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We explore the potential of jet observables in charged-current deep-inelastic scattering (DIS)
events at the future Electron-Ion Collider (EIC). Tagging jets with a recoiling neutrino, which can
be identified with the event’s missing transverse energy, will allow for flavor-sensitive measurements
of transverse-momentum dependent parton density functions. We present the first predictions for
transverse-spin asymmetries in azimuthal neutrino-jet correlations which probe the Sivers effect. We
project the kinematic reach and the precision of these measurements and study their feasibility using
parametrized detector simulations. We conclude that jet production in charged-current DIS, while
challenging in terms of luminosity requirements, can complement the EIC 3D imaging program.

I. INTRODUCTION

The Electron-Ion Collider(EIC) will usher in a new era
for the study of the 3D structure of the nucleon [1, 2].
Its high luminosity and polarization of both electron and
hadron beams will enable precise measurements of spin
and transverse-momentum-dependent (TMD) structure
functions.

The EIC will produce the first jets in deep-inelastic
scattering (DIS) off transversely-polarized nucleons. The
potential of jets produced in neutral-current (NC) DIS
has been explored extensively, e.g. in Refs. [3–11]. In this
work, we focus on jets produced in charged-current (CC)
DIS.

The CC DIS channel, which involves the exchange of a
virtual W boson, leads to a quark-flavor sensitivity of jet
measurements. The leading-order process, W ∗q → q′, is
illustrated in Fig. I. Due to the conservation of electrical
charge, electrons can only scatter via W− off positively
charged partons, which are predominantly u quarks, espe-
cially at large x. Likewise, with a positron beam, one can
select scattering predominantly from d quarks through
W+ exchange. Moreover, tagging either charm or strange
jets can further enhance the flavor sensitivity.

The H1 and ZEUS collaborations measured inclusive
CC DIS off protons with longitudinally polarized elec-
tron and positron beams [12–17]. These measurements
constrained the flavor dependence of collinear parton dis-
tribution functions (PDFs) [18]. Moreover, jet produc-
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Figure 1. Charged-current DIS where the produced jet recoils
against a neutrino.

tion in CC DIS was measured by the ZEUS collabora-
tion [19, 20], and compared to next-to-next-to-next-to-
leading order QCD calculations [21].

One of the main challenges in measuring CC DIS is
the measurement of the events’ kinematic variables x
and Q2 in the presence of a final-state neutrino. Sev-
eral methods were developed at the HERA to overcome
this challenge [13, 22]. Feasibility studies of CC DIS at
the EIC have been performed in Refs. [2, 23] for DIS off
longitudinally-polarized protons with the goal to access
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helicity PDFs; here we focus on TMDs and transverse-
spin effects.

In SIDIS, transverse-spin asymmetries are extracted
from modulations of the azimuthal angle with respect
to the virtual-boson direction, typically in the Breit
frame [24–27]. In CC DIS, this approach requires a mea-
surement of the 3-momentum of the scattered neutrino
to define the azimuthal angle, which is challenging due to
acceptance losses at forward angles.

Jet-based measurements of spin asymmetries can re-
duce these these difficulties. Following Liu et al. [5],
TMDs can be accessed in lepton-jet azimuthal correlation
measurements, which are the same in the lepton-nucleon
CM frame as they are in the laboratory frame. Lui et al.
considered NC DIS, but the formalism can be extended
to CC DIS as well. The advantage of this approach is
that measuring the azimuthal angle for TMD studies only
requires the neutrino’s transverse momentum in the lab
frame, which is in general better measured than the 3-
momentum.

The jet-based measurements of Sivers asymmetries
have the additional advantage of decoupling initial- and
final-state TMD effects (at leading power in the jet ra-
dius). That is, they do not involve a convolution of TMD
PDFs and fragmentation functions which can introduce
strong correlations in global fits of SIDIS data [28, 29].

In this paper, we present the first calculations of
neutrino-jet transverse single-spin asymmetries in CC
DIS. We also perform feasibility studies of these channels
using fast detector simulations and quantify the expected
kinematic reach and statistical uncertainties.

The remainder of this paper is organized as follows. We
describe the proposed measurements in Sec. II. In Sec. III,
we present the theoretical framework. In Sec. IV we de-
scribe the fast detector simulation. Section V details the
studies on the resolution of the kinematic reconstruction.
We discuss event selection cuts to reduce NC DIS and
photoproduction background in Sec. VI. The expected
statistical precision of the proposed asymmetry measure-
ments, as well as the results of the numerical calculations
for the asymmetries, are given in Sec. VII. We conclude
in Sec. VIII.

II. PROPOSED MEASUREMENTS

Following Liu et al. [5], we propose the measurement of
the distribution of the azimuthal separation between the
outgoing neutrino (as determined from the missing trans-
verse momentum), and the jet. Due to the conservation
of momentum, the jet and the neutrino are expected to
be mostly back-to-back with one another. Therefore this

distribution is expected to be centered at φjet−φν−π = 0,
with some width due to out-of-cone QCD radiation and
the non-zero initial momentum of the struck quark.

We also propose to measure the transverse single-spin
asymmetry in neutrino-jet correlations, also known as the
left-right asymmetry

AUT =
dσ+ − dσ−
dσ+ + dσ−

. (1)

Here, dσ± refers to the differential cross section measured
with positive or negative transverse polarization of the
proton. This is expected to modulate with respect to
angular separation between the incoming proton spin, φS ,
and the momentum imbalance, φq, i.e.,

AUT = A
sin(φS−φq)
UT sin(φS − φq). (2)

Here, the momentum imbalance between the jet and the
neutrino is defined by ~qT = ~p jet

T + ~p νT . This observable
asymmetry is sensitive to the Sivers function [5, 8].

III. THEORETICAL FRAMEWORK

We follow the theoretical framework developed in
Ref. [5, 7–9] for NC DIS. At the parton level, we consider
the leading-order process eq → νq′. The cross section
is differential in the Bjorken x and the transverse mo-
mentum of the produced neutrino, pνT , which is defined
relative to the beam direction in the laboratory frame.
The leading-order cross section can be written as

dσ

dxd2~p νT
=
∑
q

σeq→νq
′

0 e2
q fq(x,

~bT , µ) . (3)

where the scale is chosen at the order of the hard scale of
the process µ ∼ pνT . The prefactor σ0 for initial quarks u
and d̄ are given by

σeu→νd0 =
|Meu→νd|2

16π2ŝ2

t̂

x(t̂− û)

= 8(GFm
2
W )2|Vud|2

ŝ2

(t̂−m2
W )2 +m2

WΓ2
W

t̂

x(t̂− û)
(4)

σed̄→νū0 =
|Med̄→νū|2

16π2ŝ2

t̂

x(t̂− û)

= 8(GFm
2
W )2|Vud|2

û2

(t̂−m2
W )2 +m2

WΓ2
W

t̂

x(t̂− û)
, (5)

where t̂/(x(t̂ − û)) is the Jacobian from differential on
neutrino rapidity yν to the Bjorken x variable and these
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two variables are related by

x =
pνT e

yν

√
s− pνT e−yν

. (6)

And the partonic Mandelstam variables in Eq. (4) and (5)
can be written in terms of the kinematical variables of the
produced neutrino and the center-of-mass energy, namely

ŝ = xs (7)

t̂ = −Q2 = −√spνT eyν = −x√spjet
T e−yjet , (8)

û = −x√spνT e−yν = −√spjet
T eyjet (9)

where pjet
T and yjet denote the jet transverse momentum

and rapidity, respectively.

A. Inclusive jet production

In this subsection, we derive the ν+jet production
for vector-boson production (W−) in polarized electron-
proton scattering

p(PA, λp, ~ST ) + e(PB , λe)→ jet(PJ) + ν(PD) +X (10)

To access TMD dynamics we study back-to-back
neutrino-jet production in the ep collision frame,

PµA = P+nµ+ +
M2

2P+
nµ− ≈ P+nµ+ , (11)

PµJ = P−J n
µ
− + ~PJT , (12)

The differential cross section is given by

dσep→νjetX

dxd2~pνT d
2qT

= FUU + λpFUL

+ |ST |
[

sin(φq − φSA)F
sin(φq−φSA)
UT

+ cos(φq − φSA)F
cos(φq−φSA)
UT

]
+ λe

[
FLU + λpFLL

+ |ST | sin(φq − φSA)F
sin(φq−φSA)
LT

+ |ST | cos(φq − φSA)F
cos(φq−φSA)
LT

]
, (13)

where for the unpolarized case FUU , in the limit of small
imbalance |~qT | � pjet

T ∼ pνT , one has the TMD factor-
ization of the differential cross section for unpolarized ep

collision given by

FUU =
∑ |Meq→νq′ |2

16π2ŝ2
H(Q,µ)Jq(pjet

T R,µ)

×
∫
bT dbT

2π
J0(qT bT )fTMD

1 (x, bT , µ)

× Sq(bT , yjet, R, µ) , (14)

whereH(Q,µ) is the hard function and takes into account
virtual corrections at the scale Q. The jet function Jq is
associated with collinear dynamics of the jet with natural
scale pjet

T R [30]. For our numerical results presented below
we use the anti-kT algorithm [31] and jet radius parameter
R = 1. The quark TMD PDF including the appropriate
soft factor denoted by fTMD

1 in bT -space is defined by [9]

f (n),TMD
q (x, bT , µ) =

2πn!

(M2)
n

∫
dkT kT

(
kT
b

)n
× Jn (kT b) f̃

TMD
q

(
x, k2

T , µ
)
, (15)

where n = 0 by default. The remaining soft function Sq
in Eq. (14) includes a contribution from the global soft
function which depends on Wilson lines in the beam and
jet directions, and the collinear-soft function associated
with the soft jet dynamics. [Polarized case:] And other
structure functions correlated with polarized electron or
proton are defined in App. A. Specifically, for incoming
electron with helicity λe, one substitutes σeq→νq

′

0 with
σeLq→νq

′

0 as given in Eq. (A6) and for polarized initial
proton, take unpolarized quark in transversely polarized
proton as an example,

F
sin(φq−φSA)
UT =

∑
q

|Meq→νq′ |2
16π2ŝ2

H(Q,µ)Jq(pjet
T R,µ)

×
∫
b2T dbT
4πM

J1(qT bT )f
⊥(1),TMD
1T (x, bT , µ)

× Sq(bT , yjet, R, µ) , (16)

where the structure function is related to the Sivers func-
tion f⊥(1),TMD

1T (x, bT , µ) in bT -space as defined in Eq. (15).

B. Hadron distribution inside jet

In this subsection, we study the hadron distribution
in jet for vector-boson production (W−) in polarized
electron-proton scattering

p(PA, λp, ~ST ) + e(PB , λe)

→
(
jet(PC)h(zh,~j⊥)

)
+ ν(PD) +X (17)
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In ep collision frame,

PµA =P+nµ+ +
M2

2P+
nµ− ≈ P+nµ+ , (18)

PµC =P−h n
µ
− +

M2
h

2P−h
nµ+ ≈ P−h n

µ
− , (19)

For unpolarized final-hadron state, one has TMD jet-
fragmentation functions (JFFs) D1, H⊥1 at leading-twist:

∆(zh,~j⊥) =Dh/q1 (zh,~j
2
⊥)
/n−
2

+ iH⊥,h/q1 (zh,~j
2
⊥)

/j⊥
zhMh

/n−
2
. (20)

Then we obtain

dσep→ν+jetX

dxd2~p νT d
2qT dzhd2j⊥

= FhUU + λpF
h
UL

+ |ST |
[
cos(φq − φSA)F

h,cos(φq−φSA)
UT

+ sin(φq − φSA)F
h,sin(φq−φSA)
UT

]
+ λe

[
FhLU + sin(φq − φSA)F

h,sin(φq−φSA)
LT

+ λpF
h
LL + |ST | cos(φq − φSA)F

cos(φq−φSA)
LT )

]
. (21)

with in total 8 terms1 and the full expression and
structure functions are provided in App. B. Following
Refs. [30, 32–40], we can write the TMD factorization for
the unpolarized cross section where, in addition, a hadron
inside the jet is measured as:

dσ

dxd2~p νT d2~qT dzh d2~j hT
=

×H(Q,µ)
∑
q

σeq→νq
′

0 Gq(zh,~jT , pjet
T R,µ)

×
∫

d2~bT
(2π)2

ei~qT ·
~bT fTMD

1 (x, bT , µ)Sq(~bT , yjet, R, µ) .

(22)

1 Note that all Collins-type jet fragmentation functions does not
contribute in this process since chiral-odd functions must couple
with other chiral-odd functions, then chirality between two (1 −
γ5) of the weak charged current vertex must be odd. As a result,
one ends up with having (1 − γ5)(1 + γ5) = 0 for all chiral-odd
function-related terms.

where zh and jT are respectively the longitudinal mo-
mentum fraction of the hadron inside the jet zh = ~ph ·
~pjet/|~pjet|2 and the transverse momentum ~jhT = ~ph ×
~pjet/|~pjet|2 of the hadron relative to the (standard) jet
axis. In the factorized cross section, Ghq is a TMD frag-
menting jet function. It describes the hadron-in-jet mea-
surement and replaces the jet function Jq in Eq. (13). At
next-to-leading logarithmic (NLL) accuracy, we can write
Ghq as

Ghq (zh,~jT , p
jet
T R) =

∫
d2~b ′T
(2π)2

ei
~jT ·~b ′T /zhDh

q (zh,~b
′
T , p

jet
T R) .

(23)
Here we work in Fourier transform space and Dh

q is a
TMD fragmentation function evaluated at the jet scale.
We use the Fourier variable ~b ′T here to indicate that there
is no convolution of the TMD fragmentation function with
the TMD PDF in Eq. (22). See [39] for more details.

IV. SIMULATION

A. Event-Generation through Pythia8

We used Pythia8 [41] to simulate CC DIS events in un-
polarized electron-proton and positron-proton collisions.
We chose the energies of the lepton and proton as 10 GeV
and 275 GeV, respectively. These beam-energy values,
which yield a center-of-mass energy of

√
s = 105 GeV,

correspond to the operation point that maximizes the lu-
minosity of the EIC design [42]. Following Ref. [23], we
selected events with Q2 > 100 GeV2. No QED radia-
tive effects are included in the simulation to match the
calculations in Sec. III 2.

We used the Fastjet3.3 package [44] to reconstruct
jets with the anti-kT algorithm [31] and jet radius pa-
rameter R = 1. The input particles for the generator-level
jet finding are all stable particles (cτ > 10 mm), except
neutrinos.

Figure 2 shows our theoretical results with an uncer-
tainty band for the ratio qT /pνT with the Pythia8 sim-
ulation for unpolarized ep collisions. The theoretical un-
certainties are included by varying the scales µ and pjet

T R
by a factor of 2 around their central values and taking the
envelope. A reasonable agreement between the theoreti-
cal curve and the Pythia8 results is observed. However,

2 Based on similar measurements in NC DIS [43], the QED correc-
tions are expected to be small for the observables that we consider
in this work, so not including them does not affect our conclu-
sions.
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Figure 2. Normalized distribution of the ratio qT /pνT in unpo-
larized electron-proton collisions.

the tail of the qT /pνT distribution drops off slower at high
qT /p

ν
T in the Pythia8 simulations than in the theory

curve. This can be attributed to multi-jet events, which
are not included in the theory curve, at large qT .

Fig. 3, shows a comparison of our theoretical results
with the scale uncertainty (we vary the scales µ and pjet

T R
by a factor of 2 around their central values and fill be-
tween the curves) for jT and zh to the Pythia8 results
for these variables using the simulated event sample de-
scribed above, showing a reasonable agreement between
the two.

In Fig. 4, we show the neutrino yields expected for 100
fb−1, which can be collected in about a year of running
at 1034 cm−2s−1, as a function of the neutrino’s trans-
verse momentum. We also show the mean of the parton
momentum fraction x as a function of transverse momen-
tum (red dots). Values up to x = 0.8 can be probed
with jet/neutrino transverse momenta of pT = 45 GeV,
which corresponds to the kinematic limit. With 100 fb−1,
the statistical uncertainty on the differential cross-section
measurement is expected to be negligible over the entire
kinematic range. However, a high luminosity is needed
to measure the corresponding spin asymmetry, as will be
further detailed in Sec. VII.

B. Detector-response simulations

We used the Delphes package [45] to perform fast de-
tector simulation with parameters specified in Ref. [46].
The detector geometry we consider is a general-purpose
detector including tracking, electromagnetic and hadronic
calorimeters with coverage up to |η| = 4.0 and full az-
imuthal coverage, as described in the EIC yellow re-

port [2]. This is in line with proposed EIC detector de-
signs [47–49] that considered a high degree of hermeticity,
which can be ensured with dedicated detectors at forward
angles [50]. We show a representative charged-current
event in Fig. 5.

To reconstruct jets in the detector-response simulation,
we again used the Fastjet3.3 package [44] with the anti-
kT algorithm [31] and R = 1 [51]. The input for the
jet algorithm was the set of particle-flow objects recon-
structed with Delphes.

In Fig. 6, we show the hadron-in-jet momenta for re-
constructed π±, as well as the average zh in each bin in
momentum. We find that the charged pions in jets can
be found in the rapidity range from −0.5 to 3.5, and with
momenta up to about 45 GeV, which can be identified
with high purity with gas-based Cherenkov detectors [2].

V. EVENT RECONSTRUCTION AND
KINEMATIC RESOLUTIONS

As typically done in colliders, neutrinos can be iden-
tified by measuring the missing transverse momentum,
~pmiss
T , which is defined as the vector sum of the trans-

verse momenta of all measured particles (identified by the
particle-flow algorithm to avoid double-counting). At the
generator level all stable particles are included and it can
be compared to the produced neutrino. The Delphes
fast smearing was shown to reproduce reasonably well the
performance obtained from a comprehensive detector sim-
ulation of the CMS experiment over the entire range of
20 < |pmiss

T | < 150 GeV [45].
We define φν as the azimuthal angle of − ~pmiss

T . We
show the reconstruction performance of φν in Fig. 7. The
standard deviation is less than 0.06 radians, which is of
similar order to the di-jet azimuthal-angle resolution of
the measurement presented in Ref. [52].

We employ the Jacquet-Blondel (JB) method of
Ref. [53] to reconstruct the lepton kinematics. The event
inelasticity is given by yJB =

∑
(Ei − pz,i)/(2Ee) where

the sum is over all the reconstructed particles. The four-
momentum transfer is given by Q2

JB = (pmiss
T )2/(1−yJB)

and the Björken scaling variable is xJB = Q2
JB/(syJB),

where s = 4EeEp and Ee (Ep) is the energy of the electron
(proton) beam. The resolution of reconstructing these
variables was investigated in Ref. [23], and found to be
reasonable for all three of these variables. The perfor-
mance of the Jacquet-Blondel method might be improved
with machine-learning methods such as those proposed in
Refs. [54, 55].

Figure 8, we compare the reconstructed values of qT /pνT
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Figure 3. Distributions of the hadron-in-jet longitudinal-momentum fraction zh (left) and the transverse-momentum jT (right)
of e−p events generated in Pythia 8 [41] (blue) compared to our theoretical results with scale uncertainties (orange).
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Figure 4. Expected yield of neutrinos and jets in CC DIS
with an electron beam and 100 fb−1 integrated luminosity. In
addition, we show the average x which is probed as a function
of the neutrino transverse momentum in the laboratory frame.
The cross-sections generated in Pythia have been scaled to
match the total cross-sections calculated at NLO in Ref. [23].

with the value obtained at generator level. In the bottom
panel of this figure, we show that the the “bin purity”,
or fraction of events generated in a given bin that are
reconstructed to be in the same bin, is more than 50%

Figure 5. Display of simulated CC DIS event using
Delphes [45]. Top: 3D view. Bottom: Transverse view.
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Figure 6. Pseudorapidity and momentum distribution for
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Figure 7. Performance of the reconstruction of φν in CC DIS
events. Red error bars indicate the mean and standard devia-
tions within slices of pνT

for a particular binning scheme. Such level of purity is
amenable to standard unfolding methods.

VI. SUPPRESSION OF NC DIS AND
PHOTOPRODUCTION BACKGROUNDS

Given the relatively low rate of charged-current
DIS events relative to neutral-current DIS and photo-
production, the background suppression generally rep-
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Figure 8. Top: 2D histogram of the generated qT /pνT (x axis)
vs. the reconstructed value (y axis). Middle: Spectra of re-
constructed and generated qT /p

ν
T , using five bins. Bottom:

Purity as a function of qT /pνT .

resents a significant challenge. If the scattered electron
is missed, the event topologies of neutral- and charged-
current DIS are identical. We expect that this scenario
will be significantly suppressed at the EIC compared to
the HERA experiments thanks to improved low-angle tag-
gers for low Q2 events [2], although the performance of
such systems is hard to estimate at this point.

Rather than to use a low-angle scattering veto to sup-
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press photoproduction, we follow the approach used by
the CC DIS analyses at HERA [13] that relied on two
kinematic variables: δ =

∑
iEi − pz,i (where Ei and

pz,i are the reconstructed energy and longitudinal mo-
mentum of detected particles, and the sum runs over all
reconstructed particles) and the ratio of the anti-parallel
component, VAP , to the parallel component, VP , of the
hadronic state. These are defined as

VAP = −
∑
i

~pT,i · n̂, for ~pT,i · n̂ < 0 (24)

and

VP =
∑
i

~pT,i · n̂, for ~pT,i · n̂ > 0 (25)

where ~pT,i are the transverse parts of the individual
particles’ momenta, n̂ = −~p νT /|~p νT |, and the sums are over
all reconstructed particles in the event. The purpose on
the cuts on this variable was to ensure an azimuthally
collimated energy flow. For charged-current events, the
ratio VAP /VP is small, in particular for the events that
we are interested in that are suitable for TMD studies.

To test the efficacy of these variables for background
reduction, we ran simulations of NC DIS and photopro-
duction reactions in the same manner as our CC DIS sim-
ulations (see Sec. IV). We chose to use the following cuts
p νT > 15 GeV, VAP /VP < 0.35, and δ < 30 GeV (which
are similar to those used in Ref. [13]). We found that
≈30% of the generated CC DIS events passed these cuts,
whereas only 0.0005±0.0002% of photoproduction events
passed these cuts. None of the 1.5 million NC DIS events
passed these cuts. However, the photoproduction has a
cross section that is three orders of magnitude larger than
that of CC DIS (58 nb, compared to 14 pb, as estimated
in Pythia). Therefore, we estimate that about 8±3%
of the event sample would be background from photo-
production, when only using kinematic variables and no
low-angle electron tagger.

VII. STATISTICAL PRECISION OF
ASYMMETRY MEASUREMENTS

We show in Fig. 9 the statistical uncertainty projected

for the transverse single-spin asymmetry, A
sin(φq−φSA)
UT ,

assuming a luminosity of 100 fb−1. The absolute un-
certainty of the asymmetry measurement is estimated to
be
√

2/(p
√
N), where p is the polarization of the proton

beam, 70%, and N is the number of events in a given
bin that pass our cuts, scaled to match the NLO total
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Figure 9. Projected statistical precision for the neutrino-jet
asymmetry, which is sensitive to the Sivers distribution for
positron-proton collision (open circles) and electron-proton
collision (closed circles), for 100 fb−1. The curves represent
theoretical results and their uncertainty bands are obtained by
the uncertainty of the extracted Sivers function in Ref. [57].

inclusive cross sections of Ref. [23] and an integrated lu-
minosity of 100 fb−1. Following Ref. [56], we include the
factor of

√
2 factor to account for the fitting of the az-

imuthal modulations.
We compare these results to the numerical results of

our calculations (see Sec. III), which are integrated over
the transverse momentum imbalance 0 < qT < 5 GeV and
inelasticity 0.1 < y < 0.9. The uncertainty bands of the
calculation curves were determined according to Ref. [57].

The projected statistical error bars are smaller than the
predicted asymmetry for the first three bins, allowing the
proposed measurement to provide a decent comparison
with the model. For the highest bin in x, the statistical
errors are much larger than the predicted asymmetry.

VIII. SUMMARY AND CONCLUSIONS

We have proposed a novel channel to study the 3D
structure of the nucleon at the EIC that offers unique sen-
sitive to quark flavor: charge-current deep-inelastic scat-
tering.

We have presented first calculation of the azimuthal
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correlation as well as transverse-spin asymmetries. These
are much bigger than those corresponding for the
electron-jet channel, which partially compensates the loss
of statistical precision due to having lower expected rates
than for neutral-current interactions.

We have used the expected EIC machine parameters of
luminosity and energy to estimate the kinematic reach of
this measurement. We showed that an excellent coverage
of high-x region can be achieved. We have also used fast
detector simulations to estimate the performance on neu-
trino (missing energy) reconstruction, as well as neutrino-
jet momentum imbalance.

While much of the emphasis of the EIC project lies in
the low-x and gluon studies, we show that charged-current
deep-inelastic scattering represents an excellent way to
probe the high-x region of the valence quarks up to x =
0.8. This channel will take full advantage of key aspects of
the EIC: the high-luminosity, high beam polarization, as
well as hermeticity of the EIC detectors. This represents

an important channel that adds to the growing program
that can be carried out with jets physics at the EIC.
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Appendix A: Inclusive jet production

In the process of e+ p→ ν + jet +X where the incom-
ing proton is unpolarized and the incoming electron can
be unpolarized or have helicity λe, the squared matrix
element is given by
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, (A1)

where P̂A = xPA and P̂C = PJ and we have applied
4GF√

2
= e2

2m2
W sin2 θw

. For a longitudinally polarized proton

with helicity λp, one simply substitute /̂PA → γ5 /̂PA. For
a transversely polarized proton with transverse spin SiT ,
/̂PA → γ5γi /̂PA (though the trace of hadronic tensor is
always 0 for transversely polarized proton). The leptonic
tensor is given by electron and left-handed neutrino:

Lµν = Tr

[
/PDγ

µ(1 + λeγ5)/PBγ
ν

(
1− γ5

2

)]
= (1− λe)

(
PµBP

ν
D + P νBP

µ
D − gµνPB · PD + iεµνPBPD

)
= Lµνu + Lµνp , (A2)

where

Lµνu =
(
PµBP

ν
D + P νBP

µ
D − gµνPB · PD + iεµνPBPD

)
,

(A3)

Lµνp = −λe
(
PµBP

ν
D + P νBP

µ
D − gµνPB · PD + iεµνPBPD

)
,

(A4)

represent the polarized and unpolarized components of
the leptonic tensor.

Then one obtains the differential cross section given by
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Eq. (13) with structure functions defined by

FUU =
∑ |Meq→νq′ |2

16π2ŝ2
H(Q,µ)Jq(pjet

T R,µ)

×
∫
bT dbT

2π
J0(qT bT )fTMD

1 (x, bT , µ)

× Sq(bT , yjet, R, µ) ,

=C [f1]eq→νq′ , (A5)

FLU =C [f1]eLq→νq′ , (A6)

FUL =C [g1L]eqL→νq′ , (A7)

FLL =C [g1L]eLqL→νq′ , (A8)

F
cos(φq−φSA)
UT =

∑ |MeqL→νq′ |2
16π2ŝ2

H(Q,µ)Jq(pjet
T R,µ)

×
∫
b2T dbT
4πM

J1(qT bT )g
(1),TMD
1T (x, bT , µ)

× Sq(bT , yjet, R, µ) ,

=C̃ [g1T ]eqL→νq′ , (A9)

F
cos(φq−φSA)
LT =C̃ [g1T ]eLqL→νq′ , (A10)

F
sin(φq−φSA)
UT =C̃

[
f⊥1T
]
eq→νq′ , (A11)

F
sin(φq−φSA)
LT =C̃

[
f⊥1T
]
eLq→νq′

, (A12)

where the semi-inclusive jet function Jq(pjet
T R,µ) are in-

troduced in [58]. The relevant leading-order matrix ele-
ments squared are given by

|Meu→νd|2 = 8(GFm
2
W )2|Vud|2

ŝ2

(t̂−m2
W )2 +m2

WΓ2
W

,

(A13)

|Med̄→νū|2 = 8(GFm
2
W )2|Vud|2

û2

(t̂−m2
W )2 +m2

WΓ2
W

,

(A14)

|MeLq→νq′ |2 = − |Meq→νq′ |2 , (A15)

|MeqL→νq′ |2 = − |Meq→νq′ |2 , (A16)

|MeLqL→νq′ |2 = |Meq→νq′ |2 , (A17)

The unpolarized-electron and polarized-electron matrix
elements are related to each other in Eqs. A16 through
A17 due to the (1 − λe) factor in the leptonic tensor.
Consequently, one obtains the following relations between

the structure functions:

FLU = −FUU (A18)
FLL = −FUL (A19)

F
cos(φq−φSA)
LT = −F cos(φq−φSA)

UT (A20)

F
sin(φq−φSA)
LT = −F sin(φq−φSA)

UT (A21)

Appendix B: Hadron distribution inside jet

For unpolarized final-hadron state, one has TMD JFFs
D1, H⊥1 at leading-twist [9]:

∆(zh,~j⊥) =Dh/q1 (zh,~j
2
⊥)
/n−
2

+ iH⊥,h/q1 (zh,~j
2
⊥)

/j⊥
zhMh

/n−
2
, (B1)

The traces of the correlator are

∆h/q[γ−] =Dh/q1 (zh,~j
2
⊥) , (B2)

∆h/q[iσi−γ5] =
εijT j

j
⊥

zhMh
H⊥,h/q1 (zh,~j

2
⊥) , (B3)

For an electron colliding with an unpolarized or a longitu-
dinally polarized initial proton, one has the same partonic
scattering amplitudes as shown in App. A. However, if the
electron collides with a transversely polarized quark from
the initial proton, the corresponding term in the hadronic
tensor is given by

Hµν

H⊥h/q1

= Tr

[
/j⊥
zhMh

/̂PCγ
µ

(
1− γ5

2

)
/v /̂PAγ

ν

(
1− γ5

2

)]
(B4)

where P̂A = xPA and P̂C = PC/zh. For different TMD-
PDFs, the vector /v is

(
− /ST γ5

)
for h1,

(
−λp/kT γ5/M

)
for

h⊥1L,
(
−i/kT /M

)
for h⊥1 and

(
(~kT ·~ST /kT−~k2

T
/ST /2)γ5/M

2
)

for h⊥1T .

Note that there are three γ’s between the
(

1− γ5

2

)
’s

in the hadronic tensor (Eq. B4), namely one always has(
1− γ5

2

)
γαγβγρ

(
1− γ5

2

)
= γαγβγρ

(
1 + γ5

2

)(
1− γ5

2

)
= 0 . (B5)

Therefore the expression in Eq. B4 vanishes. Conse-
quently, contributions from transversely polarized quark
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scattering with W -boson exchange does not exist. There-
fore, all contributions related to the chiral-odd Collins
jet-fragmentation function should not appear in the dif-
ferential cross section for hadron-in-jet production with
charged-current weak interaction. Below we show the dif-
ferential cross section in terms of non-zero structure func-
tions,

dσep→ν+jetX

dyJd2pJT d2qT dzhd2j⊥
= FhUU + λpF

h
UL

+ |ST |
[
cos(φq − φSA)F

h,cos(φq−φSA)
UT

+ sin(φq − φSA)F
h,sin(φq−φSA)
UT

]
+ λe

[
FhLU + |ST | sin(φq − φSA)F

h,sin(φq−φSA)
LT

+ λpF
h
LL + |ST | cos(φq − φSA)F

h,cos(φq−φSA)
LT )

]
.

(B6)

with 8 terms in total, where the structure functions are

defined as below

FhUU =
∑ |Meq→νq′ |2

16π2ŝ2
H(Q,µ)D1(pjet

T R,µ)

×
∫
bT dbT

2π
J0(qT bT )fTMD

1 (x, bT , µ)

× Sq(bT , yjet, R, µ) ,

=Ch [f1D1]eq→νq′ , (B7)

FhLU =Ch [f1D1]eLq→νq′ , (B8)

FhUL =Ch [g1LD1]eqL→νq′ , (B9)

FhLL =Ch [g1LD1]eLqL→νq′ , (B10)

F
h,cos(φq−φSA)
UT =

∑ |MeqL→νq′ |2
16π2ŝ2

H(Q,µ)D1(pjet
T R,µ)

×
∫
b2T dbT
4πM

J1(qT bT )g
(1),TMD
1T (x, bT , µ)

× Sq(bT , yjet, R, µ) ,

=C̃h [g1TD1/M ]eqL→νq′ , (B11)

F
h,cos(φq−φSA)
LT =C̃h [g1TD1/M ]eLqL→νq′ , (B12)

F
h,sin(φq−φSA)
UT =C̃h

[
f⊥1TD1/M

]
eq→νq′ , (B13)

F
h,sin(φq−φSA)
LT =C̃h

[
f⊥1TD1/M

]
eLq→νq′

, (B14)

We obtain relations between the hadron-in-jet structure
functions similar to those for the inclusive-jets ones (see
App. A):

FhLU = −FhUU (B15)

FhLL = −FhUL (B16)

F
h,cos(φq−φSA)
LT = −Fh,cos(φq−φSA)

UT (B17)

F
h,sin(φq−φSA)
LT = −Fh,sin(φq−φSA)

UT (B18)
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