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The coupling of transverse motion is a natural occurrence in particle accelerators, either in the
form of a residual coupling arising from imperfections or originating by design from strong systematic
coupling fields. While the first can be treated perturbatively, the latter requires a robust approach
adapted to strongly coupled optics and a parametrization of the linear optics must be performed to
explore beam dynamics in such peculiar lattices. This paper reviews the main concepts commonly
put forth to describe coupled optics and clarifies the proposed parametrization formalisms. The links
between the generalized Twiss parameters used by the different approaches are formally proven, and
their physical interpretations are highlighted. The analytical methods have been implemented in a
reference Python package and connected with a ray-tracing code to explore strongly coupled lattices
featuring complex 3D fields. Multiple examples are discussed in detail to highlight the key physical
interpretations of the parametrizations and characteristics of the lattices.

I. INTRODUCTION

The motion of charged particles in a particle accelera-
tor is typically studied using the linear and uncoupled
theory of betatron motion. The Courant-Snyder the-
ory [1] allows the study of unidimensional and uncou-
pled motion by having an elegant parametrization whose
optical parameters have a clear physical meaning. How-
ever, in many machines, coupling between the two trans-
verse degrees of freedom is present. The coupling of the
particle transverse motion has long been considered an
undesirable effect. Coupling was first studied mainly
because of imperfections (quadrupole tilt, vertical dis-
placements of sextupoles [2]). This residual coupling, if
not well controlled, can cause undesirable effects such as
vertical emittance increase or impact linear and nonlin-
ear observables such as amplitude detuning [3]. To take
into account the effect of residual coupling, it is possi-
ble to start from the uncoupled theory and consider the
coupling as a perturbation. This perturbation theory is
no longer applicable as soon as the coupling arises from
strong systematic coupling fields. In this case, the ma-
chine design contains elements that introduce coupling
on purpose. In colliders, it is the case for interaction
regions where large solenoidal fields and compensation
elements are present. Atypical optics schemes based on
strong coupling insertions have also been proposed to im-
prove the performance of lepton and hadron colliders,
such as the “Möbius accelerator” [4], planar-to-circular
beam adapters for circular modes operation [5] and round
beam operation for lepton storage rings [6].
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Recently, vertical excursion fixed field accelerators
(vFFAs) were revived1, featuring coupling by design.
The detailed linear and nonlinear study of vFFAs con-
stitutes the main motivation for the present work. In
what follows, x is the horizontal coordinate, y is the ver-
tical coordinate, and z is the longitudinal coordinate. In
conventional, horizontal excursion, FFAs, the nonlinear
magnetic field respects a scaling condition that allows
having a constant tune for all energies [8–10] and higher
momentum particles move to orbits of larger radius. By
contrast, vFFA fields fulfill another scaling condition:

B = B0e
k(y−y0),

where k = 1
B
∂B
∂y is the normalized field gradient, y0 is the

reference vertical position and B0 is the bending field at
the reference position. The bending field increases expo-
nentially in the vertical direction leading higher energy
particle orbits to have the same radius but to shift ver-
tically. The median plane of vFFA elements is the plane
at x = 0 (vertical plane). Assuming y0 = 0, we can write
the three magnetic field components with an out-of-plane

1 Although first introduced in 1955 by Tihiro Ohkawa as electron
cyclotrons, vFFAs received a lot of interest only from 2013 on-
wards, following Ref. [7]

ar
X

iv
:2

21
0.

11
86

6v
2 

 [
ph

ys
ic

s.
ac

c-
ph

] 
 3

1 
O

ct
 2

02
2

mailto:marion.vanwelde@ulb.be
mailto:cedric.hernalsteens@cern.ch


2

expansion [11]:

Bx(x, y, z) = B0e
ky

N∑
i=0

bxi(z)x
i,

By(x, y, z) = B0e
ky

N∑
i=0

byi(z)x
i,

Bz(x, y, z) = B0e
ky

N∑
i=0

bzi(z)x
i,

where, by taking into account the fringe field function
g(z), the coefficients of these equations are given by the
following recurrence relations [11]:

bx0(z) = 0, bx,i+1(z) = − 1

i+ 1
(kbyi +

dbzi
dz

),

by0(z) = g(z), by,i+2(z) =
k

i+ 2
bx,i+1,

bz0(z) =
1

k

dg

dz
, bz,i+2(z) =

1

i+ 2

dbx,i+1

dz
.

In the (vertical) median plane, the three field compo-
nents are:

Bx0(0, y, z) = 0,

By0(0, y, z) = B0e
kyg(z),

Bz0(0, y, z) =
B0

k
eky

dg

dz
.

The vFFAs thus present a non-zero longitudinal field
component, which arises due to the fringe fields at the
vFFA ends. It is especially important as the magnet
construction, respecting the scaling law, will induce im-
portant fringe fields. If we look at the field in the ele-
ment body, by neglecting the fringe field (g(z) = const.,
g′(z) = 0, Bz = 0), the transverse field components can
be expressed as multipolar expansions by rewriting the
exponential in terms of its Taylor series. It is readily seen
that the first-order terms of this expansion correspond to
skew quadrupolar components:

Bx(x, y, z) ' −B0(kx+
k2

2!
(2xy) +O(x3))

' −B0kx,

By(x, y, z) = B0(1 + ky +
k2

2!
(y2 − x2) +O(x3))

∼ B0 +B0ky.

Because of the longitudinal and skew quadrupolar field
components, which are the main sources of transverse
motion coupling, vFFAs feature strongly coupled optics.
It is therefore necessary to study vFFA lattices with a
model adapted to strongly coupled optics. The choice of a
given parametrization for such a machine, suitable for the
design, optimization, and operation phases, is key to a
thorough understanding of the peculiar beam dynamics.
All the methods and analyses presented are applicable to

other coupled lattices in full generality and are relevant
for snake [12] and spin rotator designs.

Several parametrizations attempt to describe coupled
optics as elegantly as the Courant-Snyder theory for un-
coupled motion. The most widely known parametriza-
tions are those of Edwards and Teng (ET) [13] and
of Mais and Ripken (MR) [14]. In addition, these
parametrizations were extended and revisited in several
works: Sagan and Rubin [15], Parzen [16], Wolski [17–
19] and Lebedev and Bogacz (LB) in [20]. The exact
formalisms and notations used by these authors differ,
and slightly different parametrization choices lead to an
apparently inhomogeneous theory. To clarify the situa-
tion so that a clear picture can be obtained, we provide
interpretations of these parameters and explicit links be-
tween them for the different parametrizations.

The general theory and formalism for the study of lin-
ear beam dynamics in 4D transverse phase-space are pre-
sented in Section II and the peculiarities of coupled mo-
tion are highlighted. In Section III, a review of the cou-
pling parametrizations from ET, MR, and their exten-
sions are detailed using unified approaches and notations.
Physical interpretations regarding lattice functions and
clarifications of the relationships between the quantities
appearing in the different parametrizations are provided.
The links between the ET and MR parametrization cat-
egories are discussed in Section IV. The methods are im-
plemented using the Zgoubidoo Python interface [21] for
the Zgoubi code [22] and discussion in Section V where
applications are presented for example lattices and for re-
alistic examples of snakes and spin rotators. The imple-
mentations have been validated by comparing the gen-
eralized lattice functions computed by Zgoubidoo with
those obtained by MAD-X [23] and PTC [24]. Conclu-
sions and recommendations for the study of vFFA lattices
are provided in Section VI.

II. THEORY OF COUPLED LINEAR
BETATRON MOTION

A. Notations

Lowercase bold letters are used to indicate vectors of
geometric coordinates, where prime denotes the differ-
entiation with respect to the independent s coordinate:

()′ = d()
ds , x ≡ (x, x′, y, y′)

T
. The vectors of canonical

coordinates will be designated as:

x̂ ≡

 x
px
y
py

 .

Bold uppercase letters indicate matrices (for example,
M will denote a transfer matrix), and a hat is added
when it comes to the transfer matrice over a full period,
(“one-turn transfer matrices” M̂). No difference is made



3

in the notation to denote the transfer matrices expressed
in geometric variables or canonical variables. However,
the identification of the variables for each of the matrices
will be made clear from the context. Moreover, a bar is
added on top to indicate symplectic conjugate matrices:
the symplectic conjugate matrix of M will be denoted
M̄. The symplectic conjugate of a symplectic matrix M
is defined as M̄ = −SMTS = M−1 [1, 25], where S is
the unit symplectic matrix

S =

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,

with STS = I, SS = −I, and ST = −S. The hori-
zontal (x) and vertical (y) directions are referred to as
“physical directions” or “physical space” as opposed to
the “eigen-directions” related to the directions of the de-
coupled motion.

B. Geometric coordinates and canonical
coordinates

The relation between geometric coordinates and
canonical variables reads:

x′ = px −
e

p0
Ax, (1)

y′ = py −
e

p0
Ay, (2)

where the vector potential A components are related to
the magnetic field by B = ∇ × A. The components of
the vector potential A can often be expressed as a series
expansion. When studying the linear motion, this series
can be approximated by its first-order terms in x, px,
y, and py, which allows having only quadratic terms in
the expression of the Hamiltonian. For example, for the
longitudinal field produced by a solenoid, one obtains the
components Ax and Ay of the vector potential as follows
[2, 20]:

e

p0
Ax = −1

2
R1(s)y +O(y3),

e

p0
Ay =

1

2
R2(s)x+O(x3),

where R1(s) = R2(s) = e
p0
Bs(0, 0, s) are constants pro-

portional to the longitudinal component of the magnetic
field.

In the case of a scaling vFFA field, the three vector

potential components can be written:

Ax(x, y, z) = B0e
ky

N∑
i=0

axi(z)x
i,

Ay(x, y, z) = B0e
ky

N∑
i=0

ayi(z)x
i,

Az(x, y, z) = B0e
ky

N∑
i=0

azi(z)x
i,

where the coefficients are given by the following recur-
rence relations:

ax0(z) = 0, ax1(z) = 0,

ay0(z) = 0, ay1(z) =
1

k

dg

dz
,

az0(z) = 0, az1(z) = −g(z),

ax,i+1(z) = − k

i+ 1
ayi

ay,i+2(z) = − 1

(i+ 2)(i+ 1)

[
−kdazi

dz
+
d2ayi
dz2

]
+

1

i+ 2
kax,i+1

az,i+2(z) =
k

(i+ 2)(i+ 1)

[
−kazi +

dayi
dz

]
+

1

i+ 2

dax,i+1

dz
.

By truncating the series in the first order, the trans-
verse components Ax and Ay become

e

p0
Ax = 0 +O(x2),

e

p0
Ay =

1

2
R2(s)x+O(x3),

where, in this case, R1(s) = 0 and R2(s) =
2 e
p0
Bz(0, y, s).

The expressions (1) and (2) for the transform between
geometric and canonical variables can be rewritten using
R1,2:

x′ = px +
1

2
R1y,

y′ = py −
1

2
R2x.

In the absence of a longitudinal field component, the
canonical variables are equal to the geometric variables:
x̂ = x. However, when there is a longitudinal field com-
ponent, it must be considered. In a matrix form this
reads x̂ = Ux, where

U =


1 0 0 0
0 1 −R1

2 0
0 0 1 0
R2

2 0 0 1

 .
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The matrix U can also be used to transform from
a transfer matrix expressed in geometric variables to a
transfer matrix expressed in canonical variables:

Ms0→s,canon. = U(s)Ms0→s,geom.U
−1(s0).

C. Coupling sources

The linear coupling between the two transverse di-
rections originates from two types of field components:
longitudinal or skew quadrupolar. Solenoids induce a
rotation at a frequency equal to the Larmor frequency
θ̇ = − qBs

2γm = −Ωc

2 = −ωLarmor (where Bs is the lon-

gitudinal field component and Ωc is the cyclotron fre-
quency) [26]. This rotation introduces a coupling be-
tween the vertical and horizontal motions of the parti-
cle. It can be shown that there is a s-dependent rota-
tion that transforms the coordinate system into a frame
where the motion is decoupled (the so-called “Larmor”
frame) [26]. The rotation angle that decouples the mo-
tion is proportional to the integral of the longitudinal
field along the trajectory of the particle. In the Larmor
frame, the solenoid is a magnetic element that focuses
in the two transverse directions [2]. The second mag-
netic field which induces linear coupling is the field pro-
duced by a skew quadrupole. A particle with a horizontal
(resp. vertical) displacement will be affected by a hori-
zontal (resp. vertical) magnetic field and will be subject
to a vertical (resp. horizontal) force inducing a vertical
displacement. The vertical motion ultimately becomes
horizontal again. There is an energy exchange between
the two transverse directions, and the motion is coupled
[27].

D. Equations and invariant of motion,
symplecticity and stability

We assume linearized transverse equations of motion
expressed in the moving Frenet-Serret reference frame
(x, y, and s) attached to the reference trajectory. In

the geometric coordinates (x =
(
x, x′, y, y′

)T
), the 2D

coupled linear equations of motion can be written [2, 20]:

x′′ + (κ2
x +K)x+ (N − 1

2
R′1)y − 1

2
(R1 +R2)y′ = 0,

y′′ + (κ2
y −K)y + (N +

1

2
R′2)x+

1

2
(R1 +R2)x′ = 0,

where the coefficients κx, κy, K, and N are defined as
follows:

κx =
eBy(0, 0, s)

p0

κy = −eBx(0, 0, s)

p0

K =
1

Bρ
(
∂By
∂x

)x=y=0

N =
1

2Bρ
(
∂By
∂y
− ∂Bx

∂x
)x=y=0.

Bx, By, Bs are the field components along the closed or-
bit. κx and κy are the curvature of the design orbit in
the horizontal and vertical directions, K is related to the
normal component of the field gradient, while N is linked
to the skew component of the field gradient [20]. Finally,
R1 and R2 (see Section II B) are related to the longitudi-
nal field component. In the equations of motion, only the
last two terms of the left-hand side reflect the coupling
between the two transverse directions. Without these
terms, the equations of motion are Hill’s equations with-
out coupling (see Appendix A). The equations of motion
are obtained from the Hamiltonian for a charged parti-
cle of charge e and mass m in an electromagnetic field
expressed in Cartesian coordinates [28]:

H(r, π, t) = c
√
m2c2 + (π − eA(r, t))2) + eφ(r, t),

where r = (x, y, z), π = (Px, Py, Pz) contains the
three canonical conjugate momentum for the coordinates
(x, y, z), A is the vector potential and φ is the scalar po-
tential. To derive the equations of motion expressed in
canonical variables, ensuring conservative solutions [2],
a transformation to the coordinates in the Frenet-Serret
frame is performed and a change of independent variable
from time t to path length along the reference trajectory
s is performed. The Hamiltonian becomes

H(x, px, y, py; s) = −(1 + κxx+ κyy)

[√
1−

(
px − (1− δ) e

p0
Ax

)2

−
(
py − (1− δ) e

p0
Ay

)2

+ (1− δ) e
p0
As

]
,

where δ = P−P0

P0
and px, py are the canonical momentum

normalized by the total reference momentum P0. More-
over, because the transverse momentum components are
much smaller than the total reference momentum P0,

it is possible to expend the Hamiltonian in a power se-
ries. For linear motion, the Hamiltonian is truncated to
a quadratic form. Considering in addition the nominal
energy only (δ = 0) and expressing the vector potential
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components in terms of κx, κy, K, N , R1 and R2, the Hamiltonian becomes [20]:

H =
p2
x + p2

y

2
+ (κ2

x +K +
R2

2

4
)
x2

2
+ (κ2

y −K +
R2

1

4
)
y2

2
+Nxy +

1

2
(R1ypx −R2xpy). (3)

The coupling terms are readily apparent, with skew
quadrupolar fields gradient N coupling the motion
through the xy term and longitudinal fields coupling the
motion through the ypx and xpy terms. The Hamiltonian
equations of motion can be written in a 4× 4 matrix for-
malism using the bilinear form [13, 20, 25, 29]

H =
1

2
x̂THx̂,

where H is a real and symmetric matrix:

H =


κ2
x +K +

R2
2

4 0 N −R2

2

0 1 R1

2 0

N R1

2 κ2
y −K +

R2
1

4 0

−R2

2 0 0 1

 .

In a matrix form the equations of motion become

x̂′ = SHx̂ = A(s)x̂. (4)

From Equation (4), we can show that, for any solutions
x̂1 and x̂2, the quantity x̂T

2 Sx̂1 is a constant of motion
[1]; the so-called Lagrange invariant. Indeed, if x̂1 and
x̂2 are solutions of equation (4), then

d

ds
(x̂T

2 Sx̂1) =
dx̂T

2

ds
Sx̂1 + x̂T

2 S
dx̂1

ds

= x̂T
2 HTSTSx̂1 + x̂T

2 SSHx̂1

= 0

⇒ x̂T
2 Sx̂1 = constant.

The linear motion described by the quadratic Hamil-
tonian (Eq. (3)) is a succession of linear canonical trans-
formations represented by the transfer matrices M. The
solution of the equations of motion can therefore be writ-
ten in the form x̂(s) = Ms0→sx̂(s0), where Ms0→s is
the transfer matrix allowing to propagate the coordinates
from s0 to s. The transfer matrix must satisfy the fol-
lowing conditions [2]:

d

ds
Ms0→s = A(s)Ms0→s,

Ms0→s0 = I.

Expressing the particle trajectory with these transfer
matrices is equivalent to integrating the linear differen-
tial equations over a finite distance. The particle motion
can thus be described either by the equations of motion
derived from the Hamiltonian (continuous formalism) or
by transfer matrices (discrete formalism) [30]. One of the

advantages of using matrix formalism is that we can ob-
tain the one-turn transfer matrix M̂ by multiplying the
transfer matrices of the sections contained in the period.
The one-turn transfer matrix computed at s can be ob-
tained from the one-turn transfer matrix computed at
s0:

M̂(s) = Ms0→sM̂(s0)M−1
s0→s.

The Jacobian matrix of a canonical transformation is
symplectic [29]. In the case of linear motion, the transfer
matrix is equal to the Jacobian matrix, and therefore
Msi→sj (expressed in terms of canonical variables) is also
symplectic:

MTSM = S. (5)

It is possible to find this symplecticity condition from the
Lagrange invariant [31]. x̂T

2 Sx̂1 being an invariant of the
motion, we know that x̂T

2 (s)Sx̂1(s) = x̂T
2 (s0)Sx̂1(s0).

By expressing the coordinates as functions of s using the
transfer matrix and the initial coordinates at s0, we get:

x̂T
2 (s)Sx̂1(s) = x̂T

2 (s0)MTSMx̂1(s0)

= x̂T
2 (s0)Sx̂1(s0)

⇒MTSM = S.

The matrix S being anti-symmetric, the symplecticity

condition on the transfer matrix (Eq. (5)) gives (n2−n)
2

scalar conditions. The transfer matrix M will therefore
contain n2 − (n2−n)

2 = n
2 (n + 1) independent elements

[1, 13, 20, 29]. For a two-dimensional motion, at least 10
independent parameters are needed to parameterize the
matrix.

It is insightful to study the eigenvalues and eigenvec-
tors of the transfer matrix M̂. The expression of the La-
grange invariant allows to find conditions on these eigen-
values and eigenvectors. For a 4×4 transfer matrix, there
are 4 eigenvectors v̂j corresponding to the eigenvalues λj :

M̂v̂j = λjv̂j. By expressing the Lagrange invariant for
two eigenvectors v̂i et v̂j of the transfer matrix, we obtain
[2]:

v̂T
i (s)Sv̂j(s) = (M̂v̂i(s0))TSM̂v̂j(s0)

= λiλjv̂
T
i (s0)Sv̂j(s0).

One obtains: {
λiλj = 1⇒ v̂T

i Sv̂j 6= 0

λiλj 6= 1⇒ v̂T
i Sv̂j = 0
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The eigenvalues of the transfer matrix thus appear in
reciprocal pairs (λj ,

1
λj

) [1]. Moreover, the matrix M̂

being real, the eigenvalues appear in complex conjugate
pairs. As illustrated in Fig. 1, there are four possibilities
respecting these two conditions: (i) the four eigenvalues
are complex with |λ| = 1, (ii) one of the pairs of eigenval-
ues is real, the other is complex and lies on the unit circle,
(iii) both pairs of reciprocal eigenvalues are real, (iv) one
of the eigenvalues is complex but is not on the unit cir-
cle |λ1| 6= 1. The other eigenvalues are then λ2 = 1

λ1
,

λ3 = λ∗1, λ4 = 1
λ∗1

[1].

Figure 1: Different situations for the four eigenvalues of
the transfer matrix M̂; only the first case is stable -

Reproduced from [1].

To guarantee stable motion, |λ| = 1 is necessary (case
(i) above). The eigenvectors of the transfer matrix will
then be complex conjugate v̂−j = v̂∗j (with j = 1, 2) and

will correspond to the eigenvalues λ±j = e±i2πQj , where
Qj are the linear tunes. Since the eigenvectors appear in
complex conjugate pairs, the Lagrange invariant v̂+

j Sv̂j

(where v̂+
j = v̂∗Tj ) will be imaginary. We can therefore

normalize the eigenvectors of the matrix M̂ as follows:{
v̂+
i S v̂j = ±i if δij = 1

v̂+
i S v̂j = 0 if δij = 0.

(6)

III. REVIEW AND COMPARISON OF x− y
COUPLED MOTION PARAMETRIZATIONS

The study of two-dimensional uncoupled transverse
motion can be reduced to the study of one-dimensional
motions in the horizontal and vertical directions. The
parameters used to describe this transverse motion have
a clear physical meaning and are related to the opti-
cal properties of the lattice (see Appendix A for more
details). For the linear coupled transverse motion, sev-
eral parametrizations attempt to describe the coupled op-
tics and characterize the coupling in an elegant fashion.

Among these parametrizations, the most widely known
are the parametrization from Edwards and Teng [13]
(“ET” parametrization) and the parametrization from
Mais and Ripken [14] (“MR” parametrization). Other
variants can be linked to one of these two classes. These
two parametrization categories differ in their way of de-
scribing coupled optics; their lattice parameters are dif-
ferent and have different interpretations.

The ET parametrization transforms the transfer ma-
trix in a decoupled block-diagonal matrix using a sym-
plectic rotation. The lattice functions are then defined for
each block of the block-diagonal matrix; each block is pa-
rameterized as a Twiss matrix, as shown in Appendix A,
Eq. (A5) with three lattice parameters α, β and µ. The
lattice functions are thus connected to the eigenmodes
of oscillation and not to the physical directions of the
transverse plane. The coupling between the transverse
motions is characterized by the parameters of the sym-
plectic rotation.

The MR parametrization is based on the coupled trans-
fer matrix in physical space. It consists in parameter-
izing the normalization matrix—the matrix that trans-
forms the transfer matrix into its normal form—with lat-
tice functions or, in an equivalent way, parameterizing
the eigenvectors of the coupled transfer matrix. The re-
sulting lattice parameters represent the effect of the two
eigenmodes of oscillation on each of the physical trans-
verse directions. These optical parameters are therefore
linked not only to the oscillation eigenmode but also to
the physical directions of the transverse plane, which
allows for interpreting them in relation to the physical
beam sizes.

The link between these parametrizations was clari-
fied by Lebedev and Bogacz in Ref. [20]. In addition,
several authors have revisited and extended these two
parametrizations: Sagan and Rubin [15], Parzen [16],
and Wolski [17–19]. However, although these approaches
are based on the same principles, different notations and
slightly different parameters are used, or the derivations
proceed differently. We review the different parametriza-
tions using the same formalism to be able to compare and
highlight the links, similarities, and fundamental differ-
ences in the lattice parameters. In this section, the ET
and the MR parametrizations are detailed individually,
together with their variants, and we make explicit links
between the various parameters. The links between the
parametrizations belonging to the ET or MR categories
are highlighted in Section IV.

A. Edwards and Teng (ET) parametrization

The ET parametrization initially aimed to generalize
in a straightforward manner the Courant-Snyder param-
eters to coupled motion. To that end, 10 independent
parameters are used to parameterize the 2D coupled mo-
tion. These parameters include the usual α, β, and
µ functions for each eigenmode of oscillation. These
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functions are defined as the Twiss parameters of the
2× 2 matrices representing the decoupled motion in the
eigen-directions. In addition, the ET parametrization
also includes four parameters that represent the coupling
strength and structure in the lattice. These parameters
originate from the decoupling matrix.

To obtain this parametrization, one starts from a very
general transfer matrix:

Ms1→s2 =

(
A B
C D

)
, (7)

where A, B, C and D are 2× 2 matrices. This transfer
matrix propagates the physical coordinates (x, px, y, py)
from s1 to s2: x̂(s2) = Mx̂(s1). If the lattice does not
introduce coupling, the horizontal and vertical motions
do not mix and the transfer matrix M is block-diagonal
(B and C are zeros, and the unimodular 2×2 matrices A
and D respectively describe the horizontal and vertical
motions). If the transverse motion is coupled, the trans-
fer matrix is no longer block-diagonal and couples the
horizontal and vertical motions. The motion in the cou-
pled physical space is described by a transfer matrix M
where none of the elements is a priori zero. A decoupled
space appears in which the motion along two so-called
“eigen-directions” can be described independently. The
transfer matrix in the decoupled frame P propagates the
decoupled coordinates (u, pu, v, pv) from one point to an-
other in the accelerator: û(s2) = Pû(s1). This transfer
matrix P is block-diagonal:

Ps1→s2 =

(
E 0
0 F

)
.

It is possible to go from the coupled physical space to
the decoupled space using a linear similarity transforma-

tion. The decoupling matrix R̃ transforms the transfer
matrix M into the block-diagonal matrix P [16]:

x̂ = R̃û,

Ps0→s = R̃−1(s)Ms0→sR̃(s0).

This transformation is also valid for the one-turn ma-
trices in the coupled and decoupled spaces M̂(s) and

P̂(s):

P̂(s) = R̃−1(s)M̂(s)R̃(s). (8)

The most general form of the similarity transformation
which block-diagonalizes M̂ can be written as [16]:

R̃ =

(
q1I R12

R21 q2I

)
,

where q1, q2 are scalar quantities, R12, R21 are 2 × 2

matrices and I is the unit matrix. The matrix R̃ be-
ing a 4 × 4 symplectic matrix, there are 6 symplecticity

conditions. These symplecticity conditions on R̃ can be
written as follows:

q2
1 + |R12| = 1,

|R21|+ q2
2 = 1,

q1R21 + R12q2 = 0.

From these conditions, we can simplify the expression

of R̃ by imposing that q1 = q2 (we will call this constant
γ in what follows) and that R21 = −R12. To simplify

the expression of R̃, we write R12 = C and R21 = −C
[15]:

R̃ =

(
γI C
−C γI

)
.

To take into account the last remaining symplecticity

condition on R̃ (γ2 + |C| = 1), the ET parametrization

goes one step further and describes the matrix R̃ as a
symplectic rotation, which imposes γ = cosφ and C =
D−1 sin (φ), where D is a symplectic 2× 2 matrix [13]:

R̃ =

(
I cos (φ) D−1 sin (φ)
−D sin (φ) I cos (φ)

)
,

D =

(
a b
c d

)
.

All the symplecticity conditions on R̃ are taken into
account in this last expression. One can see that the ma-

trix R̃ has four independent elements: the rotation angle
φ and the three independent elements of the symplec-
tic matrix D. The parameter γ = cos (φ) represents the
coupling strength, while the matrix D represents the cou-
pling structure [13, 25, 29]. This manner of parametrizing

the matrix R̃ was first presented in Ref. [29]. Multiple

ways to write the similarity matrix R̃ in terms of a sym-
plectic rotation exist in order to block-diagonalize the
symplectic transfer matrix M̂. The symplectic rotation
is a four-dimensional rotation of the x − px and y − py
planes, which gives the orientation of the normal modes
compared to the axes of the physical system. Once the
motion is decoupled, each of the blocks of the matrix P̂
corresponds to an eigenmode of oscillation and can be
rewritten as a Twiss matrix (Eq. (A5)):

Ai =

(
cos (µi) + αi sin (µi) βi sin (µi)

−γ sin (µi) cos (µi)− αi sin (µi)

)
,

where Ai represents each of the blocks of the diagonal of
P̂, with i = 1, 2 indicating the considered eigenmode.

It should be noted that forcing R̃ to be symplectic
forces the matrix P̂ to be symplectic as well. This allows
the E and F matrices to be parameterized with only 3
independent parameters, as in the case of uncoupled mo-
tion. The Twiss parameters αi, βi, and µi characterize
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the eigenmode motion and are not related to the phys-
ical axes. As a result, the β-functions are not directly
related to the beam size in the physical plane, and the
interpretation of these Twiss parameters is more com-
plicated than in the case of an uncoupled motion. The
generalized Twiss parameters of the ET parametrization
thus describe the beam dynamics in the decoupled axes
but are not related to the measurable parameters of the
beam.

In order to calculate the elements of the matrix R̃ as
well as the lattice parameters for each oscillation mode,
we can use two different methods of calculation. The
first method (see Section III A 1) is based on the ana-
lytical solution of a system of equations, which allows

us to express R̃, E and F from the elements of the ma-
trix M̂. This method is used by Edwards and Teng in
[13] and was extended by Sagan and Rubin in [15] for
strong coupling. This method was also used to imple-
ment the ET parametrization in MAD-X [23, 25]. The
second method (see Section III A 2), explained by Parzen

in Ref. [16], is based on the eigenvectors of M̂ and on
the link between these eigenvectors and the eigenvectors
of P̂. These are easily parameterized with the optical
functions α, β, and µ of each eigenmode. This method
is advantageous because it allows studying the coupled
motion in a phase space of greater dimension: for exam-
ple, the ET parametrization is extended by Parzen for
coupled motion in 6 degrees of freedom [16].

The following sections detail these two different meth-

ods, which we use to calculate the elements of R̃, as well
as the generalized Twiss parameters. The two proce-
dures are based on the transfer matrix in coupled space
and it is possible to find all the parameters of the ET
parametrization using a tracking code that provides this
transfer matrix.

1. ET parameters from an explicit analytical solution

R̃ is a symplectic matrix allowing to obtain the decou-
pled block-diagonal matrix P̂ starting from M̂. Using

Eq. (8) and the symplecticity condition on R̃, all the el-

ements of P̂ and R̃ can be found in term of the elements
of M̂ (in the form of Eq. (7)) [13, 15, 25]:

γ =

√√√√1

2
+

1

2

√
(Tr A− Tr D)2

(Tr A− Tr D)2 + 4× |B + C|
, (9)

C =
−(B + C)× sign(Tr A− Tr D)

γ
√

(Tr A− Tr D)2 + 4× |B + C|
, (10)

E = A− CC
γ

, (11)

F = D +
CB
γ

. (12)

The solutions written in this form directly provide
a stability condition: having a real solution imposes
|B + C| > − 1

4 (Tr A − Tr D)2. This stability condition
is equivalent to a constraint on the eigenvalues (see sec-
tion II). If this condition is not met, the sum of the two
eigenvalues within a pair is complex, which corresponds
to the case where all the eigenvalues are complex but do
not lie on the unit circle. A discussion of this stability
condition in case of weak coupling is done in [1], con-
cluding that sum resonances can induce instability while
difference resonances cannot.

Once the matrices E and F are calculated, it is possible
to express them in the form of Twiss matrices to find the
lattice parameters of the two eigenmodes. The solution
presented above (Eqn. (9) and (12)) is the solution pre-
sented in Ref. [13] and corresponds to the solution used
in the case of weak coupling. However, when |B+C̄| > 0,

a second solution exists for the parameters of R̃ [15]:

γ =

√√√√1

2
− 1

2

√
(Tr A− Tr D)2

(Tr A− Tr D)2 + 4× |B + C|
,

C =
(B + C)× sign(Tr A− Tr D)

γ
√

(Tr A− Tr D)2 + 4× |B + C|
.

This second solution corresponds to another symplectic

rotation matrix R̃. Depending on the chosen analytical

solution and therefore depending on the matrix R̃ used
for the decoupling, one obtains a different block-diagonal
matrix P̂, and the blocks of this matrix will be associated
differently with the eigenmodes. The 2× 2 matrix E can
thus be associated with the eigenmode I using one of the
two solutions but associated with the eigenmode II using
the other solution. As the decoupled matrix is different
depending on the solution used, the Twiss parameters
will also have different values in one case or the other
[15].

In a weakly coupled lattice, the horizontal and verti-
cal oscillations are nearly unchanged, and the eigenmode
oscillations can be associated with the horizontal and ver-
tical motions. The decoupling matrix must be close to
the unit matrix so that the eigen-axes are close to the
horizontal and vertical directions. Therefore, only the
first solution will be chosen and used (γ ≈ 1 and C ≈ 0).
With γ = cosφ and developing cosφ in terms of cos 2φ,
we get:

γ = cosφ =

√
1

2
+

1

2
cos 2φ.

Imposing the choice of the first solution is equivalent to
imposing a condition on the angle of rotation φ:

−π
4
≤ φ ≤ π

4
.

It is the condition originally imposed by Edwards and
Teng in Ref. [13].
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However, in a strongly coupled lattice, it is more com-
plicated to associate the eigenmodes with the 2× 2 ma-
trices that lie on the diagonal of P̂. At some locations
of the lattice (where |B + C̄| < 0), only the first so-
lution may exist, which forces the identification of the
modes. The eigenmode I can thus be associated with
the matrix E at a given location and associated with the
matrix F at others. Therefore, it might not be possible
to keep the identification of a mode with one of the two
matrices E or F. The change in mode identification at
different locations of the lattice is referred to as mode flip-
ping and only occurs in elements that introduce a strong
coupling between horizontal and vertical motions. The
number of mode flips must be even in order to find the
same eigen-axes at the exit of the element. In strongly
coupled lattices, the Twiss parameters can thus be dif-
ferent depending on the chosen mode identification. The
knowledge of the Twiss parameters alone is not sufficient
to compare lattices; the identification of the eigen-axes is
required as well.

The above optical function and decoupling matrix cal-
culations are based on the one-turn transfer matrix M̂
at a specific location in the accelerator. To propagate
the decoupled matrix from one point to another of the
lattice, one can calculate the transfer matrix (W12 =
Ws1→s2) in the decoupled space [15]:

W12 = R̃−12 M12R̃1,

where M12 = Ms1→s2 is the coupled transfer matrix

between s1 and s2, R̃2 = R̃(s2) and R̃1 = R̃(s1). From
W12, we can compute the decoupled one-turn transfer
matrix at s2 [25]:

P̂(s2) = W12P̂(s1)W−1
12 .

It is possible to see if there is a mode flip between s1

and s2 using the trace of the matrix M12, or via the
structure of the matrix W12. Because the oscillation
eigenmodes are independent of each other, the propa-
gation matrix W12 can only be block-diagonal or anti-
block-diagonal [15, 25]. It will be block-diagonal if there
is no mode flip and anti-block-diagonal if there is a mode
flip2. The sign change of |B + C̄| characterizes a forced
mode flip. When the determinant of the matrix is equal
to 0, only one solution remains. Thus, if there is a forced
mode flip in the lattice, γ → 0. The Twiss parameters
are then associated with different modes so that the lat-
tice functions are discontinuous at this location, and the
β-functions can diverge. Because the β-functions can be-
come infinite or negative, it is not possible to preserve
their physical interpretation in terms of envelope func-
tions.

2 Refs. [15, 25] provide more information on the propagation of
normal modes and initial Twiss parameters.

2. ET parameters from the eigenvectors of M̂

The second method allows to express the lattice pa-
rameters and the decoupling matrix in terms of the
components of the one-turn transfer matrix eigenvec-
tors. The transfer matrix in the decoupled space P̂ is
a block-diagonal matrix whose blocks can be expressed
with the linear and periodic optical parameters αi, βi
and µi for i = 1, 2. It is therefore possible to express the
eigenvectors of P̂—û1, û2, û3, û4 (where û2 = û∗1 and
û4 = û∗3)—in terms of αi, βi and µi:

û1 =


β

1
2
1

β
− 1

2
1 (−α1 + i)

0
0

 eiµ1 ,

û3 =


0
0

β
1
2
2

β
− 1

2
2 (−α2 + i)

 eiµ2 .

In the coupled physical space, the eigenvectors of the
one-turn matrix M̂—x̂1, x̂2, x̂3, x̂4 (where x̂2 = x̂∗1
and x̂4 = x̂∗3)—can be calculated. The eigenvalues
corresponding to these eigenvectors can be grouped in
pairs λ1 = ei2πQ1 , λ2 = e−i2πQ1 = λ∗1, λ3 = ei2πQ2 ,
λ4 = e−i2πQ2 = λ∗3

3

The eigenvectors of P̂ and M̂ are normalized as follows
(see also Eq. (6)):{

ê+
i S êj = ±i if δij = 1

ê+
i S êj = 0 if δij = 0

(13)

where ê refers either to the û eigenvectors or to the x̂
eigenvectors, and ê+

i = ê∗Ti . The eigenvectors in the
coupled space are related to the eigenvectors in the de-

coupled space via R̃:

x̂1 = R̃û1.

It is thus possible to express the lattice parameters in
terms of the M̂-eigenvector components [16]:

x1 = q1

√
β1e

iµ1

px1 = q1
(−α1 + i)√

β1

eiµ1

px1

x1
=

(−α1 + i)

β1

⇒


β1 =

1

Im (px1

x1
)

α1 = −β1Re (
px1

x1
)

µ1 = arg(x1)

3 It should be noted that, in this second method, the eigenvectors
are ordered: x̂1 corresponds to a positive phase and x̂2 to a neg-
ative phase. Also, as the transfer matrices M̂ and P̂ are related
by a similarity transformation, they have the same eigenvalues
[13].
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Once the optical parameters are known, the eigenvec-
tors of P̂ and M̂ are known explicitly. It is then pos-

sible to calculate the decoupling matrix R̃ from these
two eigenvector sets. First, two matrices based on these
eigenvectors are built:

U =
1√
−i

[û1 û2 û3 û4],

X =
1√
−i

[x̂1 x̂2 x̂3 x̂4].

By taking into account the eigenvector normalization
(Eq. (13)), we see that the factor

√
−i in the above ex-

pressions ensures the symplecticity of the matrices U and
X. The matrices U and X contain the eigenvectors of the
coupled and decoupled spaces, and we can thus connect

them by the matrix R̃: X = R̃U. By inverting this re-
lation and by taking into account that U is symplectic,
and thus U−1 = U, the decoupling matrix is obtained:

R̃ = XU.

The symplecticity of the matrices U and X ensures the

symplecticity of the matrix R̃. Using Floquet’s theorem
(Eq. (B1)), the eigenvectors are expressed as the product
of a periodic function and a harmonic factor. Each col-
umn of the matrices U and X will then contain a periodic
function and a harmonic factor (e±iµ(s)). The harmonic
factors cancel each other out when one calculates the
product of X and U so that only the periodic functions
remain in the matrix R, which is therefore periodic.

3. Interpretation and advantages of the ET parametrization

The 10 parameters of the ET parametrization for the
coupled transverse motion are the 2 α-functions, 2 β-
functions, 2 phase advance µ and 4 periodic functions

which describe the decoupling matrix R̃. The functions
α, β, and µ characterize the two eigenmodes and, thus,
the oscillations in the decoupled space, while the param-

eters of the matrix R̃ describe the coupling between the
two transverse motions (strength and structure). The
functions α, β, and µ of each eigenmode are defined in
the same way as in the Courant-Snyder theory for un-
coupled motion. However, these parameters are defined
with respect to eigen-axes that no longer correspond to
the physical axes. These Twiss parameters thus no longer
have their usual physical interpretation, and some com-
monly used relations are no longer valid. In particular,
the β-functions can become negative or infinite. In addi-
tion, the relations between the functions α, β, and µ of
the Courant-Snyder theory are no longer valid in decou-
pled space and must be generalized [16, 32]. Finally, as
mentioned above, mode identification can be tedious.

The phase advance µi is directly connected to the os-
cillation in the physical direction, which is the principal
direction associated with the eigenmode i. As we will see

in section IV, these phase advances are identical in the
ET and MR parametrizations.

The interpretation of the parameters of the decoupling
matrix is detailed in Refs. [15, 33]. Notably, C, nor-
malized by the β functions, characterizes the coupling
strength and can be used in coupling correction algo-
rithms [15]. The elements of C are associated with the
ellipse formed in the physical plane (x−y) when only one
of the eigenmodes is excited4. In addition, the parame-
ters of the decoupling matrix (γ and C) can be linked
to the parameters of the difference coupling resonances
obtained from the perturbative approach for weak cou-
pling [34]. By making this link, we can see that the γ
parameter provides the coupling strength and indicates
if the system is close to a coupling resonance and the
type of this resonance. Finally, in the ET parametriza-
tion, the linear invariants are easily expressed in terms of
the eigenmode lattice functions α, β, and µ and have the
same expression as the usual Courant-Snyder invariants
(Eq. (A7)).

B. Mais and Ripken (MR) parametrization

The MR parametrization does not focus on the motion
in the decoupled eigen-axes but provides lattice functions
that depend on the oscillation modes and physical direc-
tions along which the beam envelope can be measured.
The physical interpretation of these lattice functions is
similar to the usual Twiss interpretation of the Σ matrix
of the second-order moments in the physical laboratory
axes. For example, the β functions (always positive and
finite) characterize the amplitude of the betatron oscilla-
tions and can be used to obtain the beam sizes. At least
10 parameters are required for a 4× 4 symplectic trans-
fer matrix and the parameter set typically includes two
main phase advances, four main lattice functions β, α, or
γ (which reflect the motion of an oscillation mode in its
principal transverse direction), and parameters reflecting
the coupling. The chosen set may differ between authors
and may include more than 10 parameters [17]. In partic-
ular, variants exist for the coupling parameters describ-
ing the off-diagonal part of the normalization matrix.
These parameters are described either by non-principal
β, α, and phase advances as in Ref. [2, 20] or by complex
parameters which combine these non-principal functions
into a single quantity as in Ref. [19]. Considering addi-
tional parameters allows having similar expressions for
all the optical functions, as well as elegant expressions
for measurable beam parameters.

This description of the coupled motion can be per-
formed using two distinct but related approaches. The
first uses transfer matrices as the basis of the descrip-
tion. In the uncoupled case, a normalization transfor-
mation casts the transfer matrix into a rotation matrix

4 A more detailed interpretation can be found in [33].
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- T−1M̂T = R. Analogously, the MR approach param-
eterizes this normalization matrix for coupled motion.
The second approach starts from the phase space tra-
jectories with the generating vectors defining the curve
defined by the turn-by-turn coordinates. These generat-
ing vectors can be parameterized by the lattice functions
(similarly to the uncoupled case, see Eqs. (A9), (A12)).

Starting from the eigenvectors of the one-turn transfer
matrix of the canonical coordinates v̂1, v̂∗1, v̂2, v̂∗2, the
eigenvectors v̂1 and v̂∗1 are associated with the eigenval-
ues e±i2πQ1 = e±iµ1 while the eigenvectors v̂2 and v̂∗2 are
associated with the eigenvalues e±i2πQ2 = e±iµ2 , where
Q1 and Q2 are the eigen-tunes of the machine. These
eigenvectors can be expressed by their real and imagi-
nary parts:

v̂1 =
1√
2

(ẑ1 + iẑ2),

v̂2 =
1√
2

(ẑ3 + iẑ4).

The matrix E, with columns corresponding to the one-
turn transfer matrix eigenvectors, diagonalizes the trans-
fer matrix:

E−1M̂E = Λ,

where Λ =


eiµ1 0 0 0

0 e−iµ1 0 0
0 0 eiµ2 0
0 0 0 e−iµ2

, and

E = [v̂1 v̂∗1 v̂2 v̂∗2]

=
1√
2

[ẑ1 + iẑ2 ẑ1 − iẑ2 ẑ3 + iẑ4 ẑ3 − iẑ4].

In addition, there is a normalization transformation
that transforms the transfer matrix into its normal form
(i.e. a rotation matrix): N−1M̂N = R(µ1, µ2). The
rotation matrix R(µ1, µ2) can also be diagonalized by its
eigenvectors:

K−1RK = Λ,

with

K =
1√
2

1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i

 .

We can therefore link the normalization matrix N and
the diagonalization matrix E containing the eigenvectors
of the one-turn transfer matrix:

M̂ = NRN−1

= NKΛK−1N−1

= EΛE−1.

The diagonalization transformation E combines a nor-
malization transformation N that contains the lattice

functions reflecting the oscillation amplitudes and a
transformation K that diagonalizes the rotation matrix.
The matrix K transforms the Courant-Snyder coordi-
nates into the complex Courant-Snyder coordinates [30].
The normalization transformation thus contains the real
and imaginary parts of the eigenvectors, and the K trans-
formation combines these real and imaginary parts to
form a single complex eigenvector. We can therefore
write the normalization matrix in terms of the real and
imaginary parts of the one-turn transfer matrix eigenvec-
tors:

N =
√

2[Re(v̂1) Im(v̂1) Re(v̂2) Im(v̂2)] (14)

= [ẑ1 ẑ2 ẑ3 ẑ4].

By parameterizing the normalization matrix, the
eigenvectors of the one-turn transfer matrix in the cou-
pled physical space are parameterized. Now that we
have the relation between the normalization matrix and
the one-turn transfer matrix eigenvectors, we want to
establish the link between these eigenvectors and the
generating vectors of the surface supporting the motion
in phase space. Since we consider the four-dimensional
x− x′ − y− y′ phase space, the transfer matrix and vec-
tors are here written in terms of geometric coordinates.
The eigenvectors of the transfer matrix fully describe the
motion and the trajectory of the particle can be written
as a linear combination of these four eigenvectors. These
eigenvectors form pairs of conjugated eigenvectors. The
particle trajectory in phase space is expressed as a lin-
ear combination of two eigenvectors weighted by complex
constants:

z(s) = Re(
√

2εIv1(s)eiφI,0 +
√

2εIIv2(s)eiφII,0).

The eigenvectors v1(s) and v2(s) correspond to the
initial eigenvectors v1(s0) and v2(s0) propagated by the
transfer matrix Ms0→s:

v1(s) = Ms0→sv1(s0),

v2(s) = Ms0→sv2(s0).

Each of these eigenvectors can also be written as the
product of a harmonic factor and a periodic function (see
Appendix B on Floquet’s theorem):

v1(s) = eiµ1(s)v1, (15)

v2(s) = eiµ2(s)v2. (16)

The periodic functions v1 and v2 correspond to the
eigenvectors of the one-turn transfer matrix at s,

M̂(s) = Ms0→sM̂M−1
s0→s,

while the harmonic factors are phase factors in which
the phase advance functions µ1(s) and µ2(s) appear. In
what follows, we describe the particle trajectory in phase
space with v1(s) and v2(s). These vectors thus include
a phase factor. The eigenvectors that we used to build
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the normalization matrix are the one-turn transfer ma-
trix eigenvectors and therefore do not contain this phase
factor.

With the real and imaginary parts of v1(s) and v2(s),
we can express any point on the particle’s trajectory as
follows:

z(s) =
√
εI [z1(s) cosφI,0 − z2(s) sinφI,0]

+
√
εII [z3(s) cosφII,0 − z4(s) sinφII,0].

This expression describes trajectories in the four-
dimensional phase space. The motion remains confined
on a surface. In the coupled case, it is a toroidal surface
whose projections in the x − x′ plane and in the y − y′
plane no longer correspond to an ellipse. The vectors
z1(s), z2(s), z3(s) and z4(s) are four independent gener-
ating vectors of this toroidal surface. It clearly appears
that the generating vectors of the phase space surface
are linked to the real and imaginary parts of the one-
turn transfer matrix eigenvectors. The parametrization
of these generating vectors, in turn, parameterizes the
eigenvectors of the transfer matrix in the coupled physi-
cal space.

Two variants are in use for the parametrization
method. The first one uses the generating vectors, as
for Willeke and Ripken (WR) in Ref. [2]. The second
one uses the normalization matrix, as for Lebedev and
Bogacz (LB) in Ref. [20], and Wolski in Refs. [18, 19].
Both methods ultimately parameterize the eigenvectors
of the one-turn transfer matrix.

1. Parametrization of generating vectors

Willeke and Ripken [2] proceed as follows:

z1(s) =


√
βxI cosφxI
√
γxI cos

∼
φxI√

βyI cosφyI
√
γyI cos

∼
φyI

 , z2(s) =


√
βxI sinφxI
√
γxI sin

∼
φxI√

βyI sinφyI
√
γyI sin

∼
φyI

 ,

z3(s) =


√
βxII cosφxII
√
γxII cos

∼
φxII√

βyII cosφyII
√
γyII cos

∼
φyII

 , z4(s) =


√
βxII sinφxII
√
γxII sin

∼
φxII√

βyII sinφyII
√
γyII sin

∼
φyII

 .

In these expressions, the generating vectors z1(s) and
z2(s) correspond to the oscillation mode I, projected in
the x and y directions. These vectors form the eigen-
vector v1(s), associated with the eigenvalue ei2πQ1 . The
generating vectors z3(s) and z4(s) correspond to the os-
cillation mode II, and are associated with the eigenvector
v2(s) whose eigenvalue is ei2πQ2 . The normalization of
the eigenvectors implies that the generating vectors are
normalized as follows:

ẑT1 S ẑ2 = 1,

ẑT3 S ẑ4 = 1.

The normalization conditions apply to the generating
vectors expressed in canonical coordinates (x, px, y, py)
while the parametrization presented above applies to gen-
erating vectors expressed in geometric coordinates (x, x′,
y, y′); the matrix U transforms geometric coordinates
into canonical coordinates:

ẑ = Uz.

The parametrization of the generating vectors ẑ1(s),
ẑ2(s), ẑ3(s) and ẑ4(s) is given by:

ẑ1(s) =


√
βxI cosφxI

√
γxI cos

∼
φxI − R1

2

√
βyI cosφyI√

βyI cosφyI
√
γyI cos

∼
φyI + R2

2

√
βxI cosφxI

 ,

ẑ2(s) =


√
βxI sinφxI

√
γxI sin

∼
φxI − R1

2

√
βyI sinφyI√

βyI sinφyI
√
γyI sin

∼
φyI + R2

2

√
βxI sinφxI

 ,

ẑ3(s) =


√
βxII cosφxII

√
γxII cos

∼
φxII − R1

2

√
βyII cosφyII√

βyII cosφyII
√
γyII cos

∼
φyII + R2

2

√
βxII cosφxII

 ,

ẑ4(s) =


√
βxII sinφxII

√
γxII sin

∼
φxII − R1

2

√
βyII sinφyII√

βyII sinφyII
√
γyII sin

∼
φyII + R2

2

√
βxII sinφxII

 .

The normalization conditions on the generating vectors
allow finding the link between the lattice parameters of
the parametrization. For each mode, the normalization
condition imposes:

βxφ
′
x+βyφ

′
y+

1

2
(R1+R2)

√
βxβy sin (φx − φy) = 1. (17)

In addition, some lattice parameters are related. The

phase functions
∼
φ are related to the phase advance func-

tions φ by the relation [26]:

∼
φ(s) = φ(s)− arctan(

βφ′

α
),

and there is a relation between the lattice parameters α,
β, and γ for each set of optical functions associated with
a mode (I or II) and with a transverse direction (x or y):

γ =
β2φ′2 + α2

β
.

With these relations, we can express the generating
vectors using only the lattice functions α, β, and φ asso-
ciated with each mode and each transverse direction:
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ẑ1(s) =


√
βxI cosφxI

− αxI√
βxI

cosφxI − βxIφ
′
xI√

βxI
sinφxI − R1

2

√
βyI cosφyI√

βyI cosφyI

− αyI√
βyI

cosφyI −
βyIφ

′
yI√

βyI

sinφyI + R2

2

√
βxI cosφxI

 ,

ẑ2(s) =


√
βxI sinφxI

− αxI√
βxI

sinφxI +
βxIφ

′
xI√

βxI
cosφxI − R1

2

√
βyI sinφyI√

βyI sinφyI

− αyI√
βyI

sinφyI +
βyIφ

′
yI√

βyI

cosφyI + R2

2

√
βxI sinφxI

 ,

ẑ3(s) =


√
βxII cosφxII

− αxII√
βxII

cosφxII − βxIIφ
′
xII√

βxII
sinφxII − R1

2

√
βyII cosφyII√

βyII cosφyII

− αyII√
βyII

cosφyII −
βyIIφ

′
yII√

βyII

sinφyII + R2

2

√
βxII cosφxII

 ,

ẑ4(s) =


√
βxII sinφxII

− αxII√
βxII

sinφxII +
βxIIφ

′
xII√

βxII
cosφxII − R1

2

√
βyII sinφyII√

βyII sinφyII

− αyII√
βyII

sinφyII +
βyIIφ

′
yII√

βyII

cosφyII + R2

2

√
βxII sinφxII

 .

We thus have a set of 20 parameters that are related to

each other: (β, α, γ, φ, and
∼
φ) for each mode and each

transverse direction. It is possible to express the gen-
erating vectors with a subset of these parameters. The
parametrization presented in Ref. [2] uses the β, γ, φ and
∼
φ functions to highlight the meaning of these parame-
ters and the parallel that can be made between position
functions and angle functions: the β and γ functions are
envelope functions for the position and angle coordinates

while the φ and
∼
φ functions are phase functions for the

position and angle coordinates. In what follows, we will
rather express the generating vectors in terms of the α,
β, and φ functions to compare the parameters of this
parametrization with others. The set of lattice parame-
ters presented in Ref. [2] characterizes the 4D phase space
surface. When looking at the projections of this surface
in the x − x′ and y − y′ phase planes, we get a set of
points that can be characterized by the superposition of
two ellipses, as shown in Fig. 2. These two ellipses are
characterized by the optical functions associated with the
two oscillation modes. The areas of the ellipses corre-
sponding to the two oscillation modes projected into one
of the transverse phase planes (z− z′ where z represents

x or y) can be calculated using the optical functions:

ΓzI = πε1βzI |φ′zI |, (18)

ΓzII = πε2βzII |φ′zII |. (19)

Figure 2: Projection of the 4D torus on the z − z′ phase
space (z = x, y): superposition of two ellipses described
by the lattice functions associated with the plane and
reflecting the projection of the 2 oscillation modes on

the plane. Reproduced from Ref. [2].

Finally, the lattice functions can be easily related to
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the size of the beam in the horizontal and vertical direc-
tions. Expressing z(s) as a weighted sum of the generat-
ing vectors, one clearly sees that the maximum horizontal
oscillation amplitude is

√
ε1βxI+

√
ε2βxII , while the max-

imum vertical oscillation amplitude is
√
ε1βyI+

√
ε2βyII .

2. Parametrization of the normalization matrix

The second way to introduce the coupled lattice func-
tions is to parameterize the normalization matrix that
transforms the transfer matrix to a rotation matrix
R(µ1, µ2) —a block-diagonal matrix where each diago-
nal block is a 2D rotation matrix of angles µ1 and µ2.
This approach is followed in Refs. [19, 20].

The 2 × 2 blocks of the N diagonal will be associated
with principal lattice functions β and α. The off-diagonal
blocks characterize the coupling between the two trans-
verse oscillations and are described by coupling functions
that represent the so-called “non-principal oscillations”,
i.e. the motion in a transverse direction due to the eigen-
mode which is not related to the considered transverse di-
rection in the limit of weak coupling. In general, none of
the elements of the normalization matrix can a priori be
considered zero. The normalization matrix is therefore

written in the most general way as follows:

N =

n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44

 .

As for the uncoupled case, there is some freedom in the
choice of N as a matrix N̄ = NR(θ1, θ2) is also a nor-
malization matrix. This degeneracy originates from the
fact that only the phase differences are physically mea-
surable and that the overall phases are not known. The
angles θ1 and θ2 are usually chosen so as to cancel the
elements n12 and n34 [18]. The normalization matrix is a
symplectic matrix and therefore has 10 independent pa-
rameters. By imposing n12 = 0 and n34 = 0, 2 of these
parameters are set. A minimal parametrization of the
normalization matrix, therefore, requires 8 other inde-
pendent parameters. The total transfer matrix will then
be parameterized by these 8 independent parameters as
well as by the two phase advances appearing in the rota-
tion matrix R(µ1, µ2).

LB parameterize the normalization matrix as follows
[20]:

N =


√
β1x 0

√
β2x cos ν2 −

√
β2x sin ν2

− α1x√
β1x

1−u√
β1x

u sin ν2−α2x cos ν2√
β2x

u cos ν2+α2x sin ν2√
β2x√

β1y cos ν1 −
√
β1y sin ν1

√
β2y 0

u sin ν1−α1y cos ν1√
β1y

u cos ν1+α1y sin ν1√
β1y

− α2y√
β2y

1−u√
β2y

 . (20)

This parametrization includes 10 independent parame-
ters (four β functions, four α functions and the two phase
advances µ1 and µ2 appearing in the rotation matrix) and
3 additional real functions (ν1, ν2 and u). The interpre-

tation of these coupling parameters is clarified in the next
section.

A slightly different way to parameterize the normaliza-
tion matrix N is proposed by Wolski in Refs. [18, 19]:

N =

n11 0 n13 n14

n21 n22 n23 n24

n31 n32 n33 0
n41 n42 n43 n44



=

√
βx 0 n13 n14

− αx√
βx

n22 n23 n24

n31 n32

√
βy 0

n41 n42 − αy√
βy

n44



ζx = n31 + in32

ζ̃y = n41 − in42

ζy = n13 + in14

ζ̃x = n23 − in24

This parametrization includes the main optical functions
βx, αx, βy, αy, and functions reflecting the coupling ζx,

ζy,
∼
ζx,

∼
ζy, which combines the different non-principal op-
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tical functions appearing in [2] and [20]. These coupling
functions correspond to the components of the eigenvec-
tors that only appear when there is coupling between the
two transverse directions.

In addition to these approaches which are restricted
to a minimal number of parameters, it should be noted
that parametrizations with more parameters have also
been proposed. In Ref. [17], Wolski defines three ma-
trices Bk (k =I, II, III), whose elements determine the
lattice functions. Each of these matrices Bk is associated
with an oscillation mode (k =I, II, III) and is defined as
follows:

Bk = NTkNT ,

where the matrix N is the normalization matrix, and the
matrix Tk is a block-diagonal matrix where the block k
is the identity matrix and the other blocks are zero. It is
equivalent to defining the lattice functions as follows:

βIij = ni1nj1 + ni2nj2,

βIIij = ni3nj3 + ni4nj4,

βIIIij = ni5nj5 + ni6nj6.

The matrices Bk always have the same structure. The
blocks (2 × 2 matrices) on the Bk diagonal contain the
principal and non-principal lattice functions α, β and
γ associated with the eigenmode of oscillation k. Each
of these blocks is associated with a physical direction.
For example, in a 2D motion, the first block will con-
tain the lattice functions associated with the x direction,
and the second one with the y direction. The matrix ele-
ments outside the diagonal blocks will correspond to the
factors weighing the invariant associated with the eigen-
mode (εk) in the expressions of the correlation matrix
elements. For example, in the case of a 2D motion, the
matrix BI , which is associated with the oscillation eigen-
mode I, can be written as follows using the parameters
of LB:

BI =

(
BI

11 BI
12

BI
21 BI

22

)
, BI

11 =

(
β1x −α1x

−α1x
α2

1x+(1−u)2

β1x

)
, BI

22 =

(
β1y −α1y

−α1y
α2

1y+u2

β1y

)
,

BI
12 =

 √
β1xβ1y cos ν1

√
β1x

β1y
(u sin ν1 − α1y cos ν1)

−
√

β1y

β1x
(α1x cos ν1 + (1− u) sin ν1)

sin ν1(α1y(1−u)−α1xu)+cos ν1(α1xα1y+(1−u)u)√
β1yβ1x

 ,

BI
21 =

 √
β1xβ1y cos ν1 −

√
β1y

β1x
(α1x cos ν1 + (1− u) sin ν1)√

β1x

β1y
(u sin ν1 − α1y cos ν1)

sin ν1(α1y(1−u)−α1xu)+cos ν1(α1xα1y+(1−u)u)√
β1yβ1x

 .

Any element of the correlation matrix < ij > can
thus be expressed as the sum of the three invariants (εI ,
εII and εIII in the more general case of a 3D motion)
weighted by the elements βkij of the matrices Bk:

< ij >= βIijεI + βIIij εII + βIIIij εIII .

This parametrization allows having similar definitions for
all the lattice functions and finding elegant expressions
for the correlation matrix elements in terms of these gen-
eralized lattice functions. It is straightforward to gener-
alize the lattice functions to higher dimensions. However,
despite this elegant formalism, some of the lattice func-
tions βkij of this parametrization are a combination of the
parameters commonly used, i.e. the amplitudes and the
phase shifts of the principal and non-principal oscilla-
tions. It is, therefore, complicated to physically interpret
the individual meaning of these additional lattice func-
tions.

3. Comparison between variants of the MR parametrization

To compare the parameters of WR[2] to parameterize
the generating vectors with the parameters of Wolski [19]
and LB [20] to parameterize the normalization matrix,
we can write the normalization matrix in terms of the
parameters of Willeke. Using equations (15) and (16),
we can express the columns of the normalization matrix
(ẑ1, ẑ2, ẑ3, ẑ4) using the generating vectors at any point
s (ẑ1(s), ẑ2(s), ẑ3(s), ẑ4(s)):

ẑ1 = cos (µ1(s))ẑ1(s) + sin (µ1(s))ẑ2(s),

ẑ2 = − sin (µ1(s))ẑ1(s) + cos (µ1(s))ẑ2(s),

ẑ3 = cos (µ2(s))ẑ3(s) + sin (µ2(s))ẑ4(s),

ẑ4 = − sin (µ2(s))ẑ3(s) + cos (µ2(s))ẑ4(s).

By noticing that µ1(s) = φxI(s) and that µ2(s) =
φyII(s), we get:
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ẑ1 =



√
βxI

− αxI√
βxI
− R1

2

√
βxIβyI√
βxI

cos (µ1 − φyI)√
βyI cos (µ1 − φyI)

− αyI√
βyI

cos (µ1 − φyI) +
βyIφ

′
yI√

βyI

sin (µ1 − φyI) + R2

2

√
βxIβyI√
βyI

 ,

ẑ2 =


0

βxIφ
′
xI√

βxI
+ R1

2

√
βxIβyI√
βxI

sin (µ1 − φyI)
−
√
βyI sin (µ1 − φyI)

αyI√
βyI

sin (µ1 − φyI) +
βyIφ

′
yI√

βyI

cos (µ1 − φyI)

 ,

ẑ3 =



√
βxII cos (µ2 − φxII)

− αxII√
βxII

cos (µ2 − φxII) +
βxIIφ

′
xII√

βxII
sin (µ2 − φxII)− R1

2

√
βxIIβyII√
βxII√

βyII

− αyII√
βyII

+ R2

2

√
βxIIβyII√
βyII

cos (µ2 − φxII)

 ,

ẑ4 =


−
√
βxII sin (µ2 − φxII)

αxII√
βxII

sin (µ2 − φxII) +
βxIIφ

′
xII√

βxII
cos (µ2 − φxII)

0
βyIIφ

′
yII√

βyII

− R2

2

√
βxIIβyII√
βyII

sin (µ2 − φxII)

 .

By comparing these columns with the normalization ma-
trix parameterized by LB (Eq. (20)), it clearly appears
that the non-principal phase advances φyI and φxII of
WR are related to the real functions ν1 and ν2 of LB:

ν1 = µ1 − φyI ,
ν2 = µ2 − φxII .

The function ν1 (resp. ν2) therefore represents the dif-
ference between the main phase advance due to mode
I in the x-direction (resp. mode II in the y-direction)
and the non-principal phase advance due to mode I in
the y-direction (resp. mode II in the x-direction). These
functions represent the phase shift of the non-principal
oscillation with respect to the principal oscillation of the
same oscillation eigenmode. Moreover, we see that the
principal and non-principal optical functions are similar,
except that the coupling due to the longitudinal field is
directly taken into account in the α-functions of the LB
parametrization, while this is not the case in the WR
parametrization. Table I summarizes the link between
the α and β-functions in the two approaches. Finally, LB
also introduce a real function u in their parametrization,
which combines in a single expression the non-principal
lattice functions βxII and βyI , the non-principal phase
advances φxII and φyI , and the coupling parameters R1

and R2 that represent the coupling due to a longitudinal

field. This real function quantifies the lattice coupling
within a single parameter. If there is no coupling in the
lattice, u is zero.

1− u = βxIφ
′
xI +

R1

2

√
βxIβyI sin (ν1) (21)

= βyIIφ
′
yII −

R2

2

√
βxIIβyII sin (ν2),

u = βyIφ
′
yI +

R2

2

√
βxIβyI sin (ν1) (22)

= βxIIφ
′
xII −

R1

2

√
βxIIβyII sin (ν2). (23)

We can see that u also highlights the normalization con-
dition that appears explicitly in the work of WR (Ref. [2])
via Eq. (17):

1 = (1− u) + u

= βxIφ
′
xI + βyIφ

′
yI +

1

2
(R1 +R2)

√
βxIβyI sin (ν1)

= βxIIφ
′
xII + βyIIφ

′
yII −

1

2
(R1 +R2)

√
βxIIβyII sin (ν2).

The expressions above also show that if the non-principal
components of the eigenvector linked to a mode increase,
the parameter u increases. This parameter thus repre-
sents the relative importance of the x and y components
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of an eigenvector associated with a mode. In addition,
the parameter u can also be linked to the surfaces of the
two ellipses due to a mode in the 2 phase planes (x− x′,
y − y′). The relative importance of the x and y compo-
nents of an eigenvector will also be reflected by the rel-
ative size of these ellipses. The higher the coupling, the
more u will increase, and the more the surface of these
two ellipses will approach each other. The lower the cou-
pling, the more the non-principal ellipse in a plane will
shrink until disappearing in the limit of uncoupled mo-
tion corresponding to u = 0. Section IV shows that the
u parameter is also related to the rotation angle of the
ET parametrization, which confirms its interpretation as
coupling strength.

By comparing the parametrization of LB to that of
Wolski, we obtain:

ζx =
√
β1ye

−iν1 ,

ζy =
√
β2xe

−iν2 ,
∼
ζx = − α2x√

β2x

eiν2 − i u√
β2x

eiν2 ,

∼
ζy = − α1y√

β1y

eiν1 − i u√
β1y

eiν1 .

We see that the parameters ζx and ζy are coupling param-
eters and are zero when there is no local coupling. The
motion in the x-direction can be seen as the superpo-
sition of two quasi-harmonic motions. The first motion
corresponds to the projection of the oscillation mode I
in the x-direction and is characterized by the main lat-
tice functions βx and αx, while the second motion cor-
responds to the projection of the oscillation mode II in

the x-direction and is characterized by ζy and
∼
ζx. The

“main” motion can be seen as a quasi-harmonic oscilla-
tion whose amplitude is characterized by βx and which
is not out of phase with respect to the oscillation in the
eigen direction I. The “non-principal” motion is a quasi-
harmonic oscillation whose amplitude is characterized by
|ζy| =

√
β2x and whose phase shift compared to the oscil-

lation eigenmode II is −ν2. The parameters appearing in
the different parametrizations are summarized in Table
I.

The main differences between the parametrization of
WR, that of LB, and that of Wolski are as follows. The
parameters given by WR are each associated with an os-
cillation mode and a transverse direction. Each of the os-
cillations (principal and non-principal) in the transverse
directions can be described by a set of distinct parame-
ters. These parameters also characterize the two ellipses
appearing in the phase space associated with a transverse
direction. The normalization condition reflects the link
between the principal oscillation and the non-principal
oscillation due to one eigenmode in the two transverse
directions. LB slightly reduce the number of parameters
associated with a mode and a transverse direction. In-
stead, they introduce real functions which highlight the
differences between the principal and non-principal os-
cillations linked to an oscillation eigenmode. In that re-

Principal lattice functions
Willeke & Ripken Lebedev & Bogacz Wolski

βxI β1x βx
βyII β2y βy
αxI + R1

2

√
βxIβyI cos (ν1) α1x αx

αyII − R2
2

√
βxIIβyII cos (ν2) α2y αy

φxI µ1 µI

φyII µ2 µII

Non-principal lattice functions
Willeke & Ripken Lebedev & Bogacz Wolski

βxII β2x |ζy|2
βyI β1y |ζx|2

αxII + R1
2

√
βxIIβyII cos (ν2) α2x -Re(ζy

∼
ζx)

αyI − R2
2

√
βxIβyI cos (ν1) α1y -Re(ζx

∼
ζy)

φxII µ1 − ν1 µI + ph(ζx)
φyI µ2 − ν2 µII + ph(ζy)

Table I: Comparison of the parameters appearing in [2],
[20] and [19].

spect, the parameters ν give the phase shift between these
two oscillations, while the parameter u appears in the
normalization condition. This condition can be written
as u+ (1− u) = 1 where (1− u) and u are related to the
areas of the principal and non-principal ellipses associ-
ated with an oscillation mode. LB, and WR characterize
a non-principal oscillation by giving several parameters
(amplitudes and phases/phase shifts), while Wolski de-
scribes this non-principal oscillation as a single complex
parameter that combines amplitude and phase shift. The
coupling due to the longitudinal magnetic field in the lat-
tice does not appear in the optical functions of the WR
parametrization, while this coupling is directly taken into
account in the lattice functions of LB and those of Wol-
ski.

4. Interpretation, advantages and disadvantages of the MR
parametrization

The parameters set of the MR parametrization gen-
erally includes 6 main optical functions as well as non-
principal parameters that reflect coupling. The principal
optical functions are 2 β-functions, 2 α-functions, and
2 phase advances µ, which describe the oscillation of a
mode in its “principal” transverse direction. The non-
principal optical parameters describe the non-principal
oscillation due to a mode. By “non-principal oscillation”,
we denote the quasi-harmonic oscillation in the trans-
verse direction that is not mainly associated with the
mode eigendirection in the limit of weak coupling. This
non-principal oscillation is described in a slightly differ-
ent way depending on the exact choice of parameters.
The first way is to describe it independently of the prin-
cipal oscillation. The non-principal oscillation will then
have its own parameters (α-function, β-function, and a
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phase advance) [2]. The second way is to describe it in
relation to the principal oscillation. Its amplitude will
then be described again by the α and β functions, but its
phase will be characterized by its phase shift with respect
to the main oscillation. Describing the non-principal os-
cillation in this manner, some authors explicitly give the
amplitudes and phase shifts [20], while others describe
the quasi-harmonic oscillation by a phasor —a complex
number whose modulus describes the oscillation ampli-
tude and whose argument represents the phase shift [19].
These non-principal optical functions are characteristics
of the coupling. If there is no coupling, the non-principal
β and α functions (or equivalently the complex ζ func-
tions) are zero: β1y = β2x = α1y = α2x = ζy = ζx = u =
0.

The advantage of using the MR parametrization in-
stead of the ET parametrization is that the interpretation
of the MR parameters is similar to the interpretation of
the Twiss parameters in the Courant-Snyder theory. In-
deed, the lattice parameters of this parametrization are
related to the physical directions, and it is possible to
associate them with the amplitudes of transverse beta-
tron oscillations and to physical beam parameters that
can be measured in the laboratory axes. The β-functions
(and the modulus of ζ) are positive and finite functions
(unlike the β-functions of the ET parametrization) and
are related to the horizontal and vertical beam sizes. The
motion in each of the transverse directions will be charac-
terized by a sum of two motions due to the two oscillation
eigenmodes. The maximum beam sizes in each direction
are given by the sum of the mode invariants weighted
by β-functions. The β-functions of the MR parametriza-
tion thus allow to easily generalize the envelope expres-
sion of the uncoupled motion. The lattice functions give
clear information on the focusing properties of the lat-
tice: looking at their evolution, we have information on
the amplitude of the oscillations in the transverse plane
at any point of the lattice. The α-functions also have the
same meaning as in Courant-Snyder’s theory if there is
no longitudinal field that couples motion. Otherwise, the
α-functions of the WR parametrization will remain iden-
tical, while the α parameters of the other parametriza-
tions will have an additional term that takes into ac-
count this coupling due to a longitudinal field. The MR
parametrization allows computing the envelope parame-
ters explicitly: it is possible to calculate the elements of
the correlation matrix with the optical functions of this
parametrization as shown in Table II.

The expressions in Table II give the horizontal and ver-
tical beam sizes, which are always positive because the
β-functions are always positive, and the beam tilt, which
represents the orientation angle of the ellipse formed by
the projection of the 4D ellipsoid in the plane x − y.
A brief discussion on the 4D phase space ellipsoid can
be found in Appendix C, along with the link between the
correlation matrix Σ and the bilinear form that describes
the ellipsoid surface. It should be noted that whatever
the parametrization in the MR category, it will always

Elements Lebedev & Bogacz [20] Wolski [19]

< x2 > β1xεI + β2xεII β1xεI + |ζy|2εII
< y2 > β1yεI + β2yεII |ζx|2εI + β2yεII
< xy >

√
β1xβ1ycos(ν1)εI

√
β1xRe(ζx)εI

+
√
β2xβ2ycos(ν2)εII +

√
βyRe(ζy)εII

< xpx > −α1xεI − α2xεII −α1xεI +Re(ζy
∼
ζx)εII

< ypy > −α1yεI − α2yεII Re(ζx
∼
ζy)εI − α2yεII

Table II: Expression of the correlation matrix elements
with the parameters appearing in [20] and [19]

.

be possible to link the MR parameters to the physical
parameters of the beam. Moreover, it is also possible
to measure the parameters of the MR parametrization
using the Σ matrix. In Ref. [18], Wolski presents an ex-
perimental method to obtain the phase advances and ra-
tios of lattice functions (β-functions and ζ modulus) from
BPM measurements. Finally, the β and α functions are
related to the physical directions and are calculated from
the eigenvectors associated with a tune. With the oscilla-
tion eigenmodes also associated with these tunes, we will
no longer have problems with mode identification. The
MR parametrization allows univocally determining the
generalized Twiss parameters from the transfer matrix
eigenvectors.

IV. INTERPRETATION AND CLARIFICATION
OF THE RELATIONSHIPS BETWEEN

PARAMETRIZATION TYPES

The ET parametrizations directly express the linear
invariants in terms of the Twiss parameters in the decou-
pled space, and the MR parametrization provides direct
expressions for the Σ matrix in terms of the generalized
Twiss parameters. Expressing the linear invariants with
the MR parametrizations or expressing the Σ matrix with
the ET parametrization proves difficult. This section de-
tails the links between the parametrizations belonging to
the ET or MR categories.

Instead of describing the motion in the decoupled axes,
the MR parametrization directly parametrizes the prin-
cipal and non-principal oscillations. These oscillations
originate from the two oscillation eigenmodes and form
the motion in one of the physical directions. The general-
ized Twiss parameters (α1x, β1x, α2x, β2x, α1y, β1y, α2y,
β2y, µ1, µ2) do not allow to have an elegant expression
for the linear invariants but are related to measurable pa-
rameters of the beam and make it possible to calculate
the beam horizontal and vertical sizes. With the cou-
pled and decoupled spaces being linked to each other by

the symplectic rotation matrix R̃, one can find a rela-
tion between the parameters involved in the two types of
parametrization, as first highlighted in Ref. [20].

Section III A shows that it is possible to go from the
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coupled transfer matrix M̂ to the decoupled transfer ma-

trix P̂ using the symplectic rotation matrix R̃:

P̂(s) = R̃−1M̂(s)R̃.

It is also possible to express this transfer matrix P̂ as
the product of a rotation matrix R(µ1, µ2) and the de-
coupled space normalization matrix T, which depends on
the lattice parameters of the ET parametrization:

P̂ = TR(µ1, µ2)T−1,

T =


√
β1(s) 0 0 0
−α1(s)√
β1(s)

1√
β1(s)

0 0

0 0
√
β2(s) 0

0 0 −α2(s)√
β2(s)

1√
β2(s)

 .

In addition, Sec. III B shows that it is possible to trans-
form the coupled transfer matrix into its normal form
using the normalization matrix N:

N−1M̂N = R(µ1, µ2).

Putting all these expressions together:

M̂ = NR(µ1, µ2)N−1

= R̃P̂(s)R̃−1

= R̃TR(µ1, µ2)T−1R̃−1.

We can therefore rewrite the normalization matrix
N, which depends on the MR parameters, as a prod-
uct of the normalization matrix T and the symplectic

rotation R̃, both of which depend on the ET parameters:

N = R̃T


√
β1x 0

√
β2x cos ν2 −

√
β2x sin ν2

− α1x√
β1x

1−u√
β1x

u sin ν2−α2x cos ν2√
β2x

u cos ν2+α2x sin ν2√
β2x√

β1y cos ν1 −
√
β1y sin ν1

√
β2y 0

usinν1−α1y cos ν1√
β1y

u cos ν1+α1y sin ν1√
β1y

− α2y√
β2y

1−u√
β2y



=


√
β1 cosφ 0 (d

√
β2 + bα2√

β2
) sinφ − b√

β2
sinφ

− α1√
β1

cosφ cosφ√
β1

(−c
√
β2 − aα2√

β2
) sinφ a sinφ√

β2

(−a
√
β1 + bα1√

β1
) sinφ − b√

β1
sinφ

√
β2 cosφ 0

(−c
√
β1 + dα1√

β1
) sinφ −d sinφ√

β1
− α2√

β2
cosφ cosφ√

β2

 .

By comparing the blocks on the diagonal of these two
matrices, we obtain directly:

1− u = cos2 φ ⇒ sinφ = ±
√
u, (24)

β1x = β1 cos2 φ ⇒β1 =
β1x

1− u
,

α1x = α1 cos2 φ ⇒α1 =
α1x

1− u
,

β2y = β2 cos2 φ ⇒β2 =
β2y

1− u
,

α2y = α2 cos2 φ ⇒α2 =
α2y

1− u
.

We thus find the relations presented in Ref. [20] enabling
us to link the different parametrizations’ lattice func-
tions. The parameter u, which reflects the coupling in
the parametrization of LB, is related to the angle of ro-
tation in the ET parametrization. We also see that if
the parameter u is negative, the rotation angle φ of the
ET parametrization is complex. It is equivalent to the
situation where |B + C̄| < 0. There is then only one
solution for the ET parametrization: when the parame-
ter u changes sign, a mode flip is forced. In addition, it
is also possible to find the link between the decoupling
matrix parameters (the four elements of the matrix D in
the symplectic rotation) and those of LB. The elements
N32 and N42 allow to find the parameters b and d of the
matrix D, while the elements N31 and N41 allow us to
find the parameters a and c of this same matrix:
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b tanφ =
√
β1xβ1y

sin ν1

1− u
,

d tanφ = −

√
β1x

β1y

u cos ν1 + α1y sin ν1

1− u
,

a tanφ =
α1x

β1x
b tanφ−

√
β1y

β1x
cos ν1

=

√
β1y

β1x

α1x sin ν1 − (1− u) cos ν1

1− u
,

c tanφ =
α1x

β1x
d tanφ− u sin ν1 − α1y cos ν1√

β1y

=
cos ν1[α1y(1− u)− α1xu]− sin ν1[α1xα1y + u(1− u)]√

β1xβ1y(1− u)
.

From the above expressions, we can verify that D is sym-
plectic, |D| = ad− bc = 1. Moreover, we can also express
the parameters of D in terms of the lattice functions
linked to the second oscillation eigenmode. To do this, we
should start from the elements of the upper right block
of the matrix N. Note also that, as mentioned by LB
in Ref. [20], the phase advances µ1 and µ2 are the same
in the ET and the MR parametrizations. These phase
advances are thus linked to the principal oscillation of
the eigenmode, which is the oscillation in the direction
primarily linked to the considered oscillation eigenmode.
Moreover, starting from the definition of the normaliza-
tion matrix N expressed with the eigenvectors (Eq. (14))
or in terms of the lattice parameters (Eq. (20)), we note
that the knowledge of the coupled transfer matrix eigen-
vectors directly and uniquely provides the parameters of
LB. Nevertheless, it is impossible to uniquely determine
the eigenvectors if only the lattice functions are given.
We can find four normalization matrices giving the same
lattice functions α and β so that it is impossible to uni-
vocally find the eigenvectors from the knowledge of these
lattice functions [20].

Regarding the ET parametrization, knowing the eigen-
vectors of the coupled transfer matrix allows calculating
the parameter u. However, there are four possible angles
of rotation φ for a given parameter u (see Eq. (24)). It is
thus impossible to uniquely determine the ET parameters
from the knowledge of the eigenvectors. To determine the
Twiss parameters from the coupled transfer matrix, it is
necessary to choose φ, or equivalently, to choose one of
the possible solutions for the decoupling matrix. Depend-
ing on the chosen solution, the generalized Twiss param-
eters of ET will be different. These different solutions for
the angles φ correspond to distinct mode identifications.
This problem of mode identification (linked to the mode
flips) only appears when there is a rotation of the axes,
as in the case of the ET parametrization. Finally, con-
trary to the MR parametrization, the knowledge of the

ET generalized Twiss parameters allows uniquely deter-
mining the eigenvectors.

V. APPLICATIONS AND INTERPRETATION
ON TYPICAL LATTICES

The different parametrizations have been implemented
in Zgoubidoo [21], a Python interface for the ray-tracing
code Zgoubi ([22, 35, 36]) and validated by comparing
with the coupled lattice functions obtained with MAD-
X [23] and PTC. Ray-tracing codes, like Zgoubi, al-
low particles to be tracked in arbitrary electro-magnetic
fields. The ability to perform step-by-step tracking
makes Zgoubi a method of choice for (v)FFA studies ([37–
39]). Another advantage of ray-tracing codes is the possi-
bility to use them and extend the machine model at suc-
cessive steps of the design process: from the optics study
and lattice design to the simulations using complete mod-
els with computed or measured field maps, with the pos-
sibility to take into account magnetic field imperfections
and fringe fields. At each integration step, the particle
positions and velocities are calculated, and the field com-
ponents and derivatives are evaluated. The positions and
velocities are obtained with Taylor series truncated at
the 5th or 6th order. The magnetic (and electric) fields
are obtained either from field maps or from analytical
models implemented in Zgoubi. Zgoubi can also com-
pute other relevant quantities, such as transfer matrices
or lattice functions. Zgoubidoo is a Python interface for
the Zgoubi ray-tracing code. It provides a user-friendly
Python interface and is capable of processing the track-
ing data to extract relevant quantities for beam dynamics
studies. Zgoubidoo has also already been used to study
beam dynamics in FFAs [40]. We chose to use this li-
brary to explore vFFAs, and therefore we have numeri-
cally implemented the different coupled parametrizations
in Zgoubidoo.
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The ET and LB parametrizations are implemented in
Zgoubidoo. The ET parametrization was implemented
using the method presented by Parzen in [16] and allows
finding linear invariants. The LB parametrization was
chosen among all the parametrizations of the MR cate-
gory because it provides interesting additional quantities
(u, ν1, ν2) together with the lattice functions of the MR
parametrization. The LB lattice functions provide the
evolution of the beam envelope in the laboratory axes
along the lattice. The implementations were first tested
on weakly coupled example lattices, then validated with
more complicated strongly coupled lattices against MAD-
X results [23]. The methods presented in the previous
sections allow, on the one hand, to find the periodic con-
ditions for periodic lattices and, on the other hand, to
propagate initial lattice functions in a beamline. The
examples presented below allow validating the coupled
periodic lattice functions and the propagation of initial
lattice functions. In addition, other concepts, such as
forced mode flips, local coupling, and interpretation of
lattice parameters, are analyzed in detail. Table III sum-
marizes the different example lattices discussed in this
section. The lattice function computation method (pe-
riodic conditions or propagation of initial lattice func-
tions) and the concepts the example illustrates are also
indicated.

Examples Computation Illustration

FODO + Periodic - Global coupling and u
skew quad - ET/MR functions to

characterize decoupled
and coupled phase spaces

FODO + Periodic - WR/LB param. (MR
solenoid category) characterizing

geometric and canonical
coupled phase spaces

Snake lattice [41] Propagation - Forced mode flip
- Local coupling and u

Spin rotator [41] Propagation - Local coupling and u

Table III: Examples used to validate the
parametrization implementation and illustrate some

concepts discussed previously in this work. “Periodic”
stands for “Periodic initial conditions”, while

“Propagation” stands for “Propagation of initial lattice
functions”.

The longitudinal and skew quadrupolar field compo-
nents being the principal sources of coupling, the weakly
coupled lattices are FODO lattices featuring short skew
quadrupolar or solenoidal insertions. Zgoubidoo is used
to calculate the lattice functions (in the ET and LB
parametrizations), which are then compared with MAD-
X results for the ET parametrization and with PTC re-
sults for the MR parametrization. One can observe in
Figs. 3 and 4 that an excellent agreement is found for
the two weakly coupled example FODO lattices. In ad-
dition, the phase advances µ1 and µ2 obtained from the

ET and MR parametrizations are identical, as expected.
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Figure 3: Comparison between the coupled lattice
functions (ET and MR parametrizations) obtained with
Zgoubidoo and those obtained with MAD-X on a lattice

consisting of a FODO with a small skew quadrupole.

It should be noted that the solenoid models in MAD-X
or Zgoubi are different, which may introduce differences
in the computed lattice functions. MAD-X models an
“ideal” solenoid. The solenoid model in Zgoubi is more
realistic and has fringe fields whose length depends on the
(finite) radius of the solenoid. When computing this lat-
tice, the initial conditions were obtained assuming a pe-
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Figure 4: Comparison between the coupled lattice
functions (ET and MR parametrizations) obtained with
Zgoubidoo and those obtained with MAD-X on a lattice

consisting of a FODO with a small solenoid.

riodic transfer matrix. The lattice functions represented
in Figs. 3 and 4 are thus periodic optical functions and
reflect a global coupling of the lattice. This global cou-
pling can be understood by analyzing the lattice param-
eters of LB. First, we can observe that the non-principal
lattice functions (β1y and β2x) are non-zero at the be-
ginning of the lattice. They are computed with periodic
conditions and therefore take into account the coupling
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Figure 5: Parameter u of the LB parametrization,
obtained by assuming periodic initial conditions, on a

lattice consisting of a FODO with a small skew
quadrupole.

present in the whole lattice and not only the coupling at
the location where they are calculated. The coupling is
distributed over the entire line.

The real parameter u on the full lattice (as shown in
Fig. 5) remains constant on the entire line at a value of
0.176. When calculated with periodic conditions, this
parameter reflects an average of the coupling over the
whole lattice. It provides insight into the weight of the
non-principal lattice functions compared to the principal
ones over the complete lattice. For the FODO lattice
featuring a short skew quadrupole, in the absence of any
longitudinal field, the ratio between the β-functions for
the mode I can be written:

β1y

β1x
=

u µ
′

1

(1− u)(µ1 − ν1)′
.

A fully coupled lattice would have principal functions
equal to the non-principal ones and u = 0.5: it is the case,
for example, of a FODO cell in which all the elements are
rotated by 45 degrees. When computed with the periodic
conditions, the parameter u thus gives a measure of the
overall coupling of the lattice. This parameter has a fi-
nite value in the elements not introducing coupling and
represents the average coupling of the lattice. Neverthe-
less, it varies in the elements introducing coupling and
indicates whether the element couples more or less the
motion than the lattice does globally.

The parameter u can also be linked to the area of the
ellipses in the coupled phase spaces. The decoupled (resp.
coupled) phase spaces can be related to the ET param-
eters (resp. MR parameters). Figures 6 and 7 show the
decoupled phase space (u − pu) and the coupled phase
space (x − px), obtained by tracking a particle with an
initial horizontal amplitude in the cell composed of the
FODO and the additional skew quadrupole. The phase
spaces are constructed by sampling the particle coordi-
nates at a point in the lattice (in this case, just after the
defocusing quadrupole) and tracking 1000 iterations. We
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observe that the lattice functions of the ET parametriza-
tion allow describing the ellipse in the decoupled phase
space, while the lattice functions of the MR parametriza-
tion allow describing the two ellipses in the coupled phase
space. The area of the ellipse in the phase space (u−pu)
is given by πε1 and is an invariant of the motion, while
the areas of the ellipses corresponding to the two oscil-
lation modes projected into the transverse phase plane
(x − px) can be calculated using the parameters of LB:
Γ1x = πε1(1 − u), Γ2x = πε2u. The parameter u gives
the relative importance of the two ellipses coming from an
oscillation eigenmode in the two transverse phase spaces
(x− px) and (y − py).
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Tracking data
Ellipse computed with the ET parameters

Figure 6: Decoupled phase space (u− pu) obtained by
tracking a particle 1000 times in a cell composed of a

FODO with a skew quadrupole. The ET lattice
functions describe the decoupled phase space ellipse

whose area is πε1.

When the phase space corresponds to geometric vari-
ables (x− x′), the chosen MR lattice functions are those
of WR rather than those of LB. Indeed, we have seen that
the major difference between the β- and α-functions of
WR and those of LB comes from taking into account or
not the coupling due to the longitudinal magnetic field
(see Table I). In the case where R1,2 = 0, (1−u) becomes
βxIφ

′
xI and u becomes βxIIφ

′
xII (see Eqs. 21 - 23), which

allows us to find the expressions of the ellipse areas in the
coupled phase spaces in geometric variables presented in
Ref. [2] (see section III B 1, Eqs. 18 and 19).

In the example of the FODO with a skew quadrupole,
no element introduces coupling due to the longitudinal
magnetic field in the lattice; there is no longitudinal field
at the place where the coordinates are sampled. The lat-
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Figure 7: Coupled phase spaces (x− px) obtained by
tracking a particle 1000 times in a cell composed of a

FODO with a skew quadrupole. The MR lattice
functions characterize the two ellipses appearing in the
coupled phase space. These two ellipses are due to the
two oscillation eigenmodes. The lattice functions used

are those that connect the two eigenmodes to the
observed transverse direction (x in this case). The

ellipse areas are given by πε1(1− u) and πε2u.

tice functions of WR and those of LB are thus equivalent
(R1,2 = 0), and the phase spaces in canonical or geomet-
ric coordinates are the same. However, if we study the
example of the FODO with a solenoid, it is possible to
sample at a place where the longitudinal field is non-zero.
It is notably the case if we place our marker inside the
solenoid. We then obtain geometric or canonical phase
spaces that are very different (see Fig. 8). The point
cloud obtained in each case is characterized by the su-
perposition of two ellipses. These ellipses are described
by the parameters of WR in the geometric case and by
the parameters of LB in the canonical case.

With weakly coupled lattices validated with an excel-
lent agreement, more complex strongly coupled lattices
were tackled. As examples we use a “Snake” lattice and
a “Spin Rotator” beamline. The Snake lattice, as shown
in Fig. 9, is a muon cooling channel, which contains two
parametric resonance cooling cells as well as parts to
match the dispersion at the entry and exit of these cells
[12, 41]. The Spin Rotator lattice is a beamline of about
46 meters, designed for the “Figure-8 Electron Collider
Ring”. It allows transforming the vertical spin of the elec-
trons in the arcs into a longitudinal spin at interaction
points [41, 42]. It consists of solenoids, quadrupoles, and
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Figure 8: Coupled phase spaces in geometric (top) or
canonical (bottom) coordinates. The lattice functions of

WR describe the geometric phase space, while the
lattice functions of LB describe the canonical phase

space and thus take into account the longitudinal field.

dipoles. Solenoids rotate the electron spin but also intro-
duce coupling. The parts containing the solenoids have
been designed to compensate for this coupling. Thus, the
solenoids are split in two to introduce elements to locally

compensate for the solenoid coupling5.
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Figure 9: Representation of the example Snake lattice.
Quadrupoles are depicted in red, dipoles in blue, and

solenoids in yellow.

The calculation of the lattice functions is done by the
propagation of initial conditions. The initial lattice func-
tions are known and are not coupled. The coupling
parameters are thus zero: in the ET parametrization,
the decoupling matrix equals the identity; in the MR
parametrization, only the main lattice functions are ini-
tially non-zero. Non-main lattice functions and addi-
tional parameters (u, ν1, ν2) are zero at the beginning
of the transfer line. The propagation of the initial ET
lattice functions is discussed in section III A. For the MR
parametrization, the relation used to propagate initial
conditions is given in Ref [20]:

N2 = M12N1R(∆µ1,∆µ2),

where N1 and N2 are the normalization matrices at s1

and s2, M12 = Ms1→s2 is the coupled transfer matrix
between s1 and s2 of the beamline, and ∆µ1,2 are phase
advances between s1 and s2. Figure 10 shows the com-
parison of the coupled β-functions (in the ET and MR
parametrizations) computed with Zgoubidoo and those
obtained with MAD-X and PTC on the Snake lattice.
We see a good agreement, even if there are some discrep-
ancies due to the difference in the solenoid model. Figure
11 shows the same comparison but on the Spin Rotator
lattice, and Figure 12 compares the other lattice func-
tions (α-functions, and phase advances µ) on the same
lattice. Again, an excellent agreement is found.

5 More details are provided in Ref. [42].
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Figure 10: Comparison between the coupled β-functions
(ET and MR parametrization) obtained with Zgoubidoo
and those obtained with MAD-X on the Snake lattice.

The propagation of the lattice functions which is used
allows an in-depth study of key concepts. In the Snake
lattice, we can highlight the problems related to forced
mode flips by analyzing the propagation of the β func-
tions of the ET parametrization. In addition, by studying
the propagated parameters of the MR parametrization,
the interpretation of the parameter u can be refined. In
particular, the notion of “local coupling” might be clar-
ified. To highlight the potential places where a forced
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Figure 11: Comparison between the coupled β-functions
(ET and MR parametrization) obtained with Zgoubidoo

and those obtained with MAD-X in the Spin Rotator
lattice.

mode flip can occur, we look at the evolution of the ET γ
parameter throughout the lattice (see Fig 13). By prop-
agating initial lattice functions, a forced mode flip can
occur when γ → 0. Figure 14 shows the β-functions of
the ET parametrization and the γ parameter on a trans-
fer line part. We observe that when γ → 0 (at a specific
lattice location), the β-functions of ET seem to diverge;
it illustrates that the ET lattice functions can sometimes
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Figure 12: Comparison between the coupled α-functions
(ET and MR parametrization) and the phase advances
µ obtained with Zgoubidoo and those obtained with

MAD-X in the Spin Rotator lattice.

be discontinuous or negative. Therefore, they cannot be
related to the beam size.

To better understand what is happening, we looked at
the behavior of transfer matrices in coupled and decou-
pled spaces. The transfer matrix in decoupled space is
block-diagonal at all lattice points, which indicates that
there is no mode flip between the start and the end of the
lattice. The initial mode identification is kept throughout
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Figure 13: Parameter u of the LB parametrization and
γ of the ET parametrization, obtained by the

propagation of initial lattice functions on the Snake
lattice.

the transfer line. It is due to the method we have chosen
to implement the ET parametrization, which is Parzen’s
method (refer to Sec. III A 2). This method solves the
problem of mode identification of the ET parametriza-
tion. Indeed, it is based on the eigenvectors of the trans-
fer matrix. Each of these eigenvectors is associated with
an eigenvalue. The eigenvalues of M being the same as
those of P (matrices related by a similarity transforma-
tion), the oscillation eigenmodes can also be associated
with these eigenvalues. It is then possible to identify
the oscillation eigenmodes in the decoupled space with
these eigenvalues. To keep a specific mode identifica-
tion throughout the lattice, it is thus sufficient to calcu-
late the optical parameters of each eigenmode with the
eigenvectors of the coupled transfer matrix correspond-
ing to the same eigenvalues. One can thus ensure that
the Twiss parameters always correspond to the same os-
cillation eigenmode. This method allows removing the
mode flips.

However, when a mode flip is “forced”, it means that
the mode identification is incorrect: it is not possible to
correctly compute lattice functions with this mode identi-
fication. At the location of a forced mode flip, the planes
are completely exchanged. The eigenaxes correspond to
the horizontal and vertical axes (x and y), but the axes
are switched: the two modes are identified with the per-
pendicular axes so that the β-functions that are com-
puted by keeping the mode identification diverge totally.
When γ → 0, the transfer matrix in the coupled space
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Figure 14: β-functions and γ of the ET parametrization
on a part of the Snake line. This figure is a zoom on the
lattice location that shows forced mode flip conditions
(γ → 0). At this location, the β-functions can diverge

and can not anymore be related to beam sizes.

tends towards an anti-diagonal matrix: any initial off-
set in x is transformed almost entirely into a motion in
y and vice versa. It confirms the interpretation of the
total axes exchange due to the strong coupling of the lat-
tice. To summarize, when one is in the conditions of a
forced mode flip at a place of the lattice (γ → 0), either
the mode identification is changed, which allows keeping
finite β functions but poses mode identification difficul-
ties, or the mode identification is kept, which leads to
lattice functions that can diverge and thus can no longer
be associated with finite beam sizes.

By analyzing the β-functions of the MR parametriza-
tion (see Fig. 15), we note that this phenomenon re-
sults in the fact that a mode is first more reflected on
a plane and then more on the other plane. When γ → 0
(s ≈ 5.19m), the main β-functions (β1x and β2y) are
zero, and the eigenmode oscillations are reflected on the
other axis, which translates into the non-principal lat-
tice functions (β1y and β2x). Finally, it should be noted
that the forced mode flip conditions appear in this lattice
inside a solenoid. The potential problems are thus only
fully detected when the tracking code allows step-by-step
tracking inside the elements, with a well-chosen integra-
tion step. Zgoubidoo, with Zgoubi in the backend, allows
obtaining the transfer matrices step by step inside the el-
ement and thus detecting any potential problem related
to the ET parametrization.

In addition to the forced mode flips analysis, the prop-
agation of the generalized Twiss parameters in the Snake
lattice allows a better understanding of the “local cou-
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Figure 15: β-functions and u parameter of the MR
parametrization in addition to the γ parameter of the
ET parametrization. This figure is a zoom on some

lattice parts where u > 0.5, including the lattice
location that shows forced mode flip conditions (γ → 0).
When u > 0.5, the non-principal functions become more

important than the principal ones.

pling” (a term used previously in the paper and in many
references). To that end, we can first analyze the evolu-
tion of the parameter u propagated throughout the lat-
tice. We can see in Fig. 13 that u is initially zero be-
cause we imposed uncoupled initial conditions. Then, it
remains zero in all the elements that do not introduce
coupling until reaching the first solenoid. We observe
that if an element does not introduce coupling, the pa-
rameter u remains constant. From an eigenvector point
of view, it means that the ratio between the x and y
components of the eigenvector remains constant [20] be-
cause the element does not introduce more coupling than
the initial coupling at the element entry. In this beam-
line, the only elements that change the parameter u are
the solenoids, which have a longitudinal field that cou-
ples the transverse motion. In parallel with the parame-
ter u, we can analyze the principal and non-principal β-
functions of the MR parametrization (see Fig. 15). When
u is greater than 0.5, the non-principal functions become
more important than the principal ones. If u remains
greater than 0.5 at a solenoid output, which is the case
at the end of the Snake line, the non-main functions re-
main dominant until the end of the line. Moreover, when
u → 1, the principal functions cancel each other out. It
corresponds to γ → 0: the transfer line is then so coupled
that the planes have been totally inverted (forced mode
flip). A strong enough coupling is necessary to have this
mode inversion along the line; however, where u tends
to 1, the line is locally totally decoupled if we invert the
mode identification.

When propagated in a lattice from initial conditions,
the parameter u thus gives a measure of the local cou-
pling. If initially uncoupled lattice functions are propa-
gated into an element where no local coupling is present,



28

the non-principal β and α functions (or equivalently, the
complex ζ functions) remain zero. However, these pa-
rameters can be non-zero in elements without coupling
if they follow lattice parts introducing coupling; the pa-
rameter u will then have a finite value that will remain
constant in these elements without local coupling. To
support this interpretation, we can also examine u in the
case of the Spin rotator line as shown in Fig. 16. The
various observations made for the Snake lattice also hold
in this example. The parameter u is constant except in
the solenoids, which allow turning electron spin. We ob-
serve that the coupled insertion in this line is designed to
cancel the coupling of the solenoids. In Fig. 11, we can
see that the non-principal functions are non-zero only in
the coupled insertions; when u returns to 0, indicating, in
this case, a zero local coupling, the non-principal lattice
functions are also zero.

0 20 40 60

0

0.05

0.1

0.15

S (m)

Figure 16: Parameter u of the LB parametrization,
obtained by the propagation of initial lattice functions

on the Spin Rotator lattice.

We have been able to observe in various examples that
the parameter u of LB, calculated with periodic condi-
tions or by the propagation of initial lattice functions,
gives an idea, respectively, of the lattice average cou-
pling strength or the local coupling at a specific place in
the lattice. Moreover, we have highlighted the link be-
tween this parameter u and the ellipses in the physical
coupled phase space. However, even if this parameter
can be used qualitatively, it cannot be rigorously used in
all cases to evaluate the coupling strength. Indeed, by
analyzing Eqs. (22) and (23), we see that this parameter
includes different terms that can cancel each other out in
some situations, in particular when a longitudinal field
is present (resulting in the constants R1,2). The inter-
pretation of the constant value of u in the elements not
introducing coupling remains nevertheless valid because
the relative importance of the x and y components of the
coupled transfer matrix eigenvectors does not change if
the element does not introduce any additional coupling.

VI. SUMMARY AND CONCLUSIONS

Transverse betatron motion coupling is a frequent oc-
currence, whether originating from residual coupling that
appears due to imperfections or being coupling “by de-
sign” from strong systematic coupling fields. Vertical ex-
cursion FFAs exhibit strong coupling due to their lon-
gitudinal and skew quadrupolar field components. The
in-depth study of their linear optics must be studied us-
ing models adapted to strongly coupled optics. To sup-
port that effort, the available parametrization methods
have been extensively reviewed. It has been shown that
the ET parametrization allows readily finding the lin-
ear invariants of motion by exploring the motion in the
decoupled axes. However, the generalized lattice func-
tions of this parametrization are not easily interpretable
in terms of beam Σ-matrix. The MR parametrization
allows having a lattice function interpretation similar to
that of the Courant-Snyder theory, allowing to link these
lattice functions to measurable beam parameters. The
ET and MR parametrizations are therefore complemen-
tary and are used for different purposes. The minute
details and differences of variants of the ET and MR
parametrizations have been pointed out. To prepare a
detailed analysis of vFFA lattices and to benchmark the
different parametrization methods, the different meth-
ods have been implemented in a Python interface to the
Zgoubi ray-tracing code. The validation of these imple-
mentations was carried out on different example lattices
with a remarkable agreement with MAD-X and PTC.

The ET parametrization is used to find linear invari-
ants and to analyze the motion in linearly decoupled
phase spaces, for example for the computation of the dy-
namic aperture. There are two main methods to find ET
parameters: the generalized Twiss parameters in decou-
pled axes and the decoupling matrix parameters. The
first method uses the analytical solution of a system of
equations, while the second method uses the eigenvec-
tors of the coupled and decoupled transfer matrices. We
implemented the second method (presented by Parzen
in Ref. [16]) as it can easily be generalized in higher-
dimensional phase space. We obtain an excellent agree-
ment between our results and those obtained with MAD-
X, which implements the first method (presented by Ed-
wards and Teng in Ref. [13] and extended by Sagan and
Rubin [15]). In parallel with the decoupled motion study,
one can also use a parametrization of the MR category to
link it with measurable quantities, such as the beam sizes.
We have shown that the parametrizations of the MR cat-
egory describe the quasi-harmonic motions in the coupled
phase spaces, resulting from the eigen oscillations in the
decoupled space. Depending on the chosen parametriza-
tion, one can describe the principal and non-principal
oscillations either independently with parameter sets for
each oscillation (WR) or with parameters describing the
non-principal oscillations relative to the principal ones.
The amplitudes and phase shifts are then either given
explicitly (LB) or with phasors gathering amplitude and
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phase in the same quantity (Wolski). If the motion is
studied using geometric coordinates, the phase space can
be described by the WR parameters. If the motion is
expressed in canonical coordinates, the phase space is
described by parameters accounting for the longitudinal
field coupling, such as the LB parameters.

For our study of vFFA lattices, the LB parametrization
is encouraged as it provides relevant additional param-
eters compared to the WR description. The parameter
u qualitatively evaluates the local coupling strength. It
characterizes the size of the two ellipses coming from an
oscillation eigenmode in the two transverse phase spaces,
can be related to the local coupling concept, and can in-
dicate a forced mode flip because it is linked to the γ
parameter of the ET parametrization. The in-depth re-
view, interpretation, implementation, and validation of
the available parametrization methods pave the way for
complete and detailed studies of the beam dynamics in
strongly coupled vFFA lattices.
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Appendix A: Parametrization of the betatron
motion in the decoupled case

The equations that describe the linear and uncoupled
transverse motion are:

d2x

ds2
+ (

1

ρ2
+K(s))x = 0

d2y

ds2
−K(s)y = 0

(A1)

where K(s) is a focusing parameter that is related to the
field gradient. This coefficient depends on s and gives the
focusing strength throughout the machine, thus reflecting
the organization of the magnets in the accelerator. If
K(s) is periodic (K(s) = K(s+L) where L is the length
of a period), the equations of motion are called Hill’s
equations. The equations describing betatron oscillations
are similar in both directions and can be written

y′′ + k(s)y = 0,

where y represents both vertical and horizontal coordi-
nates. This equation corresponds to the equation of a
harmonic oscillator with a s-dependent frequency. We
assume a quasi-harmonic solution, the so-called Floquet
solution which depends on the amplitude function β(s),
on the phase advance φ(s) and on the invariants ε and
φ0:

y(s) =
√
εβ(s) sin (φ(s) + φ0). (A2)

The particles will oscillate inside the envelope
√
εβ(s)

which depends on s via the amplitude function β(s). By
reinjecting the Floquet solution (Eq. (A2)) into the Hill’s
equations (Eq. (A1)), we obtain the link between the
beta-function and the phase advance, as well as a differ-
ential equation for β (the “envelope equation”) [30]:

φ(s) =

∫ s

0

dσ

β(σ)
, (A3)

1

2
ββ′ − 1/4β′2 + k(s)β2 = 1. (A4)

It is possible to find the β-function from equation (A4)
with correct boundary conditions. However, this equa-
tion is not easily integrable, and using matrix formalism
is preferable. The elements of this matrix can also be
expressed with the Floquet parameters β(s) and φ(s).

By setting w(s) =
√
β(s), the most general form of the

transfer matrix is expressed as follows [27]:

Ms1→s2 =

(
w2

w1
cos (∆µ12)− w2w

′
1 sin (∆µ12) w1w2 sin (∆µ12)

− 1+w1w
′
1w2w

′
2

w1w2
sin (∆µ12)− (

w′1
w′2
− w2

w1
cos (∆µ12) (w1

w2
cos (∆µ12) + w1w

′
2sin(∆µ12)

)
,

where w1 = w(s1), w2 = w(s2) and ∆µ12 = φ(s2)−φ(s1)
is the phase advance between s1 and s2. This matrix is
further simplified when we consider that k(s) is periodic.
In this case, w(s1) = w(s2) = w, w′(s1) = w′(s2) = w′

and ∆µ12 = µ (phase advance of one cell). The transfer
matrix of a period becomes:

M̂ =

(
cos (µ)− ww′ sin (µ) w2 sin (µ)

− 1+w2w′2

w2 sin (µ) cos (µ) + ww′ sin (µ)

)
.

When we express this matrix with the periodic lattice

functions β(s) = w2(s), α = −w(s)w′(s) = −β
′(s)
2 and

γ(s) = 1+α2(s)
β(s) , we obtain the so-called Twiss matrix:

M̂ =

(
cos(µ) + α(s) sin(µ) β(s) sin(µ)
−γ(s) sin(µ) cos(µ)− α(s) sin(µ)

)
.

(A5)
By comparing this parametrized matrix with the matrix
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obtained by simulation, it is possible to determine the
optical functions β(s), α(s) and µ(s) along the lattice.
The linear tune of the periodic cell—the number of oscil-
lations the particle performs in the cell—is given by the
phase advance of the cell divided by 2π: Q = µ

2π .

1. Parametrization of the normalization matrix

We can express the one-turn transfer matrix M̂ as be-
ing the product of a rotation matrix R, depending on the
phase advance φ(s), and a matrix T, depending on the
lattice parameters β(s) and α(s) [30]:

M̂ = TRT−1,

R =

(
cos (φ(s)) sin (φ(s))
− sin (φ(s)) cos (φ(s))

)
,

T =

(√
β(s) 0
−α(s)√
β(s)

1√
β(s)

)
. (A6)

The matrix T is a normalization transformation which
transforms the one-turn transfer matrix into its normal
form T−1M̂T = R. The matrix T contains the local fo-
cusing properties of the lattice, and will therefore depend
on the section at which we compute it. The rotation ma-
trix R contains global properties (phase advance over one
period) and will not depend on this section [18]. The lin-
ear tunes of the cell are therefore independent of the point
at which the period is started. The normalization ma-
trix T transforms the phase space coordinates x into the
Courant-Snyder coordinates x̃ = T−1x. In these coordi-
nates, the transfer matrix is a rotation x̃(s2) = Rx̃(s1),
and the motion reduces to a harmonic solution [30].

It is interesting to note that there is some freedom in
the choice of T. Indeed if we choose T̄ = TS, where S
is a rotation that commutes with R, the one-turn trans-
fer matrix can also be expressed with this normalization
transformation: M̂ = T̄RT̄−1. In accelerator physics,
the free parameters of S are commonly chosen to have a
normalization matrix of the form given by Eq. (A6), i.e. a
transformation which preserves the areas, and whose T12

element is zero [30]. If we consider a transfer line instead
of a periodic accelerator, we can express the transfer ma-
trix from s1 to s2 thanks to the normalization matrices
at these points and the phase advance ∆µ12:

Ms1→s2 = T(s2)R(∆µ12)T(s1)−1.

2. Parametrization of generating vectors

Another way to study the transverse motion is to look
at the trajectory of a particle in the phase space. For
an uncoupled linear motion, if we plot the divergence
y′ (vertical or horizontal) as a function of the position

y (vertical or horizontal) at a given location s at each
turn, we get an ellipse. This ellipse is described by the
optical functions β(s), α(s) et γ(s) and is expressed by
the Courant-Snyder invariant:

γ(s)y2 + 2α(s)yy′ + β(s)y′2 = ε. (A7)

The ellipse area is equal to πε, where ε is the emit-
tance of the beam. If we consider a beam emittance
ε, all the particles inside the beam are included in the
phase space ellipse of area πε. The ellipse area is con-
served during motion. However, the aspect ratio of the
ellipse depends on the s-dependent optical functions and
can therefore change along the lattice. The ellipse shape
will thus depend on the section where the coordinates
are sampled. In other words, under a linear transforma-
tion given by any unimodular transfer matrix Ms1→s2

(x2 = Ms1→s2x1), the phase space ellipse will be trans-
formed into another ellipse with the same area [31]. In
addition, if the linear transformation is periodic and is
described by the one-turn Twiss matrix M̂ (Eq. (A5)),
the ellipse will be invariant.

In the normalized Courant-Snyder coordinates, the
phase space ellipse becomes a circle with the same area.
In these new coordinates, the radius of the circle is in-
variant ε = ỹ2 + ỹ′2. A particle initially on the circle
(or the ellipse in the case of physical coordinates) will
remain on it but will rotate at a certain angle on this
circle at each period. By looking at the rotation angle of
the particle, we can find the fractional part of the tune
(because at each turn, the phase advance of the particle
will be µ = Q ∗ 2π).

The particle motion on the ellipse can be expressed
with two generating vectors of this ellipse y1 and y2.
The particle coordinates at any point s can be expressed
as follows [2]:

y(s) =
√
ε(y1(s) cos (φ0)− y2(s) sin (φ0)). (A8)

In order to have the same description of the particle mo-
tion as before (and therefore to have an ellipse whose
shape is characterized by β(s), α(s) et γ(s)), the gen-
erating vectors must be parametrized with the optical
functions:

y1(s) =
√
β(s) cos (φ(s)), (A9)

y2(s) =
√
β(s) sin (φ(s)), (A10)

y′1(s) =
√
γ(s) cos (

∼
φ(s)), (A11)

y′2(s) =
√
γ(s) sin (

∼
φ(s)). (A12)

We clearly see in these equations that β(s) and γ(s)
are respectively linked to the envelopes of the posi-

tion and angle coordinates, while φ(s) and
∼
φ(s) are

phase functions. The generating vectors are normalized
(y1

T S y2 = 1) so that the ellipse area is equal to πε.
We see that ε weights the expression of the particle co-
ordinates (Eq. (A8)) and thus characterizes the size of
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the ellipse. The normalization condition on the gener-
ating vectors allows to find the link between β and φ
(Eq. (A3)), the link between α, β and γ, and the link

between φ(s) and
∼
φ(s):

∼
φ(s) = φ(s)− arctanα−1.

The maximum displacement of the particle is described
by the beam envelope

√
εβ(s). The size of the beam will

thus depend on the beam itself via its emittance ε, and
on the machine via the β-function. This envelope mod-
ulates the oscillation amplitude of the particles along s.
All the particles in the beam are injected differently into
the accelerator, and therefore do not have the same in-
dividual trajectory, but they will all be bounded by this
envelope. In the uncoupled motion parametrization, the
lattice functions β(s), α(s) and µ(s) have a clear physi-
cal meaning and give us information about the focusing
properties of the lattice: β(s) limits the betatron oscil-
lation amplitude of the particles and is therefore related
to the beam size, while µ(s) represents the phase ad-
vance of the oscillation. The functions α(s) and γ(s)
are directly related to the β-function, while the linear
tune is directly related to the phase advance on a period.
This clear physical interpretation of the optical param-
eters is, among other things, what we are looking for in
the parametrization of coupled motion.

Appendix B: Floquet’s theorem

Floquet’s theorem states that the eigenvectors v̂j(s)

of the one-turn transfer matrix M̂(s) (where v̂j(s) =
Ms0→sv̂j(s0)) are special solutions of the equations of
motion and can be written as the product of a periodic
function f and a harmonic factor [2]:

v̂j(s) = fj(s)e
i2πQj( s

L ), (B1)

where fj(s+ L) = fj(s).

Appendix C: 4D phase space beam ellipsoid

We consider an ensemble of particles having differ-
ent amplitudes and initial phases and confined within
a 4D phase space ellipsoid. To describe the 3D sur-
face which defines this ellipsoid, the motion of the par-
ticles whose betatron oscillation amplitude is maximum
is investigated [2, 20]. The particle distribution being
characterized by the emittances ε1 and ε2, the particles
which describe the 4D ellipsoid surface will have ampli-
tude

√
ε1 cosχ and

√
ε2 sinχ. Figure 17 shows the dis-

tribution of particles as a function of ε1 and ε2 [2]. The
particles on the ellipsoid surface lie on the edge of the
ellipse shown in this figure.

The trajectory of a particle on the ellipsoid surface can
thus be written by replacing (

√
εI ,
√
εII) by (

√
εI cosχ,√

εII sinχ) [2]:

z(s) =
√
εI cosχ[z1(s) cosφI,0 − z2(s) sinφI,0]

+
√
εII sinχ[z3(s) cosφII,0 − z4(s) sinφII,0].

(C1)

Figure 17: Particle distribution with respect to their
amplitudes. Reproduced from Ref. [2].

The projection of the 4D beam ellipsoid on a plane z−z′
(where z = x, y) is an ellipse whose maximum values
are the same as what we obtained by superimposing the
ellipses of the two modes in the case of a single-particle
motion. These maximum values can be directly derived
from equation (C1) and are given in [2]. For example,
the maximum horizontal position is given by:

xmax =
√
ε1βx1 + ε2βx2,

for particular initial phase values and angle value χ

(sinχ =
√
ε2βx2√

ε1βx1+ε2βx2
, cosχ =

√
ε1βx1√

ε1βx1+ε2βx2
). We can

define the horizontal and vertical emittances of the beam
from the ellipses corresponding to the 4D ellipsoid pro-
jections on the x − x′ and y − y′ planes. The surface of
the ellipse projected in the x − x′ (resp. y − y′) plane
is referred to as the horizontal emittance (resp. vertical
emittance)[2]:

εx = ε1βx1φ
′
x1 + ε2βx2φ

′
x2,

εy = ε1βy1φ
′
y1 + ε2βy2φ

′
y2.

We can directly see that the emittance εx (resp. εy)
corresponds to the sum (or difference according to the
sign of φ′) of the ellipse areas of modes I and II, appearing
in the horizontal (resp. vertical) plane when looking at
the single-particle motion. These horizontal and vertical
emittances are not motion invariants, and therefore the
sum of the two ellipse areas in the same plane is not a
motion invariant. The ellipsoid surface can be described
by the following bilinear form:

x̂TΞx̂ = 1, (C2)

which can be diagonalized by the normalization matrix
N:

Ξ
′

= NTΞN, where Ξ
′

=


1
ε1

0 0 0

0 1
ε1

0 0

0 0 1
ε2

0

0 0 0 1
ε2

 .
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The bilinear form can then be rewritten as follows:

Ξ
′

11x
′2 + Ξ

′

22p
′2
x + Ξ

′

33y
′2 + Ξ

′

44p
′2
y = 1.

The 4D beam emittance corresponds to the phase space
volume occupied by the beam and is therefore equal to
the product of the ellipsoid semi-axes [20]: ε4D = ε1ε2.
We can understand the bilinear form of equation (C2)
from the analysis of the motion invariants. It is possible
to write the particle action as a quadratic function of the
phase space coordinates [19]:

J =
1

2
< x̂|A|x̂ > ,

where J is invariant under the transformation M̂, which
results in the following relation: M̂TAM̂ = A. We can
define the emittances ε1 and ε2 as the average over all
the particle actions: ε =< J >. It is possible to show
[19] that there are two linearly independent solutions for
the matrix A (AI and AII), so two quadratic invariants
J1 and J2 and two associated emittances. The quadratic
form used to describe the 4D ellipsoid can be written
using the matrices AI and AII as follows:

Ξ =

(
AI

εI
+

AII

εII

)
.

Finally, it is possible to find the correlation matrix Σ
from Ξ. The matrix Σ allows describing the matched
beam distribution —a distribution invariant under the
transformation M̂:

Σ→ Σ,

x̂→ M̂x̂.

This distribution is invariant under the transformation
M̂ so that it depends on the motion invariants, and there-
fore on 1

2 x̂TΞx̂. Considering a Gaussian distribution, we
can write the distribution as follows [20]:

f(x̂) = c̃ exp (−1

2
x̂TΞx̂),

where c̃ is a normalization coefficient. The correlation
matrix Σ, which contains the second-order moments of
this distribution, is linked to the quadratic form Ξ by the
following relation: Σ = Ξ−1 [19, 20]. This correlation
matrix reads:

Σ = N

ε1 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε2

NT .

The matrices Ξ and Σ are directly related to the beam
emittances and to the eigenvectors of M̂, and thus to
the generalized lattice functions. It is possible to cal-
culate the correlation matrix elements with the MR
parametrization lattice functions if we know the mode
emittances (see Tab. II). Conversely, if we know Ξ or Σ,
we can find the mode emittances ε1, ε2 and the eigenvec-
tors of M̂, and thus the normalization matrix. We can
therefore determine the emittances as well as the eigen-
vectors from something measurable. Finally, it is possi-
ble to prove that ΣS and M̂ have the same eigenvectors,
but different eigenvalues [17]. The matrix M̂ represents
the propagation along the lattice and will therefore have
eigenvalues related to the lattice tunes, while ΣS repre-
sents the phase space beam distribution, and its eigen-
values will thus be linked to the beam emittances.
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