [24].
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A GEM layer is placed between the cathode and the readout electrodes (anode) inside

the gaseous detector for pre-amplification as shown in Fig. 15a. The detector is filled with

suitable ionizable gases. When a high potential difference is applied across the GEM, a large

electric field is produced near the holes as shown in Fig. 14b. With an adequate potential

difference applied across the GEM foil as well as the drift region, the electrons produced

above the GEM foil drift towards the hole of the GEM and ultimately ionize the gases by

acquiring large energy from the high electric field in the holes. This causes the multiplication

of electrons through ionization by a factor of about 100, and a large portion of these electrons

are transferred towards the anode where they are collected by the readout pad. Usually, a

negative potential is applied across the GEM which is favorable for the readout to be at zero

potential. This increases the choice of readout patterns: strips or pads. We can also obtain

a two dimensional projective readout using thin multilayer board. The gain of the GEM

depends on several factors but can be maintained to several thousands for various gases and

conditions [25]. Absence of the E x B effect in the GEM detectors also reduces the distortion

of field inside the detector.

(a) (b)

FIG. 15: Different layers of GEM in detectors (a) single layer (b) double layer [26].

Two or more GEMs can be cascaded together with a small gap between them as shown in

Fig. 15b. An appropriate potential is applied to each GEM such that electrons flow towards

the anode with proportional multiplication, each time they pass through the GEM holes.



20

Fractions of multiplied electrons from the first GEM are transferred to the second GEM

and then into the induction region. The readout pattern at the anode collects avalanches of

electrons achieving a very high gain without discharge. The comparison of gains for one and

two GEM layers in a detector is shown in Fig. 16.

FIG. 16: Effective gain of single and double layer of GEM detector [26].

An important fact of the GEM detector is that the readout signal is only due to collected

electrons, with no contribution of slow positive ions. This makes the GEM detector relatively

fast, minimizing space charge problems. The proper choice of potential helps to strongly

suppress the positive ion re-injection in the drift volume, which motivated the development

of GEM Time Projection Chamber (TPC) [25, 27]. Furthermore a most powerful readout

scheme: pixel pattern is also possible for the precise measurement while using GEMs. GEM

detectors can be used for position accuracy of tens of microns and rate capabilities of 1 MHz
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mm−2 [27, 28].

FIG. 17: Padboard readout pattern in the BONuS12 experiment.

The flexibility of GEM foils allows for non-planar detectors, which are used at CERN as

well as Jefferson Lab in different experiments. The detector used for the detection of recoil

protons in the first BONuS experiment at JLab was the GEM based RTPC (Radial Time

Projection Chamber). The RTPC was a basic component of the BONuS experiment as it

was used to detect the slow moving spectator protons. Along with the upgrade of the JLab

beam energy and the CLAS spectrometer, the BONuS experimental group also proposed to

extend the extraction of observable closer to x → 1 upgrading the RTPC, an increase in

the θ and ϕ acceptance as well as resolution. In the upgraded BONuS12 experiment, the

40 cm long RTPC had 3 cylindrical layers of curved GEM foils, each layer made up of a

single foil. The RTPC had a 80 mm radius with the innermost GEM at 70 mm from the

center and the other two layers spaced 3 mm further. Other than the GEM, the detector

had a cylindrical readout board with conductive pads pattern of 2 degree in phi and 4 mm

in the z-direction, as shown in Fig. 17. There was a total of 17,280 readout pads around

the outermost cylindrical GEM of the RTPC at a radial distance of 80 mm from the center.

Longitudinal and transverse cross-sectional views of the RTPC are shown in Fig. 18.
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FIG. 18: Transverse (top) and longitudinal (bottom) cross-sectional view of the RTPC

in the BONuS12 experiment.
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The BONuS12 group ordered GEM foils from CERN which consisted of three different

sizes of foil. The foils had the same length but the width was different to be able to make

cylinders of different radii: 70, 73 and 76 mm. Those foils were stored in a storage box made

up of acrylic plastic in which each foil was kept separated from another so that there was less

chance of damaging foils sliding over each other. Also the storage box had a continuous flow

of pure nitrogen gas at 5 Ltr/hr, which minimized the air contamination of the GEM foils.

A separate box was prepared for the initial HV test of the GEMs as shown in Fig. 19. Each

GEM foil for BONuS12 had 16 sectors lengthwise on top-side with 16 different HV panels,

and one single layer on the bottom side. This design could make the detector workable even

if one sector of any GEM has an issue. With this design only a particular sector of the

detector with 22 degree in phi would be inefficient, and other parts would work perfectly.

FIG. 19: BONuS12 GEMs storage box and test-bench in the clean-room of ODU with a

GEM in HV test-box. Sectors on the top side of GEM could be seen in the zoomed picture

at the bottom right side of text box.
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High voltage (HV) testing of each GEM was performed at the ODU testbench setup,

applying 500 V across each GEM. The HV test box with the testing GEM was first flushed

with nitrogen gas to remove moisture inside before applying the HV. With a short pulse

of HV, impurities and contamination could be burnt off from the GEM foil, observed by

a decreasing current to a few nano-Amperes after a momentary increase to a few micro-

Amperes. For the safety of the GEM foil in HV test, a current limiting resistor was used.

After the HV test, the GEMs were tested optically with a high resolution camera. The

photos were analyzed to see any discrepancy in the GEM, like closed holes of GEMs, burnt

off GEMs due to HV, or some other contamination. Two examples of a GEM foil after the

HV and optical testing, one good and another contaminated, are shown in Fig. 20.

FIG. 20: BONuS12 GEMs under optical test from top side after performing the HV: good

GEM (left) and hair like contaminated GEM (right).

3.2 PROTOTYPING AND TESTING A GEM DETECTOR

3.2.1 FLAT GEM PROTOTYPE

A flat prototype GEM detector with a stack of printed circuit boards (PCB) frames

as shown in Fig. 21 was built to study the operating conditions of GEM detectors. The

prototype consisted of two GEM layers which successfully detected beta particles from a
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radioactive Sr-90 source as well as cosmic radiation. An oscilloscope was used to view the

signals coming out of the strip readout of this flat prototype. The overall construction of

the flat prototype was based on Fig. 22. The electric potential was maintained on different

electrodes using a potential divider circuit developed on a bread-board. Current limiting

resistors of 1 MΩ were connected in series with the GEM layers to prevent the foil from

burning due to over-current. The cathode was kept at a fixed negative potential with a high

voltage supply at HV1. The GEM foils started to show discharge currents when the potential

difference across it exceeded 375 V. Therefore, the supply at HV2 was kept below -1950 V,

such that the potential difference across each GEM foil due to the potential divider circuit

was within the safe limit (below 375 V). A gas mixture of Ar:CO2 (90:10) was used as drift

gas, and the drift field was maintained at ∼ 0.7 kV/cm.

FIG. 21: Side view of a flat-prototype assembled using PCBs at ODU.
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FIG. 22: High voltage power supply in Flat-prototype.

3.2.2 PROTOTYPE RTPC AND THE TESTBENCH AT ODU

The BONuS12 group borrowed the detector built and used by the eg6 experiment from

Jefferson Lab while prototyping the new RTPC. Major components tested with this proto-

type were: HV supply system, readout adapter board and padboard, data acquisition system,

drift gas mixture and gas panel. An initial testbench was established in ODU Physics De-

partment Highbay area, which was later transferred to the EEL building at Jefferson Lab.

The basic setup of our testbench is sketched in Fig. 23 which comprises of gas bottles, a gas

panel, a HV system, a prototype RTPC, a DAQ crate consisting of FEUs and its low voltage

supply, and a computer. The computer was set-up to control the standalone DAQ and the

HV system. The components at the testbench and their performance are briefly described

below:
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FIG. 23: Sketch of BONuS12 Test-bench showing necessary components.

(a) Prototype RTPC: The eg6 RTPC (Fig. 24) was also a GEM detector with length

20 cm and radius 7 cm in which each cylinder is made up of two GEM foils [29]. Each

GEM had four sectors on the inner side and a single outer sector. Potential divider

(PD) circuit was used to supply HV to different layer of GEMs. As the prototype

RTPC had two GEMs for each cylinder, two such PD circuit were used to supply HV

on two halves of the cylindrical detector. Because of this PD circuit, each GEM had

pre-defined combination of potential difference across it.
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FIG. 24: RTPC Prototype with the newly installed SHV connectors for each GEM layer

replacing the existing potential divider circuit used in the eg6 experiment. Prototype adapter

board is inserted from topside to test the new data acquisition electronics.

(b) High Voltage (HV) supply: A new HV supply for the BONuS12 RTPC was bought

from CAEN, which could supply HV to individual GEM foils with higher resolution

of current and voltage. This HV power supply is a combination of a CAEN main-

frame S4527, A1515TGHP and A1015G (Fig. 25) from which we have eight HV cables

connected to the detector. The power supply was controlled from a PC. We then had

flexibility of supplying various combination of PD across each GEM and transfer region

without worrying the over-biasing of any GEMs. This power supply was also better if

any sector of the GEM behaved uniquely and current flow across GEM became higher.

To use this new HV supply, we removed the potential divider circuit and installed new

SHV jack connectors towards the downstream of the prototype as shown in Fig. 24.

One drawback of this new HV supply was a default 1 kV maximum supply across two

channels, except 600 V max across GEMs. Because of this we modified the supply

channel for the cathode as shown in Fig. 25. This modification allows us to supply ∼ 3

kV across drift region with nominal operating voltage across GEMs about 380 V.
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(a) (b)

FIG. 25: New HV supply module from CAEN (a) HV supply unit nearby the detector

(b) diagram of the modified HV supply from the available module to the RTPC.

(c) Drift Gas and the controls: The drift gas is the important component of the

RTPC detector and during the prototyping ArCO2 and HeCO2 gas mixtures were

used. ArCO2 is a commonly used and safe non-flammable detector gas which allowed

us to operate and investigate the detector with low operating voltages and small flow

rates compared to HeCO2. Even if HeCO2 is also non-flammable, it has a higher

diffusion/leakage rate because of smaller size of helium. This requires higher flow of this

gas mixture in the detector to maintain a pressure of fixed water column inside. In this

experiment HeCO2 was chosen because of its low electron density, non-flammability,
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and self-quenching property. The low density allowed to have longer recoil tracks of

protons, because of less multi-scattering and ionization. Furthermore, CO2 improved

the performance of the detector by improving quenching, raising the threshold of gas

breakdown and minimizing diffusion. A study of different proportions of He:CO2 using

Garfield++ simulations [30] was carried out by the BONuS12 group. Furthermore,

the prototype RTPC was also used at the testbench to see the results of different

proportions of He:CO2. Figure 26 shows the gas mixing chamber to mix two gases in

a desired proportion. Helium and CO2 were mixed by volume, controlling the flow of

the two gases using a flow-meter at a particular pressure. This mixed gas was directly

sent from the chamber to the detector in real time.

FIG. 26: Gas mixing chamber for the drift gas (left), and the the gas gauge and flow

controller (right) used for the prototype RTPC at ODU testbench.
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(d) Adapter board and MEC8 cable: Signals from the RTPC readout pads were passed

to the DAQ electronics using the adapter boards and micro-coaxial cable assemblies.

Each BONuS12 adapter board was designed to transfer signals from 192 channels of

the detector: one side had male pins which go into the connectors soldered on the

pad-board and the other side had three 70 pin MEC8 connectors. These boards also

consisted of protection circuits for individual channel to protect the DAQ electronics

from surge currents. Signals are transferred through the printed circuits on flexible

polymer in between two ends of the adapter board as shown of Fig. 27. Hitachi micro-

coaxial cable assemblies with low capacitance were used to transfer signals from the

adapter board to the Front End electronics Unit (FEU). Each ribbon like assembly has

64 flexible micro coaxial signal cables breaded together and assembled on the mini edge

card at two ends of cable as shown in Fig. 27. Out of the 35 pins in each side of the

MEC8, the outer two pins and one center pin are grounded. With such configuration,

three Hitachi MEC8 cable assemblies of length ∼ 1.5 m are used to transfer signals

from one adapter board to the Front End Unit (FEU).
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FIG. 27: The BONuS12 prototype Adapter board with protection circuit near male

connectors (top); Mini Edge Card (MEC8) at the end of the Hitachi Cable (bottom left);

protection circuit in the adapter board (bottom right).

(e) DREAM and FEU: The SACLAY group (France) at the time of the detector devel-

opment produced a new 64 channel ASIC, called DREAM (for Dead-timeless Readout

Electronics ASIC for Micromegas) which could sustain the needed 20 kHz readout rate

and provide a 16 µs deep trigger pipeline [31]. A block diagram of the DREAM ASIC

is shown in Fig. 28 in which each channel has integrated a charge sensitive amplifier

(CSA), a shaper/filter, 512-cell Switched Capacitor Array (SCA) analog circular buffer

and discriminator for trigger building. It has programmable configuration parameters,

which would make it suitable for various detectors. The gain of the amplifier is chosen
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by selecting a range of input capacitances among four possible values between 50 fC

to 600 fC. Similarly, the peaking time of the shaper is also programmable from sixteen

different values between 50 ns to 900 ns. Event sizes of up to 255 samples per trigger

with a sample size of 40 ns can be continuously sampled in a 512-cell switched capac-

itor array circular buffer, which acts as the trigger pipeline memory. This makes the

DREAM worthier as it performs dead-timeless readout of up to 20 MHz for a trigger

rate of up to 20 kHz [32]. Upon receiving the trigger, a programmable number of

samples of all channels, corresponding in time to the event, is read out serially through

a differential analog buffer. The sampling is not stopped during the readout process,

which allows nearly dead-timeless operation. The DREAM chip is capable to operate

with both signal polarities.

FIG. 28: Block diagram of the DREAM chip [32].

The FEU is comprised of eight input connectors, eight DREAM ASICs, and an 8-

channel flash ADC as shown in Fig. 29. The FEU is a 266 mm high, 220 mm wide,

and 25.4 mm thick module, which can be powered by a 4.3 V or 5 V source and
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it consumes ∼ 20 W of energy when all eight DREAMs operate together. The input

channels of the DREAM ASICs are connected to the detector readout with the adapter

boards containing the protection circuit (Fig. 27). The pre-amplification, shaping, and

trigger pipeline functionalities are implemented in the DREAM chips as mentioned

above. The analog samples from the eight DREAMs are digitized by an 8-channel 12-

bit flash ADC (AD9222). The eight serial streams of digital data are delivered to the

FPGA hosted in the FEU board. The digital section of the board comprises an FPGA

from the Xilinx Virtex-6 device family, its memory, a 2 Mbyte synchronous SRAM,

small form-factor pluggable (SFP) transceivers, an on-board clock synthesizer, and an

auxiliary trigger interface circuit [31, 33].

FIG. 29: Block diagram of a Front End Unit (FEU) boards with four DREAMs in each

side of PCB board.

The FEU is responsible for the configuration and the readout of the DREAMs and the

ADC, and for the pedestal equalization, coherent noise subtraction and zero suppres-

sion. The FEU forms the events from the data of the input channels and transmits
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to the acquisition back-end. The FEUs can be operated in the residual magnetic field

of up to 1.5 T of the solenoid in Hall B without any noticeable change of their power

consumption or functionality. However, continuously flow of air is necessary to keep

an ambient temperature within the crates.

FIG. 30: Back pannel of 6 FEUs with the 5 V DC power supply to a FEU at ODU

testbench. Ethernet link is connected to transfer data in this Standalone test.

(f) Data flow and performance: Data from the detector readout padboard were directly

fed to the FEUs using adapter boards and MEC8 cables. Trigger were provided to FEU
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either using self triggering option of FEU or externally generated TTL signal fed to

the back panel of FEU crate. After receiving the trigger signal, the FPGA reads

corresponding data samples from the DREAMs and follows the data processing steps:

first, the pedestals are equalized after serial-to-parallel conversion; second, for each

sample, the coherent noise affecting the DREAM inputs is estimated and subtracted

on per chip basis; and last, zero suppression on per channel basis is performed [31].

The FPGA forms an event fragment from the retained channel data and sends it to

the acquisition back end using an ethernet/optical link as shown in Fig. 31. The link

is also used to configure and control the run parameters of the FEUs.

FIG. 31: Standalone data acquisition of the RTPC using FEU at ODU testbench.

Specific software from the SACLAY group is used in a Linux environment to configure

and operate the FEUs at ODU. A configuration file and different Linux console com-

mands (see Appendix C) are utilized to acquire data of the RTPC prototype. The raw

data from the FEU are converted to the readable text file format for further analysis.

The testbench at ODU was important to validate the compatibility of the FEU with the

RTPC detector, investigate various components of the detector (HV, adapter board,
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drift gas mixture), and optimize the performance and stability of the RTPC detector

system. In addition to the successful hardware work during the change of HV supply

system and gaseous supply system mentioned above, the data analysis was started with

the pedestal analysis of the FEU. Pedestal of a FEU is taken using Linux commands

and analyzed using ROOT.

FIG. 32: Pedestal data of all 512 channels of a FEU with individual channel pedestal

fitted with the Gaussian function.

Histograms of the pedestal data from each of the 512 channels of all eight DREAM

chips in a FEU are plotted and each channel is fitted with a Gaussian function. The

super-imposed histograms of all the 512 channels is as shown in Fig. 32. This shows

pedestals of the channels range from 490 to 720 ADC units, and most of the channel’s

pedestals superimpose with each other.

The mean and standard deviation of the Gaussian fit are extracted and plotted against
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the channel number as shown in Fig. 33. It is clearly seen that there are eight distinct

’U’ shaped patterns of average pedestal value and the noise. If we look from details,

the mean value starts to decrease at first, reaches the minimum and again starts to

increase. This process occurs after every 64 channels. This indicates that every 64

channel, corresponding to a DREAM chip, are interlinked because of the capacitance

and common mode effect. This analysis shows that the average pedestal has a maxi-

mum of 700 ADC units and minimum of 500 ADC units. From the standard deviation

plot, it is confirmed that the noise of the channels ranges from ∼ 3.9 to ∼ 5.5 ADC

units.

FIG. 33: Mean pedestals (top) and the noise (bottom) of all 512 channels of a FEU

plotted against channel number.
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3.3 OBSERVATION AT THE ODU TESTBENCH

By analyzing the pedestals with and without the ribbon MEC8 cable connected to the

FEU, we saw that it gave a quite good picture of how the noise changes by adding the

readout components without any pedestal fluctuation. For example, Fig. 34 clearly shows

the pedestal remains almost unchanged, but the noise changes significantly after connecting

the FEU to the prototype detector. Among the six clusters for each DREAM of a FEU, only

two DREAM were connected to the detector, so the noise only in third and sixth DREAM

chips are elevated. The change in these two DREAM chips is also not the same from the

plot, it is due to the fact that two different types of cables (one from Hitachi and the other

from SAMTEC) were used to connect the detector with the two DREAMs.

While trying to find a better way to check the continuity and connectivity of the RTPC

readout components (Padboard to the FEU), we performed further studies on the pedestal

noise analysis. As DREAM chips have different programmable gain capacitance (see Ap-

pendix C), we changed the capacitance to see how distinctly we could visualize the noise

difference and determine which component might have an issue. Appendix A shows that

with the maximum available capacitance of 600 fC, it is hard to see the detail. However,

lowering the capacitance made it possible to compare each component separately. So, even

if we choose higher gain capacitance (lower amplification and corresponding noise) during

the data taking, we decided to use higher capacitance to test our readout electronics.
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FIG. 34: Comparison of mean pedestals (top) and the noise (bottom) of all channels with

2 MEC8 cables connecting to the DREAM three and six of a FEU.

We also tested the new prototype adapter board to find out its quality. Fig. 35 shows

the pedestal noise observed with different configurations. The noise increased smoothly

afterwards in all channels (channels corresponding to three DREAMs) when a cable was

connected, but observed some spiky channels when adapter boards were connected even if

the overall noise level was increased above 10 ADC units. Connecting the padboard did

not show much difference as the resolution was lowered by the spiky channels. Those spiky

channels were mapped out in the data file and investigated further with other electronic

equipment. We found that those channels had issues from manufacturing. We noticed most
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of the time that those spikes were the result of two channels somehow connected with each

other (or misconnected). Based on the findings, we sent feedback to the corresponding

manufacturer to also investigate and improve the product. When the noise was smooth, we

could also determine electrical discontinuity in any channel.

FIG. 35: Study of the variation of pedestal noise to check the connectivity of the DAQ

electronics with the prototype adapter board.

After setting up everything at the ODU testbench (prototype detector, HV supply, gas

mixing chamber and flow controllers), the prototype was flushed with pre-mixed ArCO2 for

about 4 hrs. A HV test with new CAEN power supply was performed using the GECO2020

HV supply control software. The GEM biasing voltage was gradually increased from 300 V

keeping 2000 V across the drift region of 3 cm until we got a clear signal in the oscilloscope

from the detector with a Sr-90 source as well as random cosmic radiation as shown in Fig. 36.

The Sr-90 source was kept inside the prototype using a long stick to make sure that we could

easily observe its beta decay. For ArCO2, the signal is observed with a 365 V biasing voltage
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across each GEM foil. After successfully observing the signal in the oscilloscope, we decided

to use the DREAM based FEU to readout these signals from the detector.

FIG. 36: A scope used to observe the signal from the prototype with HeCO2 as drift gas.

To readout signals using the FEU, we needed a trigger setup and at the beginning we

used the self triggering feature of the DREAM. With self triggering, the FEU readout alloted

number of samples with a pre-defined latency if the FEU sees any signal samples above a

certain threshold. We took data following the commands (as mentioned in Appendix C), and

a typical signal is shown in Fig. 37. The signal from the DREAM was better fitted with the

split-normal distribution function (Equation 22) as shown in the right top of the signal. At

the beginning we took a small event size of about 2 µs and later increased to the maximum

limit of about 12 µs with 48 ns sample bins. As BONuS12 required to have a large event

size of about 8 µs, we wanted to test the capability and stability of the electronics for a large

time window size. The analysis of the large window also helped to understand the processes

within our detector better. Towards the end of our testing, we changed the configuration to
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have 40 ns sample bin size. We used a feature of the DREAM to readout only every third

sample, so the time resolution would be 120 ns.

f(x) = [0] + [2] ∗ exp
(

−(x− [1])2

2((x < [1]) ∗ [3] + (x >= [1]) ∗ [4])2

)
1

(0.5 ∗ ([3] + [4])
√
2π)

(22)

where [0], [1], [2], [3] and [4] are parameters corresponding to baseline, peak value, normal-

ization constant, sigma of left and right curve respectively.

FIG. 37: Typical signal of the prototype detector obtained by the DREAM based DAQ

over a large time window and the zoomed view of signal fitting using split-normal distribution

function with different rising and falling rate.

An external trigger was set up using cosmic rays as shown in Fig. 38 with two scintillators,

one on top of the detector and another, smaller detector inserted into the central bore of

the detector. The coincidence signal from both scintillation counters were converted to

NIM signals using a discriminator, which then passed through an ‘AND’ gate to form the
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coincidence. The signal from the gate was then converted to TTL using a NIM to TTL

module. This TTL signal was fed to the back panel of FEU crate (shown in right side of

Fig. 30) with a LEMO connector.

FIG. 38: Cosmic setup with two scintillators (one on top and another at center of the

detector) for the coincidence trigger.

With the standalone DAQ running at the ODU testbench and mostly compatible with

our detector, we tested different proportions of He:CO2 gas mixtures as drift gas. As a first

impression, we found smaller and less signals with a 70:30 proportion of He:CO2 which was

promising based on the simulation [30] of drift angle, drift time and the diffusion. So we

used the mixing chamber (as shown in Fig. 26) to mix the different volumetric proportion

of He:CO2 instead of using premixed bottles. We collected more than 5000 events with

the external cosmic trigger. All the events were taken with the same HV setting and flow

rate to the RTPC. Figure 39 shows our observations, concluding that a sharp decline of

observing a signal from cosmic radiation appears if the CO2 proportion is increased. We
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tested five different mixtures of He:CO2 90:10, 80:20, 75:25, 70:30 and 60:40, among which

only about 0.4% of cosmic ionization produced detectable signal in the detector readout in

the 70:30 mixture, whereas 15.8% of similar events produced a detectable signal in the 90:10

gas mixture. Within the accuracy of the mixing proportions, it proved that large fractions of

CO2 suppress ionization electrons to reach the readout plane. The higher recombination rate

of CO2 could be a major cause of this sharp decrease in detection of ionization events inside

the detector. However, keeping also in mind the gas study mentioned above, we decided to

use the 80:20 mixture in our experiment noting that protons, not cosmic rays, would be the

ionizing particle in the final experiment. The energy loss of low-momentum protons in the

drift gas is much higher than that of minimum ionizing particles.

FIG. 39: Analysis of signals from the various proportion of gas mixtures of Helium and

Carbon-dioxide. Probability is obtained with respect to the number of triggers (or events)

processed. X-axis shows the gas mixtures and Y-axis the percentage of signals observed in

the collected events.
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After deciding on a gas mixture of 80:20, premixed gas bottle of He:CO2 were ordered

and used for the rest of the experiment. We already had 90:10 Ar:CO2 for preliminary

testing, so we used both gases to calculate the drift time of our detector with the drift field

of ∼ 2300 V across the 3 cm region. To calculate the drift time, we used the external trigger

and collected 250 samples per event with sampling time of 48 ns. We also used the trigger

latency option of the FEU (see details in Appendix C) to readout 100 samples prior to the

trigger arrival. Each signal was fitted with a double-Gaussian function (see Fig. 37) and the

time (x axis value) corresponding to the signal peak was extracted and plotted as shown in

Fig. 40. In this plot we can clearly see our choice of trigger latency with a peak starting

around sample 100 along the x-axis. This distribution clearly shows the specific time period

over a long window in which signals from the detector are available to the readout, providing

the maximum and minimum time limit. This difference in the readout limits is equivalent

to the drift time. From these two plots, we found the drift time 18x48 = 864 ns being much

shorter in ArCO2 than 48x48 = 2304 ns in HeCO2 in the prototype. We compared these

result with the simulated predictions, which are in agreement within 10% uncertainty. This

uncertainty could be due to lack of measuring the exact potential at the cathode and first

GEM (GEM1), as well as some potential drop across the current limiting resistor which

made drift field slightly different from the calculated value using supply voltage.



47

FIG. 40: Calculation of drift time of the prototype using DREAM data for two gas

mixtures, ArCO2 and HeCO2 at the potential difference of ∼ 2300 V across the drift region

of 3 cm.

While using the 200 fC gain capacitance of the DREAM, signals read out from the FEU

were noisy and many signals were saturated as well. So we changed to the next available
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gain capacitor of 600 fC (max value). It is important to compare the average signal height

of the FEU collected signals. With similar gas and HV configuration of HeCO2 as above,

except the decreased event window to 50 samples, we collected more events and plotted the

distribution of the peak ADC value of all the signals as shown in Fig. 41. The distribution

shows that signals peak ranged from 700 to 2800 ADCs, and the maximum number of signals

have peak about 1000 ADC. The highest possible output of the FEU could be 4095 ADC,

because of the 12 bit ADC hosted in it. No saturation was observed in this data set with

the gain capacitance of 600 fC, which was increased from 200 fC after observing saturated

ADC events. All these analyses were performed without pedestal equalization.

FIG. 41: Distribution of the peak ADCs of the observed signals for HeCO2 gas observed

from DREAM electronics.

3.4 TARGET STRAW TESTING AT ODU

The BONuS12 experiment used a high pressure deuterium target for the d(e, e′p)X



49

interaction. The dimension of the target tube was 6 mm diameter with a length of more

than 40 cm. The target was made up of thin polyimide/Kapton film (few microns) to confine

the deuterium, helium as well as hydrogen gas.

3.4.1 TARGET TUBE: POLYIMIDE STRAW

Various types of polyimide straws manufactured by different companies were tested to

check the bursting limit, leakage rate and the straightness over length. Effectiveness of the

polyimide straws were tested in our lab using non-flammable nitrogen as well as helium gas.

(a)

(b)

(c)

FIG. 42: Different Target straws (a) Spiral wound Kapton tube (b) Seamless Kapton

tube from American Durafilm (c) Aluminized polyimide tube from Paramount Tubing.

Four different types of tubes were tested to choose the best suited for BONuS12. The

first type was a spirally wound Kapton tube as shown in Fig. 42a, in which two thin Kapton

foils, overlapping halfway in its breadth, were spirally wound with a fixed angle to make

tubes. These tubes were manufactured in China and have a length of 50 cm and diameter
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of 6 mm.

The second type was a Kapton straw from American Durafilm which are not spiral wound.

This tube is made from a single foil fused along its length.

Third type was prepared by coating 0.1 - 0.5 microns of various compound in the second

type of the straw. We obtained aluminum and other oxide coated straws from Orsay in

France and Argonne National Laboratory.

The fourth was a straw from Paramount Tube, a leading company to produce custom

tubes under Precision Products Group Inc., which manufactured polyimide straws on our

request using a one side aluminized polyimide film. The polyimide (Kapton) film sputtered

with aluminum was ordered from Caplinq and sent to Paramount Tube to prepare straws.

Two thin films were spirally wounded to form a straw in which the non-aluminized sides of

the film were glued together and the aluminized layers were both inside and outside of the

final straw. We could clearly see the spiral lines of overlapping foils in the straws which can

be seen in Fig. 42c. These straws had 50 cm length and 6 mm diameter.

3.4.2 TARGET LEAK TEST

To test the tubes, one end of it was completely closed by a metallic piece (iron/aluminum)

with the help of glue and the other end glued to a metallic tube. The metallic tube was

connected to the gas supply system. At the beginning, the inward fitting of the polyimide

tube was glued, while later the outward fitting. 3M Scotch-Weld (DP 190) and Loctile EA

1C epoxies were sued to glue the polyimide tubes to the metal. The first has longer cure

time than the later one. After the glue dried, the straw was fitted with a pressure gauge and

a gas stopper to evaluate the gas leakage from the straw. This set-up was then connected

to a gas supply bottle along with a gas regulator and another pressure gauge. The overall

set up to test the polyimide straw is shown in Fig. 43. In this setup, the transparent vessel

around the polyimide straw with top side open was used to test the straw under water. This

set-up helps to visually inspect from which point of the straw the gas is leaking. In every

set-up, we wanted to be sure that the leakage was not from the fittings. During the test

nitrogen as well as helium gas was used, because both of them are non-flammable, and the

helium has a comparable molecular weight as deuterium.

https://americandurafilm.com/
https://paramounttube.com
http://www.ppgintl.com
https://www.caplinq.com/1mil-cm-polyimide-film-with-sputtered-aluminized-coating-pit1n-alum-series.html?PTF
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FIG. 43: Set-up to test the polyimide straw gas leaking.

The first test was to see how much pressure the straw could withstand. We used nitrogen

gas to pressurize the straw and found the bursting limit. The leakage rate of nitrogen from

polyimide is very much less than helium, so the straw could be under high pressure for a

longer time. In this process, the pressure was slowly increased from 60 psig to 150 psig by 5

- 10 psig per half an hour. After the first trial with bursting straw the process was repeated

by increasing only 5 psi/day or less towards the bursting limit. The second test was to find

the actual leakage rate of the polyimide straw. In this process, nitrogen gas was used first

and then helium gas in the straw at a pressure of 80 to 120 psig based on the type of straw.

In addition to the leakage rate, also the leakage region of the straw was observed by dipping

the straw under water. The last test was to keep the straw at a constant pressure of about
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90 psig and find out how long the straw could withstand that pressure.

3.4.3 TARGET TESTBENCH OBSERVATIONS

The thickness of the straw was measured using a micrometer and the diameter using a

vernier caliper as shown in Fig. 44. The straightness of the straw was confirmed by comparing

with a straight iron rod over a graph paper as shown in Fig. 45. We also used a high zoomed

camera attached to the optical bench to measure the deviation of the straw compared to the

rod.

FIG. 44: Measurement of the straw diameter using vernier caliper(top) and wall thickness

by micrometer (bottom).

a. First type (Fig. 42a): After the initial test, the first type of straw was rejected. The

first type of straw sent as 50 µm and the package also mentioned the same, but its wall

thickness was actually 96 µm. Because of its thick wall, the leakage rate was lower and

bursting limit was higher.



53

FIG. 45: Evaluation of the straightness of the straw comparing with a straight stainless

steel rod over a graph paper of 0.05 cm resolution.

b. Second type (Fig. 42b): The second type had wall thickness of 50 µm, except 54 µm

along a line of fusion. Fifty centimeter long these Kapton straws were not perfectly

straight. They seem to be curved a little, both in the pressurized state and without

any pressure. Some straws were found to deviate less than 1 mm from straightness over

their length. So, these could be used in the experiments. Using appropriate tension

at the end could also achieve the straightness. Stretching as well as applying a small

shear stress at the end of the straw could make it almost straight.

In the first test, the Kapton straw (from Fig. 42b) burst at about 165 - 170 psig. When

keeping two other straws of this type at 160 psig nitrogen gas pressure for more than

three weeks, the straws were still good and the leakage rate was about the same after

this time.

FIG. 46: Leakage of Helium from Kapton straw visualized as bubble under water.
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The leakage rate for the nitrogen gas was about 1 psi/day at a pressure of 100 - 120

psig from the Kapton straws of 50 µm wall thickness. Helium leaks at a faster rate

from the straws at about 4 - 6 psi/hr at a pressure of 100 - 120 psig in the similar

straws of 50 µm wall thickness. The larger leakage rate could easily be seen by the

large amount of larger bubbles inside the water as shown in Fig. 46.

c. Third type: While testing the aluminum coated straws from Orsay, the coating came

off within an hour when dipped inside water which is shown in Fig. 47. In addition,

when another similar straw was left in air for a week in the lab, the coating started to

come off the Kapton. The coating was not suitable.

FIG. 47: Aluminum coated kapton straw under water showing the damaging of coating

after a short time.

Results for the aluminum-oxide coating from Argonne were different. The coating did

not come off, but there was almost no difference in the leakage rate compared to a

straw without coating. It appeared that the thickness of the coating was not sufficient,

and the thickness of the coating needed to be increased.

d. Fourth type (Fig. 42c): These straws were 50 cm long with diameter of 6 mm. The

wall thickness of the straw was 63 microns and they looked perfectly straight.
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FIG. 48: Leakage of Helium from the double sided aluminum coated straw visualized as

bubble under water.

The first straw under test did not burst within an hour until a pressure of 120 psig was

reached. This straw was left overnight at 100 psig, and it was holding pressure all the

time. This test was done using nitrogen gas.

The leakage test performed using helium gas showed leakage at a rate of about 1.5

psi/hr from the straw at a pressure of 80 - 95 psig. The leakage could be easily seen

by a large amount of gas bubbles when dipped under water as shown in Fig. 48.

3.5 THE BONUS12 RTPC AND THE TESTBENCH AT JLAB

The Jefferson Lab (JLab) electron beam energy was upgraded to 12 GeV in 2014 and at

the same time, the Hall B CLAS detector was also upgraded to CLAS12. Along with these

upgrades, the BONuS experimental group also proposed to extend the BONuS experimental

program to extract observable closer to x → 1 upgrading the RTPC by increasing the θ

and ϕ acceptance as well as the resolution of the detector. The spectator protons could be

effectively tracked in the new RTPC over a large volume with almost no dead region in ϕ.

In addition, the group proposed to use a DAQ system based on a Dead-timeless Readout

Electronics ASIC for Micromegas (DREAM) chip to read out the signals from the detector

in run group F (BONuS12).

Establishing a testbench at Jefferson Lab’s EEL building was crucial to the experiment

to perform final tests of our RTPC detector and its various components, including the gas

system, data acquisition system and other slow controls which could be easily transferred to

the hall. Some of the systems that we tested are summarized below:

(i) New gas panel and its control : A new gas panel as shown in Fig. 49 (see details
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in Appendix B) was constructed and tested thoroughly for BONuS12. The gas panel

consisted of 3 input lines (1/4” tube) and 3 exhaust lines (1/2” tube), each line dedi-

cated to the RTPC drift gas, buffer gas, and the target gas, respectively. The drift gas

line had a manual valve, 500 sccm Mass Flow Controller (MFC), press gauge meters

and a relief bubbler in the inlet line, while the outlet line had a pressure gauge and

two bubblers (normal operation bubbler for the detector and relief bubbler) with an

additional bypass area for the Drift gas Monitoring System (DMS) [30]. The RTPC

had another gas line also in between inlet and outlet, a pressure sensing line, to observe

the absolute pressure of the detector which had a pressure gauge, absolute pressure

sensor, and differential pressure sensor with respect to the DMS. These sensors were

connected to a Raspberry Pi system for the readout, which was monitored continuously

from a desktop computer. Next line was the buffer line which had an electronic valve,

a flowmeter, a pressure gauge, and a relief bubbler along the inlet, and a bubbler in

the outlet line which was connected together with the RTPC exhaust line going out of

the hall. It also had a differential pressure sensor connected with respect to the RTPC

outlet.

FIG. 49: BONuS12 gas panel with various sensors and safety components approved by

the Hall B engineering (right); and control and monitoring of the drift gas (left).
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Even if we used non-flammable pre-mixed gas (HeCO2) in the RTPC detector, the

panel also had the target line which was used to flow both hydrogen and deuterium

gases. There was only one line connected to the BONuS12 pressurized target in the

final experimental setup, so the exhaust line came out of the inlet at the nearest possible

distance from the target position. The filling process of the target was therefore done

in a couple of cycles to keep the target less contaminated by the residual gases.

(ii) HV supply and slow control The CAEN supply used for the RTPC operation could

not provide the full high voltage to the cathode (∼ 6.5 kV), hence, an alternative supply

was required. The BONuS12 group decided to use a Wiener power supply (Fig. 50)

consisting of a crate with MpodC CPU, and two HV modules. Both modules supplied

-ve polarity voltage as required for the RTPC, with the EHS 4080n module (each

channel voltage limit 8 kV and current limit 1 mA) supplying HV to the cathode and

EHS 8030n module (each channel voltage limit 3 kV and current limit 3 mA) supplying

HV to all the GEMs layers.

FIG. 50: Wiener MpodC crate with two HV modules for BONuS12 RTPC power supply.
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The CAEN supply we had been using before had the built-in feature of actual bias-

ing voltages across every region. This feature made it possible to tune every GEM

region independently without modifying another channel and also protected the indi-

vidual GEMs from over-biasing. It could be operated in ‘GEM’ mode as well, which

would made the detector safe by turning ON/OFF the whole detector simultaneously,

preventing reverse-field configurations and any over-current within the detector. The

Wiener supply did not have this feature and, hence, the voltage control had to be done

more careful. To protect our detector from over-biasing and reverse-field, we chose to

add more options and safeguards in the external EPICS control software. The EPICS

GUI for the HV control of this new power supply is as shown in Fig. 51. In addition

to the ON/OFF option for individual channels, it also accompanied all ON (all OFF)

options with programmable delay settings to the channels to make sure that no ad-

verse effect arise. It also incorporated an interlock between two channels to protect

individual GEMs from over-biasing. Voltage and current limit for each channel could

be set directly from the interface by setting new values.

FIG. 51: RTPC HV control Interface in EPICS programmable delay setting to ramp up

the HV on all channels.
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(iii) New BONuS12 RTPC detector and adapter boards: As discussed earlier (see

section 3.1), a new RTPC detector was built by the BONuS12 group, which needed

to be tested. During the testing of the first RTPC, BONuS12 group also started to

construct two additional similar RTPCs as backups. Various tests performed with the

first RTPC guided us to modify several components and mechanism for improving the

second and third RTPC under construction. The first RTPC test at the JLab testbench

was a leak test. As we saw no bubbling from the 1/10” of wc bubbler upto the 500

sccm flow of ArCO2/HeCO2, a leak test using 2% hydrogen gas and a flammable gas

detector was carried out to find leakage areas in the detector. A major leakage was

from the seam of the padboard, the upstream and downstream joints, and the ground

foil. All the leakage areas were sealed with DP190 epoxy and leak tested again to see

any difference. The remaining leakage from the the ground foil was mostly due to the

diffusion of gas into the buffer region which was open at both ends until the target

system was installed. So, in further testing of the RTPC, both ends were covered

temporarily with end-caps. This leak testing process was followed thoroughly in the

RTPC-2 and RTPC-3, but sealing was much improved compared to RTPC-1.

FIG. 52: BONuS12 RTPC and its installation on the CVT (Central Vertex Tracker) cart.
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Two more tests were performed after the leakage test before the start of tests with

cosmic rays using the new RTPC. One test was a GEM HV test in which individual

GEM foils were tested with ∼ 400 V biasing voltage across to determine its stability

without a noticeable current flow. Even if individual GEM foils looked okay before

assembly into RTPC-1, the built detector had issues with the outermost GEM. The

GEM tab seemed to be touching the grounding part of the padboard. Because of this

we could not establish the operating voltage in every region of RTPC-1. This issue

was fixed by inserting an insulating Kapton foil between the padboard and the GEM3

tab. More Kapton foil had to be added to other parts in close vicinity with HV. As the

RTPC was a hermetically sealed detector design, it was difficult to repair parts after

assembly and, hence, additional insulation was added before assembling RTPC-2 and

RTPC-3.

Even though RTPC-2 and RTPC-3 were improved in many aspects, RTPC-2 could

not be biased properly. One of the GEM foils had a HV short circuit and the HV

supply trace to this sector was cut. We had two ideas to locate the bad sector, (i) use

a temporary shunt to maintain the biasing voltage in the GEM remaining sectors (11

out of 12 sectors) and take data to identify the low occupancy sector (ii) break the

sealed HV pod out, test resistance across each sector and find the non-resistive sector.

There were two HV pods that should be taken out to fully check the resistance of all

the sectors, so we decided to use a shunt first and take data using a Sr-90 radioactive

source with the standalone Front End electronics Unit (FEU) readout available for the

test. We chose limited rows (3) of the RTPC at a time and used the self-triggering

option while searching for the bad sector. We were sure that less or no triggers would

be generated in the bad sector over a certain time period. We repeated the data taking

in different rows by rotating the RTPC and found out the bad sector within a couple of

hours. Looking at the RTPC design, we found the exact sector and the corresponding

tab location to cut the trace out. Even though RTPC-2 had HV issues, RTPC-3 was

in quite good shape except a small gas leakage as usual, which was sealed extensively

at the testbench.
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FIG. 53: Final version of two different size adapter boards to cover a complete row of

connector in the BONuS12 RTPC.

The active region of the BONuS12 RTPC was 40 cm long and the charge signals were

collected in a patterned padboard (as shown in Fig. 17), which were read out by two

differently sized adapter boards (see Fig. 53). These two adapter boards covered a

complete row of connectors in the RTPC which passed the signals to the FEU with

three MEC8 cables connected to each board. There were total 45 rows of connectors

in the RTPC, so we used 90 total padboards (45 long and 45 short) and 270 MEC8

cables to cover the RTPC fully.

(iv) Data Acquisition System (DAQ): BONuS12 had the specific requirement to ac-

commodate RTPC data within a large window size of ∼ 7 µs per event to reconstruct

the proton track efficiently with high resolution. As we had observed at ODU, a nor-

mal signal size from the RTPC was ∼ 800 ns (Fig. 37). It was decided to read one

out of three 40 ns DREAM samples to reduce data size and still achieving the average

time resolution of ∼ 120 ns. In addition to the sparse mode reading, the experiment

also required the zero-suppression technique which allowed to timestamp and readout

only those samples which were above the programmable threshold. The initial version

of the firmware which checks first some samples of an event to have zero suppression
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did not work for BONuS12 as the RTPC signals could be anywhere within a large

window. This would allow to run the BONuS12 experiment well within the CLAS12

data flow collection rate, but would need to change the FEU firmware. With help from

the SACLAY group from France new firmware as per RTPC readout requirement was

prepared. It consisted of pedestal equalization, zero-suppression and sparse readout.

The new zero-suppression algorithm checks every sample over a long window with pro-

grammed threshold and only reads out the sample above the predefined limit (could

also readout up to 3 samples before and after along with it). This firmware required to

be tested before implementing, so eight dedicated FEUs available at the EEL test area

along with a Back-End Unit (BEU) crate was utilized with the upgraded firmware in

a new BONuS12 RTPC.

FIG. 54: Standalone data acquisition of the RTPC using FEU at ODU testbench.

The BEU (Fig. 55) of the RTPC data acquisition system consists of the Jefferson

Lab standard VME/VXS crate with a crate controller single-board computer (SBC), a

Trigger Interface (TI), a Signal Distribution (SD) and a Sub-system Processor (SSP)
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module. The SBC runs the Readout Controller (ROC) application of the CEBAF

Online Data Acquisition (CODA) framework. It completes the data integrity checks

performed in the SSP firmware, disentangles multi-event buffers, forms RTPC events

corresponding with the TI data, and sends them to the CLAS12 Event builder over

a 10 GB/s Ethernet link. The TI accepts the low jitter 250 MHz system clock and

trigger signals from the Trigger Supervisor (TS) and sends the status information of

the readout system to the TS. The clock and trigger signals are delivered to the SD

board over the VXS backplane. The SD board conveys properly delayed and aligned

clock and trigger signals to the SSP boards. It also gathers their status information,

and then combines and sends it to the TI board over the backplane. The SSP board

was primarily designed to be a part of the trigger system at Jefferson Lab, but various

inbuilt components made it acceptable for the fiber readout and front-end synchro-

nization. The RTPC and MVT utilize the SSP in fiber readout mode. The SSP

firmware has also been modified and implemented to fit the needs of the BEU as per

BONuS12 Experiment. A single SSP can distribute the global system clock, trigger,

and synchronous commands to up to 24 FEUs, and also acts as a bridge between

custom front-end electronics and the VME based CODA readout. It collects event

data through the fiber optic links and buffers events in its 4 GByte DDR2 memory.

For each trigger, the SSP performs local event building tasks assembling FEU event

fragments. The SSP time stamps the event with the synchronous 125 MHz clock and

assign it the event counter value. The 48-bit time stamp along with the 60-bit event

identification (ID) is used for local event building. This process implies gathering data

packets from all FEUs belonging to the same event (matching time stamps, and event

IDs). Multi-event buffers, with a programmable number of events, are constructed

in the external DDR2 memory. Upon the request from the crate controller SBC, the

contents of the buffers are transferred to its memory over the VME64 back-plane using

dual edge Source Synchronous Transfer (2eSST) protocol. Transmission rates of 200

Mbyte/s are routinely achieved. The trigger pulses and fast run control commands are

broadcast synchronously to all FEUs with a fixed latency over 2.5 Gbit/s links [31].

The trigger and the fast commands are delivered in a synchronous way with at least 1

ns precision [34].
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FIG. 55: Components of the CLAS12 BEU consisting of SBC, TI, SSP, SD. Twisted cable

with crimp connector are connected to the TI and SD front panel for standalone operation.

The TI has also front panel with ECL compatible header pins (see Fig. 55) for the

input of external triggers in standalone test of the RTPC detector, instead of using

the CLAS12 TS. The external trigger is delivered to the TI using a twisted pair cable

having 2-pin crimp connectors at the ends during for the cosmic rays test at the test-

bench and during the detector commissioning in the experimental hall . Similarly, the

SD also has front panel header pins, which could be used for the trigger in/out in the

self triggering mode with a fixed latency.

Jefferson Lab has a standard data acquisition system in the CEBAF Online Data

Acquisition (CODA) framework [35] which is implemented in Hall-B as well, and was,

hence, adopted for the testbench. Transitioning to this framework allowed us to use

the existing CLAS12 monitoring software with some relevant changes for the BONuS12

setup. We also had data output in the standard CLAS12 format (EVIO file) enabling

also testing of the decoding and reconstruction software.

(v) Cosmic Ray Test and RTPC Performance Tests with cosmic rays at the EEL

building was an important step to validate various components necessary to operate
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the RTPC detector smoothly during the BONuS12 run in Hall B. Except the of the

complete FEU system with all cables, most of the components necessary to operate

the RTPC detector, along with the detector itself, was ready at the EEL building

testbench. We had only six FEUs and equivalent cables at the EEL, so we decided to

validate the functionality and performance of the detector using these limited resources

as shown in Fig. 56. Six FEUs could accommodate data from eight rows of connectors

(64◦in ϕ) out of the total 45 rows. As a result, the adaptor board had to be moved

about six times to completely test the performance of all the sixteen sectors. We

had coincident cosmic triggers from two scintillators, one on top and another at the

bottom of the RTPC. Signals from the scintillators are processed using discriminator,

AND gate and NIM to ECL converter to get the required ECL signal which was fed

to the front panel of the TI as discussed above.

FIG. 56: Cosmic test setup of the RTPC with 8 available FEUs to test the functionality

and performance of the detector at Jefferson lab.
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TABLE 1: Operating Voltages of the RTPC at Jlab Testbench during Cosmic run.

Region Voltage

Drift 3800 - 4350

GEM-1, GEM-2, GEM-3 382, 381, 380

Transfer-1, Transfer-2 300, 300

Induction 300

To finalize the operating voltage of this new RTPC, data were taken with a nominal

250 sccm flow of pre-mixed HeCO2. After some test runs, we decided to use the high

voltage setting shown in Table 1 as the best operational voltage.

Establishing pedestals before the cosmic ray test (see Appendix A) was important,

as we wanted to test the pedestal equalization, zero-suppression together. Current

pedestal or any previous pedestal run could be used for these process, but recent

pedestals would be better if we re-assembled the cables or adapter board. No channels

looked noisy in the initial tests, hence, no channels were masked during the cosmic

ray data taking. Pedestal runs was taken with special standalone FEU commands

as mentioned in Appendix C. CODA framework was used for the data acquisition

of cosmic data so we could utilize the Hall B resources for monitoring the detector

performance. Figure 57 showed a promising result of our test, ensuring that it had

good occupancy and time distribution. Almost all rotations of the RTPC had similar

good results.

The data from the cosmic test was also used by the members of the BONuS group

to reconstruct the cosmic track. Details of the Reconstruction software for the RTPC

detector was detailed in Ref. [36].
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FIG. 57: RTPC system integrated to the CLAS12 monitoring showing promising result

of occupancy, time distribution and pad hits of 8 Rows of connector during the cosmic test

at EEL.

3.6 FINAL EXPERIMENTAL SETUP AND COMMISSIONING

The Continuous Electron Beam Accelerator Facility (CEBAF) [37, 38] and other ex-

perimental facilities at Thomas Jefferson National Accelerator Facility (Jefferson Lab) were

designed and constructed in the 1990s and were operated successfully for over 15 years to ex-

plore and elucidate a wide range of physics topics. In the last decade, the CEBAF accelerator

and experimental halls were upgraded to the new 12 GeV beam energy with an updated con-

figuration as shown in Fig. 58. CEBAF consists of two parallel linear accelerators (Linacs)

based on superconducting radio-frequency technology. The accelerator upgrade is achieved
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by adding five accelerating cryomodules in each Linac section [39]. The new cryomodules

contain 7-cell cavities instead of the 5-cell cavities of the original CEBAF. Polarized electrons

are generated in the source (gun), pre-accelerated in the injector, and subsequently injected

and accelerated in the north Linac. The electron beam is then bent in an arc to change in

the opposite direction and injected into the south Linac, which is again bent by 180◦and

passed through the north Linac. With the upgrade, each Linac is now capable to accelerate

electron beams of ∼ 1.05 GeV which allows to deliver a ∼ 2.1 GeV beam in 1-pass. Simi-

larly, upgrades to the arc magnets and power supplies make it possible to deliver beam to

all three experimental halls (A, B and C) at energies up to 10.6 GeV, with different energies

of 1-pass to 5-pass. The intensity of the beam could be a total of up to 85 µA with a high

polarization of up to 85% [40]. One added arc path for a total of 5.5 passes is capable to

achieve the highest beam energy of 12 GeV for Hall D. This highest beam energy generated

exclusively for Hall D is irrelevant of the beam energies at the other three halls [38]. The

BONuS12 experiment is an experiment proposed to run in Hall B at the maximum electron

beam energy available and the upgraded CLAS12 spectrometer discussed below.
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FIG. 58: Continuous Electron beam accelerator facility after 12 GeV upgrade.

3.6.1 CLAS12 SPECTROMETER

The CLAS12 spectrometer is designed to study nuclear and hadronic reactions of electron

scattering by providing efficient detection of charged and neutral particles over a large ac-

ceptance range. It is based on a combination of a six-coil torus magnet, a high-field solenoid

magnet and various particle detectors(tracking detectors, sampling detectors and time of

flight detectors). The CLAS12 spectrometer relies on a combination of a toroidal magnetic

field of ∼ 2 T at polar angles from 5◦to 35◦, and a 5 T solenoidal field in the central region

at polar angle range 35◦to 125◦seen from the target position. This combination permits

the measurement of high momentum charged particles with a good resolution over a large

coverage area, while operating the detectors with high luminosity. The solenoidal field also

shields the detector system from low momentum electrons due to Møller scattering of the

high-energy beam on atomic electrons in the target.



70

FIG. 59: Upgraded CLAS12 detector system.

The CLAS12 detector system is divided into two parts for convenience, namely Forward

Detector (FD) System and Central detector (CD) system. The FD consists of Electromag-

netic Calorimeters, Forward Time of Flight, Drift Chambers, High Threshold Cherenkov

Counter and Forward Tagger (FT) in some experiments. Similarly, the CD is comprised

of a Central Neutron Detector, Central Time of Flight and Central Vertex Tracker (CVT),

except during BONuS12, when parts of the CVT were replaced by the RTPC. The Drift

chambers track the charge particles at forward angles in an average momentum resolution of

σp/p < 1%. A combination of Cherenkov counters, time-of-flight systems, and calorimeters

provides good particle identification for electrons, pions, kaons, protons and neutrons. The
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CLAS12 spectrometer with its fast triggering and high data acquisition rates allows exper-

imental operation at luminosity of 1035 cm−2s−1 for extended periods of time. Different

subsystems of the standard CLAS12 detector are briefly described below:

(i) Torus Magnet: The Torus magnets in the CLAS12 system divides the forward az-

imuthal coverage into six symmetric sectors. The geometrical coverage ranges from

5◦to 40◦in polar angle as seen from the target. This torus configuration provides the

magnetic field around the beam-line for tracking of forward-going charged particles

and also hosts other detector packages, eg. the Drift Chambers and Forward Tagger.

The Torus magnet consists of six coils housed in an aluminum case that is approxi-

mately 2 m ×4 m ×0.05 m. The six coils produce a peak magnetic field of 3.58 T

when powered at 3770 A. The magnet has an overall inductance of 2.0 H, stored en-

ergy of 14.2 MJ, and is roughly 8 m in diameter. Each coil is conductivity cooled by

liquid helium supplied at 4.5 K from cooling tubes located on the coil inner diameter.

The six coils are mounted in a central cold hub on a common stainless-steel cylinder,

which also provides the geometrical symmetry for the alignment of the coils near the

magnet center. The acceptance of scattering particles depends on the polar angle of

the particle trajectory, with azimuthal coverage ranging from 50% at 5◦to about 90%

of 2π at 40◦as seen from the target. Reference [41] details the design, construction and

performance of the CLAS12 Torus magnet.

(ii) Solenoid Magnet: The Solenoid magnet is a self-shielded superconducting magnet

around the Hall B beam-line that is used to generate a magnetic field along the beam

direction. The CLAS12 Solenoid magnet provides the magnetic field for the track-

ing of charged particles at large angle and suppression of low energy Møller electron

background. The large majority of Møller electrons are prevented from reaching the

sensitive detectors as they curl up in the strong longitudinal magnetic field, and are

then guided into a shielding pipe to dump their energy. The Solenoid also provides a

highly uniform magnetic field along the beam-line for the operation of polarized tar-

gets. It hosts several detector packages including the Central Vertex Tracker/ RTPC

detector, the Central Time of Flight, and the Central Neutron Detector inside its

bore of 78 cm diameter. The solenoid has four main coils and one shield coil. The

4 cylindrical coils are arranged in two packages at different radial distances from the

beam-line. A fifth coil is located outside of the 4 coils and generates a magnetic field

in the opposite direction of the 4 other coils, acting as an active magnetic shield. The
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number of turns in the main coils is 3704 and in the shield coil it is 1392. The solenoid

produces a magnetic field of 5 T when powered at nominal 2416 A. The magnet has

an overall inductance of 5.89 H and stored energy of 17.2 MJ. The cool down system

for the solenoid similar to the torus with liquid helium at 4.5 K. Reference [41] details

the design, construction and performance of the CLAS12 Solenoid magnet.

(iii) Electromagnetic Calorimeter (EC): The EC is the outermost layer of the CLAS12

forward detector system. The EC system is used primarily for the identification

and reconstruction of charged (electrons, pions) and neutral particles (photons, neu-

trons) in electron-scattering experiments. The EC includes both the electromagnetic

calorimeters (ECAL) of the former CLAS detector and the new pre-shower calorimeter

(PCAL) modules installed just upstream of the ECAL. Both ECAL and PCAL are

lead-scintillator sampling calorimeters consisting of six modules in compliance with

the six sectors of the Forward detector system. The ECAL also consists of two parts

namely ECAL-INNER (ECIN) and ECAL-OUTER (ECOUT). They provide longitudi-

nal sampling of electromagnetic showers, as well as of hadronic interactions to improve

particle identification. Each EC module has a triangular shape with 54 (15 PCAL/15

ECIN/24 ECOUT) layers of 1 cm thick scintillators segmented into 4.5 cm and 10 cm

wide strips for PCAL and ECAL sandwiched between 2.2 mm thick lead sheets. The

total thickness corresponds to approximately 20.5 radiation lengths. Scintillator layers

are grouped into three readout views with 5 PCAL, 5 ECIN and 8 ECOUT layers per

view, providing spatial resolutions of less than 2 cm for energy clusters. The light

from each scintillator readout group is routed to the PMTs via flexible optical fibers.

Reference [42] details the design, construction and performance of the CLAS12 EC

system.

(iv) Forward Time of Flight (FTOF): The FTOF detector is a part of CLAS12 forward

detector system located just upstream of the PCAL, mounted on the Forward Carriage

in Hall B. This detector is used to measure the time of flight of the particles emerging

from the target during the scattering experiments. In each sector of CLAS12, the

FTOF detector is comprised of three arrays of scintillators: panel-1a, panel-1b, and

panel-2. Each of the panels consists of a set of rectangular plastic scintillation counters

with a PMT on each end. The panel-1a and panel-1b arrays are located at polar angles

from 5◦to 35◦and the panel-2 arrays are located at larger angles from 35◦to 45◦. The

panel-1b is located upstream of panel-1a. In each sector, the panel-1a arrays contain
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23 counters, the panel-1b arrays contain 62 counters, and the panel-2 arrays contain 5

counters. The FTOF is required for excellent timing resolution in particle identification

and good segmentation for flexible triggering options. The average timing resolution of

panel-1a, panel-1b and panel-2 are 125 ps, 85 ps and 155 ps, respectively. The FTOF

covers a range in polar angle from 5◦to 45◦, covering 50% in ϕ at 5◦and 90% at 45◦as

seen from target. Reference [43] details the design, construction and performance of

the CLAS12 FTOF.

(v) Low Threshold Cherenkov Counter (LTCC): The LTCC is composed of five

identical detectors placed just upstream of the FTOF in CLAS12. The LTCC is used

for the identification of charged pions at momenta greater than 3.5 GeV/c, providing

pion/kaon discrimination. The LTCC consists of boxes shaped like truncated pyra-

mids, equipped in five out of the six sectors of CLAS12. Each LTCC box contains

108 lightweight mirrors with composite backing structures, 36 Winston light-collecting

cones, 36 125 mm diameter PMTs, and 36 magnetic shields. The detector is filled with

heavy gas C4F10, with distinct threshold for pions and kaons, supplied by the Hall-B

Gas system. The gas is cleaned, re-circulated, and maintained at a pressure between

1− 4 inches of water column (wc). This subsystem of CLAS12 Forward detector also

has coverage from 5◦to 30◦in polar angle as seen from the target. Reference [44] details

the design, construction and performance of the CLAS12 LTCC.

(vi) Ring Imaging Cherenkov (RICH): The RICH detector replaces two sectors of

the corresponding CLAS12 LTCC detector, with replacement in sector 4 already com-

pleted. The RICH improves the particle identification especially separating kaons from

pions and protons in the energy range from 3 to 8 GeV/c. It incorporates a hybrid

optic solution with aerogel radiators, light planar and focusing mirror system, and

highly segmented photon detectors to reduce the detector area to 1 m2. Multi-anode

photomultiplier tubes (MaPMTs) allow to have the required spatial resolution and

match the aerogel Cherenkov light spectrum in the visible and near-ultraviolet region.

This subsystem of the CLAS12 Forward detector also has coverage from 5◦to 40◦in

polar angle as seen from the target. Reference [45] details the design, construction and

performance of the CLAS12 RICH.

(vii) Drift Chamber (DC): The DC system consists of 18 identical wire chambers in six

sectors located at three different regions: ‘R1’, ‘R2’, and ‘R3’ along the beam-line. The

six coils of the torus magnet mechanically support the three independent DCs in each of
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the six sectors. Six triangular shaped DC chambers located at the entrance (upstream)

of the torus magnetic field are recognized as R1 region, the next six chambers located

inside (within) the torus magnet where the magnetic field is close to its maximum are

recognized as R2 region, and the remaining six chambers in a low magnetic field space

just downstream of the torus magnet are recognized as R3 region DC chambers. In

each of the six torus sectors the DCs are arranged identically. Each chamber has wires

arranged in two superlayers of 6 layers by 112 sense wires. Two adjacent superlayers are

oriented at ±6◦with respect to the sector midplane. This stereo view enables excellent

resolution in the most important polar angle, and good resolution in the less critical

azimuthal scattering angle. The DC along with the torus field is used to determine the

trajectory of the charged particles. The drift chamber operates within an environment

of a mixed, clean, pressure-controlled argon:CO2 (90:10) gas supplied to each of the

18 drift chambers. The on-chamber amplifier and readout boards are used for data

acquisition which are called signal translator boards (STBs). The CLAS12 DC has

coverage from 5◦to 40◦in polar angle with 50% of azimuthal coverage at 5◦as seen

from the target. Reference [46] details the design, construction and performance of the

CLAS12 DC.

(viii) High Threshold Cherenkov Counter (HTCC): The HTCC is a single unit detec-

tor that covers the entire working acceptance of CLAS12 in the forward direction. It

is mounted on a special cart and located between the Central Detector and the Drift

Chambers. The HTCC is constructed using multi-focal mirrors of 48 elliptical mirror

facets that focuses the Cherenkov light on 48 PMTs. The HTCC is filled with dry CO2

gas at room temperature and low positive differential pressure. It is directly connected

to a CO2 gas line and must be continuously purged to keep the relative humidity very

low. The CLAS12 HTCC has full coverage of 360◦in azimuth from the beamline, and

spans between 5◦and 35◦in polar direction. It is used to separate electrons/positrons

with momenta below 4.9 GeV from charged pions, kaons, and protons. This detector

operates in conjunction with the EC to identify electrons of specific energies. It is also

used to generate a fast signal which is used as a trigger. Reference [47] details the

design, construction and performance of the CLAS12 HTCC.

(ix) Central Neutron Detector (CND): The CND is the outer-most detector of the

CLAS12 Central Detector system. The CND is a barrel of plastic scintillators of

trapezoidal shape, all with their long sides parallel to the beam direction. The CND
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is composed of 3 layers of scintillator paddles in the radial direction with 48 paddles

in each layer totaling 144 scintillators. Each scintillator is read out only on one side

(upstream) using 144 PMTs placed at a low-field region of the solenoid magnet using

long, bend light guides. The other end (downstream) of each bar is connected via a

‘U-turn’ light guide to the neighboring paddle so that the light at the downstream end

goes through the neighboring paddle to read it out. The CND allows the detection

of neutrons in the momentum range from 0.2 to 1.0 GeV/c by measuring their time

of flight from the target and the energy deposition in the scintillators. This CLAS12

CTOF has coverage from 40◦to 120◦in polar angle and 360◦azimuthally as seen from

the target. Reference [48] details the design, construction and the performance of the

CLAS12 CND.

(x) Central Time-of-Flight (CTOF): The CTOF system consists of 48 scintillators that

is located within the superconducting solenoid magnet radially inside of the CND. The

array of counters forms a hermetic barrel around the Central tracker. Each scintillator

is read out on both ends using PMTs through long light guides. The PMTs reside in

inhomogeneous fringe fields of 0.1 T from the magnet and must be operated within

specially designed magnetic shields with compensation coils. The CTOF system is

used for the identification of charged particles emerging from the target via time-of-

flight measurements in the momentum range from 0.3 to ≈ 1.25 GeV/c with a time

resolution of 80 ps. This CLAS12 CTOF has a coverage from 35◦to 135◦in polar

angle and 360◦azimuthally as seen from the target. Reference [49] details the design,

construction and performance of the CLAS12 CTOF.

(xi) Central Vertex Tracker (CVT): The CVT is a part of the Central Detector to mea-

sure the momentum and to determine the vertex of charged particles scattered from

the target. The CVT is inside the solenoid magnet covering the target which aligns

along the beamline. It consists of two separate system, the Silicon Vertex Tracker

(SVT) and the Micromegas Vertex Tracker (MVT). The SVT system includes 3 con-

centric polygonal regions with 10, 14, and 18 double-sided modules (total 6 layers of

42 modules) of silicon sensors instrumented with a digital readout ASIC (Fermilab Sil-

icon Strip Readout). Reference [50] details the design, construction, and performance

of the CLAS12 SVT. The MVT is a combination of the Barrel Micromegas Tracker

(BMT) and Forward Micromegas Tracker (FMT). The BMT contains 3 layers of strips

along the beamline and 3 layers of circular readout strips around the beamline. The
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BMT provides improvement in momentum resolution and in tracking efficiency of the

scattered particles in the central region. Each BMT layer is arranged azimuthally in 3

segments of 120◦each, covering total of 360◦. Both the SVT and MVT have a coverage

from 35◦to 135◦in polar angle and 360◦azimuthally as seen from the target. Another

component, the FMT, is integrated into the CVT to provide a compact tracking sys-

tem covering the polar angle from 6◦to 30◦and provides improved vertex reconstruction

for forward-scattered charged particles. Reference [31] details the design and perfor-

mance of the CLAS12 BMT and the FMT. The CVT is replaced with the RTPC in

the BONuS12 experiment, but 3 layers of the FMT remained and were used in this

experiment.

3.6.2 HALL B BEAMLINE

The Hall B beamline has two portions: the 2C line and the 2H line. The 2C line starts

from the beam switch yard (BSY) to the Hall proper, and the 2H line extends from the

upstream end of the experimental hall to the beam dump/Faraday cup in the downstream

tunnel. The beamline is comprised of beam optics, beam position and beam current monitors,

beam viewers, collimators, shielding, beam profile scanners, and beam halo monitors. Devices

that control the beam direction, profile and other critical parameters are controlled by the

accelerator operators, whereas collimators, halo monitors, profile scanners, viewers and beam

blocker are controlled by the Hall B operators. Reference [51] details the CLAS12 beamline,

its components and the operation.
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FIG. 60: Hall B beamline ustream of the CLAS12 detector showing part of the 2H line

from the tagger magnet yoke to the entrance of the CLAS12.

3.6.3 INTEGRATION OF THE RTPC AND COMMISSIONING

Before data taking with the electron beam in hall B the RTPC detector had to replace the

SVT and MVT on the CVT cart. Initially, all components of the RTPC (Adaptor boards,

MEC8 cables, HV cables, gas tubes) were installed on the CVT cart of the CLAS12 detector

system at our testbench in EEL. The upstream part of the CVT cart hosted six FEU crates

(see Fig. 61) symmetrically around it which resided outside the solenoid but within the

residual field of ∼ 1 T. Each FEU crate had 8 FEUs, among which 6 were reserved for the

BONuS12 RTPC and the remaining two for the FMT in each crate. Out of the two BEUs

(mvt1 and mvt2) used in the hall, one was available at the test area which was used to test

the connectivity of our readout components with the usual pedestal analysis described above.

After the installation of the RTPC in the CVT cart and a brief cosmic run was taken to



78

make sure that nothing was broken during the installation and the RTPC was performing as

usual. The results from the cosmic test was promising, and had not changed much compared

to the cosmic test before installation, except some noisy channels in the FEUs (less than 10

channels out of 17,280). We could mask or increase threshold of these noisy channels but we

waited till we take the whole system to the hall.

FIG. 61: Completion of the RTPC installation in the CVT cart which hosted 6 FEU

crates in the upstream.
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After installation of the RTPC on the CVT cart, the HV supply module, the gas panel

and its control chassis were taken to the hall and installed in the pre-determined location

and preparing for final tests of the RTPC before commissioning of the BONuS12 experiment.

The EPICS GUI for the BONuS12 (Fig. 62) was available and some components were also

tested from our testbench.

FIG. 62: BONuS (RTPC) Overview GUI.

A Labview program (Fig. 63) was installed on the experimental hall computer to control

the drift gas system and target gas system and set up to operate remotely. Gas system

monitoring was integrated with the EPICS system.
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FIG. 63: Lab-view Interface of the RTPC gas control (top) and Target gas control (bot-

tom) during the BONuS12 experiment.
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The RTPC detector installed to the CVT card was also moved to the hall from the

testbench at EEL, and craned to the Level-2 of the hall where our detector was pushed

downstream into the CLAS12 solenoid as shown in Fig. 64. The solenoid was already hosting

two other detectors, CTOF and CND. The CTOF detector was used as a cosmic trigger

generator during the commissioning of the RTPC detector. The detector readiness was

checked by new pedestal data taking before pushing the RTPC inside the solenoid. Some

cable connections had to be fixed and another pedestal run taken (see Appendix A). We

then masked some channels which were too noisy and also masked some DREAMs which

would not be used during the BONuS12 experiment. We took almost all the pedestal runs

without HV in the RTPC detector, and also used high rate of data taking with small number

of samples only. The files obtained from the pedestal run were later used in the data taking

configuration as a reference for the pedestal subtraction and the zero suppression. Zero

suppression of the BONuS type was implemented for all data taking following these tests

with a threshold of the average pedestal + 6 x sigma (noise).

FIG. 64: RTPC detector installed in the CVT cart (on the left top side) ready to push

inside the CLAS12 Solenoid (hollow seen as a white ring on the back).
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Experimental interlocks, as shown here Fig. 65, were high voltage related as explained

above and others were related with the drift gas as it was a critical component of the RTPC

detector. Every interlock was working as expected to prevent the systematic as well as

human errors. We also included the bypass option in the interlock interface fora debugging

purposes, otherwise all the interlocks should be running during the whole experiment.

FIG. 65: RTPC interlocks in EPICS.
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For commissioning the RTPC in hall B, we prepared a cosmic run with a simple CTOF

hit trigger configuration implementing the CLAS12 Trigger Supervisor (TS) and TI. First

we chose a usual trigger delay setting of CLAS12 to observe the output data without the

solenoid magnetic field. Fig. 66 captured from the online CLAS12 monitoring shows a

complete picture of the occupancy of the RTPC, the time distribution, ADC distribution,

number of pad hits/event. The performance of the RTPC was elegant with nominal HV

setting found at the testbench and 250 sccm flow of drift gas, HeCO2. In the occupancy plot

we could clearly see 16 sectors separated by the fading line parallel to Y-axis manifesting the

16 sectors of the RTPC GEM foils. The time distribution also matched with our prediction

and testbench results.

FIG. 66: Occupancy and time distribution plot of the RTPC detector without solenoid

magnetic field during the commissioning.
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Reconstruction software [36] was tested by reconstructing cosmic ray events as shown in

Fig. 67. Portions of the cosmic ray tracks were clearly reconstructed.

FIG. 67: Reconstruction of the cosmic radiation in the BONuS12 RTPC [courtesy of

David Payette].

After completing these tests satisfactorily, the RTPC detector was ready for data taking

in Hall B. Even though the BONuS12 experiment was proposed to run with a 5 T solenoid

magnetic field, the RTPC did not have its optimal performance at this field strength. We

also had issues to see real signals from the RTPC while continuing the cosmic test with the

solenoid field. We had to ramp down the magnetic field below 2 T to see cosmic signals. This

could be due to the low curvature of ionized electrons moving under electric and magnetic

field which hardly reaches the readout pad or it could be the GEM structure which blocked

drift electrons to enter through the hole, otherwise made avalanche electrons to recombine

curling back to the lower potential side. For the cosmic test, it was also the choice of

trigger which might not have traversed through the RTPC. In any case, we tested various
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combination of GEM and drift voltages at 5 T but did not see much difference. It was

decided to decrease the field in steps and study the performance of the RTPC. After going

from 5 T to 3.5 T, we found that the RTPC could work at 3.8 - 4 T without any issues, and

it would also not compromise the physics results.

3.7 DATA TAKING

We started data taking on February 12, 2020 with a total of 80 days of run period in

Hall B. However, after running for about one month, the first RTPC detector started to

show issues of leakage current and was almost inoperable by the middle of March. RTPC-1

was replaced by RTPC-3 beginning on March 16. It was not possible to change the detector

at Level-2 of the hall, so the CVT cart was again craned to the ground level of the hall.

The recabling process shown in Fig. 68 had to follow the same channel mapping as used

for RTPC-1. The testbench BEU was used for a preliminary continuity test of the readout

electronics. We completed our change-out process within two days and the CVT cart was

again brought back to Level-2. Before re-establishing data taking with the electron beam,

we followed the cosmic ray test procedure to make certain that the detector was working.
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FIG. 68: Cabling work while installing the RTPC in the CVT cart.

Data taking was again resumed on March 20, but the closing of Jefferson lab due to

COVID-19 halted the run. Data taking resumed on August 2, 2020. During the closing

of Jefferson Lab, a small amount of drift gas was continuously flowing through the detector

system and it was remotely monitored. The data taking of BONuS12 in Hall B was completed

successfully on September 21, 2020 with 2 hrs of cosmic data after beam was taken out in

the morning. In the spring and summer of 2020, a total of 5.7 billion electron trigger events

were collected, details are shown in Table 2.
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TABLE 2: Amount (in Millions) of the collected data during the BONuS12 experiment

at the Hall B of the Jefferson Lab in Spring and Summer 2020.

Beam energy Spring 2020 (events) Summer 2020 (events) target gas total

(02/12 - 03/24) (08/02 - 09/21)

Pass-1 (2.1 GeV)

1 22 Empty 23

81 185 H2 266

37 45 D2 82

19 44 He4 63

total 138 296 434

Pass-5 (10.6 GeV)

21 45 Empty 66

151 266 H2 417

2275 2355 D2 4630

77 51 He4 128

total 2524 2717 5241

During the writing of this thesis, the calibration and the analysis work of the collected

data is ongoing. I have also participated in the calibration of the BONuS12 data (Run group

F), but I am more involved in the TCS data analysis of another experiment of CLAS12 (Run

group A) so the following chapter details the analysis framework of the TCS analysis with

CLAS12 RG-A data.
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CHAPTER 4

CLAS12 RUN GROUP A AND THE TCS ANALYSIS

4.1 EXPERIMENTAL SET-UP OF RUN GROUP A

The CLAS12 Run Group A (RG-A) program was formed by a collaboration of 13 exper-

iments of five topical categories: Deep Inclusive and Semi-inclusive Scattering, Deep Exclu-

sive Scattering, Quasi-photoproduction, Nucleon Structure and Meson Exchange (MesonEx)

programs. These experiments were designed to study the proton structure, including 3D

imaging, and the gluonic excitations within the proton to understand the strong force and

the origin of the nucleon mass. Until now, RG-A acquired data in three separate run periods

(spring 2018, fall 2018, and spring 2019) utilizing nearly half of the approved RG-A beam

time. The standard CLAS12 spectrometer (section 3.6) consisted of the central detector

system (MVT, FMT, SVT, CTOF, CND and the Solenoid magnet), the forward detector

system (HTCC, DC, FTOF, LTCC, EC and the Torus magnet), and the forward Tagger

(FT) to track and identify the associated particles in the RG-A experiment.

The target of the RG-A was cryogenic liquid hydrogen (LH2) with a density∼ 71 mg/cm3.

Hall B current target cell is a 50 mm long Kapton cone with 23.66 mm upstream and 15.08

mm downstream diameters. The entrance and exit windows for the beam are 30 µm thick

aluminum. The scattering chamber is made up of Rohacell XT110 foam and is ∼ 45 cm long

with a 100 mm outer diameter fitting inside the SVT as shown in Fig. 69.
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FIG. 69: Design of the Hall B Cryogenic target inside the SVT.

The trigger system of CLAS12 [52] is designed in such a way that it can include poten-

tially any detector that uses Flash Analog to Digital Converters (FADCs) in their front-end

electronics. These include: HTCC, LTCC, FTOF, PCAL, EC, CTOF or CND. As RG-A

is a collaboration of various physics experiments sharing the common CLAS12 setup, it in-

cludes variety of trigger choices, eg. electron triggers, opposite sector triggers (muons), the

MesonEx triggers and others.

The Data Acquisition of CLAS12 [35] is a fully network-based system consisting of dif-

ferent hardware and software implementations. These different components (Fig. 70 have to

follow certain requirements to be compatible with the CLAS12 DAQ. Parallel optical fibers

are used to distribute the synchronization reset and trigger signals to all of these compo-

nents, and to collect the busy signals from the electronics. Data from the VME/VXS crate

are transferred to the Event Builder (EB) via 1 Gb or 10 Gb Ethernet links over the TCP

connections. The events built on EB are further passed to the multi-threaded program sys-

tem, Event Transfer (ET) system. Lastly, events from the ET system are acquired by the

Event Recorder (ER) system which writes the events to the disks. These recorded events

are then available for the offline analysis.
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FIG. 70: Summary diagram of the Data acquisition system of the standard CLAS12 [35].

RG-A collected production data of both polarities of the torus magnet (indending and

outbending data) with an electron beam energy of 10.6 GeV. The beam current ranged

from 5 to 75 nA. During RG-A data taking, the Møller polarimeter located upstream of the

CLAS12 tagger dump, periodically measured the beam polarization which averaged about

∼ 87%.

4.2 DATA PROCESSING

4.2.1 EVENT RECONSTRUCTION

Keeping in mind the complex nature of the detector systems and corresponding large data

volumes, the CLAS12 software group maintains a common framework consisting of essen-

tial libraries of software tools, detector reconstruction and analysis applications for physics

data processing. The common framework, CLAS12 Reconstruction and Analysis (CLARA)
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framework, relies on the data-stream processing and allows to create service-oriented appli-

cations with the basic micro-services linked by data-stream pipes. A micro-service receives

an input data stream, processes it, and passes output data in CLAS12 bank structure to

the next micro-service in the data-flow path. Within the framework, software tools support

and standardize event reconstruction including detector geometry, calibration, monitoring

and CCDB access. This framework enables execution in multi-threaded mode via event-level

parallelization for the CLAS12 reconstruction. Even if CLARA framework supports Java,

C++ and Python, all the reconstruction services are using Java within CLARA currently.

Reference [53] provides the details for the CLARA framework and its tools.

Within the CLARA framework, the data collected by the DAQ (detector identifier and

the digitized ADC and TDC data) are first decoded and grouped into a bank structure [54,

55] for each event. These detector banks contain all components (hits, time, cluster, tracks,

etc.) required for the event reconstruction in both CD and FD systems. In both systems,

track reconstruction comprises of an algorithm for pattern recognition as well as track fitting.

First, charged particle tracks are reconstructed in both the CD and FD tracking systems using

hit-based tracking, matching the hit position recorded in the different detectors. In parallel,

track reconstruction with the hit time and energy also undergo in other detector systems.

Then, matching between two is performed by the Event Builder (see below). The unmatched

hits/tracks are reserved as neutral candidates (photon, neutron). With the matching track,

reconstruction of start time is imminent, which allows to reiterate the time-based tracking

including the drift time of DCs. The improved tracks from the time-based tracking are inputs

for the Event Builder again as shown in Fig. 71, which leads to the final event reconstruction.
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FIG. 71: CLAS12 interdependence of several subsystem within the CLARA framework

for Event Builder (EB) service [53].

CLAS12 DAQ stores the raw data in the EVIO (Event Input–Output) format designed by

the Jefferson Lab Data Acquisition Group. During the decoding process, EVIO is converted

to the CLAS12 data format, know as HIPO (High Performance Output), which is a flexible

data container structure minimizing disk space and access during the reconstruction process

and further data analysis. Both Java and C++ libraries are supported by the HIPO format.

4.2.2 CLAS12 EVENT BUILDER

The CLAS12 Event Builder (EB) [53, 56], a final service of the reconstruction package,

correlates and organizes all of the information of a physics event reconstructed by the CLAS12

detectors. The EB service collects the global event information in the form of data banks

structure [54, 55] from the upstream services, and uses that to tie everything together for an

event as shown in Fig. 71. It also executes the particle identification schemes and outputs
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resulting information in a standard bank structure. Different CLAS12 sub-systems are used

in the particle identification scheme to differentiate the particles in the final event-building

process as shown in Fig. 72.

FIG. 72: CLAS12 forward detector to identify and separate the PIDs. Color grading shows

the separation power (dark:highest and bright:lowest) in terms of the particle energy [38].

The CLAS12 EB assigns Particle Identification (PID) number as 11 (electron) or -11

(positron) after matching charged particle tracks in the DC and the ECAL cluster with an

associated hit in the FTOF, and appending the following HTCC and EC criteria:

1. HTCC photoelectrons ≥2.0
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2. PCAL energy deposition ≥ 60 MeV

3. 5σ cut on the energy parametrized Sampling fraction

Sampling fraction (SF) of the EC is defined as a fraction of the total energy deposited

(Edep) by a particle of certain momentum (P) passing through it. The sampling fraction

parameterization is performed using the relation SF = p1

(
p2 +

p3
Edep

+ p4
E2

dep

)
[54] where p1,

p2, p3 and p4 are associated parameters.

The CLAS12 EB assumes other charged particles, that do have TOF hit, but do not

satisfy the above criteria, as hadrons (π/K/p) based purely on timing information. This is

based on minimizing the difference between the vertex time and the event start time [53,

54]. The PID number for (π,K, p) in the particle data bank assigned by the CLAS12 EB

are ±211, 321, 2212, respectively.

EB outputs in HIPO format containing event-specific information such as particle iden-

tification and its dedicated values, event helicity, accumulated charge, etc. Physics data

analysis is then performed filtering the events with specified final states particles of a nu-

clear reaction under investigation. Because of the collaboration of different experiments,

RG-A data were filtered by various data skims as per the requirement of different groups.

TCS-J/psi skim files were created for the di-lepton group to analyze reactions involving TCS

as well as J/ψ.

4.3 TCS ANALYSIS FRAMEWORK

TCS is the photo-production of a time-like photon which subsequently decays into a

lepton pair (γp → p′γ∗ → p′l+l−). As real photon beams are presently unavailable in

Hall B, TCS is studied with the electron beams impinging on the liquid hydrogen target

[ep → (e′)p′l+l−]. The final state lepton pairs (l+l−) of TCS are detected in the CLAS12

Forward detector system, whereas the protons (p′) could be detected by the Forward or

Central detectors. The kinematics of the scattered electrons is deduced from a missing

momentum analysis. In order to ensure a photo-production events, the scattered electrons

should have very small scattering angles.

Among the three different available data sets of RG-A (2018 outbending, 2018 inbending

and 2019 inbending runs), this preliminary analysis framework is used to analyze 2018 out-

bending and inbending runs. Distribution of various variables related to this analysis from

the 2018 outbending runs are included in the following sections, whereas similar distributions

for the 2018 inbending runs are put together in Appendix E.
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4.3.1 TCS EVENT SELECTION

Based on the TCS kinematics explained above, we selected events (included plots are

from the RG-A Fall 2018 outbending runs) with the following final states explicitly :

• 1 electron(e−) detected in the Forward detector

• 1 positron (e+) detected in the Forward detector

• 1 proton (p) detected in the Forward or Central detector

and any other background or accidentals in ep→ p′e−e+X.

Final state electron, positron and proton are chosen by selecting the Particle Identification

(PID) assigned by the Event Builder (EB) as explained above. The electron-positrons pairs

with PID (±11) should pass the EB condition of number of photo-electrons (≥ 2) which could

be observed in Fig. 73. HTCC minimum number of photo-electrons allows to distinguish

leptons from pions. The choice of gaseous mixture in the HTCC is made in such a way that

the HTCC could effectively distinguish between leptons and pions below 4.9 GeV. TCS final

states are lepton pairs, so the role of the HTCC was crucial to minimize pion contamination.

FIG. 73: Event Builder Cut on minimum HTCC photoelectrons required for the identi-

fication of electrons (left) and positrons (right).
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The additional constraint on EB to assign particles as leptons was a PCAL minimum

energy cut, which quantified the basic property of leptons to lose more energy in the pre-

shower. More than 60 MeV of energy deposit in PCAL again helped to isolate leptons from

hadrons. Figure 74 shows the distribution of energy deposited by electrons and positrons in

the CLAS12 Calorimeter system clearly showing the EB cut on PCAL.

FIG. 74: Energy deposited by electrons (left) and positrons(right) in the Calorimeter

showing PCAL energy cut on 60 MeV for leptons.

Furthermore, the 5σ parameterized sampling fraction cut that was utilized in the EB

process were written into the particle data bank, which were extracted and plotted in Fig. 75.

The sampling fraction distribution with respect to the momentum, showing the upper and

lower limit of the sampling fraction accepted by EB, is shown in Fig. 76. This chi2pid

provides the information of how close the measured sampling fraction is compared to the

expected value, providing us as additional choice for tightening the quality cut of EB particle

identification.
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FIG. 75: Quality cut of 5σ on parameterized sampling fraction provided on chi2pid of

particle data bank for electron (left) and positron (right).

Even if all the EB criteria were satisfied by the electrons and positrons of the selected

TCS events, the distributions of electrons and positrons are not tidy and symmetric. The

positron distributions have clusters near the positron-pion separation limit (lower limit of

electron distribution in e± HTCC Nphe (Fig. 73), and e± chi2pid (Fig. 75), and higher value

of EC Energy at low PCAL Energy in Fig. 74 support the existence of pion contamination

in the positron sample. Peak in the number of HTCC photo-electrons and the chi2pid to

the lowest threshold limit could be a sign of misidentification of pions as positrons by the

EB. Furthermore, the sampling fraction distributions of e± with a long downward tail as

shown in Fig. 76 illustrate the inefficiencies of the EB to reconstruct low energy particles

accurately. The sampling fraction distributions of positron in each sector also show clusters

around 5 GeV positron momentum (towards the lower region of 5σ band), which could be

a sign of misidentifying positron/pion after the HTCC threshold of 4.9 GeV. The HTCC is

mostly effective to distinguish leptons/pions below this threshold.
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FIG. 76: Sampling fraction distribution of electrons and positrons as a function of mo-

mentum in six different sectors of CLAS12 (top: electrons, bottom: positrons).
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4.3.2 PID REFINEMENT CUTS

We chose different cuts to remove possible contamination in the selected sample which

could be due to the detector geometry and poor reconstruction. The first cut we applied

is a fiducial cut on the calorimeter. A particle passing through the calorimeter looses its

energy along its path with a distinct energy profile. The electron showers generated by a

particle towards the edges of the calorimeter do not account for the full profile because of

shower leakage. This insufficient information could lead to mis-reconstruction. To mitigate

its effect, a fiducial cut is applied in the PCAL, removing events corresponding to edges

of the PCAL, where the sampling fraction drops sharply. In concordance with the RG-A

study (common analysis note within RG-A) on the fiducial cut, we chose to implement loose

fiducial cuts of 9 cm on lv and lw, and 410 cm cut on lu for leptons. The sampling fraction

distribution corresponding to the distance on the three sides of PCAL geometry (lu, lv, lw)

are as shown in the Appendix D, which shows that these fiducial cuts would be fine for

outbending runs, which we are analyzing now, to remove the outer edge of PCAL that is

contributing the shower leakage.

In addition, the events corresponding to the tail of the sampling fraction distribution in

Fig. 76 towards the lower momentum region are discarded choosing sampling fraction above

0.16, lower limit of the 5σ sampling fraction band of the energetic leptons. Pions mostly

have lower sampling fraction compared to the leptons, so removing the events corresponding

to this region, also reduces the contamination of pions within the sample of TCS events.

Furthermore, we added a tighter cut on the quality of PID assignment based on the

parameterized sampling fraction by choosing a 4σ cut. This obviously helped to reduce the

mis-identified pions in the TCS sample. One more cut was employed in this refinement

process to make sure that we further reduce the pion contamination. As pions mostly

loose energy in the inner layer of the calorimeter compared to leptons, which loose energy

in the pre-shower, we could remove impurities of pions from the ECIN-PCAL sampling

fraction correlation as shown in Fig. 77. The scattering data towards the left of the anti-

diagonal band is the cause of the lower energy deposition of particles in the PCAL, most

probably by pions. These possible contamination is removed by selecting a diagonal cut

of 4SFECIN + 4.5SFPCAL = 0.8 in the correlation plot. This non-symmetric cut is chosen

so that the pion-contamination observed as clusters in the sampling fraction distribution in

Fig. 76 above 4.9 GeV could be reduced, but at the same time without further losing leptons

below the limit.
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FIG. 77: PCAL and ECIN sampling fraction correlation for electron (left) and positron

(right) with red line 4SFECIN + 4.5SFPCAL = 0.8 to reject pions.

In addition to all the above cuts on PIDs, we also chose electron-positron pairs in different

sectors to diminish possible interference in timing as well as EC cluster during the event

reconstruction. After having all these cuts on PID refinement, we chose to scrutinize the

sample with TCS kinematics.

4.3.3 TCS KINEMATICS

Events for the TCS analysis are chosen through the reaction

ep→ p′e−e+X (23)

in which I consider the initial state electron and proton four momentum as k ≡ (Ee, 0, 0, kz)

and p ≡ (mp, 0, 0, 0); and final state proton, electron and positron four momentum as p′ ≡
(Ep′ , p

′
x, p

′
y, p

′
z), k− ≡ (E−, k−x, k−y, k−z) and k+ ≡ (E+, k+x, k+y, k+z), respectively. Now,

considering the missing particle four momentum as:

k′ ≡ (Emiss, k
′
x, k

′
y, k

′
z) = (p+ k)− (p′ + k− + k+) (24)



101

the relevant kinematics for the selection of quasi-real photo-production of time-like photon

are:

• Missing mass square (m2
miss): Square of the mass of the missing particle

k′2 = m2
miss ∼ 0 (25)

• Q2 of quasi-real photon:

Q2 = (k − k′)2 = (p− p′ − k− − k+)2 ∼ 0

=⇒ Q2 = 2Ee(|k′| − k′z) ∼ 0 (26)

• Conservation of momentum and Energy:

k′x = −(p′x + k−x + k+x ) ∼ 0 (27)

k′y = −(p′y + k−y + k+y ) ∼ 0 (28)

k′z + (p′z + k−z + k+z ) ≈ Ephoton

mp + (k′z + k−z + k+z ) = Ep′ + E− + E+ (29)

=⇒
∑

Eout −
∑

Pzout = mp (30)

where missing transverse momentum k′x ∼ 0 and k′y ∼ 0 implies k′z = Emiss.

Different kinematic variables related with the TCS analysis are plotted as shown in Fig. 78

with all the events that passed the PID refinement cuts. Wide ranges of square of missing

mass (MM2), Q2 and transverse momentum of missing particle could be clearly observed.

So, to satisfy the above mentioned TCS kinematics, we chose the following preliminary cuts

in these events to isolate those that pass TCS criteria.

•
∣∣MM2

∣∣ ≤ 0.4

• |k′x/k′| ≤ 0.05,
∣∣k′y/k′∣∣ ≤ 0.05
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FIG. 78: Distribution of TCS kinematic variables among the sample events before the

selected TCS kinematic cut.
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FIG. 79: TCS kinematic variables after the selected MM2 and transverse momentum cuts.
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4.4 TCS OBSERVABLE

To obtain the TCS observable, we selected events beyond the resonance region of electron-

positron pairs. In this analysis we particularly chose the region 1.5 GeV ≤Me−e+ ≤ 3.0 GeV

in the invariant mass (Me−e+) distribution shown at the bottom in Fig. 79. In addition to

the previous kinematic cuts, the tail of the (
∑
Eout −

∑
Pzout), as shown in the mid-right

plot of Fig. 79, was also rejected by selecting events with 0.90 GeV ≤ (
∑
Eout−

∑
Pzout) ≤

0.96 GeV. The physics observable that is obtained from this TCS analysis is the beam spin

asymmetry (A⊙U) which is calculated using the relation

A⊙U =
1

C

N+ −N−

N+ +N− (31)

where C accounts for the effective polarization of the beam, which is on average ∼ 89% for

the 2018 outbending runs and ∼ 86% for the 2018 inbending runs. N+ and N− are the

number of events with positive and negative helicity, respectively.

FIG. 80: Distribution invariant mass as a function of t variable and four different t bins

to extract BSA.
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We selected events within 0.1 GeV2 ≤ −t < 0.8 GeV2 which are further divided into four

different−t bins of almost equal number of events to calculate the BSA. Four bins are selected

as 0.1 GeV2 ≤ −t < 0.25 GeV2, 0.25 GeV2 ≤ −t < 0.34 GeV2, 0.34 GeV2 ≤ −t < 0.48 GeV2

and 0.48 GeV2 ≤ −t < 0.8 GeV2. The beam spin asymmetry that is extracted from this

TCS analysis of the 2018 outbending configuration is shown in Fig. 81. The asymmetry data

points are fitted with a sine function and the amplitude of the fit is displayed as ‘p0’ in each

bin. Similar analysis steps and the cuts are followed for the 2018 inbending data as well, and

the BSA result of inbending configuration is shown in Fig. 82. (As mentioned previously,

the distributions of kinematic variables for the inbending run are kept in Appendix E).

FIG. 81: Beam spin asymmetry calculated using the TCS analysis in various t bins (2018

Outbending run).
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The BSA does not depend on the outbending and inbending runs, but our preliminary

analysis results (summarized in Table 3) are showing a smaller asymmetry amplitude in the

outbending data compared to the inbending in each t bin. This could be because of the

efficiency of the particle identification in the CLAS12 system could vary for the outbending

and inbending runs because of the change in the path of the charged particles. Various

PID refinement cuts that we implemented in this analysis framework are the same for both

outbending and inbending runs, which might not be equally effective on both of these data

sets. A more rigorous comparison study of two data sets varying different cuts could illustrate

the details behind the lower asymmetry and the larger error in the outbending data compared

to the inbending. Slight modification in the ranges of the cuts in between two data sets could

be more effective to minimize the difference.

FIG. 82: Beam spin asymmetry calculated using the TCS analysis (2018 Inbending run).
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The preliminary BSA results from this analysis is also compared to our recently published

result (Fig. 83, taken from Ref. [57]) of the CLAS collaboration (CLAS12 dilepton group)

using the RG-A 2018 inbending data. The overall trend of the BSA over t bins that is

extracted from this analysis are comparable with the published result. Gentle PID refinement

as well as loose kinematic cuts in this preliminary analysis could allow the contamination to

infiltrate into our TCS sample altering the final outcome of the BSA. Further detailed study

of the particle identification, the energy correction of the final state particles and the stricter

cut in the TCS kinematics could lead a better result of asymmetry, lowering the amount of

contamination in the selected study samples.

TABLE 3: Summary of preliminary TCS beam spin asymmetry from this analysis of 2018

outbending and inbending runs.

-t bins [GeV2]
BSA

2018 Outbending 2018 Inbending

0.10 ≤ −t < 0.25 0.107± 0.049 0.246± 0.067

0.25 ≤ −t < 0.34 0.140± 0.056 0.252± 0.073

0.34 ≤ −t < 0.48 0.116± 0.052 0.221± 0.072

0.48 ≤ −t < 0.80 0.092± 0.052 0.171± 0.070

Furthermore, lower statistics in the individual bins is the reason of the higher error bars

in this analysis as well as the published CLAS collaboration result. With a more detailed

study of both data sets of 2018 (inbending and outbending) and combined with the 2019

inbending data set, higher statistics of desired TCS events will be accumulated. The higher

statistics will allow us to study the asymmetry with significantly reduced errors, and over

a smaller bin size. Study of the dependence of the TCS observable with other kinematic

variables such as the virtuality (Q′2) of the timelike photon and the energy of the quasi-real

photon (Eγ) could be possible with higher statistics and allow us to constrain its behaviour.
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FIG. 83: TCS beam spin asymmetry as a function of −t in the recent publication of

CLAS12 with the RG-A 2018 Inbending data comparing with theoretical VGG and GK

models [57].
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CHAPTER 5

CONCLUSION AND OUTLOOK

5.1 BONUS12 EXPERIMENT

The foremost goal of the BONuS12 experimental group at the beginning of my thesis work

was to get ready for the experiment in Hall B of Jefferson Lab and to collect a sufficient

amount of high quality data. This required the construction of a new RTPC detector, testing

all of its components, integrating with the CLAS12 detector system and monitoring the

performances. During that time, simulation and reconstruction software of the RTPC were

under development within the BONuS12 group. Designing and construction of the RTPC

detector was in the early phase. There were already three graduate students working in these

projects, but the group was looking for someone to participate in the hands-on experience of

the detector handling and operation. The RTPC data acquisition system had to be tested

and to be made available for data taking as well. Motivated by the physics of studying the

neutron structure function at large Bjorken-x by using proton tagging technique, I joined

the BONuS12 group and got involved in the instrumentation and laboratory work, starting

from prototyping of the GEM based detector to the testing and preparing of the DREAM

based data acquisition system to the testing of highly pressurized thin foil straws. Our group

(Run group F) successfully completed the data taking using the RTPC at Hall B in between

February 12 and September 21, 2020, which partly represents the success of our hard work.

Calibration and the preliminary data analysis of the BONuS12 data are still ongoing during

this thesis writing. I am summarizing below some of the BONuS12 accomplishment we had

during my thesis work:

5.1.1 RTPC DETECTOR

Hands-on experience with the GEM based prototype had an immense impact understand-

ing the principles of GEM-based detectors. This allowed us to provide feedback to improve

the RTPC design based on the issues we faced in the lab. The skills and expertise acquired

during the prototyping of the GEM detector was critical for the handling and operation of

the BONuS12 RTPC. The adeptness in the RTPC detector system and its testing procedure
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had made us confident to debug the problem in the RTPC and repair it without further

complications and damages. The result of our dedicated work for the RTPC detector could

be perceived from the individual event track (Fig. 84) that we wanted to collect in this ex-

periment. These tracks were captured from the online CLAS event display (CED) software

owned by CLAS collaboration.

FIG. 84: RTPC tracks visualized in the online CLAS Event Display (CED) gui duing the

experiment.

Even if RTPC-1 had an electrical failure at the downstream plate, our goal to accumulate

sufficient data in the experiment was not compromised that much, completing the RTPC

swap much faster than the expected time-frame, without wasting much of our beam time.

5.1.2 BONUS12 TARGET

The BONuS12 target was an extremely delicate part of our experiment maintained under

pressure of ∼ 68 psig. It was made up of thin Kapton film of ∼ 60 µm and can hold almost
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double the required pressure. Along with bursting of straws, the leakage from the target

was a big concern. Diffusion (two way) of deuterium and helium through the thin wall of

the target was also very challenging. The straightness of the straw was another issue. After

testing various types of straws, we could not find any straw that satisfied all requirements.

Ultimately, we asked a company to produce straws with Kapton foil provided. The first batch

needed improvement, but a second production run yielded straws following our requirements.

These straws were made from aluminum coated polyimide foil and also perfectly straight.

These straws satisfied the Jefferson Lab burst limit as well. As a result of rigorous testing,

we did not have target burst issue during the run. The diffusion rate was almost 3 to 4 times

less compared to uncoated Kapton straws, which guaranteed a lower contamination of the

target gas. The straightness of the target assured proper electron beam alignment of the

entire length of the target straw. Observation of the end-cap of the target (Fig. 85) after the

experiment clearly indicated that the beam passed through the center of the target without

any issue.

FIG. 85: Spot on the target endcap by the irradiation of the electron beam during the

first part of the BONuS12 experiment.
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5.1.3 BONUS12 DATA ACQUISITION

The BONuS12 experiment took scattering data of about 5.7 billion electron trigger events

(Table 2) in the Hall B of the Jefferson Lab, even though the the run was halted for about

four months due to the COVID19 shutdown of the lab. The production run was taken with

240 nA electron beam energy. Event rate was somewhat reduced in BONuS12 compared to

other experiments using CLAS12. This was due to the trigger inhibition within 10 µs to

readout all the samples of large readout window size of ∼ 7.2 µs for the RTPC. Almost 90%

of the proposed number of events were collected in this experiment which are now available

for further analysis to extract the neutron structure function as well as neutron-DVCS (an

additional run group proposal to RG-F).

5.2 TIMELIKE COMPTON SCATTERING

Timelike Compton Scattering, an inverse process of DVCS, is a reaction which is well

described in leading order and leading twist. This reaction is complementary to DVCS to

access the GPDs experimentally. GPDs are widely studied topics in Nuclear and Particle

Physics to explore the 3-D tomography of partons within nucleons. I have also been involved

in analyzing the CLAS12 RG-A data, in parallel with BONuS12 work, to extract the beam

spin asymmetry using TCS events within the CLAS12 di-lepton analysis group. We were

successful in constructing an introductory analysis framework to extract preliminary results

of the TCS beam spin asymmetry, even though a complete analysis is still in progress. A

full analysis with higher statistics and a tight cut on the TCS kinematics would allow us to

extract a more precise TCS beam spin asymmetry, which could access the imaginary part of

the Compton amplitude in the GPDs formalism.

5.3 OUTLOOK

After the successful completion of data taking, the BONuS12 group is currently looking

into the collected data. Calibration of the detectors and adjustment in the CCDB is ongoing.

I have also been involved analyzing the BONuS12 data for the energy correction of electrons

using π0 analysis, which will be completed soon. Realistic data simulation and its analysis

is underway within the BONuS12 group replicating the various experimental conditions. An

RTPC manuscript is already in progress and will be submitted for publication in Nuclear

Instruments and Methods, soon.

Furthermore, data collected by CLAS12 RG-A group during 2018 and 2019 are all ready
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for analysis now. A preliminary TCS analysis result has recently been published by the

CLAS12 di-lepton analysis group using 2018 inbending data, which paved the path to the

full TCS analysis. Even if I was mainly focused on the beam spin asymmetry analysis

until now, I will continue analyzing the full RG-A data to extract the final result of TCS

observables, both real and imaginary part of Compton amplitude. Further improvement of

lepton particle identification, particle energy correction, acceptance correction, comparison

with the simulated results and the uncertainty/error calculations will be performed in the

next phase of full analysis.



114

BIBLIOGRAPHY

[1] National Academies of Sciences, Engineering, and Medicine, An assessment of u.s.-

based electron-ion collider science (Washington, DC, 2018).

[2] A. Accardi et al., Eur. Phys. J. A 52, edited by A. Deshpande, Z. E. Meziani, and

J. W. Qiu, 268 (2016).

[3] G. Dodge et al., A New Research Proposal to Jefferson Lab PAC 23 (2003).

[4] A. Amarian et al., A 12GeV Research Proposal to Jefferson Lab PAC 30 (2006).

[5] M. N. Rosenbluth, Phys. Rev. 79, 615 (1950).

[6] S. Tkachenko et al. (CLAS Collaboration), Phys. Rev. C 89, 045206 (2014).

[7] N. Baillie et al. (CLAS Collaboration), Phys. Rev. Lett. 108, 142001 (2012).

[8] M. Hattawy et al., A CLAS12 Run-Group Additional Proposal PAC 47 (2019).

[9] X. Ji, Phys. Rev. Lett. 78, 610 (1997).

[10] A. Radyushkin, Physics Letters B 380, 417 (1996).

[11] X. Ji, Phys. Rev. D 55, 7114 (1997).

[12] M. Burkardt, Phys. Rev. D 62, 071503 (2000).

[13] M. Diehl, Physics Reports 388, 41 (2003).

[14] X. Ji, Ann. Rev. Nucl. Part. Sci. 54, 413 (2004).

[15] E. R. Berger, M. Diehl, and B. Pire, Eur. Phys. J. C 23, 675 (2002).

[16] M. Guidal, H. Moutarde, and M. Vanderhaeghen, Rep. Prog. Phys. 76, 066202 (2013).
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APPENDIX A

PEDESTALS COMPARISION OF FEUS
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FIG. 86: Pedestal study of the FEU with the change in the gain capacitance as indicated

in the right corner of plot.
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FIG. 87: Pedestal noise analysis during the the cosmic test at the Jlab testbench con-

sisiting of six FEUs.



119

FIG. 88: Pedestal noise of the RTPC in the hall (FEU crates 1, 2 and 3).

FIG. 89: Pedestal noise of the RTPC in the hall (FEU crates 4, 5 and 6).
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APPENDIX B

BONUS12 GAS SYSTEM

FIG. 90: BONuS12 gas system for both RTPC and Target (Gas shed outside of hall).
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FIG. 91: BONuS12 gas system for both RTPC and Target (Inside the hall).
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APPENDIX C

COMMANDS AND CONFIGURATION FOR FEU

Standalone DAQ Commands:

While collecting data using DREAM, we need to specify the configuration file (configfile.cfg).

A typical configuration file of the DREAM Electronics, appended in this documentation, has

different parameters which could be changed according to the need of an experiment. Before

describing the details of these parameters, I would like to describe some commands to run

the DAQ.

(I) Pedestal Run:

(i) To run the data acquisition in the command line, we should use following com-

mand inside a directory where the Feu executional files are placed:

../FeuUdpControl -a 0x2 -c ped.cfg -f pedestal

In this command, -a is used to declare the number of ‘active FEU’s’ in hex format,

-c for the ‘configuration file’ to be used, and -f for the output file name (prefix)

respectively. Make sure that the configuration file has all the relevant parameters

for your run. In addition, we can also fix the number of events; for example

appending -n 100 in the above command collects the first 100 events only (that

means it processes first 100 triggers only). Above command generates a new

screen where the number of triggers processed can be visible.

The ped.cfg is a configuration file, which is used to allocate the different pa-

rameters required for the particular run. The parameters are described in next

section. Make sure that the FEU ID and IP address are correct (See Parameter

section to put right ID number and the address).

When the new screen appears, press shift+i (upper case I) to initialize the local

parameters in the configuration file and then press shift+g (upper case G) to start

acccepting/processing the trigger. Now, the number of triggers processed and the

elapsed time can be seen on the screen. To stop the trigger processing, press g

(lower case g) and to go back from the screen to command line, press shift+q

(upper case Q). If you didn’t see the increment of processed triggers, DREAM
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doesn’t collect any data, so you will have 0 byte output file. If it happens, recheck

your trigger source in the configuration file used and try it again. Output file of

the above command looks like:

pedestal YYMMDD HHMM 000 01.fdf.

Sometimes, you might get empty (0 Kb) data file (*.fdf) after this run, which

means there was a problem running the program and no data is saved on that

run. If so, make sure all the parameters of configuration file are adequate and run

again to check the problem is fixed or not. If this problem persists while taking

data in linux platform, it could be due to the incompatibility of the confg file. If

you tried to run the program after changing some parameters in the config file or

you tried a new config file obtained from outside source, there could be conflict

to run the confg file which might have prepared in windows platform. Anyway it

is good to check the new config file in linux machine using command: dos2unix

config.cfg which makes the config file compatible to linux. Once you do this,

you can change the parameters in the config file as many times as you want

without using this command again for that file. Some other problem might be

due to firewall of computer which could have chaged if the computer is restarted.

If so and you are using linux machine, you can use command such as: sudo

/etc/init.d/iptables save and after that sudo /etc/init.d/iptables stop to

change the firewall state.

Along with this file, we also get pedestal YYMMDD HHMM.cfg file with

the same name as output filename, which summarises the parameters used for

that particular run. This file helps to confirm the parameters that are used for

that particular run, which we can view any time later.

(ii) To convert the pedestal YYMMDD HHMM 000 01.fdf file into readable

text file, use the following command:

../FeuDataFileReader -p 256 pedestal YYMM....000 01.fdf

Output will be pedestal YYMMDD HHMM 000 01 ped.aux which can

be viewed using text editor. Along with this, there will be another file

pedestal YYMMDD HHMM 000 01 ped.prg useful for pedestal subtrac-

tion (this will be described latter) in configuration file.

(II) Self Trigger Run:
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(1) To run the data acquisition in the command line, we should use following com-

mand inside a directory where the Feu executional files are placed:

../FeuUdpControl -a 0x2 -c Self trig.cfg -f Slftrig

As mentioned above, -a is used to declare the number of ‘active FEU’s’ in hex

format, -c for the ‘configuration file’ to be used, and -f for the output file name

(prefix) respectively. Make sure that the configuration file has all the relevant

parameters for your run. In addition, we can also fix the number of events; for

example appending -n 100 in the above command collects the first 100 events

only (that means it processes first 100 triggers only). Above command generates

a new screen where the number of triggers processed can be visible.

The Self trig.cfg is a configuration file, which is used to allocate the different

parameters required for the particular run. The parameters are described in next

section. Make sure that the FEU ID and IP address are correct (See Parameter

section to put right ID number and the address). For self trigger, the global

threshold should also be matched in the register 1 of the DREAM configuration

(will be discussed in the next section).

When the new screen appears, press shift+i (upper case I) to initialize the local

parameters in the configuration file and then press shift+g (upper case G) to start

acccepting/processing the trigger. Now, the number of triggers processed and the

elapsed time can be seen on the screen. To stop the trigger processing, press g

(lower case g) and to go back from the screen to command line, press shift+q

(upper case Q). If you didn’t see the increment of processed triggers, DREAM

doesn’t collect any data, so you will have 0 byte output file. If it happens, recheck

your trigger source in the configuration file used and try it again.

Output file will be:

Slftrig YYMMDD HHMM 000 01.fdf

(2) To convert the Slftrig YYMMDD HHMM 000 01.fdf file into readable file

(ascii file format readable in text editor), use the following command:

../FeuDataFileReader -A Slftrig YYMM....000 01.fdf
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Note: The conversion of output file.fdf into another format can be done

only for a particular number of events, starting from any event number. It

is done by an addition of -f N1 -l N2 in the above command which converts

binary file into a desired output format starting from event N1 and ending

at N2.

(3) To convert the Slftrig YYMMDD HHMM 000 01.fdf file into inbuilt event

display, use the following command:

../FeuDataFileReader -D 1 Slftrig YYMM....000 01.fdf

Output will be Slftrig YYMMDD HHMM 000 01.dsp

(4) View events from *.dsp file using command:

../FeuEvtDisp Slftrig YYMMDD HHMM 000 01.dsp.

Use shift+e (upper case E) to increase event number and use shift+c and c

(upper case C and lower case c) to view events channel by channel.

(III) External trigger run:

(i) To run the data acquisition, we should use following command inside a directory

where the Feu executional files are placed:

../FeuUdpControl -a 0x2 -c Ext trig.cfg -f Exttrig

The Ext trig.cfg is the configuration file for the use of External trigger. For this

we need a TTL signal which is sent to the TCM (Trigger Control Module) and

trigger is distributed from TCM to FEUs using JTAG cables.

All the other procedures remains same as in Self trigger run, so use the previous

page to proceed further.

(IV) Various options related to different commands can be viewed using help command

which appears if used -h, for example ../FeuUdpControl -h ../FeuDataFileReader

-h ../FeuEvntDisp -h It shows all the options corresponding to the commands ‘Feu-

UdpControl’, ‘FeuDataFileReader’, and ‘FeuEvntDisp’.

Commands within the CLAS12 system:

After logging to the CLAS12 server, the following commands are used inside

/mvt/CodaScripts/ directory for FEU related data.
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• MvtRunBatchCol: This was a bash script which was widely used for the pedestal

run with following options

MvtRunBatchCol PEDRUN ./mvt2crates bonus 500 DEBUG

As BONuS12 used large samples during data taking, it MvtRunBatchCol was mod-

ified to MvtRunBatchCol HR making a default 16 samples events of the pedestal

run, bypassing numbers in configuration file. With PEDRUN option, it automatically

took data, produced pedestal and threshold files for zero suppression, including all

necessary channel masking. As two crates (mvt1 and mvt2) are used for BONuS12,

configuration for both crates FEUs are included in mvt2crates bonus.cfg. This can be

observed by the opening of two new windows right after the above command. Another

option, number of events could be any, based upon the detector and noise. DEBUG

option prevented the final clean up after pedestal analysis, allowing to to observe de-

tails in console output. PEDRUNSET option was used during data taking, because it

prepared a new configuration file ready for CLAS12 CODA data taking by updating

the information and copying pedestal and zs files to $CLONPARMS/mvt/.

Instead of PEDRUN, DATRUN was used for initial data taking before integrating to

the CODA framework.

• MvtCompFileReader: This was also a bash script which was used to convert the

evio file from JLab to fdf file after which standalone utilities fo the FEU mentioned

above could be used. It was used like: MvtCompFileReader -F *.evio

where *.evio is a file obtained from CLAS12.

• FeuDataFileReader and FeuEvtDisp: Details using of both of these are mentioned

above, and these were used for the same purpose as above.

FEU and DREAM Configuration Parameters:

(a) Feu ID and IPs

Feu 1 Feu_RunCtrl_Id 18

Feu 1 NetChan_Ip 192.168.10.30

Feu 1 at the beggining both lines implies the first FEU (Front End Unit). If more

than one FEU are used, we have to add other lines based on number of FEUs used eg
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Feu 2, Feu 3 etc. The number 18 for Feu_RunCtrl_Id is the number present at the

front of every FEU. So if another FEU is used, we first need to find the number present

at the front top part of corresponding FEU and have to used same number here.

NetChan_Ip has always 192.168.10. same, however the last number will depend on

previous line. We need to add 12 to Feu_RunCtrl_Id number to get the Ip address,

so here 30 (12+18).

(b) Trigger Interface/Generator configuration

Feu * Trig_Conf_Rate 0

Feu * Trig_Conf_Src Tg_Src_ExtSyn

Feu * Trig_Conf_TrigPipeLen 1

Feu * Trig_Conf_TrigVetoLen 500

Feu * Trig_Conf_File None

Feu * at the beginning of every line is used to configure the particular parameter in

all the active FEUs.

Note: We can also change configuration parameters of a particular FEU by

changing * with the corresponing FEU number 1, 2 ...... This could be done by

adding one more parameter line below the corresponding line with *.

Trig_Conf_Rate is the rate of trigger generation based on the trigger source selected on

Trig_Conf_Src parameter. For example if the Trig_Conf_Src is Tg_Src_Constant,

rate could be 0, 1, 10 or 100 Hz depending on Rate parameters: 0,1,2 or 3 respec-

tively.

Trig_Conf_Src allows to choose a trigger source among 8 different sources: In the

prototype detector (RTPC), we have used three different Trig_Conf_Src parameters

Tg_Src_NegExp, Tg_Src_PushBotton and Tg_Src_ExtSyn in the RTPC prototype.

Initially, Tg_Src_NegExp was used to study the pedestals. Then Tg_Src_PushButton

was used to study the signal with some arbitrary threshold for the generation of Self-

trigger. This parameter is utilized with a Sr90 source as well as cosmic radiation. The

other parameter, Tg_Src_ExtSyn was used to study cosmic signals and calculate drift-

time. Signal corresponding to cosmic was obtained using scintillator which is then

converted to TTL (∼+3V) signal. This signal was directly sent to FEU service board

along with the Tg_Src_ExtSyn parameter in configuration file.
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Tg_Src_Int : Input from FPGA logic Tg_Src_ExtAsyn : External Asynchronous

signal Tg_Src_ExtSyn : External signal brought to the core clock domain

Tg_Src_PushBotton : DREAM HIT based trigger (Self-Trigger) Tg_Src_Soft :

Software generated trigger Tg_Src_Constant : Internally generated constant rate

trigger Tg_Src_Memory : Internally generated trigger from memory pattern

Tg_Src_NegExp : Internally generated random trigger

The bottom four parameters make the internal trigger generator logic active, so Rate

parameter is also active in each case.

Trig_Conf_TrigPipeLen is used to set the delay time of trigger which means the sys-

tem trigger directly goes to readout logic. Its default value is ‘1’ in terms of trigger

clock cycle (described in next section). Actually, trigger generator produces two trig-

gers: raw trigger and delayed copy. So the TrigPipeLen determines the time of the

delayed copy.

Trig_Conf_TrigVetoLen is used to veto delay the trigger in trigger clock cycle. The

maximum value of TrigVetoLen that could be 1023. This means 1023 trigger clock

cycles which is equal to (1023×8)ns.

Trig_Conf_File is used to indicate a trigger configuration file, if any, but we don’t

use it here.

(c) Main configuration register

Feu * Main_Conf_ClkSel OnBoardClk

Feu * Main_Conf_DreamMask 0xDF

Feu * Main_Conf_DreamPol 0x00

Feu * Main_Conf_SparseRd 2

Feu * Main_Conf_Samples 80

Main_Conf_ClkSel parameter could have 3 different values: 00 or OnBoardClk, 01

or TrgIfConClk and 1x or RecClk. In OnBoardClk 125MHz clock in the FEU is

used which implies 8ns trigger clock cycle. While testing the prototype, we mostly

use OnBoardClk. In TrgIfConClk the clock is due to the auxiliary trigger interface.

Furthermore, in Clas12 µMegas the clock recovered from the optical synchronous link

from the backend units are used with parameter value RecClk.
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Main_Conf_DreamMask is used to mask the DREAM channel of any FEUs. Each Feu

has 8 DREAM chips and each chip has 64 channels. Here we should use hex format

to declare the masking. For example, we use 0xDF here. To understand better, we can

convert the hex value to binary. Binary of 0xDF is 11011111, so we can easily say now

that only one Dream chip (Dream 6) is unmasked and all other dreams are masked.

This means only 64 channels corresponding to this channel are unmasked. If we want

no mask at all, we then use 0x00. We can do this in individual FEU mentioning FEU

number in stead of using * as mentioned in Note above.

Main_Conf_DreamPol is used to choose the negative or positive polarity of the signal

from the detector. 0x00 is default negative signal, and 0x01 for positive signals.

Main_Conf_SparseRd is used to sparse read the data. Different values from 0 - 3 can

be used. 0 implies no spare reading, 1 implies every alternative data value is read, 2

implies first, fourth and seventh samples are read, and 3 implies the one out of four

samples are read.

Main_Conf_Samples determines the number of samples in each event. The maximum

value be 255, so no more that two events could be stored in 512 buffer for this sample

size. So we should be sure about our trigger rate to put such large value. Based on

the signal size and peaking value (it will be discussed later), we used 50-100 sample

size in the RTPC prototype.

(d) Trigger logic register

Feu * Main_Trig_TimeStamp 0

Feu * Main_Trig_OvrWrnLwm 3

Feu * Main_Trig_OvrWrnHwm 6

Feu * Main_Trig_OvrThersh 62

Feu * Main_Trig_LocThrot 1

Main_Trig_TimeStamp is used to offset the timestamp of trigger. If It’s value is set to

‘0’, it will not offset the time everytime trigger is obtained, but if ‘1’, it will offset the

time.

Main_Trig_OvrWrnHwm is used to set the upper limit of number of triggers that will

be queued in the trigger FIFO which can hold 64 triggers. If the number of triggers
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in the deranzomization trigger FIFO surpass the Main_Trig_OvrWrnHwm value we set,

Overflowwarning flag is set to ‘1’. This is quite helpful to determine the adequate

trigger rate in the DREAM. As we have 512 cell circular buffer in the DREAM and

the sample size is 80, the buffer could process upto 6 trigger at the same time. So

Main_Trig_OvrWrnHwm is set to 6.

Main_Trig_OvrWrnLwm is used to set the lower limit of trigger that will be queud in the

trigger FIFO which helps to set the overflowwarning flag ‘0’. So if the trigger occupancy

is less than Main_Trig_OvrWrnLwm value, the overflowwarning flag will be set to ‘0’.

Based on the Main_Trig_OvrWrnHwm which is set to 6, the Main_Trig_OvrWrnLwm is

set to 3 (which should be less that upper limit)

Main_Trig_OvrThersh is also related with the number of maximum triggers cor-

responding to the FIFO. If the trigger occupancy increases this value allocated to

Main_Trig_OvrThersh, an Overflow flag is raised which could be removed only by re-

setting or resynchronisation procedure. The best way of resetting is to restart the run

again. If you don’t reset, the data collected has no meaning at all after the Overflow.

Main_Trig_LocThrot is used for throttling the trigger in overflowwarning condition. If

Main_Trig_LocThrot is set to ‘1’, no trigger is accepted in overflowwarning condition,

and if ‘0’, triggers are accepted in warning condition as well.

(e) FEU Power register

Feu * Feu_Pwr_Dream 0xF

Feu * Feu_Pwr_PrtFlt 0xFFFF

Feu * Feu_Pwr_Adc 0

Feu_Pwr_Dream is used to power the DREAM of corresponding FEU. Among the 8

DREAM chips in one FEU, all DREAM are powered on using the value 0xF. It’s easy

to visualize in binary. Binary value of 0xF is 1111 and each bit is used to power a pair

of DREAMs. Bit 1 is used to power on and bit 0 is used to power off. Hence we can

set the value for this parameter in a range 0x0 to 0xF.

Feu_Pwr_PrtFlt is used to ground or float the channels of within FEU. All the channels

are grounded using 0xFFFF. We can see this using binary value. Each bit in binary

value represents 32 channels among 512 channels in a FEU, and bits 0 is used for

floating and bit 1 for grounding.
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Feu_Pwr_Adc is used for ADC synchronisation. Bits 0 or 1 are used as it’s value where

0 means not ready and 1 means done.

(f) FEU Runcontrol register

Feu * Feu_RunCtrl_Pd 1

Feu * Feu_RunCtrl_CM 1

Feu * Feu_RunCtrl_ZS 0

Feu * Feu_RunCtrl_ZsTyp 0

Feu * Feu_RunCtrl_DrOvr 0

Feu * Feu_RunCtrl_RdDel 0

Feu * Feu_RunCtrl_ZsChkSmp 3

Feu * Feu_RunCtrl_CmOffset 256

Feu * Feu_RunCtrl_Id -1

Feu * Feu_RunCtrl_AdcDatRdyDel 8

Feu * Feu_RunCtrl_EvTstExt 0

Feu * Feu_RunCtrl_DrDblSmpClk 0

Feu * Feu_RunCtrl_PdFile None

Feu 1 Feu_RunCtrl_PdFile ped_170824_20H48_000_01_ped.prg

Feu * Feu_RunCtrl_ZsFile None

Feu_RunCtrl_Pd is used to determine the pedestal subtraction. If we don’t want

pedestal subtraction, we use 0. Generally, while using only one config file to get both

pedestal and signal data, we set the parameter value to 0 if we are collecting pedestals

only. And for the pedestal subtraction, we use 1. When 1 is used along with a pedestal

filename in the Feu_RunCtrl_PdFile parameter, we get output file of this run with

automatic pedestal subtraction.

Feu_RunCtrl_CM is used for the common mode subtraction. If it’s value is set to 0, it

determines there is no common mode subtraction. But, if it is set to 1, it implies that

the output file of the run will have data set after common mode subtraction embedded

in the program.

Feu_RunCtrl_ZS is used to for the Zero Suppression. There is no zero suppression,

if the value of Feu_RunCtrl_ZS is set to 0. But if it is set to 1, zero suppression in
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allowed. After setting Feu_RunCtrl_ZS to 1, we should also put appropriate value of

Feu_RunCtrl_ZsChkSmp to indicate how many samples to be compared with threshhold

for zero suppression.

Feu_RunCtrl_ZsTyp is the type of the zero suppression which could be two different

types. One is BONuS12 type in which chunk of a signal sample over a large window are

checked and taken out from FPGA, where as other type has zero-suppression effective

over whole signal at once.

Feu_RunCtrl_RdDel is used to delay the DREAM read signal by fixed latency. It

is mostly used for test purposes. If Feu_RunCtrl_RdDel is set to 0, the readout of

DREAM starts with the trigger. If Feu_RunCtrl_RdDel is set to 1, the DREAM read

signal is delayed by 1536 trigger clock cycles which corresponds to (1536×8) ns for

Onboard 125 MHz clock.

Feu_RunCtrl_ZsChkSmp becomes active only if Feu_RunCtrl_ZS is set to 1. This

parameter can have five different values 0, 1, 2, 3, and 4. If 0, samples 1 and 2

are compared with zero suppression threshold. If 1, samples 1, 2 and 3 are compared

to threshold. Similarly, one more sample is compared for next value. So if 4, samples

1, 2, 3, 4, 5 and 6 are compared with the zero suppression threshold. Note that output

contains sample 0 also, but in the above setting sample 0 is not compared with the

threshold.

Feu_RunCtrl_CmOffset is used to configure the offset pedestal value in the output

data after the common mode and pedestal subtraction. This parameter is active, if

Feu_RunCtrl_Pd and Feu_RunCtrl_CM are active.

Feu_RunCtrl_AdcDatRdyDel is used to delay on waiting between the DREAM Read

signal and corresponding ADC data. It is usually set to 8 clock cycles.

Feu_RunCtrl_EvTstExt is used to set the event id and time stamp filed width in the

FEU data packet. If it is set to 0, event id and time stamp field are 12-bits width and

FEU header are absent. However, if it is set to 1, the event id is extended to 24-bits,

time stamp is extended to 45-bits and FEU header is also included in data.

(g) FEU Pulser register

Feu * Feu_Pulser_DreamTst 0x00

Feu * Feu_Pulser_PulseWid 512

Feu * Feu_Pulser_Enable 0
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Pulser register is used for the test of electronics, so we disabled the pulser by setting

Feu_Pulser_Enable to 0 while taking data using the electronics.

(h) FEU Prescale register

Feu * Feu_PreScale_EvtData 1

Feu * Feu_InterPacket_Delay 0

Feu_PreScale_EvtData is used to limit the event data sent to the backened unit or

computer from FEU. If it is set to 1, FEU sends data of each event. However, if it is

greater than 1, FEU ouputs event data in slower rate. For example, if it is set to 10

then event 10 and events divisible by 10 are only sent out by FEU.

Feu_InterPacket_Delay is used to delay the output in terms of trigger clock cycle.

(i) Communication register

Feu * UdpChan_Enable 1

Feu * UdpChan_MultiPackEnb 0

Feu * UdpChan_MultiPackThr 4888

Feu * ComChan_Enable 0

UdpChan_Enable is used to determine the UDP link between FEU and computer. Value

set to 1 implies there is UDP connection and 0 implies there is no UDP connection.

There could be Optical serial link connection in which we disable UdpChan_Enable by

setting 0 and enable ComChan_Enable.

UdpChan_MultiPackEnb is to enable/disable the multi-packet data transfer. If it is set

to 1 (i.e. enabled), several data samples are packed to a single UDP pack as buffer and

sent to computer.

UdpChan_MultiPackThr is used to determine the threshold of multipacket, if

UdpChan_MultiPackEnb is enabled. It’s value depends on MTU (maximum trans-

fer unit) of the devices used. When the UdpChan_MultiPackThr is set to a particular

value, the UDP buffer is filled with data packets from FEU untill the buffer reach
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the threshold. After exceeding the threshold, the UDP datagram is transferred to

computer.

ComChan_Enable is used to determine the optical link between FEU and computer.

Value set to 1 implies Optical connection and 0 implies no optical connection. When

UDP link is used, we disable the Optical link by setting 0 in ComChan_Enable.

(j) Auxiliary Trigger Interface

Feu * TI_DcBal_Enc 0

Feu * TI_DcBal_Dec 0

Feu * TI_Ignore 1

Feu * TI_Bert 0

Auxiliary trigger interface is used when the TCM (Trigger and Control Module) is

used, which also sets the clock accordingly as described in Main_Conf_ClkSel. We

are not using TCM, so we don’t care about auxiliary interface. Here, everything is

disabled.

(k) Self trigger parameters

Feu * SelfTrig_DreamMask 0xFF

Feu * SelfTrig_Mult 7

Feu * SelfTrig_CmbHitPropOl 0

Feu * SelfTrig_CmbHitPropFb 0

Feu * SelfTrig_DrmHitWid 63

Feu * SelfTrig_CmbHitWid 63

Feu * SelfTrig_TrigTopo 0

Feu * SelfTrig_Veto 180000

SelfTrig_DreamMask is used to active or mask the particular DREAM in the FEU for

the Self-trigger. If the parameter Trig_Conf_Src in Trigger generator configuration

above is set other than Tg_Src_SelfTrig, it’s better to mask all i.e. set the value 0xFF.

There are eight DREAMs in each FEU and digit 1 is used for masking each DREAM.

On the other hand, unmasking of particular DREAM of specific FEU is done using
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Hex values if Self trigger is implemented. So we can put hex values from 0xFF to 0x00

while using Self trigger. For example to unmask DREAM 6 only, we use 0xDF.

SelfTrig_Mult is used to define the number of simultaneous hits required to generate

trigger. It could be set to zero.

SelfTrig_CmbHitPropOl is one bit register used to declare the active combined hit

propagation over bussed signal. Bussed signal is used to propagate trigger to other

FEUs using slow control cable. It is set to 0 to disable and set to 1 to enable.

SelfTrig_CmbHitPropFb is also one bit register used to declare the active combined

hit propagation over the optical link. It is set to 0 to disable and set to 1 to enable.

SelfTrig_DrmHitWid is used to define the hit width in terms of trigger clock cycle to

be considered active hit.

SelfTrig_CmbHitWid is used to define the combined hit width to be considered active.

This is also expressed in terms of trigger clock cycle which is 8ns for Onboard clock in

DREAM.

SelfTrig_TrigTopo is used to declare the use of topological trigger. If it is set to 0, it

means simple coincidence trigger and if 1, it means topological trigger. If topological

trigger is enabled, the topological pattern should be pre-defined in the next Self trigger

topology sub-section.

SelfTrig_Veto is used to veto between two active combined hits in terms of trigger

clock cycles.

(l) Self trigger topology

The self trigger topology is active only if Feu * SelfTrig_TrigTopo is set to 1 in

self trigger parameters above. If this value is set to 0, topology is disabled. For the

self-trigger topology, pre-calculated trigger pattern is required and is implemented by

assymetric dual port memory. In RTPC prototype we have not used topology, so it is

always disabled. Hence, we don’t care about parameter values in the topology register.

(m) DREAM registers

Feu * Dream * 1 0x081F 0xC023 0x0000 0x0000

Feu * Dream * 2 0x0000 0x0008 0x0000 0x0000

Feu * Dream * 3 0x0000 0x0000 0x0000 0x0000

Feu * Dream * 4 0x0000 0x0000 0x0000 0x0000
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Feu * Dream * 6 0xFFFF 0xFFFF 0xFFFF 0xFFFF

Feu * Dream * 7 0xFFFF 0xFFFF 0xFFFF 0xFFFF

Feu * Dream * 8 0xFFFF 0xFFFF 0x0000 0x0000

Feu * Dream * 9 0xFFFF 0xFFFF 0x0000 0x0000

Feu * Dream * 10 0xFFFF 0xFFFF 0x0000 0x0000

Feu * Dream * 11 0xFFFF 0xFFFF 0x0000 0x0000

Feu * Dream * 12 0x000F 0x0000 0x0000 0x0000

In each FEU, we have 12 DREAM chips, and each FEU and DREAM could be declared

by putting the corresponding FEU number and DREAM number in above parameter

list. Just replace the * by corresponding number to apply for particular parameter in

the FEU or DREAM you would like a change.

The digit after Feu * Dream * in each line imply the DREAM register number

and after that parameter values for that register in hexadecimal format. The

parameter values in this config file are written in 64 bits format, so while dealing

with 16 bits register we care only first column, while dealing with 32 bits register

we set values in first two columns and for 64 bits all the four columns. The

remaining columns are set to zero. The details of the use of different bits is

described in DREAM Users manual.

Register 1 is 32 bits register which controls the main configuration parameters, so we

set parameter values in first two columns and last two columns are left zeros.

Register 2 is also 32 bits register which is used for the test modes and to control SCA

(Switched Capacitor Array) readout.

Register 3 and 4 are also 32 bits registers and used to select the channels for the test

mode. Register 3 is used for channels 1 to 32 and register 4 for channels 33 to 64 of

the specific DREAM chip.

Register 5 is 16 bits register which contains the version number of circuit so we don’t

need to configure it.

Register 6 and 7 are 64 bits registers which are used to configure the gain of the

channels. The gain of the CSA (Charge Sensitive Capacitor) are defined from 4 different

pre-defined capatiors (50fC, 100fC, 200fC and 600fC) as described in DREAM manual.
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Register 6 is used for channel 1 to 32 and register 7 for channel 33 to 64 of the specific

DREAM chip.

Register 8 and 9 are 32 bits registers which are used to inhibit the descriminator of

the particular channel of the DREAM chip. Register 8 is used for channel 1 to 32 and

register 9 for channel 33 to 64 of the specific DREAM chip.

Register 10 and 11 are also 32 bits registers which are used to enable the SCA readout

of channels. Register 10 is used to enable channel 1 to 32 and register 11 to enable

channel 33 to 64 of the specific DREAM chip.

Register 12 is 16 bits register, however only 9 bits are currently used. This means the

maximum hex value is 0x01FF. This register is used to specify the trigger latency. The

trigger latency is easy to understand from the following figure:

FIG. 92: Delay setting with various parameters.
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(n) ADC register

Feu * Adc 0x16 0x00 1

ADC register AD92222 ADCs are used in FEU, which are octal (8 ADCs integrated

into one pack) 12-bit with 40/50/65 MSPS analog to digital converters. It can operate

at a maximum 65 MSPS. It has 325 MHz full-power analog bandwidth which can

operate upto 390 MHz frequency and supports double data rate operation.

(o) DREAM clock values

Feu * DrmClk RdClk_Div 5.0

Feu * DrmClk WrClk_Div 5.0

Feu * DrmClk WrClk_Phase 2

Feu * DrmClk AdcClk_Phase 5

Dream Read-clock and write-clock division 5.0 corresponds to 40 ns bins and 6.0 to 48

ns bins.
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APPENDIX D

RG-A 2018 OUTBENDING FIDUCIAL

FIG. 93: Positron sampling fraction in correlation with lu (zoomed in near edge) in six

different sectors of CLAS12. Red line shows the average sampling fraction corresponding to

the x-axis bins.
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FIG. 94: Electron sampling fraction in correlation with lu (zoomed in near edge). Red

line shows the average sampling fraction corresponding to the x-axis bins.
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FIG. 95: Electron sampling fraction in correlation with lv (top) and lw (bottom) (zoomed

in near edge). Red line shows the average sampling fraction corresponding to the x-axis bins.
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FIG. 96: Positron sampling fraction in correlation with lv and lw (zoomed in near edge).

Red line shows the average sampling fraction corresponding to the x-axis bins.
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APPENDIX E

RG-A 2018 INBENDING DISTRIBUTIONS

FIG. 97: Distribution of e− (left) and e+ (right) of EC sampling fraction chi2pid (bottom)

and HTCC photoelectrons (top) in 2018 inbending run.
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FIG. 98: Sampling fraction distribution of e− and e+ as a function of momentum in six

different sectors of CLAS12 for 2018 Inbending runs (top 6: electrons, bottom 6: positrons).
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FIG. 99: Distribution of TCS kinematic variables among the sample events before the

selected TCS kinematic cut (2018 Inbending run).
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FIG. 100: TCS kinematic variables after the selected MM2 and transverse momentum

cuts (2018 Inbending run).
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