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ABSTRACT

The theory of the strong force, Quantum Chromodynamics (QCD) remains one of the most

important ways to understand the fundamental properties of ordinary matter. However,

at low momentum transfer Q2, in the regime where the strong force becomes extremely

strong, our understanding of QCD for ordinary nucleons becomes hazy. Several cutting

edge theories such as Chiral Perturbation Theory (χPT) and Lattice QCD have provided

valuable predictions in this regime, but Lattice QCD has not yet extended predictions of

many important quantities to this kinematic region, and Chiral Perturbation Theory has

faced several important disagreements with experimental data for the neutron over the last

several decades. It is therefore of extreme importance to have a benchmark of experimental

data in the low energy regime for the proton’s behavior, as a test of leading theories for the

behavior of QCD in this regime.

The E08-027 (g2p) experiment ran at Jefferson Lab in 2012 with the goal of collecting

this valuable data, and though I was still completing my undergraduate studies at the time,

I became involved in the analysis in 2015 and built on the previous work to complete it

and analyze the exciting results. This experiment achieved a high precision measurement of

the spin structure functions g1 and g2 for the proton, quantities which describe the internal

spin structure of the proton. These measurements were taken in the valuable low Q2 region

described above, and used to extract several moments of these spin structure functions which

can be directly compared to the cutting-edge predictions of Chiral Perturbation Theory.

Though the experiment’s timeline was such that I didn’t have a chance to work directly

on the experimental setup, I had the opportunity to acquire hands-on experience working

xviii



on a polarized target at UNH which is very similar to the crucial polarized target used in

the g2p experiment.

Full details of the g2p experiment and my experimental work at the University of New

Hampshire are presented in this thesis, as well as a detailed description of the analysis process

and the exciting benchmark results, which serve as a direct test of all current and future

theories of QCD in the low-Q2 regime.
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CHAPTER 1

Background

It is currently estimated that the proton accounts for upwards of 90% of ordinary matter in

the visible universe [29]. Protons make up the nuclei of atoms which compose humans and

just about everything else we see every day, and their charge dictates most electromagnetic

interactions we can study. Accordingly, it is surprising that we are still without a robust

understanding of this essential particle. In 1920 when Ernest Rutherford proposed the

proton’s existence, he believed it was a fundamental particle, one of the most basic building

blocks of the universe [30]. In 1964, it was theorized that the proton was itself composed of

three resonances Gell-Mann would come to call “quarks” [31]. Over time, this picture too

has evolved, revealing a tremendously complex internal structure, where the three valence

quarks of the proton are bound with gluons to each other and to a shifting “quark sea” of

quarks and antiquarks, as in Fig. 1.1.

Figure 1.1: Model of the Proton over time. Adapted from a figure in [2]

This complex structure comes with a number of ongoing mysteries about the proton
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Figure 1.2: The “δLT Puzzle”: (Left) The results of Jefferson Lab E94-010 showing the initial
disagreement [3]. (Right) The results of Jefferson Lab E97-110 showing a new disagreement
in 2021 [4].

which still require resolution. In 2010, the radius of the proton was measured to a value

about 4% less than was observed for the last century [32], a value well outside of statistical

error bars which raised many ongoing questions about the proton’s true size, a problem

which is now known as the “Proton Radius Puzzle.” Similar to the mystery of its exact

size, and relevant to the topic of this dissertation, the proton’s spin is also not yet well

understood, and the source of several puzzles. Spin is a fundamental property of particles

which acts as an intrinsic angular momentum that exceeds the size which relativistic physics

would allow in a real angular momentum, and which has great impact on the particle’s

electromagnetic behavior [33]. Most famous among the mysteries about the proton’s spin is

the fact that though the proton is known to be a composite particle, adding the spins of its

known constituents fails to produce the measured spin of the proton. This is known as the

“Proton Spin Puzzle”, and current research focuses on investigating the idea that the proton’s

spin may in part derive from the real internal angular momentum of its constituents[34].

Additional difficulties arise when trying to determine how the proton’s spin is distributed
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within this complex particle. The proton’s spin distribution can be studied with a quantity

known as a structure function, the moments of these quantities can likewise be directly

compared to theoretical predictions to test the theory of the strong nuclear force, quantum

chromodynamics (QCD). It was expected that one of these moments, δLT , would be a reliable

test due to its insensitivity to the contribution of the ∆-resonance [35]. However, initial

measurements of this quantity showed sizable disagreement with the predictions of chiral

perturbation theory (χPT) for the neutron [3]. Chiral perturbation theory is to date one

of the best theoretical frameworks for predicting the behavior of QCD in low momentum

collisions. Newer predictions of χPT seem to resolve this initial disagreement, but recent

data for the neutron show a new disagreement at even lower Q2, as is shown in Fig. 1.2. The

theoretical difficulty in reproducing data at low momentum transfer for the neutron implies

the dire need for proton data in this region.

The low momentum transfer (Q2) region is important, as it is in this regime that the

strong nuclear force becomes “truly strong”; while high Q2 is useful for mapping out the

partonic constituents of the nucleon, at low Q2 it is possible to study the behavior of the

nucleon as a whole and how its properties can derive continuously from those of its component

particles. There is some important theoretical work done in this region, most notably chiral

perturbation theory and lattice QCD, which can both reproduce some quantities at low-to-

medium Q2. However, there is a severe lack of experimental data, as taking low Q2 data,

especially for the proton, is very difficult. This thesis will detail the results of the Jefferson

Lab E08-027 Experiment (g2p) which attempts to remedy this with a new high precision

measurement of the proton’s spin structure in this low Q2, strong-QCD regime.
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CHAPTER 2

Theory

2.1 Inclusive Electron Scattering

To study the structure of the nucleon, modern experiments rely on the experimental tech-

nique of particle scattering, a technique which helped to pioneer the field of nuclear physics

when Ernest Rutherford used it to discover the existence of the nucleus by scattering helium

nuclei (α-particles) through a gold foil. Rutherford and his students Hans Geiger and Ernest

Marsden discovered that most of these positively charged particles passed straight through

the foil, while a small number deflected at dramatic angles. The study of the deflected

particles led Rutherford to theorize that the mass of the atom is compressed into a tiny

volume known as a nucleus, with most of the atom composed of empty space, and likewise,

modern scattering experiments can glean ever more detailed information about the nucleus

by studying the scattered particles [36].

The quantity that is usually measured and studied in these experiments is known as a

scattering cross section. This quantity describes the normalized interaction rate over a solid

angle area of the target, and varies with the energy and momentum of the measured particles.

The nucleon’s structure can be probed by measuring the cross sections which result from

scattering a beam of electrons off of a fixed proton target (ep scattering). Depending on

the energy of the electron beam, a number of different particles may result from this as the

proton’s constituents may be knocked out and form new hadrons, but here we are concerned

with inclusive electron scattering, in which only the scattered electron is measured, ignoring

other products which may result.
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Figure 2.1: ep Scattering interaction

A Feynman diagram for the electron-proton scattering interaction is shown in Figure 2.1.

In this process, an electron enters with four-momentum (in natural units) kµ = (E,k), and

exchanges a virtual photon with a proton in the target, which has initial four-momentum

pµ = (ϵ,p). This virtual photon carries a four momentum of qµ = (ν,q), where ν is the

energy transfer from the electron to the struck proton, and q is the momentum exchanged

in the interaction. The electron then scatters at an angle θ from its initial path, with a four-

momentum of k′µ = (E′,k′), and some unknown products X are produced by the proton [37].

Since the electron is comparatively well understood, and we are only measuring the scattered

electrons in inclusive scattering, we define everything in the rest frame of the proton where

ϵ = Mp, and in terms of the initial and final state of the electron. The energy transfer ν is

then defined simply as:

ν = E − E ′ (2.1)

with E and E′ the initial and final energies of the electron, respectively. We can also use

these quantities in combination with the angle at which the scattered electron is measured

to define the momentum transfer Q2 of the interaction:

Q2 = −q2 = 4EE ′ sin θ (2.2)
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This is an especially important kinematic variable because it defines the distance scale which

the scattering interaction is probing. The de Broglie wavelength of a particle is considered

to be [38]

λ =
h

q
(2.3)

where h is the Planck constant. So it is plain to see that the distance scale associated with our

interaction is inversely proportional to the momentum transfer. A high Q2 probes the small-

distance region of the proton where we are looking at the nucleon’s individual constituents,

while a low Q2 conversely probes the large distance region and reveals information about

how the proton’s constituents work together to give the proton its observed properties. If

we wish to test the aforementioned theories of QCD such as chiral perturbation theory, and

to understand how the proton obtains its spin from the quarks and gluons that make it up,

the latter is our kinematic region of interest [39].

We must also define the invariant mass of the hadron, a frame-independent kinematic

variable which quantifies the total mass-energy of the proton and its unknown products after

scattering:

W 2 = (pµ + qµ)2 = M2
p + 2Mpν −Q2 (2.4)

Wherein Mp ≈ 938.3 MeV is the mass of the proton. Using the kinematic variables already

defined, we can also define the Bjorken-x, a quantity which can be identified with the fraction

of the proton’s momentum carried by the struck quark:

xbj =
Q2

2Mpν
(2.5)

This quantity can also be considered to track the elasticity of the interaction, as discussed

in the next section. Finally, we define the fractional energy loss of the electron simply as:

y =
ν

E
(2.6)
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These invariant quantities will be used to map out the response of the nucleon over the tested

kinematic range.

2.2 Interaction Rates & Cross Sections

To define the measurable cross section mentioned in the previous section, we will first need to

discuss the interaction rate of the ep scattering process. The interaction rate Wfi describes

the number of transitions from the initial state of e+ p to the final state of e′ +X per unit

time. Fermi’s Golden Rule states [5]:

Wfi = 2π|Vfi|2δ(kf − ki) (2.7)

where Vfi is the interaction potential and the delta function enforces energy and momentum

conservation. By adopting a covariant normalization, we can rewrite per unit volume in four

dimensions for a generic scattering interaction A+B → C+D [5]:

Wfi =

(
2π

V

)4

|T |2δ(4)
(
[pC + pD]− [pA + pB]

)
(2.8)

Here, T is the probability amplitude of the interaction process, V is the volume over which

the interactions take place, and pA,B,C,D are the four-momenta of the particles involved in

scattering. The probability amplitude will be a combination of the electron part, which is

easy to compute using the Feynman rules because Quantum Electrodynamics (QED) is well

understood, and the hadronic part, which comprises both the initial proton state and the

final unobserved products X [40]. Using the Feynman rules for spinor electrodynamics, we

have one incoming and outgoing electron, one internal photon, and two vertices. Though

the exact vertex on the hadronic side of the virtual photon is not known, we know it must

be a QED vertex, and so add the associated vertex factor. We then find:

TLepton = ie2γµγν gµν

q2 − iϵ
us′(k

′)us(k) (2.9)
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Where γ is the gamma-matrix, us and us are the spinors, and e is the fundamental charge.

Because we don’t know the exact structure of the hadronic part of the process, we must

instead write it generally as a transition amplitude from the initial state of a proton with

momentum P and spin S to a final unknown state X [1]:

THadron =< P, S|Jµ|X > (2.10)

Plugging into Equation 2.8 and simplifying by making use of gamma matrix identities to

contract the metric with two of our gamma matrices we obtain:

Wfi =

(
2π

V

)4(
e4

Q4

)
us′(k

′)us(k)γ
µus(k)us′(k

′)γν < P, S|Jµ|X >

< X|Jν |P, S > δ(4)
(
[p+ px]− [k + k′]

) (2.11)

We can define the cross section which can be experimentally measured in terms of the

interaction rate [5]:

dσ =
Wfi

ϕ
Nf (2.12)

Here ϕ is the initial flux of particles, and Nf is the number of available final states. We

will later associate these quantities with the number of incident electrons and the density of

scattering centers in the target, respectively, to form an experimental cross section [37].

For now, the initial flux will be a product of the number of beam particles passing

through unit area per unit time, 2Ee

V
and the number of target particles per unit volume,

2Ep

V
[5]. Since the electron mass me is much smaller than Mp, we neglect it, and in our lab

frame, the protons are at rest, so we can simplify the initial flux as:

ϕ =
4EMp

V 2
(2.13)

The number of available final states for a given particle A in a volume V is limited by
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quantum theory to be [5]:

Nf =
V d3pA

(2π)32EA

(2.14)

Our final states are the scattered electron with momentum k′ energy E ′ and some unknown

products with momenta px and energy Ex. We will need to sum over all possible X states

to obtain the full cross section, so combining equations 2.14, 2.13 and 2.12 we obtain the

differential cross section:

dσ =
2π

8EE ′Mp

(
e4

Q4

)
d3k′us′(k

′)us(k)γ
µus(k)us′(k

′)γν×∑
X

d3px
(2π)32Ex

< P, S|Jµ|X >< X|Jν |P, S > δ(4)
(
[p+ px]− [k + k′]

) (2.15)

To simplify this, in natural units the fine structure constant α = e2

4π
, and we can define

the lepton tensor:

Lµν = us′(k
′)us(k)γ

µus(k)us′(k
′)γν (2.16)

and the hadron tensor:

Wµν =
1

2Mp

∑
X

d3px
2Ex

< P, S|Jµ|X >< X|Jν |P, S > δ(4)
(
[p+ px]− [k + k′]

)
(2.17)

This tensor can also be written in a simpler form by employing completeness:

Wµν = i

∫
eiqx < P, S|Jµ(x)Jν(0)|P, S > d4x (2.18)

The meaning of these two quantities will be elaborated on in the following section, but for

now we use them to write our cross section as:

dσ =
α2

Q4

d3k′

E ′
1

E
LµνWµν (2.19)
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Finally, we will transform into spherical coordinates [40]:

d3k′ = k′2dk′dΩ (2.20)

Where dΩ = sin θdθdϕ is the differential solid angle which will be measured in the detector.

Since the mass of the electron is small enough to be negligible, k′ ≃ E′. This gives us a

doubly differential cross section definition of:

d2σ

dE ′dΩ
=

α2

Q4

E ′

E
LµνWµν (2.21)

How this quantity is derived experimentally is detailed in Chapter 6. But we can interpret

it most readily with equation 2.12 as being the fraction of incoming electrons which interact

with a proton per unit time, scaled by the number of possible scattering centers in the target.

For the coming sections, it will be useful to make a distinction for an elastic measurement

of this quantity as compared to an inelastic measurement. In an elastic measurement, the

energy transfer is absorbed entirely by the recoil proton, such that the final invariant mass

of the hadronic system is simply the rest mass of the proton: WElastic = Mp. For elastic

reactions, the proton behaves as a point particle, corresponding to a Bjorken-x of xbj = 1,

and the final energy of the scattered electron can be easily calculated. For reactions with a

higher W, the final hadronic system is more complex, and we are probing more the partonic

behavior of the proton’s constituents, corresponding with lower values of x. If we go to a

very high W, we reach the Deep Inelastic Scattering (DIS) region where we can probe the

individual quarks and gluons, but between this region and the elastic response is known

as the Resonance Region, this is our area of interest because it concerns how the proton’s

constituents contribute to its behavior on a hadronic level.

The behavior of the cross section as a function of W is shown in figure 2.2. The elastic

response is shown in the peak at the proton mass of Mp ≈ 938.3 MeV. The resonance region

then begins at the pion production (pp) threshold, which is the minimum energy transfer
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Figure 2.2: ep → eX scattering cross section as a function of the invariant mass W. Figure
edited from [5] and produced with SLAC data.

necessary to create a pion, W ≈ 1038.2 MeV. Several excited states of the proton form

resonances in the following region, but the most important resonance is the first one, corre-

sponding to the ∆-baryon at W ≈ 1232 MeV. Our experiment will focus on measurements

which begin at the pion production threshold, and extend to the highest W which is able

to be measured at the relevant kinematics. These inelastic measurements require a slightly

more complex treatment than an elastic measurement would.

2.3 Lepton and Hadron Tensors

The leptonic and hadronic tensors of the previous section encode the nonperturbative be-

havior of the electron and hadronic system involved in the scattering, respectively. What

we have defined so far can be considered a generic form used in unpolarized scattering. But

for polarized scattering in the inelastic regime, we will need to define both tensors a bit

differently. Since the leptonic tensor is a bit simpler, we will start by looking at the unpo-

larized version, which is averaged over the initial and final spin of the scattering electron.
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To average the T-Matrix we write [41]:

< |T |2 >=
1

2

∑
s,s′

|TLepton|2 (2.22)

For an unpolarized initial electron, we can adopt the normalization condition [41]:

∑
s=± 1

2

us(k)us(k) = γµkµ +me (2.23)

To average the unpolarized version of the lepton tensor of 2.16 we must take the trace of

the T-matrix, so using this normalization condition:

Lµν
U =

1

2
Tr

(
(γµkµ +me)γ

µ(γνk′
ν +me)γ

ν

)
(2.24)

Multiplying out these terms and performing the trace we find:

Lµν
U = 2

[
kµk′ν + k′µkν − gµν(k · k′ −m2

e)
]

(2.25)

In the case that the electron in question has an initial polarization, we will need to pick a

different normalization, yielding an extra term [1, 41]:

Lµν
P = 2

[
kµk′ν + k′µkν − gµν(k · k′ −m2

e) + iϵµναβsαqβ
]

(2.26)

Here ϵ is the Levi-Civita tensor, which enforces ϵ0123 = +1, qβ is the momentum of the

virtual photon, and sα is the lepton spin vector, which points along the spin quantization

vector z with magnitude sµ = uγµγ5u and sign determined by whether the electron helicity

is forward (along z) or backward (antiparallel to z). Note that the polarization dependent

term makes the lepton tensor asymmetric, but the asymmetric term cancels when averaged

over the initial spins.
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The lepton tensor characterizes the scattering electron part of the diagram in Fig 2.1.

However, we are far more interested in the inelastic behavior of the other part, since it

contains information on our proton target. This part is characterized by the hadronic tensor

of (2.17). This can be split into a symmetric unpolarized part and an antisymmetric polarized

part, much like the lepton tensor. We can first get the most general form of the unpolarized

part by expanding its previous form considering Lorentz and gauge invariance [41]:

WU
µν = W1(ν,Q

2)

(
qµqν
Q2

− gµν

)
+W2(ν,Q

2)
1

M2
p

(
pµ −

p · q
Q2

qµ

)(
pν −

p · q
Q2

qν

)
(2.27)

Here, W1 and W2 are inelastic unpolarized structure functions which will be discussed in the

next section. For now, as in the lepton tensor, we add an antisymmetric term to get the

polarized variant of the hadronic tensor [41]:

W P
µν = WU

µν + iϵµναβq
α

(
G1(ν,Q

2)MpS
β +G2(ν,Q

2)
1

Mp

(Sβp · q− pβS · q)
)

(2.28)

Where Sβ corresponds to the proton’s spin vector, similar to the electron’s in the prior

discussion. G1 and G2 are polarized structure functions which will be discussed fully in the

next section. To continue our understanding of an unpolarized part with additional terms

that represent the polarized physics, let us first contract the unpolarized leptonic tensor of

(2.25) and the unpolarized hadronic tensor of (2.27) to get a fully symmetric, unpolarized

result:

LµνWµν = 4W1(ν,Q
2)(k · k′) + 2W2(ν,Q

2)

[
2

M2
p

(p · k)(p · k′)− (k · k′)

]
(2.29)

In the lab reference frame, the proton is at rest, and the electron only has energy in the

direction of propagation along the z-axis. It scatters from the central axis by an angle θ along
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a vector with azimuthal angle ϕ. This allows us to write in full the relevant four-vectors [1]:

kµ = (E,k) = (E, 0, 0, E) (2.30)

k′
µ = (E ′,k′) = (E ′, E ′ sin θ cosϕ,E ′ sin θ sinϕ,E ′ cos θ) (2.31)

pµ = (Mp,p) = (Mp, 0, 0, 0) (2.32)

Plugging these definitions and (2.29) into our equation for the cross section in (2.21) we can

write our unpolarized cross section as:

d2σ

dE ′dΩ
=

α2E ′

4E3

(
2W1(ν,Q

2)
1

sin2 θ
2

+W2(ν,Q
2)
cos2 θ

2

sin4 θ
2

)
(2.33)

To simplify our understanding of this quantity, it is helpful to factor out the Mott cross

section, which describes scattering off of a simple point particle [5]:

(
dσ

dΩ

)
Mott

=
α2 cos2 θ

2

4E2 sin4 θ
2

E ′

E
(2.34)

d2σ

dE ′dΩ
=

(
dσ

dΩ

)
Mott

(
2W1(ν,Q

2) tan2 θ

2
+W2(ν,Q

2)

)
(2.35)

This allows us to interpret the structure functions as quantities which characterize the dif-

ference in behavior from a pointlike particle. If we add in the asymmetric terms from the

unpolarized lepton and hadron tensors of (2.26) and (2.28) to our contraction, we get several

additional terms in this cross section expansion:

d2σ

dE ′dΩ
=

(
dσ

dΩ

)
Mott

E2

Q2
tan2 θ

2
sin2 θ

2

(
2W1(ν,Q

2) tan2 θ

2
+W2(ν,Q

2)
1

tan2 θ
2

+

4MpG1(ν,Q
2)
[
(s · S) + 1

Q2
(s · q)(q · S)

]
+

4

Mp

G2(ν,Q
2)
[
(p · q)(s · S)− (S · q)(p · s)

])
(2.36)
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To simplify this, we will define the spin vectors as we did the others in the lab frame. The

electron’s spin vector s points along the initial momentum k and thus differs only by a factor

of the electron mass. The proton’s spin vector is situated at some angle β from the scattering

plane at an azimuthal angle of ρ:

sµ = (
E

me

, s) =
1

me

(E, 0, 0, E) (2.37)

Sµ = (0,S) = (0, sin β cos ρ, sin β sin ρ, cos β) (2.38)

Using these and our earlier four vector definitions we can write, making use a few trigono-

metric identities:

d2σ

dE ′dΩ
=

(
dσ

dΩ

)
Mott

E2

Q2
tan2 θ

2
sin2 θ

2

(
2W1(ν,Q

2) tan2 θ

2
+W2(ν,Q

2)
1

tan2 θ
2

+

4MpG1(ν,Q
2)
[
(E cos β + E ′ sin θ sin β cos(ϕ− ρ) + E ′ cos θ cos β

]
+

4G2(ν,Q
2)
[
2E sin θ sin β cos(ϕ− ρ)−Q2 cos β

]) (2.39)

Though this seems messy, this construction of the cross section will be our basic template for

extracting the structure functions, and will make significantly more sense with smart choices

of angle for the proton polarization vector Sµ.

2.4 Structure Functions

We have already identified four structure functions W1, W2, G1, and G2, though we have not

attempted to explain them properly. Before we try to do so, it is necessary to consider how

we can simplify the cross section above to extract the structure functions we care about.

Firstly, we consider the cross section where the electron has forward helicity, to one where

it has backward helicity. The latter will flip the sign of the latter two terms by inverting

the sign of sµ, so if we subtract one from the other we will cancel the unpolarized terms and
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double the magnitude of the polarized terms, leaving us with:

d2σ↑

dE ′dΩ
− d2σ↓

dE ′dΩ
=

(
dσ

dΩ

)
Mott

8E2

Q2
tan2 θ

2
sin2 θ

2
×(

MpG1(ν,Q
2)
[
(E cos β + E ′ sin θ sin β cos(ϕ− ρ) + E ′ cos θ cos β

]
+

G2(ν,Q
2)
[
2EE ′ sin θ sin β cos(ϕ− ρ)−Q2 cos β

])
(2.40)

Let us now consider the proton polarization. We will look at two specific cases, one where

the proton is polarized longitudinally, or in the same direction as k, in which case β = 0 or

π.

∆σ∥ =
d2σ↑⇑

dE ′dΩ
− d2σ↓⇑

dE ′dΩ
=

(
dσ

dΩ

)
Mott

4E2

Q2
tan2 θ

2
sin2 θ

2
×(

MpG1(ν,Q
2)
[
E + E ′ cos θ

]
−Q2G2(ν,Q

2)

) (2.41)

This is known as the longitudinal cross section difference. We can also define a transverse

cross section difference where β = π
2
or 3π

2
:

∆σ⊥ =
d2σ↑⇒

dE ′dΩ
− d2σ↓⇒

dE ′dΩ
=

(
dσ

dΩ

)
Mott

4E2

Q2
tan2 θ

2
sin2 θ

2
×

E ′ sin θ cos(ϕ− ρ)

(
MpG1(ν,Q

2) + 2EG2(ν,Q
2)

) (2.42)

Notably, these structure functions are dimensionful quantities. So, there is a convention

to redefine several dimensionless structure functions as a function of the Bjorken-x defined

above [41]:

F1(x,Q
2) = MpW1(ν,Q

2) (2.43)

F2(x,Q
2) = νW2(ν,Q

2) (2.44)

g1(x,Q
2) = νM2

pG1(ν,Q
2) (2.45)

g2(x,Q
2) = ν2MpG2(ν,Q

2) (2.46)
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We can define the angle difference ϕ − ρ as the out-of-plane polarization angle, the angle

between the polarization and scattering planes, θOoP . This gives us a final definition of our

polarized cross section differences:

∆σ∥ =
d2σ↑⇑

dE ′dΩ
− d2σ↓⇑

dE ′dΩ
=

(
dσ

dΩ

)
Mott

4E2

Q2
tan2 θ

2
sin2 θ

2
×

1

Mp

(
1

ν
g1(x,Q

2)
[
E + E ′ cos θ

]
− Q2

ν2
g2(x,Q

2)

) (2.47)

∆σ⊥ =
d2σ↑⇒

dE ′dΩ
− d2σ↓⇒

dE ′dΩ
=

(
dσ

dΩ

)
Mott

4E2

Q2
tan2 θ

2
sin2 θ

2
×

E ′

Mp

sin θ cos θOoP

(
1

ν
g1(x,Q

2) + 2
E

ν2
g2(x,Q

2)

) (2.48)

The former equation is dominated by the g1 term, while the latter is dominated by the g2

term. For this reason, we refer to g1 as a longitudinal structure function, which can be

measured with a longitudinally polarized target, and g2 as a transverse structure function,

which can be measured with a transverse polarized target. At this point we have two

equations and two unknowns, so a measurement of both polarized cross section differences

would let us solve for our structure functions g1 and g2. In practice, these are rarely both

measured at the same kinematics, so we will need to solve for them slightly differently, a

discussion which we will pick up in the Analysis chapter.

Let us now consider the meaning of these structure functions. It is clear from the equa-

tions above that g1 and g2 characterize the spin-dependent part of the scattering event which

was introduced by our asymmetric tensors, and that they each act as a type of scaling on

the basic Mott cross section. So, it is simplest to interpret that for a fixed momentum trans-

fer Q2, these structure functions represent the deviation of the proton’s internal spin from

point-like behavior, with measurements over the Bjorken-x at varying Q2 allowing us to map

out this spin structure over a range of distance scales.
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2.5 Moments and Sum Rules

The natural question now is how we can relate these structure functions back to theoretical

predictions of QCD. The structure functions themselves are difficult to calculate directly

from the known theory of the standard model because they encompass all possible unknown

states X for the final state of the hadronic system. Instead, we can investigate a class of

kinematically weighted integrals of the spin structure functions known as moments or sum

rules [1].

To handle the unknown states X in a way that we can calculate we can employ the

optical theorem [42]. The optical theorem states that the total scattering cross section is

proportional to the imaginary part of the forward scattering amplitude:

σtot =
4π

K
Im

(
f(0)

)
(2.49)

Here K is the virtual photon flux, the definition of which is solely based in convention.

Commonly, and in this analysis, we will employ the Hand convention [39]:

K = ν − Q2

2Mp

(2.50)

In Compton scattering, a high frequency photon scatters off of a stationary target. Specif-

ically, we are interested in virtual-virtual Compton scattering (VVCS), which concerns the

scattering of a virtual photon as both the initial and final state. By using completeness and

writing out the amplitude of Figure 2.3 in terms of the probability currents, much as we did

for the general form of the hadron tensor, we can write the Compton tensor as [43]:

T µν = iT
∫

eiqx < P, S|Jµ(x)Jν(0)|P, S > d4x (2.51)

We note that this is nearly identical to the generic form of our hadron tensor in (2.18), with
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the addition of a time-ordered product T which demands the chronological ordering of the

probability current operators. Consequently, we can relate the hadron and Compton tensors

with [39]:

Wµν =
1

2πMp

Im
(
Tµν

)
(2.52)

This means instead of the unknown states of Figure 2.1, we can investigate the amplitude

of the simpler diagram in Figure 2.3 to derive the measurable quantities of interest.

pµ

qµ qµ

pµ

p

γ∗

p

γ∗

Figure 2.3: Virtual-Virtual Compton Scattering Interaction

To begin, we can write down the decomposition of the VVCS forward scattering ampli-

tude, which takes the form [44]:

T = ϵ⃗′ · ϵ⃗fT + fL + iS⃗ · (⃗ϵ′ × ϵ⃗)fTT +−iS⃗ ·
[
(⃗ϵ′ − ϵ⃗)× q̂

]
fLT (2.53)

Here the cross section is expanded in terms of the four amplitudes fL,T,TT,LT which describe

the scattering amplitude of the photon’s longitudinal polarization states and transverse po-

larization states respectively, as well as the transverse-transverse and longitudinal-transverse

interference amplitudes. These interference amplitudes are produced by the interaction with

the proton’s spin, as without the additional spin vector the only nonvanishing terms would

be fT and fL. ϵ′ and ϵ represent the transverse polarization vectors of the virtual photon,

and q̂ represents the longitudinal polarization vector of the virtual photon. These amplitudes

19



are related by the optical theorem back to four partial virtual photon cross sections [44]:

Im{fL, fT , fTT , fLT} =
K

4π
{σL, σT , σTT , σLT} (2.54)

These virtual photon cross sections are related back to the structure functions of the previous

section by [44]:

{σL, σT , σTT , σLT} =
4π2α2

MpK
{F1,

Mp(1 +
Q2

ν2
)

Q2

ν

F2 − F1, g1 −
Q2

ν2
g2,

Q

ν
(g1 + g2)} (2.55)

Because understanding the imaginary part of the amplitude will be difficult, it will be better

to relate this back to the real part of the amplitude. We can do this by writing a dispersion

relation with the Cauchy integral formula [1]:

fi(ν,Q
2) =

2

π

∫ ∞

νpp

ν ′ Im
[
fi(ν,Q

2)
]

ν ′2 − ν2
dν ′ (2.56)

Here, νpp is the energy transfer of the pion production threshold discussed earlier. F1 and F2

are interesting for the insight they provide into the quark-gluon distribution of the nucleon,

but here we are interested in the polarized structure functions, so we will focus on the

interference amplitudes fLT and fTT . By plugging (2.54) into (2.56) we obtain:

fTT (ν,Q
2) =

1

2π2

∫ ∞

νpp

KνσTT (ν,Q
2)

ν ′2 − ν2
dν ′ (2.57)

fLT (ν,Q
2) =

1

2π2

∫ ∞

νpp

Kν ′σLT (ν,Q
2)

ν ′2 − ν2
dν ′ (2.58)

To study this integral, we perform a low-energy power series expansion on the real part of

the amplitude. For ν < νpp we obtain [44]:

Re fTT (ν,Q
2) =

2α

M2
p

IA(Q
2)ν + γ0(Q

2)ν3 +O(ν5)... (2.59)
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Re fLT (ν,Q
2) =

2α

M2
p

QILT (Q
2) +QδLT (Q

2)ν2 +O(ν4)... (2.60)

The terms here are described as moments of the spin structure functions, comparison to the

integral and the use of (2.55) yields a series of sum rules defining them. The first moment

in the fTT low-energy expansion (LEX) is:

IA(Q
2) =

2M2
p

Q2

∫ xpp

0

(
g1(x,Q

2)− 4M2x2

Q2
g2(x,Q

2)

)
dx (2.61)

This is known as the GDH Sum Rule. At the real photon point, Q2 = 0, the GDH Sum Rule

can be identified with the magnetic moment κ of the proton, such that:

IA(0) = −2π2ακ2

M2
p

(2.62)

The second term in fTT ’s expansion yields the generalized forward spin polarizability:

γ0(Q
2) =

16αM2
p

Q6

∫ xpp

0

x2

(
g1(x,Q

2)− 4M2x2

Q2
g2(x,Q

2)

)
dx (2.63)

As will be discussed later, this and other polarizabilities describe the nucleon’s response to

an external field, with spin polarizabilities correlating to a spin-dependent response. In both

IA and γ0, the integral is dominated by the g1 term due to the strong kinematic weighting

on the g2 term, and thus is measured primarily with longitudinally polarized nucleon data.

For the fLT expansion, the first term yields the moment:

ILT (Q
2) =

2M2
p

Q2

∫ xpp

0

(
g1(x,Q

2) + g2(x,Q
2)

)
dx (2.64)

While the second term gives us the longitudinal-transverse spin polarizability:

δLT (Q
2) =

16αM2
p

Q6

∫ xpp

0

x2

(
g1(x,Q

2) + g2(x,Q
2)

)
dx (2.65)
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Unlike our first two moments, g1 and g2 contribute on a similar scale to these integrals, so a

transverse measurement is vital to compute the moment. Further, it is worth noting that in

the second moments γ0 and δLT , the strong x2 weighting means that the part of the integral

closest to the pion production threshold will dominate, and a measurement that goes out

to x = 0 or W = ∞ is unnecessary. For the first moments it is necessary to calculate this

low-x, DIS contribution, but for the higher moments the integral is completely dominated

by the resonance region shown in Figure 2.2.

There are several other moments of interest for which this is not the case. These moments

are obtained by attempting to construct the VVCS amplitudes which correspond directly to

the structure functions, which is done by casting (2.66) into a covariant form [43]:

T = ϵ′µϵν

{(
− gµν +

qµqν

Q2

)
T1(ν,Q

2) +
1

p · q

(
pµ − p · q

Q2
qµ
)(

pν − p · q
Q2

qν
)
T2(ν,Q

2)

+
i

Mp

ϵµναβqαSβS1(ν,Q
2) +

i

M3
p

ϵµναβqα

(
p · qSβ − S · qpβ

)
S2(ν,Q

2)

(2.66)

This form introduces four covariant VVCS amplitudes, which are related to the previously

introduced VVCS amplitudes by:

T1(ν,Q
2) = fT (ν,Q

2) (2.67)

T2(ν,Q
2) =

νQ2

Mp(ν2 +Q2)

(
fT (ν,Q

2) + fL(ν,Q
2)
)

(2.68)

S1(ν,Q
2) =

νMp

ν2 +Q2

(
fTT (ν,Q

2) +
Q

ν
fLT (ν,Q

2)
)

(2.69)

S2(ν,Q
2) = −

M2
p

ν2 +Q2

(
fTT (ν,Q

2)− ν

Q
fLT (ν,Q

2)
)

(2.70)

If we employ our previous application of the optical theorem and take the imaginary part of
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these definitions, we can relate these amplitudes back to the structure functions:

ImT1(ν,Q
2) =

2π

Mp

F1(x,Q
2) (2.71)

ImT2(ν,Q
2) =

2π

ν
F2(x,Q

2) (2.72)

ImS1(ν,Q
2) =

2π

νM2
p

g1(x,Q
2) (2.73)

ImS2(ν,Q
2) =

2π

ν2Mp

g2(x,Q
2) (2.74)

Again, we will focus on the latter two amplitudes, as we can see they are directly related

to our spin-dependent structure functions. Writing a dispersion relation for each with the

Cauchy theorem:

S1(ν,Q
2) =

2

π

∫ ∞

νpp

ν ′ ImS1

ν ′2 − ν2
dν ′ (2.75)

S2(ν,Q
2) =

2

π

∫ ∞

νpp

ν ImS2

ν ′2 − ν2
dν ′ (2.76)

It will also be useful to write a dispersion relation for the amplitude νS2:

νS2(ν,Q
2) =

2

π

∫ ∞

νpp

ν ′ ImS2

ν ′2 − ν2
dν ′ (2.77)

For S1 we can perform a low-energy expansion just like we did for the other amplitudes:

ReS1(ν,Q
2) =

2α

Mp

Γ1(Q
2) +

[
2α

MpQ2

(
IA(Q

2)− Γ1(Q
2)
)
+MpδLT (Q

2)

]
ν2 +O(ν4)... (2.78)

Here we have several of the moments defined previously, as well as one new one. Using our

definitions of S1 in terms of the structure functions:

Γ1(Q
2) =

∫ 1

0

g1(x,Q
2)dx (2.79)

It is worth noting that this moment contains the full integral from x of 0 to 1, and thus
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requires a calculation of the elastic contribution. We can obtain a similar moment, and with

it an important sum rule, by subtracting (2.77) from (2.76) to obtain [43]:

Γ2(Q
2) =

∫ 1

0

g2(x,Q
2)dx = 0 (2.80)

This “Super-Convergence relation” is known as the Burkhardt-Cottingham sum rule, an

identity which has power in equating the elastic and inelastic parts of the integral, stating

that they ought to cancel each other for any value of Q2. Due to the lack of any kinematic

weighting, Γ1 and Γ2 require every part of the integral to be accounted for, including whatever

unmeasured low-x part exists.

One final set of moments is of interest to us, and can be produced by considering the full,

general form of the forward Compton scattering amplitude in (2.51). One way to obtain a

useful expansion of this integral is with the Operator Product Expansion (OPE) [45]. At

small distances, the OPE allows the following general expansion of two operators [1]:

lim
x→0

Oa(x)Ob(0) =
∑
k

Cabk(x)Ok(0) (2.81)

Taking the Fourier transform of this equation yields:

lim
x→0

∫
eiqxOa(x)Ob(0)d

4x = lim
Q2→∞

∑
k

Cabk(q)Ok(0) (2.82)

This allows us to apply the OPE directly to our forward Compton amplitude, but as we can

see, the method becomes valid only in the high Q2 regime. This yields a Compton amplitude

in the high Q2 limit of:

T µν =
∑
k

Cµνk(Q
2)Jk(0) (2.83)

The exercise of calculating the Wilson coefficients Cabk(q) is carried out in [41], and yields
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the general form:

Cµνk ≈
(
1

x

)n(
Mp√
Q2

)τ−2

(2.84)

Here n is defined as the spin of the relevant operator, and with D as dimension of the

operator, we additionally define the twist τ as τ = D − n. Twist is a spin-dependent

quantity which helps to quantify the order in Q2 that a particular effect contributes for a

given interaction [46]. At high Q2, the leading twist is twist-2, but at lower Q2, higher

twist terms can contribute. If we expand up to twist-3, we can write our forward Compton

amplitude expansion as a function of the matrix elements an and dn, the twist-2 and twist-3

local operators, such that:

T µν = Ca
n(Q

0)an(Q
2) + Cd

n(Q
1)dn(Q

2) +O(Q2) + ...

≈
(
1

x

)n

an(Q
2) +

(
1

x

)n
Mp√
Q2

dn(Q
2)

(2.85)

We can extract a relation between these matrix elements and our structure functions by

writing a dispersion relation, an exercise performed in [46]. The result gives us the general

form:

∫ 1

0

xng1(x,Q
2) =

1

4
an(Q

2);n = 0, 2, 4 (2.86)

∫ 1

0

xng2(x,Q
2) =

1

4

n

n+ 1

(
dn − an

)
;n = 2, 4 (2.87)

The n=0 case of the second relation is ignored because the OPE assumes implicitly that the

B.C. sum rule previously introduced holds. Of interest to us is the matrix element d2. For

the n=2 case, we can solve the previous two equations to obtain:

d2(Q
2) =

∫ 1

0

x2

(
2g1(x,Q

2) + 3g2(x,Q
2)

)
dx (2.88)

At high Q2, this matrix element is identified as a color polarizability, which quantifies a
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color-dependent response to an external field. At lower Q2, we can still employ this sum rule

to look at the inelastic part:

d2(Q
2) =

∫ xpp

0

x2

(
2g1(x,Q

2) + 3g2(x,Q
2)

)
dx (2.89)

As the elastic part does not contribute to this moment, at low Q2 we can still view this

as a “pure polarizability” [25]. Although the color polarizability definition fails and we

can no longer identify d2 with d2, the low Q2 regime of d2 contains information about the

quark-gluon correlations of the nucleon.

2.6 Chiral Perturbation Theory

The moments introduced in the last section show various ways that we can calculate mean-

ingful quantities from our structure functions, but the question remains how we can compare

these quantities to modern theories of Quantum Chromodynamics (QCD). QCD is the theory

of the strong nuclear force, and unlike the comparatively simple coupling of the electromag-

netic force, it has been observed to couple quarks and gluons more strongly together in

response to attempts to extract them from the nucleon, a phenomenon known as confine-

ment. In contrast, at small length scales they are bound very weakly in what is known as

‘asymptotic freedom’ [47]. We know that our Q2 controls what length scale we are probing,

which means that at small Q2, the strong force becomes very powerful, as shown in Figure

2.4.

At this length scale, rather than characterizing the dynamics of individual quarks and

gluons, QCD handles how they are bound together into a larger hadron. In the realm of

asymptotic freedom, where the strong force is weaker, QCD is treated perturbatively, but at

low Q2 such treatments become impossible. As it is currently impossible to find an analytical

solution at this energy scale, it is most useful to examine low Q2 QCD with an effective field

theory. In quantum field theory, an effective field theory is a subset of a larger theory which
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Figure 2.4: Asymptotic freedom and confinement. Adapted from a figure in [6]

details its behavior in a specific energy regime. Low energy effective theories allow for a

perturbative approach in terms of the momentum, instead of the coupling constant as is

used for the full theory of QCD at high energy. There are a number of effective theories

which present predictions of strong force behavior at low Q2, such as Lattice QCD, but so

far the most successful at very low energies is known as Chiral Perturbation Theory, or χPT.

To begin, let us consider QCD as a gauge theory, meaning that it is invariant under local

transformations at a given energy scale. QCD is based on the color gauge group SU(3). In

other words, the special unitary group of rank 3 parameterizes many of the symmetries of

the strong force. From the gauge attributes of SU(3) it is possible to obtain the general

QCD Lagrangian [47]:

LQCD =
∑

f=u,d,s,c,t,b

qf (iγ
µDµ −mf )qf −

1

4
GµνGµν (2.90)

Here we sum over the six known quark flavors, qf and qf are the quark fields, Gµν is the gluon

tensor, mf is the mass of the relevant quark flavor, and Dµ is the covariant derivative. The
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heavier quarks (charm, top, and bottom) occur much less frequently so their contributions

may be largely disregarded. For the remaining quarks (up, down, strange), their mass

mf ≪ Mp, so it may be a natural assumption to treat them as massless.

qf are color triplets based on the three possible color charges, but we must also consider

left and right handed chirality of the quarks. For massive particles, chirality refers to the

handedness of the group representation, but for massless particles we can easily understand

it as being the same as the helicity. The helicity of a particle refers to whether its spin is

aligned or antialigned with its momentum, as shown in figure 2.5.

Figure 2.5: Definitions of handedness in helicity. Adapted from a figure in [7]

We define the chiral quark fields in terms of a left or right-handed projection operator [47]:

PL,R =
1

2
(1∓ γ5) (2.91)

qL,Rf = PL,Rqf = PL,R


qredf

qgreenf

qbluef

 (2.92)

qL,Rf = qfP
L,R =


qantiredf

qantigreenf

qantibluef

PL,R (2.93)

In the chiral limit of mf = 0, the left and right handed quark interaction term vanishes.
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Disregarding the mass term and plugging these into our general QCD Lagrangian, we obtain:

L0
QCD =

∑
f=u,d,s

qLf (iγ
µDµ)q

L
f + qRf (iγ

µDµ)q
R
f − 1

4
GµνGµν

=
∑

f=u,d,s

qf i(γ
µDµ + γ5γ

µDµγ5)qf −
1

4
GµνGµν

(2.94)

This chiral Lagrangian is said to have a global U(3)L×U(3)R symmetry [47]. The progression

of an effective field theory is to take a symmetric or analytically solvable term and add terms

that are functions of a small parameter to reach the full Lagrangian through perturbative

effects. Here, that is done by considering the missing part of the Lagrangian, namely, the

mass term:

LI
QCD = −

∑
f=u,d,s

qLfmfq
R
f + qRf mfq

L
f (2.95)

We can see that this part of the Lagrangian contains an explicit breaking of the chiral

symmetry in L0
QCD. Because the quarks are weakly interacting at low energy, in a low

energy effective theory it is possible to treat this term perturbatively with a low energy

expansion. This allows us to consider the total effective χPT Lagrangian as [48]:

LχPT = L0
QCD + LI

QCD = L0
QCD + L2 + L4 + ... (2.96)

Where the index on L2, etc refers to the low energy dimension in terms of derivatives or

powers of the quark mass. Each of these terms can be written explicitly by considering

all possible diagrams of a given dimension, they are constructed by ordering diagrams in

powers of momentum. In this χPT Lagrangian, corrections are expanded in terms of pion

loops, whereas in the full QCD Lagrangian, quark and gluon loops are used explicitly. At

dimension 2, the tree level diagrams are of order Q2 while the one loop corrections are of

order Q4, at dimension 4 (L4) the tree level diagrams are order Q4 and so on. This means

that to consider a full Lagrangian up to order Q4 we must include tree level and one-loop
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corrections of L2, and tree level diagrams of L4.

To expand these terms in orders of pion loops, the order in Q2 also corresponds to the

included order of the pion mass, mπ. The effective Lagrangian, and all quantities derived

from it, is constructed by ordering the result in powers of the pion mass. The specific way

in which this ‘power-counting’ is done is an important point, and one which may have an

effect on the final calculation, as assumptions must be made to handle the inclusion of the

∆-resonance. One such method which is important here is the ϵ-counting scheme, where

it is assumed that the pion mass mπ is of similar scale to the difference between the mass

of the ∆-resonance, M∆ − Mp = ∆ ≈ mπ. This allows ∆ and mπ to be expanded to the

same order [26]. The other method which will be discussed in the following chapters is the

δ-counting method, in which a different assumption is made; here it is assumed that the

ratio mπ

∆
is of similar scale to the ratio ∆

Mp
, and consequently used to simplify and expand

the symmetry breaking terms to like powers [25].

Once an effective Lagrangian is obtained, it can be used to obtain the equations of

motion, and consequently, calculate the VVCS amplitudes of the previous section by varying

the action such that δZ = 0:

Z =

∫
d4xLχPT (2.97)

The calculation to obtain the Lagrangian expansion and compute the VVCS amplitudes

is an elaborate one far beyond the scope of this thesis, but it is core to understand that

differences such as the choice of power counting cause the cutting-edge chiral perturbation

theory calculations to differ starkly in their predictions for the proton’s spin structure func-

tion moments. These differences shall be discussed further in the analysis chapter, and the

full details of these calculations can be found in [25, 26]. But the fact that such differences

exist further illustrates the importance of experimental measurements in the region where

χPT is applicable.
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CHAPTER 3

Existing Data

Before we begin to discuss the particular measurement which is the topic of this thesis, let us

first consider existing relevant measurements of the structure functions and their moments.

Both structure functions for the neutron have been measured with high precision, as discussed

in chapter 1, relevant for their revealing of the δLT puzzle in Figure 1.2. Jefferson Lab E94010,

published in 2004, ran down to a minimum Q2 of 0.1 GeV2, and showed a disagreement with

the predictions of χPT at the time [3]. The cutting edge χPT calculations[25, 26] have since

remedied this discrepancy, but are still in tension with the recently published Small-Angle

GDH neutron data from Jefferson Lab [4], which revealed a new disagreement at a lower

Q2 of 0.05 GeV2. At higher Q2, there is even more neutron structure function data of less

relevancy to this thesis.

For the proton, the earliest structure function measurements in the late 1980s and early

1990s focused on the DIS region and were collected at the Stanford Linear Accelerator

(SLAC) and the European Organization for Nuclear Research (CERN). These early mea-

surements covered a broad range from medium to high Q2 but were largely focused at higher

Q2. More recently, a number of experiments at Jefferson Lab (JLab) have delved to lower

Q2 and higher x, investigating the resonance region. This list of experiments was origi-

nally compiled by Ryan Zielinski in his thesis [1] and has been updated for the state of the

field in 2022. For reference, χPT is valid below a Q2 of around 0.3. The complete list of

proton structure function data is summarized and organized by average Q2 in Table 3.1.

Though many of these experiments have used various methods to compute both g1 and g2,
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for the purpose of this table, an experiment which measured a longitudinally polarized tar-

get is marked having measured g1, and one which measured a transverse-polarized target is

marked as having measured g2.

Experiment Facility Avg. Q2 (GeV2) xbj Range g1 g2

COMPASS[49] CERN 15.7 0.004-0.7 ✓
EMC[50] CERN 10.7 0.01-0.7 ✓
E155[51] SLAC 10.0 0.02-0.8 ✓
E143[52] SLAC 5.0 0.03-0.8 ✓ ✓
SANE[24] JLab 4.5 0.3-0.8 ✓
SMC[53] CERN 4.0 0.003-0.7 ✓ ✓
E155x[54] SLAC 4.0 0.02-0.8 ✓

HERMES[55] HERA 3.0 0.004-0.9 ✓ ✓
EG1b[8] JLab 2.1 0.02-0.8 ✓
RSS[23] JLab 1.3 0.03-0.8 ✓ ✓
EG4[9] JLab 0.4 0.01-0.9 ✓
g2p[21] JLab 0.07 0.01-0.8 ✓ ✓

Table 3.1: Existing proton structure function data as of August 2022

The first spin structure function measurement for the proton was an observation of g1 by

the European Muon Collaboration (EMC) in 1988 [50]. This measurement disagreed with

the prediction of the Ellis-Jaffe sum rule, and showed that the proton’s valence quarks carry

only a small fraction of its spin [56]. Rather than the electron scattering described so far,

this measurement was performed with polarized muon-proton scattering. Additional g1 and

g2 measurements were obtained at CERN with polarized muon scattering in the SMC [53]

and COMPASS [49] experiments. Due to the high energy of the CERN beam, all of these

experiments operated at a relatively high Q2.

Also at high to medium Q2 are several experiments from SLAC in the 1990s which

helped to provide clarity on the structure functions through electron-proton scattering.

SLAC E143 [52] measured both structure functions and found at high Q2 that the g2 results

had good consistency with the leading twist predictions of the Wandzura-Wilczek relations.

SLAC E155 [51] and E155x [54] built on these results by measuring the structure functions

with high precision, with E155x performing one of the highest precision g2 measurements to
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date. These experiments found good agreement with a number of sum rules as well as the

gWW
2 predictions.

Starting in the early 2000s, Jefferson Lab began to produce a number of modern structure

functions results at much lower average Q2, making use of the high intensity CEBAF electron

beam. The RSS [23, 39] experiment performed an extraction of both structure functions

in the resonance region for both the proton and neutron from a scattering measurement

of Helium-3, a nucleus with 2 protons and 1 neutron. The proton measurement showed

promising agreement with predictions for the Burkhardt-Cottingham and Gerasimov-Drell-

Hearn sum rules, while the neutron result revealed the surprising result discussed in chapter

one, which showed a deviation from the predictions of chiral perturbation theory. Another

more recent measurement of g2 comes from the HERMES experiment with HERA at DESY.

HERMES integrated both polarized electron and positron scattering to measure g2, focused

in the DIS regime [55].

At higher Q2, the SANE experiment [24], which recently finished analysis, also measured

several kinematic points of g2, finding a potentially surprising result for one of its moments,

the d2 twist-3 operator. In Hall B, the EG1b experiment likewise measured the g1 structure

function in the resonance region at medium Q2 and extracted the moments dominated by it.

This experiment is notable as it is largely the basis for the CLAS model discussed in later

chapters [8].

Most recently, a program at Jefferson Lab encompassing several experiments has worked

to study the low-Q2 behavior of the nucleons. The Small-Angle GDH experiment, discussed

in the first chapter, performed a low Q2 measurement of the neutron structure functions and

moments which revealed the original δLT puzzle is alive and well with a new discrepancy

from χPT [4]. The reason for the neutron’s disagreement is still unknown, as the newest

calculations agree with the earlier E94-010 neutron data but still disagree with the small-

angle GDH results at even lower Q2.

The EG4 experiment [9] performed a low Q2 measurement of the g1 structure function of
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the proton with longitudinal scattering data, in which they directly extracted the polarized

cross section differences instead of relying on the diluted asymmetry method of many prior

experiments. The results show good agreement with calculations of χPT for several moments,

but also reveal the current lack of precision in the cutting-edge calculations and the need to

improve the uncertainty associated with each.

Figure 3.1: The g1 structure function of the proton measured by the EG4 experiment. The
data (red circles) are compared to the CLAS Hall B phenomenological model [8]. The
solid and hatched bands refer to the systematic uncertainty of the data and CLAS model
parametrization respectively. The black crosses indicate earlier data from the EG1b [8]
experiment. Reproduced from [9].

Finally, the experiment which is the subject of this thesis, the E08-027 (or g2p) experi-

ment ran in the spring of 2012 in Hall A at Jefferson Lab. The aim of this experiment was to

fill out the experimental program discussed above with a very low Q2 measurement of the g2

structure function of the proton. This required transverse polarized target scattering data,

which introduced a number of experimental challenges. We have recently finished analysis

on this experiment and its first results were released in the fall of 2022 [21].
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CHAPTER 4

Experimental Setup

Figure 4.1: The experimental setup of the g2p Experiment. Reproduced from Ryan Zielin-
ski’s thesis [1]

The g2p experiment was an unprecedented effort in Hall A at Jefferson Lab to measure

the g2 structure function of the proton at a very low Q2 sufficient to test chiral perturbation

theory predictions. The experiment used the inclusive electron scattering described in Chap-

ter 2, with polarized electrons scattering off a spin-polarized target before being measured in

the Hall A high resolution spectrometers (HRS). The experimental target was a cell of frozen

ammonia (NH3) beads polarized with the Dynamic Nuclear Polarization (DNP) process.

Data were taken over two target magnetic fields of 2.5T and 5T, and four beam energies

ranging from 1.1 - 3.3 GeV. The target magnetic field was transverse to the electron beam
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for most settings, but longitudinal for one. This gave the experiment a total of six distinct

kinematic settings, five transverse and one longitudinal. The lowest setting, at a field of 2.5T

and a beam energy of 1.1 GeV, was taken primarily for the purpose of radiative corrections

and is not otherwise used in the final results.

I was unfortunately not personally involved in the running of the experiment, but rather

became involved in the intensive analysis process starting in 2015. However, I was given the

opportunity to perform experimental work on a polarized target setup very similar to that

discussed here, which is described in Chapter 5. Much of the information in this chapter

comes originally from my collaborators who worked on the experiment directly in 2012, Ryan

Zielinski [1], Karl Slifer [35], Jian-Ping Chen [35], Toby Badman [57], and Chao Gu [12].

The overall experimental setup is shown in Figure 4.1, with each component discussed in the

following sections.

4.1 Electron Beam

Figure 4.2: The Jefferson Lab Electron Accelerator. Reproduced from [10]

At Jefferson Lab, experiments are performed with a high intensity electron beam lin-

ear accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF).
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Currently the beam energy has a maximum of 12 GeV, but at the time that g2p ran, the

maximum energy was 6 GeV. The beam current can be up to 200 µA, but was limited to 50

nA for this experiment to prevent depolarization of the target.

Polarized electrons are initially generated by photoemission from a phosphorous-doped

Gallium Arsenide cathode (GaAsP), which is stimulated with a circularly polarized laser

at a frequency of 860 nm, the bandgap energy of the GaAs crystal [11]. In pure, undoped

Gallium Arsenide, this photoelectric stimulation introduces a degeneracy in the valence band

states, exciting electrons out of the states P1/2 and P3/2. Three electrons are promoted to

one spin direction from the P3/2 state for every 1 promoted from P1/2 to the other spin state,

yielding a net 50% polarization. The direction of this polarization is based on whether the

polarized laser has left-handed helicity (σ−) or right-handed helicity (σ+). This effect is

shown in Figure 4.3a.

(a) Regular GaAs Cathode (b) Strained GaAsP Cathode

Figure 4.3: The polarized electron generation technique. Reproduced from [11].

The introduction of the phosphorous doping causes a mechanical strain on the cathode,

lifting the degeneracy and causing the bandgap from the P1/2 state to be larger than that

from the P3/2 state. This means that light tuned to the bandgap of the latter state can

theoretically promote 100% of electrons to the desired spin state, again based on the helicity

of the stimulating laser, as shown in Figure 4.3b. In the Jefferson Lab source, a superlattice

structure containing alternating layers of GaAs and GaAsP is used to create electrons with

both a high polarization and high intensity. This routinely creates a polarization of around
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85% [11].

The direction of this polarization can be flipped from positive to negative then by chang-

ing the helicity of the stimulating laser. This is done with a voltage-controlled wave plate,

when the sign of the voltage applied to this plate is flipped the helicity of a photon passing

through the plate can also be flipped. This voltage is flipped in a pseudo-random fashion at

a rate of 960.02 Hz, limiting time-dependent systematic uncertainties by frequently chang-

ing the direction of polarization. The beam helicity can also be flipped with an insertable

half-wave plate, which was performed every few hours during the experiment to study and

minimize helicity-dependent systematics [1].

The electrons generated by the cathode are pulled through an injector by an applied bias

voltage, which gives the electrons an initial energy of 45 MeV [10]. These injected electrons

then enter the paired linear accelerators shown in Figure 4.2. Each linear accelerator consists

of 20 cryomodules, units which consist of 8 superconducting niobium cavities each. These

cavities are kept cooled to a temperature of 2K and powered to create an internal RF field,

which accelerates the electrons as they pass through, with each cavity achieving an average

gradient of 7 MeV/m. After their trip through the first linear accelerator, electrons achieve

an energy of around 400 MeV, before entering a recirculating arc and being transferred to a

second, identical linear accelerator. From here, the electrons can either be distributed to the

experimental halls A, B, and C, or sent back to the first linear accelerator to achieve higher

energies. By controlling the number of loops, it is possible to control the beam energy which

reaches the hall [10].

The beam energy is measured by observing the bend angle through the recirculation arc,

in what is known as the “Arc Method” [12]. In principle, the momentum of the electrons

traveling through a magnetic field is directly related to the bend angle of the electrons and

the strength of the magnetic field:

E = kc

∫
B⃗ × d⃗l

θ
(4.1)
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Where kc = 0.299792 GeV·rad·T·m corresponds to the speed of light, θ is the measured

deflection as the electrons travel through the recirculation arc, and the integral runs over the

measured magnetic fields of the dipoles in the arc [12]. For the g2p experiment, a total of four

different beam energies were used: 1.1 GeV, 1.7 GeV, 2.2 GeV, and 3.3 GeV. These differing

beam energies combined with the direction and magnitude of the target field generate the

different kinematic settings of the experiment.

4.2 Beam Current Monitors (BCMs)

Once the beam enters the hall, the first component in the experimental setup is the Beam

Current Monitors (BCMs) used to measure the incident flux of electrons. The BCMs are

located 23 m upstream of the target, and consist of a pair of stainless steel, cylindrical TM010

mode waveguides tuned to the frequency of the beam, 1497 MHz [1, 12]. A receiver antenna

inside each cavity is excited by the passing electrons, emitting a signal proportional to the

beam current, or total flux of electrons flowing through the waveguide.

Traditionally this signal is processed with a RMS-to-DC converter, but the previously

used receiver did not work with the low beam current necessary for the g2p experiment.

Instead, a new receiver was designed by the Jefferson Lab instrumentation group specifically

for the experiment [12]. The new receiver employed an analog part, which used several

analog amplifiers and filters to boost the strength of the signal, converting it from a 1497

MHz radiofrequency (RF) signal to a 45 MHz intermediate frequency (IF) signal. The system

then uses an Analog-Digital-Converter (ADC) to digitize the signal and further boost the

Signal-to-Noise ratio by using a digital filter tuned to cut off at 10.4 kHz. Once the signal

has been fully processed, it is converted back to an analog 0-10V DC signal and sent to the

Hall A Data Acquisition (DAQ) system [1].

To calibrate the BCMs, a tungsten calorimeter was employed to measure the effective

current based on heating effects of the beam [58]. A tungsten slug is placed in the path of

the beam, absorbing the full beam current and heating as a result. The number of electrons
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Ne to hit the slug is obtained with:

Ne =
Kw∆T

E
(4.2)

Where Kw = 8555.5 J/K is the specific heat capacity of the tungsten, ∆T is the temperature

change of the slug, and E is the beam energy measured with the arc method before entering

the hall. The scaling factor on the signal conversion of the BCMs was fixed to normalize the

BCM measured current to that obtained with the tungsten calorimeter [1, 12].

By performing the current measurement with two independent cavities, it is possible to

estimate the uncertainty of the BCM measurement by comparing the difference between the

measurement of the upstream and downstream BCM. For a vast majority of the runs, the

difference between the two BCMs was less than 0.7% [12].

4.3 Fast and Slow Raster

After passing through the BCMs, the beam encounters a series of beam rasters. As was

mentioned earlier, it was necessary to limit the beam current to 50 nA to prevent depo-

larization of the target, as the high intensity of of the Jefferson Lab beam would quickly

destroy the spin polarization of the target and cause radiation damage to the material. On

top of this current limiting, it is necessary to sweep the beam around the target so as to

avoid concentrating it on a single spot for too long, ensuring the target can maintain its

polarization and avoiding radiation effects.

The fast raster increases the initial 200 µm beam to a 4mm × 4mm square profile. This

is a standard piece of Hall A equipment, and employs two perpendicular dipole magnets to

move the beam. Both dipoles are driven by the same 25 kHz triangle wave current, sweeping

out the square area shown in Figure 4.4a.

The target cell for the g2p experiment however was a much larger cylinder with a diameter

of 25 mm, requiring an additional raster to sweep out the full area of the target. A slow
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(a) Fast Raster (b) Slow Raster

Figure 4.4: Raster swept beam profiles. Plots are a function of current in arbitrary units.
Reproduced from [1]

raster was added specially for the experiment, consisting of a second pair of dipoles and

sweeping out the area shown in Figure 4.4b. However, to sweep out the circular profile of

the target cell, a simple triangle wave could not be used as the driving current of the dipole

magnets. Instead, the x̂ and ŷ dipoles were driven by a dual channel function generator,

with respective forms of [12]:

Ix(t) = Ax

√
t sin(ωt) (4.3)

Iy(t) = Ay

√
t+ t0 cos(ωt) (4.4)

Here Ax and Ay are the amplitudes of the respective signals and t represents the time-based

amplitude modulation. The frequency ω of the sin wave is equal to 99.412 Hz. This pattern

allows the beam to sweep out a uniform 2.5 cm circular raster pattern to match the target

cell.

4.4 Møller Polarimeter

The polarization of the electron beam was measured using a Møller Polarimeter, which

employs the Møller process of electron-electron (e− + e− → e− + e−) scattering to measure

the beam polarization. The incident electrons scatter off polarized atomic electrons in a
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magnetized iron and copper foil, and are focused through three quadrupole magnets used

to set the acceptance and one dipole magnet used to select for the electron momentum [1].

Scattered electrons are detected by a lead-glass calorimeter.

Figure 4.5: Møller Polarimeter Schematic. (a) Side View. (b) Top View. Reproduced from
[10]

We can write the Møller cross section as a function of the beam polarization Pb and the

target polarization Pt [10]:

σMøller = σ0

[ ∑
i,j=x,y,z

P b
i AijP

t
j

]
(4.5)

Where Aij represents the asymmetry components and σ0 is the unpolarized cross section.

With the z-axis along the direction of the electron beam and the y-axis perpendicular to the

scattering plane, we can write the longitudinal and transverse asymmetries as [10]:

Azz =
sin2 θCM

(
7 + cos2 θCM

)(
3 + cos2 θCM

)2 (4.6)
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Axx = −Ayy = − sin4 θCM(
3 + cos2 θCM

)2 (4.7)

Here θCM is the center of mass scattering angle for the Møller interaction. Azz is our

component of interest, as it tracks the longitudinal polarization. There is some transverse

polarization, but it is small and can be corrected for by averaging one transverse direction

with the other [12].

A schematic of the polarimeter is available in Figure 4.5. To measure the polarization,

an asymmetry is measured at two center-of-mass angles of +20◦ and -20◦, the asymmetry

between these two angles is averaged to cancel the transverse polarization effects. With the

asymmetry A quantifying the difference between left (N+) and right (N−) handed helicity

electrons counts, we can write the beam polarization as:

Pb =
A

Pt cos θt < Azz >
=

1

Pt cos θt < Azz >

N+ −N−

N+ +N− (4.8)

The average Azz is calculated with a Monte-Carlo simulation, and the target polarization Pt

and target scattering angle θt are extracted from the polarized target setup as described in

the following sections. Nine measurements of the beam polarization were taken throughout

the experiment, as is shown in Table 4.1 [1]:

Date Pb (%) Stat. Error (%) Syst. Error (%)

03/03/2012 79.91 0.2 1.7
03/30/2012 80.43 0.46 1.7
03/30/2012 79.89 0.58 1.7
04/10/2012 88.52 0.3 1.7
04/23/2012 89.72 0.29 1.7
05/04/2012 83.47 0.57 1.7
05/04/2012 81.82 0.59 1.7
05/04/2012 80.40 0.45 1.7
05/15/2012 83.59 0.31 1.7

Table 4.1: Electron Beam Polarization for the E08-027 Experiment
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4.5 Chicane Magnets

One of the most major experimental difficulties in the experiment was the beam deflection

caused by the polarized target. To measure g2, a transverse polarization is needed, and

consequently, a transverse magnetic field which can cause a severe bending, especially at

low beam energies. To compensate for this, a pair of chicane magnets were used ahead of

the beam reaching the target, to pre-bend the beam and compensate for the deflection of

the target field such that the beam strikes the center of the target as intended. The FZ1

dipole magnet, located 5.92 m before the target, bends the beam downwards out of its initial

straight path [12]. The FZ2 magnet then bends the beam back up 2.66 m before the target

field [1]. The FZ2 magnet was mounted on a hydraulic support which could be used to

move it up and down for optimization. The operation of the chicane magnets is shown in

Figure 4.6.

Figure 4.6: Chicane magnet configuration for the g2p experiment. Reproduced from [1].

This configuration is only necessary for the transverse settings, for the longitudinally

polarized setting the field is along the direction of the beam and subsequently does not

deflect it significantly. The chicanes are operated in a ’straight-through’ configuration for

this setting [1].

The chicane configurations for each transverse momentum setting are shown in Table 4.2.

θin and θout represent the angle of the beam when entering and leaving the target field, while

θtarget is the angle of the beam when it strikes the target. For the 2.5T settings, the chicanes

were calibrated to strike the target at an angle and leave along the normal beam path. For

the 5T settings, the bending was significant enough that it was impossible to reach the main
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hall beam dump, so instead the configurations cause the beam to strike the target straight-on

and then deflect into a local beam dump.

E (GeV) Bt (T) θin θtarget θout

1.16 2.5 11.96◦ 5.98◦ 0.0◦

1.72 2.5 8.06◦ 4.03◦ 0.0◦

2.25 2.5 6.09◦ 3.05◦ 0.0◦

2.25 5.0 6.09◦ 0.0◦ -6.09◦

3.35 5.0 4.09◦ 0.0◦ -4.09◦

Table 4.2: Chicane configurations for each transverse kinematic setting. Values reproduced
from [1].

4.6 Beam Position Monitors (BPMs)

The Beam Position Monitors (BPM) are used to properly determine the beam’s position and

angle after the deflection from the chicane magnets. The beam passes through a cavity which

contains four antennas similar to the one used in the BCM. These antennas are open-ended

and lie coaxial to the beam, and are excited by the passage of the beam, stimulating a signal

proportional to the distance of the beam from that particular antenna. By using these four

antennas at right angles around the cavity, the beam angle and position can be measured,

as shown in Figure 4.7.

Figure 4.7: Beam position monitor cavity from the side (left) and front (right). Reproduced
from [12].
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As with the BCM receiver, the low current necessary for E08-027 necessitated a new

BPM cavity designed by the Jefferson Lab instrumentation group [12]. These BPM cavities

were calibrated with the use of a superharp, shown in Figure 4.8. One of these superharps

was inserted between the two BPM cavities, while the other was placed directly before the

chicane magnets. These superharps contain three 50 µm wires angled at -45◦, 0◦, and 45◦

respectively. When these wires are passed through the beam by a motor control on the harp,

they produce a shower of radiation measured in nearby photomultiplier tubes (PMTs). This

radiation can be used to calculate an absolute measurement of the beam position and angle,

which is used to calibrate the BPM cavities.

Figure 4.8: Superharp wire scanner used to calibrate the BPMs. Reproduced from [12].

4.7 Polarized Target

The polarized target is the central feature of the g2p experiment, being necessary to produce

the structure functions introduced in Chapter 2. The target was a spin polarized solid am-

monia target, doped with irradiation and polarization enhanced with the Dynamic Nuclear

Polarization (DNP) process. The overall experimental setup is shown in Figure 4.9.

The target itself consists of solid ammonia (NH3) beads, contained within a cup made out

of Kel-F plastic, which is used primarily for its absence of free protons so as not to contribute

any background signal. Ammonia is an ideal target material in this case because it has a

short time-constant, allowing maximum polarization in a relatively short amount of time,

and because it is relatively durable against the depolarizing effect of the electron beam. The

target ammonia is frozen initially using liquid nitrogen, (LN2) and then pre-irradiated at a

46



Figure 4.9: Polarized target for the g2p experiment. Reproduced from [13].

linear accelerator at the National Institute of Standards and Technology (NIST) [13]. This

irradiation produces an excess of paramagnetic centers in the ammonia, which is necessary for

the polarization enhancement process. The target is sealed off with thin aluminum end-caps

to hold the material in place.

Initial polarization is created by cooling the target to 4 K by submerging it in a bath of

Liquid Helium (LHe), and applying a strong magnetic field with a superconducting magnet.

The superconducting magnet is a split-pair Helmholtz configuration coil, to allow the beam

to pass unimpeded through it, and is composed of niobium-titanium wire, which becomes

superconducting below 10 K and is also cooled to 4 K with LHe. For this experiment, the

magnet was run at strengths of 2.5 and 5.0 T, and was able to be swapped between transverse
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and longitudinal polarization by way of a rotating vacuum seal beneath the coils.

Due to the strong magnetic field and cold temperature, magnetically interacting particles

in the target align themselves with the direction of the magnetic field. The Zeeman Effect

introduces a spin-dependent energy level splitting for these target particles, dividing the spin-

1
2
protons and electrons in the target into spin up (↑) and spin down (↓) states, designating

particles which are aligned or anti-aligned with the B-field. The vector polarization of these

target particles is defined as the fraction of nuclei which are spin-polarized in a particular

direction [14]:

P 1
2
=

N↑ −N↓

N↑ +N↓ (4.9)

Where N↑ and N↓ are the number of nuclei aligned or anti-aligned with the magnetic field.

The polarization induced by the magnetic field alone can be determined at thermal equilib-

rium through the use of Boltzmann statistics to be:

P TE
1
2

= tanh

(
µB

kBT

)
(4.10)

Where µ is the magnetic moment of the relevant particle, kB is the Boltzmann constant, B is

the magnetic field, and T is the temperature. The electron has a small mass and consequently,

a large magnetic moment of 9.3e-24 J/T, so at 5 T and 4 K, we get a very large electron spin

polarization exceeding 99%. The proton, with its much smaller magnetic moment of 1.4e-26

J/T, does not polarize nearly so easily, so we only get a proton polarization of around 0.5%

in this fashion.

The DNP process takes advantage of the high electron polarization induced in this pro-

cess. Internal to the target, unpaired electrons and protons interact, creating a hyperfine

splitting into four distinct energy levels comprising all possible combinations of proton and

electron electron spins, as shown in Figure 4.10. The irradiation doping process described

above ensures there is a large number of unpaired electrons to interact in this fashion in the

target.
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Figure 4.10: Energy levels of the dynamic nuclear polarization process. Reproduced from
[14].

To enhance the proton polarization, microwaves are applied tuned to the energy level gaps

shown in the figure. This causes the electrons and protons to couple, such that a polarizing

electron will also cause a coupled proton to polarize. Since the electron has a much smaller

relaxation time, a single electron can repeatedly relax and couple with new protons before

the relaxation time of a single proton elapses. This allows the proton polarization to be

enhanced to very high values, upwards of 70% or more at 5 T.

The polarization is also enhanced from thermal equilibrium with the use of a LHe evapo-

ration refrigerator, shown in Figure 4.9. By pumping on the bath of liquid helium immersing

the target with high flow roots pumps, the temperature can be lowered from the base of 4

K, while fresh liquid helium is fed to the target by way of a separator, which allows liquid

helium to drip through a fine mesh while hot gaseous helium is pumped out [13, 14]. The

helium which drips through then must pass through a heat exchanger before reaching the

target, which serves to create a temperature gradient such that the coldest helium submerges
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the target cell without allowing warm 4 K helium to reach the bottom of the refrigerator.

This process serves to cool the target to a temperature of 1 K, enhancing the polarization

greatly.

The polarization is measured by way of a Nuclear Magnetic Resonance (NMR) system.

In this system, polarizing protons either emit or absorb a photon at the Larmor frequency of

the proton, depending on the direction of polarization. This can be observed with a Q-Meter,

a high precision RLC (Resistance-Inductance-Capacitance) circuit, which has its inductance

coupled to the photons emitted by the target through a coil inductor placed inside the cup

surrounding the target material. This coupling can be seen as a signal in the real part of

the circuit’s impedance, which is centered at the 2.5/5T proton Larmor frequency, and the

area of which is directly proportional to the proton polarization of the target [14].

(a) Raw NMR Signal on Real Q-Meter
Impedance

(b) Background-subtracted NMR Signal

Figure 4.11: NMR Signal examples from the g2p experiment. Reproduced from [12].

To extract the signal, an example of which is shown in Figure 4.11a, a baseline of the

circuit background near the correct frequency is taken at a lower magnetic field and sub-

tracted from the final result. Due to temperature shifts in the target and other effects, this

baseline is rarely perfect, so it is necessary to also fit a cubic polynomial to the wings of

the signal, and subtract it to obtain a raw signal as is shown in Figure 4.11b. Since the

polarization is only known explicitly at thermal equilibrium, we calibrate our signal with a

long measurement of the thermal equilibrium polarization in equation 4.11. We can then
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use the area of the thermal equilibrium signal to find the enhanced polarization based on

the measured area A:

P =
PTE

ATE

A (4.11)

This method works for both positive and negative spin polarization. Both directions of

polarization are employed in the experiment to try and remove systematic effects dependent

on the direction. Further discussion of the underlying principles of NMR can be found in

Chapter 5, where the UNH Polarized Target is discussed.

Figure 4.12: Target polarizations for the 2.5 T (top) and 5 T (bottom) settings. Reproduced
from [15].

Measured polarizations for the experiment are shown in Figure 4.12. Polarizations for

the 5 T settings averaged between 60% and 80%, acceptable values but not always reaching

the full potential of the material as measured by other groups [14]. For the 2.5 T settings,
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the target polarization was between 40% and 50%, but a year after the experiment’s run, it

was discovered that the T.E. calibration constant used was still set to 5 T for all settings,

meaning the 2.5 T settings were less by a factor of 2. This results in a larger statistical error

on the results of the 2.5 T kinematic settings [15].

The target cup must be held in the region of the superconducting magnet with the

highest field uniformity, the more uniform the magnetic field, the sharper the measured

NMR signal will be. The target ladder which holds the Kel-F cup is made of aluminum

and suspended from a carbon fiber target insert which can be removed to replace the target

material or moved up and down to change to another target cup. For the purposes of the

dilution analysis, several non-ammonia targets were featured on the target ladder as shown

in Figure 4.13 [1]. The right two targets are filled with frozen ammonia, the clear beads

of which are turned a deep purple by the irradiation process at NIST. The second target

from the left is the ‘Dummy’ target, left empty to measure the yield which results from the

aluminum end-caps and an NMR coil inside. The leftmost target is a carbon disk, which is

used to estimate indirectly the nitrogen contribution to the scattering yields, as discussed in

Chapter 6. The full target cup is a cylinder with diameter of 2.72 cm and length of 2.83 cm,

though a shorter cup of length 1.3 cm was used for the 1.2 GeV beam energy runs to lessen

radiation lengths [1]. An additional ‘Empty’ target was employed for the dilution analysis of

Chapter 6, for which a production cup was simply left empty and filled with LHe to measure

the helium contribution.

Figure 4.13: Target insert for E08-027 showing Carbon (First), Dummy (Second), and Am-
monia (Third and Fourth) targets. Reproduced from [1].
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4.8 Beam Dumps

Though many electrons in the beam will interact within the target and scatter into the de-

tectors, a large portion of the beam intensity will pass through the target without significant

interaction and must reach a final destination which can safely dissipate the beam energy.

For standard experiments in Hall A, a hall beam dump is located at the end of the hall.

This beam dump is composed of an aluminum plate heat exchanger inside an aluminum

pressure vessel. The heat exchanger is cooled by a water recirculator, which feeds a bath of

water that helps to dissipate beam energy and heat [16]. A cross sectional schematic of the

Hall A beam dump is shown in Figure 4.14. The beam dump is optimized such that 70% of

the power is dissipated directly in the aluminum, minimizing the production of tritium and

other elements which might serve to activate the cooling water.

Figure 4.14: Hall A main beam dump schematic. Reproduced from [16].

For the 2.5 T settings, the chicane magnets were optimized such that the beam exits

the target field at a 0◦ angle, to reach the beam dump. At the 5 T settings, the high field

combined with the low beam energy made it impossible to configure the chicanes to both

hit the target in the center and reach the main hall beam dump, so a local beam dump had

to be commissioned to dissipate the beam energy for the 5 T transverse settings. A photo

of the local beam dump is shown in Figure 4.15.
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Figure 4.15: Local beam dump for E08-027. The septa magnets are visible in the background.
Holes on the left and right of the blue beam dump support structure allow scattered electrons
to pass through to the detectors. In the center, copper and tungsten plates absorb the beam
energy. In this photo, the insert is not inserted into the beam dump. Reproduced from [1].

The local beam dump is composed of a series of copper and tungsten plates, sufficient

to diffuse the beam energy for this experiment due to the low beam current. It contained a

removable insert which could be used to control radiation levels in the hall, and was located

0.64 m downstream of the polarized target [12].

4.9 Septa Magnets

To obtain the desired low Q2 of the experiment, it is necessary to measure scattered electrons

at an angle of around 6◦. However, due to space constraints in the hall, the Hall A spectrom-

eters could not be placed closer than 12.5◦ from the center. It was therefore necessary to

employ a pair of dipole septa magnets after the polarized target, to bend scattered electrons

at 6◦ into the angular acceptance of the Hall A detectors. These magnets were composed of

a pair of coils above and below the beamline designed to bend it the requisite amount, as

shown in Figure 4.16.
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Figure 4.16: Septa magnets for E08-027. Reproduced from [1].

The top set of coils for the right spectrometer septa became damaged during the oper-

ation of the experiment several times, requiring multiple reconfigurations of the three top

coils for the RHRS. This required changing the number of loops of wire in the coils. The

ideal configuration is 48-48-16, but on 3/18/2012 and 4/11/2012, the top right coils became

damaged and were instead changed to 40-32-16 and then 40-00-16 loops for the latter sections

of the run [1].

The septa magnets were employed for all settings with a transverse target field, but for

the longitudinal setting, counts were instead measured at an acceptance of 11◦, for which

the septa were not used.

4.10 Spectrometers

Electrons and other particles which scatter from the target at the appropriate angle are

directed into the Hall A high resolution spectrometers, used to identify the measured particles

and track their momentum and position. There are two identical detectors, referred to as the

Left (LHRS) and Right (RHRS) arms. These spectrometers consist of three superconducting

quadrupoles, which focus the scattered electrons, and one superconducting dipole, which is
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used to select the electron momentum which reaches the detector stack. After passing

through the focusing magnets the scattered particles reach the detector stack shown in

Figure 4.17.

Figure 4.17: Detector stack for the Hall A High-Resolution Spectrometers. Reproduced from
[1].

Particles which enter the HRS first pass through two vertical-drift wire-chambers (VDCs).

These chambers consist of cells filled with a gas mixture of argon and ethane, as well as an

array of wires used to sense the approach of nearby electrons [1]. The cell is operated under

an electric field produced by a gold-plated Mylar foil connected to a voltage differential of -4

kV. There are two VDCs in each spectrometer, each composed of two wire planes in the UV

configuration. Each plane consists of 368 sense wires spaced 4.2 mm from each other [12].

When an electron passes through the VDC cell, it ionizes the gas around it, creating a

shower of radiation. The argon is used as a quenching agent to suppress secondary emissions

and limit the produced radiation to that which comes from scattered electrons. The produced

radiation, stimulated by the electric field, couples with the nearest sense wire, creating a

signal that can be measured by the Data-Acquisition system (DAQ). A single scattered

electron triggers signals on multiple sense wires as it passes, with the shortest drift time

associated showing what wire corresponds to the electron’s closest approach. From the
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measured drift distances and the known position of the wires, the electron’s trajectory can

be reconstructed back to the target [1, 59]. This, in combination with the HRS dipole, allows

the spectrometers to measure and select the particle’s momentum and exact scattering angle.

A diagram of the VDCs is shown in Figure 4.18. The upper and lower chambers for each

VDC have the sensing wires oriented 90◦ from each other. The U and V planes are oriented

at a 45◦ angle from the direction of the travelling electrons.

Figure 4.18: VDC Diagram. Reproduced from [10].

After passing through the VDCs, scattered particles pass through the first of two plastic

scintillators. These plastic scintillators function to trigger photomultiplier tubes (PMTs) on

each side. These photomultiplier tubes are calibrated with cosmic rays and used to form the

Data Acquisition trigger. When both the left and right PMTs are fired for each scintillator,

the DAQ trigger registers a scattering event.

Between the two plastic scintillators is a gas Čerenkov detector, used for particle iden-

tification. Because we are only interested in the scattered electron, we will need a way to

eliminate events which come from other negatively charged particles that may result from

scattering, such as π−. The detector is filled with CO2 gas, and operates on the measure-
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ment of Čerenkov radiation, which is produced when a particle travels faster than the phase

velocity of light in a given medium [17]. Čerenkov radiation can only be produced by a

particle with a minimum momentum of [17]:

p =
mc√
n2 − 1

(4.12)

Where p is the particle’s momentum, m is its rest mass, c is the speed of light, and n is

the index of refraction for the medium, in this case n = 1.00041 for CO2. Because electrons

are very light, they have a low momentum threshold of 0.017 GeV. Pions are much heavier

and have a momentum threshold of 4.8 GeV. Because of the momentum selected by the

dipole magnet in the HRS, any pions or heavier particles which reach the Čerenkov detector

will have insufficient momentum to produce this radiation, so a signal will only be produced

by a travelling electron.

Figure 4.19: Gas Cerenkov diagram. Reproduced from [1, 17].

The produced radiation is measured by way of ten overlapping mirrors at the end of the

detector, which focus produced radiation into a corresponding series of photomultiplier tubes.

The signal from each PMT is summed to get the total radiation measured in the detector.
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A diagram of the Čerenkov detector is shown in Figure 4.19. Though heavier particles do

not produce Čerenkov radiation directly, they may produce some electron radiation due to

ionization of the CO2 gas, which may be mistaken for an electron scattering event.

To isolate and remove these events, a lead-glass calorimeter is used after the second plas-

tic scintillator. This calorimeter is a series of lead glass blocks at the end of the detector

stack which are stimulated by energetic particles to produce e−-e+ pairs and bremsstrahlung

radiation photons. The radiation produced is measured in a series of photomultiplier tubes,

and is directly proportional to the energy deposited by the particle, which can be used in

combination with the Čerenkov to definitively rule out heavier negatively charged parti-

cles [12].

Figure 4.20: Lead calorimeter for HRS detectors. Reproduced from [10].

The number of lead-glass blocks differs slightly between the left and right HRS. For the

left HRS, the calorimeter is composed of two layers each with 34 blocks perpendicular to

the incoming particle trajectory, each with a dimension of 14.5×14.5×30 cm for the first

layer and 14.5×14.5×35 cm for the second. The right HRS instead has on the first layer 48

10×10×35 cm perpendicular blocks, and on the second, 80 14.5×14.5×35 cm blocks oriented

parallel to the incoming particle. The increased number of blocks on the right HRS means

that it completely absorbs the energy of the incoming particle, while this is not true of the
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left HRS. The calorimeter setup is shown in Figure 4.20.

4.11 Data Acquisition System

Scattering events which activate the trigger by tripping a PMT in both s1 and s2m scin-

tillators and which fall within the particle identification and momentum acceptance of the

detector are recorded in the data acquisition system. The overall DAQ system is shown in

Figure 4.21.

Figure 4.21: Overall Data Acquisition setup for E08-027. Reproduced from [1].

Signals from the detectors are directly received by trigger modules formed by several

NIM and CAMAC electronics crates [1]. These determine the primary trigger, which is

whether both scintillators were tripped as discussed above, as well as a secondary trigger

used to measure the trigger efficiency, which trips when only one scintillator plane measures

an event instead of both, but the event also registered in the Čerenkov detector. These

triggers are sent to the trigger supervisor, which determines whether or not to accept an

event based on if the upstream data acquisition (DAQ) system is busy processing a previous

event, and the prescale factor, chosen to reduce the missed events due to busy time as much

as possible. The trigger supervisor maintains the maximum efficiency by keeping the DAQ

busy for the maximum time possible.
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Accepted events are passed to a FASTBUS crate containing analog-to-digital (ADC) and

time-to-digital (TDC) converter modules. These modules serve to digitize the signals and

pass them to the CEBAF Online Data Acquisition (CODA) software on a connected Unix

computer.

In parallel, signals from the BCMs and BPMs, as well as the beam helicity measured

at the source are recorded in ADC modules re-used from the HAPPEX experiment, before

being paired with matching events based on time synchronization in the CODA system.

The CODA files are decoded by the Hall A Analyzer software, which is a set of C++

libraries which interface with CERN’s ROOT particle physics libraries. These libraries help

to decode the files into raw counts information. This allows the reconstruction of spectra for

scattering counts versus scattering energy, momentum, and other kinematic variables, which

can ultimately be used to form the physical quantities of interest.
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CHAPTER 5

UNH Polarized Target

Before delving into the details of the data analysis and results, let us take a brief diversion

from discussion of the E08-027 experiment to focus on my own hands-on experimental expe-

rience. Though the timeline didn’t work out such that I could participate in the experimental

run described in the previous chapter, I was able to spend several years working in the UNH

Polarized Target lab, featuring an experimental setup very similar to the polarized target

described above.

Like the g2p target, the UNH polarized target lab focuses on the DNP process for po-

larizing protons, as well as deuterons. When I joined the lab, no polarization signal had

successfully been created and observed for either target particle, but as of 2022, both have

been measured and the lab is focusing on new ways to optimize the polarized target process.

This means I was able to participate in and contribute to a number of major milestones over

my time working in the UNH lab.

The UNH setup features a similar target insert, LHe evaporation fridge, and supercon-

ducting magnet to the g2p target. However, though the g2p target focused on vector polar-

ization for spin-1
2
particles defined in (4.9), one of the primary goals of the UNH polarized

target lab is to measure and improve the polarization of spin-1 particles such as the deuteron,

known as tensor polarization. This is valuable for studying a number of spin-dependent ob-

servables, but one of the major goals of the UNH lab is preparing for an upcoming experiment

measuring a different structure function than E08-027. This experiment’s primary goals in-

clude a measurement of the b1 structure function of the deuteron, a structure function only

62



present for spin-1 particles which may be instrumental in revealing hidden color effects [60].

Deuteron polarization measurements are complicated, because the deuteron signal is at

least two orders of magnitude smaller than the proton, and has a more complex structure

composed of two peaks in frequency space which become separated in materials where the

deuteron forms a quadrupole. An example of this structure is shown in Figure 5.1. To study

these signals has required a number of changes and advancements from the experimental

setup of E08-027.

Figure 5.1: Example of a deuteron signal and high-accuracy fit. Reproduced from [18].

5.1 Superconducting Magnet

The UNH magnet is a superconducting solenoid custom designed to have a high magnetic

field homogeneity. This is important for polarized target studies as the resolution of a

polarization signal is proportional to the field homogeneity over the target, making the

very small deuteron signals easier to resolve cleanly. The Helmholtz-configuration split coil

magnet used in g2p is only necessary to allow the passage of the electron beam, meaning

that the local setup at UNH is better served by a simple solenoid. The UNH magnet is

shown in Figure 5.2. The coils are cooled with liquid helium and become superconducting
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below 10 K.

Figure 5.2: UNH solenoid and insulating cryostat.

5.2 Vacuum and Cryogenics

Inside the magnet is a set of insulating vacuum shells, designed to thermally separate the

magnet space from a vertical liquid helium evaporation refrigerator which rests in the center

of the magnet. These vacuum shells are shown in Figure 5.3, and have proven a crucial part

of the system, since a loss of vacuum results in dangerous quench conditions for the super-

conducting magnet and an environment too warm for enhanced polarization in the helium

refrigerator. This vacuum is also difficult to maintain due to the aggressive temperature

gradient the shells are put under, and the need for them to contain superfluid helium inside

the LHe evaporation refrigerator.

The top part of the shells is constructed of stainless steel, to prevent high thermal conduc-

tion, while the nose of each shell must be formed from aluminum, a less magnetic material
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Figure 5.3: Inner vacuum shell. Outer shell is similar but with larger diameter, designed to
join with the bottom of the large T-piece via a Copper Flange (CF) seal.

which will not create stray currents when placed inside the solenoid. The forming of a

vacuum seal which does not permit superfluid helium to pass between these two disparate

materials is very challenging, and necessitates the use of an indium seal. I was given the

opportunity to develop and improve the lab’s procedures for creating these seals, as we had

limited experience in creating them at the time that I started. The seals are formed from a

length of indium wire, which, when compressed tightly between flanges on each side, flows

like a liquid to form a vacuum seal. The challenge of the indium seal method is how to join

the wire with itself in a way that will make a smooth circular seal, without creating an excess

of material on one side that would prevent the flanges from applying even pressure.

An indium seal in progress is shown in Figure 5.4. Through repeated iterations to improve

the procedure, the optimal method has been determined to require carefully cleaning both

the indium wire and flanges with acetone before forming the seal. The indium is then formed

into a loop with long tails, which are then twisted tightly to form a long ‘knot’. This knot is

then cut around 4 mm away from the main loop to remove excess material, and then folded

back to rest against the side of the primary loop. This seal is then compressed between both

flanges, taking care that it stays vertical and that pressure is distributed evenly. The flanges

are screwed together, with the screws being tightened evenly in the ‘star pattern’, before

allowing the indium to flow internally for around 20 minutes. The screws are then tightened
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Figure 5.4: Indium seal in progress, showing the folded knot structure

again before allowing the indium to flow once more for 24 hours, and being tightened a third

and final time. These indium seals are used both in the vacuum shells for the cryostat, and

for smaller vacuum cylinders used for material production.

Inside the inner vacuum shell is a liquid helium evaporation refrigerator, designed to cool

4 K liquid helium to 1 K, very similar to what was used during the g2p experiment. The

refrigerator is shown in Figure 5.5. This figure is taken from a detailed simulation of the

UNH refrigerator published in Nuclear Instruments and Methods [19]. It is connected to the

liquid helium reservoir in the magnet, and helium driven up into the fridge by way of a pump

connected to the separator, which pulls helium out of the magnet and into the separator.

The top baffles serve to create a temperature gradient from the 300 K world at the top

plate to a 4 K liquid helium temperature at the separator. Helium then drips through a

fine mesh in the separator, while warm gas helium is pumped out by the separator pump.

Helium which collects in the nose, which is the part of the refrigerator surrounded by the

superconducting magnet, is pumped on by a large set of high-flow Roots pumps to cool it to

1 K, with the heat exchanger serving to cool liquid helium down to the current temperature
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of the nose before it reaches the helium reservoir in the nose.

Figure 5.5: LHe Evaporation Refrigerator for the UNH System. Reproduced from [19].

In addition to the other projects and tasks discussed here, I and many of the other mem-

bers of the lab were responsible for operating, maintaining, and upgrading the refrigerator

and connected vacuum and cryogenic equipment, as well as the superconducting magnet dis-

cussed in the previous section. Over my time working in the UNH lab, we have tremendously

improved the leak-tightness of the system, resulting in better cryogenic operation and lower
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vacuum in the vacuum spaces.

5.3 NMR

One of the primary responsibilities I had in the UNH lab was to become the local expert on

our main NMR system. This is a VME crate based system designed at Los Alamos National

Laboratory (LANL) [61]. In 2018 I travelled to LANL to be trained on the system for proton

NMR, and in 2020, I visited LANL again to pick up and be trained on the deuteron NMR

system. These systems are designed to be an updated and modern version of the original

Liverpool-designed “Q-Meter” NMR system, and are responsible for finding the UNH lab’s

first proton and first deuteron signal.

Figure 5.6: Liverpool Q-Meter System. Reproduced from [14].

The innovation of the Liverpool system, a schematic of which is shown in Figure 5.6 is

the integration of a ‘mixer’. In passing through the RLC circuit part of the system, the

supplied RF signal spreads out in phase, where the polarization signal of interest is only

in the real part of the inductance. The complex part of the inductance instead contains

dispersive effects driven by a mistune of the system. In the Liverpool system, a reference

signal and the returning signal from the circuit are mixed together, selecting only the phases

in common between the two. The reference signal passes through a length of cable which
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can be specifically tuned to ensure its central phase is 0◦, corresponding to the real part.

The length of the cable which connects the inductor to the rest of the circuit is also crucial,

as properly tuning the circuit requires the cable to be a multiple of the λ
2
wavelength of the

target particle, on the order of 55 cm for the proton and several meters for the deuteron.

Tuning this length is accomplished with the use of an internal diode.

The LANL system uses this same core concept of a mixer, but with many updated

electronic components, and improves upon both the phase and diode tuning described above.

Phase tuning is done by way of an internal phase shifter connected to the reference line,

instead of by adjusting a cable length. And though the length of the signal cable is still

important for the diode tune, an internal varactor diode allows for some shifting of the

effective ‘length’ of the cable by changing the capacitance of the circuit. This means that

both tunes can mostly be accomplished by providing voltages, and controlled by a connected

computer. The frequency f the circuit is tuned to look at is a function of the coil inductance

L and the capacitance of the circuit C:

f =
1

2π
√
LC

(5.1)

For the proton NMR system, the function is otherwise extremely similar to the NMR

used in the g2p experimental setup, though it is designed with the intent of optimizing a

better signal-to-noise ratio. Though I was trained on the system’s operation at LANL, I was

responsible for wiring, building, and commissioning it at UNH. The full LANL system is

shown in Figure 5.7b. Each ‘Q-Meter’ equivalent is reproduced with two boards, an analog

board that holds the actual RLC circuit and mixer, and a digital board that contains analog-

digital converters (ADCs) which digitize the signal and digital-analog converters (DACs)

which send digital signals as voltages to the various components. The crate also has one

controller board, which coordinates the other two boards and the connection to the computer.

The controller board also generates a ±1 V triangle wave at a frequency of 20 Hz, which

69



(a) LANL System Analog Board (b) LANL System in VME Crate

Figure 5.7: The LANL VME-Based NMR System.

is sent to a Rohde & Schwarz SMT03 Signal Generator to program an RF sweep over the

frequency range of interest near the Larmor frequency of the target particle. The resulting

RF signal enters a splitter, with one side traveling to the reference line, and the other going

to the tank circuit, which contains a connection to the coil inductor and most of the other

components of the core RLC circuit.

Due to the much smaller size of the deuteron signal, the deuteron system requires the

modification of a cold NMR chip. In principle, to do NMR, the system is tuned to a

given frequency based on the inductance and capacitance of the circuit. But the ideal

tune frequency can shift due to changes in temperature of the circuit, because capacitors

are especially susceptable to variation based on thermal shifts. For a larger signal, these

shifts are irrelevant, but for a very small signal, these shifts can completely obliterate it.

The principle of cold NMR is that most of the actual tank circuit is moved into the main

cryostat, to be immersed in liquid helium alongside the target material. Due to sharing the

constant temperature of the target and being shielded from noise in the outside world, this

can improve the signal-to-noise ratio of the deuteron signal tremendously.
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The cold NMR system for the deuteron requires the tank circuit to be incredibly small so

that it can fit alongside the target. The LANL NMR design features a cold NMR board no

larger than a fingernail, with surface mount SMD-0603 components. At LANL I learned how

to solder these boards and made a functioning board there, and have since made multiple

modifications to the UNH boards as well as created more when they become damaged. The

cold NMR board is shown in Figure 5.8a. Because the circuit is placed alongside the coil, the

functional length in λ
2
of the deuteron is zero. Rather than the varactor diode of the proton

design, the capacitance of the circuit is controlled by an adjustable sapphire bearing 1-8 pF

capacitor, which must be tuned prior to being immersed in cryogen. A padding capacitor

initially designed at 27 pF controls the number and spacing of coils needed to generate the

correct frequency within the tuneable range of the sapphire capacitor.

(a) Cold Board Photo (b) Cold Board Circuit Diagram. Reproduced from [62]

Figure 5.8: The Cold Board for the Deuteron NMR System

5.4 DAQ

Another major responsibility I have had in the UNH lab is developing the data acquisition

(DAQ) system for the lab. The system is a National Instruments Labview program located on

a central computer, and connected to more than 60 instruments throughout the lab through

various serial standards. Though this has largely been a software project, it has required me

to gain familiarity operating every instrument in the lab and consequently practice a number
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of hardware and electronic skills to commission each one.

Devices which output or are controlled by a simple voltage are connected via coaxial

BNC-standard cables to a National Instruments USB-6363 data acquisition device. Those

with reliable RS232 serial standards, such as a number of pressure and flow gauges and a

gaussmeter for measuring the fringe field near the cryostat, are connected through a DB-9

RS232 hub. Those devices which have firmware to establish a serial port through USB are

connected to a large USB hub. Several more devices, most prominently the superconducting

magnet power supply and the Lakeshore temperature monitors, are connected to a central

GPIB hub. Finally, several crucial instruments such as the NMR system described in the

previous section are connected through a TCP connection over the local network.

Figure 5.9: DAQ System designed for the UNH Polarized Target Lab.

The main front panel of the DAQ software is shown in Figure 5.9. This program is

normally shown on several screens throughout the lab and controlled by a central computer.

The center of the program features a ‘panopticon’, showing a cross sectional reproduction

of the full polarized target setup, with temperatures, pressures, and other relevant readouts
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shown in appropriate locations, to allow an at-a-glance view of the system’s status. The left

side features cryo-and-pressure readouts, organized into the individually separated spaces of

the system, primarily the space inside the superconducting magnet and that inside the liquid

helium evaporation refrigerator. The right side contains physics readouts and controls for

the NMR and microwave system, as well as the superconducting magnet.

The physics controls section features a number of tools to make online analysis easier,

allowing quick baseline subtraction and wing fitting for NMR signals, as well as Thermal

Equilibrium calibration. It also contains a number of tools for optimizing the microwave

system and finding ideal polarizing frequencies, as well as a number of safety measures

designed to prevent an unsafe situation. The superconducting magnet cannot be ramped at

an unsafe ramp rate, nor can it be ramped at all unless the level meter and temperatures

confirm the coils are in superconducting state. If the liquid helium level in the magnet

dips to a dangerous level, the DAQ system will attempt to take control and perform a safe

ramp-down of the magnet to prevent a quench situation.

The DAQ averages the output of all instruments every 20 seconds, and records them

to a data file for later analysis, including the NMR sweep and EPR sweep data. It is

also integrated with a Slack group used by the group for communication, pushing updates

on the status of instruments to a Slack channel every 15 minutes and alerting there if an

alarm indicating a dangerous situation is triggered. It also harvests posts from a dedicated

logbook Slack channel for posterity, and records them alongside logbook entries made on the

lab computer. As the main data recording and control unit for all the instruments in the

lab, it remains an essential tool for the UNH lab’s work.

5.5 Cooldowns & Results

Due to the expensive price associated with the liquid helium needed to run the system,

physics results are collected several times a year during a ‘cooldown’. These cooldowns can

last anywhere from a few days to over a week, and require constant work to operate all the
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subsystems in the lab at once. All group members participate in handling cryogen, loading

and unloading target material, operating the pumps and the helium refrigerator, and using

the NMR and EPR subsystems to collect physics results. Some photos from the UNH group’s

cooldowns are shown in Figure 5.10.

As of 2022, the UNH Group is focusing almost exclusively on deuteron polarization, and

has observed polarized deuteron signals from the alcohols Butenol and Propendiol. Materials

in the UNH lab are chemically doped, due to a current lack of access to the NIST facility used

to irradiate the g2p target. Chemical doping is performed with a number of proven radicals,

such as TEMPO, a relatively inexpensive radical which can obtain good polarization, and

Trityl, a much more expensive radical supposed to produce very sharp ESR-lines for high

deuteron polarization and easier access to the deuteron signal’s complex structure.

Currently, the UNH lab has obtained a deuteron polarization of around 27% vector

polarization, and 4-5% tensor polarization. This vector polarization value is considered to

be quite good for an evaporation refrigerator, as higher polarizations of around 50% were

observed for the same materials using a dilution refrigerator, which can obtain much colder

temperatures than 1 K. The group’s current goal is enhancing this tensor polarization further,

to meet the target value of 30% for the upcoming tensor experiments. This enhancement

is being tested with several methods, including the ssRF ‘hole burning’ method which the

polarized target group at University of Virginia (UVA) has proven to be very effective, as

well as several experimental techniques involving the UNH group’s solid state microwave

system.
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(a) Author loading a target insert into
the cryostat

(b) Main UNH Cryostat containing su-
perconducting magnet and LHe refrig-
erator

(c) UNH Group monitoring the DAQ system during a cooldown

Figure 5.10: Photos from the UNH Polarized Target Cooldowns.
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CHAPTER 6

Analysis

Figure 6.1: Kinematic coverage of the E08-027 experiment, in terms of invariant mass and
momentum transfer. Reproduced from [1].

Let us now return to a discussion of the data collected in the E08-027 experiment. Raw

data is encoded as pure counts in a series of ROOT files, comparing various kinematic

variables to how many scattered electrons are associated with a given value. This allows a

reconstruction of the electron spectra as a function of energy, scattering angle, and other
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kinematic variables. Data were taken at target fields of 2.5T and 5T, and beam energies

of 1.2, 1.7, 2.2, and 3.3 GeV. In total, there are six different kinematic settings, of which

five have a transversely polarized target and one has a longitudinally polarized target. The

lowest energy setting, with beam energy of 1.2 GeV, was taken primarily for the purpose of

doing radiative corrections, so the analysis focuses on the other five settings. The kinematic

coverage of the experiment is shown in Figure 6.1. Two energy settings, the 2.5T, 2.2 GeV

Transverse and 5T, 2.2 GeV Longitudinal setting, fall on very similar kinematics and so can

ultimately be used together in the final results, as will be discussed in the following sections.

To extract the structure functions, our quantity of interest is the polarized cross section

differences of (2.42). A convenient way to generate these is with an experimental asymmetry

A and an unpolarized cross section σ0:

∆σ⊥ = 2Aexp
⊥ σ0 (6.1)

∆σ∥ = 2Aexp
∥ σ0 (6.2)

Here, the experimental asymmetry Aexp represents a comparison between scattered elec-

trons with forward helicity, and those with backward helicity. The construction of this

quantity will be discussed further in section 6.3, but for now it is necessary to understand

that the experimental asymmetry must be scaled from the raw, measured asymmetry by

several quantities:

Aexp =
1

fPbPt

Ameas (6.3)

Pb and Pt are the beam and target polarizations measured with the Møller polarimeter

and NMR system respectively. f represents a quantity called a dilution factor, which is

used to eliminate contributions to the data from electron scattering off other materials in

the target besides the proton of interest.

To extract our polarized cross section differences, then, we need to produce a dilution

factor, a raw asymmetry, and an unpolarized proton cross section. The next sections will
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focus on the extraction of each of these quantities sequentially.

6.1 Experimental Cross Section

To form several of these quantities, let us discuss the formation of an experimental cross

section, one of the primary measured quantities of interest in nuclear physics experiments. In

equation (2.12), we defined the cross section in terms of the number of of interactions, initial

flux, and available states. Re-contextualizing this in experimental terms, we can understand

each of these quantities to be related to the number of scattered electrons measured, initial

flux of electrons, and number of available scattering centers in the target respectively. The

initial flux of electrons can be determined from the beam current (measured by BCM) and

the charge of an electron, and the number of scattering centers is related to the density of

the target material. Taking these quantities into account and considering the efficiencies of

relevant detectors, we write the experimental cross section as:

d2σexp

dE ′dΩ
=

psN
Q
e
ρtargetLTϵdet

1

∆Ω∆E ′∆Z
(6.4)

The terms of this equation are as follows:

• N is the number of scattered electron counts measured in the detectors

• Q
e

represents the total number of incoming electrons, where Q is the total charge

deposited by the beam and e is the fundamental charge of an electron.

• ρtarget is the density of protons in the target, taking into account the packing fraction

of the target cell and the density of solid ammonia.

• ps is the prescale factor. This determines how many scattering events are actually

processed by the DAQ: for every ps events that occur, 1 event is registered in the

DAQ.
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• LT is the Livetime of the detectors. Due to the trigger pattern of the DAQ trigger,

the detectors are not live to catch 100% of events, this factor represents the fraction

of time which they are.

• ϵdet is the total sum of all detector efficiencies, the determination of which is discussed

in detail in [1].

• ∆Z is the length of the target cell

• ∆E ′ is the energy acceptance, interpreted as the width of the energy bin being used

to calculate the cross section.

• ∆Ω is the angular acceptance of the detector, corresponding to the overall area cut in

θ and ϕ.

These cross sections can be difficult to calculate due to the large number of inputs, and the

difficulty in reconstructing a precise angular acceptance for the transverse settings, where a

significant out of plane scattering angle contribution makes understanding the acceptance

nontrivial. In many cases below, it will be more useful to look at a yield. When we are

considering a ratio of two cross sections, or comparing two different linearly related cross

sections, we can consider a version of the cross section where we cancel all terms which will

be identical for all possible cross sections, known as a raw yield:

Y =
N

Q× LT
(6.5)

This is very useful to analyze because it cancels many of the factors which can have large

systematics associated with them.

6.2 Packing Fractions

Before discussing the dilution factor directly, it is first necessary to determine a packing

fraction (pf). The packing fraction is defined simply as the fraction of the target cell volume
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which is full of frozen ammonia beads, where the remaining volume is filled with liquid

helium. This packing fraction is a necessary input to the dilution factor and the experimental

cross section.

The packing fraction was determined with a method designed by Oscar Rondon for the

RSS experiment [63] and modified for use here. In principle, this method is based on the

idea that the cross section and yield defined above should have a linear relationship with the

packing fraction. If it is possible to reproduce the scattering count results with a simulation,

then, we can simulate yields at several different packing fractions to determine a linear fit

to the yield-dependence of the packing fraction. We can then use the production yields to

determine the exact packing fraction for each material. In g2p, 2 different materials were

used for each energy setting, with a ‘material’ being used to refer to a separate iteration of

the target cell, though all are filled with frozen ammonia.

For this method, a Monte-Carlo simulation called g2psim [12] was used to reproduce the

data. This simulation is able to reproduce the elastic yields with very good accuracy. Before

performing the direct comparison to the production yields, it was necessary to calibrate the

simulation and determine the proper input parameters through comparison to the Carbon

dilution yields, for which the effective ‘packing fraction’ is well understood, since the carbon

target is a solid disk of known length. For the 3.3 GeV setting, no elastic carbon data were

taken that could be used, meaning this method could not be used. However, the materials

used during the 3.3 GeV runs were identical to those used during the 2.2GeV, 5T Transverse

runs, meaning that the packing fraction should be identical. The same packing fraction is

used with a larger systematic to account for possible losses due to the beam or motion in

the target.

The carbon yields for the other settings were compared to carbon yields produced with

the Monte-Carlo simulation. This was used to determine an appropriate radiative smearing

factor for each energy setting by tweaking the input smearing parameter to make the width of

both peaks match. They were also used to determine what normalization factor is necessary

80



to scale the height of the simulated peak such that it matches the data as well as possible.

Before comparison, an Empty cell yield for each energy setting was subtracted from the

associated Carbon yield, scaled by the known fraction of the target cell filled with liquid

helium, based on the length of the carbon disk. The comparison to resulting pure carbon

yields and ratio with the average scale factor is shown in the following Figures.
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(a) Carbon Simulation/Data Ratio

(b) Scaled Carbon Simulation & Data Comparison

Figure 6.2: 2.5T 1.7 GeV Transverse Carbon Comparison.
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(a) Carbon Simulation/Data Ratio

(b) Scaled Carbon Simulation & Data Comparison

Figure 6.3: 2.5T 2.2 GeV Transverse Carbon Comparison.
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(a) Carbon Simulation/Data Ratio

(b) Scaled Carbon Simulation & Data Comparison

Figure 6.4: 5T 2.2 GeV Transverse Carbon Comparison.
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(a) Carbon Simulation/Data Ratio

(b) Scaled Carbon Simulation & Data Comparison

Figure 6.5: 5T 2.2 GeV Longitudinal Carbon Comparison.
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Once the scaling factor and smearing input parameter are established for each setting,

the simulation is used to generate nitrogen elastic yields at simulated packing fractions of

0.4 (40%) and 0.6 (60%). These can be compared to the data elastic yields, but first,

it is necessary to try and isolate the nitrogen elastic peak in the production yields. A

quasielastic response, which experiences a wide smearing due to Fermi-scale motion, and

a proton elastic peak must be removed, as must any contribution from the helium in the

target cell. This latter one is difficult because we don’t know the packing fraction before

this process, consequently, we don’t know how much helium to remove from the production

yield.

This issue is solved by employing an iterative procedure. An initial packing fraction

of 50%, or 0.5, is assumed, and an Empty run yield scaled by 0.5 is subtracted from the

production data, leaving theoretically only nitrogen and proton data in the region of interest,

if the packing fraction guess is correct. The following steps are performed to isolate the

nitrogen peak, compare to the simulation, and get a final packing fraction result. This result

will then be plugged back in as the new packing fraction guess, and the following steps

repeated. This iterative procedure was performed up to 100 times, but the packing fraction

generally converged to a constant value after around 4 iterations.

To eliminate the quasielastic and proton elastic contribution, the elastic and quasielastic

are each fit with a separate functional form. The helium elastic and nitrogen elastic peak

are smeared enough that together they can be fit with a single functional form, which is a

convolution of a Gaussian with a Landau tail on the high ν side. The quasielastic peak can be

fit with a simple Gaussian. For the 5T 2.2GeV setting, the helium elastic peak is pronounced

enough that it cannot be ignored, and separate Gaussian-Landau convolution is fit to it and

subtracted. The initial fits are very low accuracy due to the strong mixing between the two

peaks, so this procedure is iterated: a fit to the quasielastic peak is subtracted from the yield

before doing the new fit to the elastic peak, then this elastic fit is subtracted before doing a

new quasielastic fit, and so on. This particular procedure was iterated 500 times, with the
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resulting fits separating the peaks shown in the following Figures.

Figure 6.6: 2.5T 1.7 GeV Transverse Fits.
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Figure 6.7: 2.5T 2.2 GeV Transverse Fits.

Figure 6.8: 5T 2.2 GeV Transverse Fits.
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Figure 6.9: 5T 2.2 GeV Longitudinal Fits.
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Once the combined quasielastic and proton elastic peak is subtracted we are left with,

in theory, a pure nitrogen elastic peak, if our initial packing fraction guess was correct.

However, the contributions from these subtracted peaks are the smallest near ν = 0, so we

will focus on the superelastic region, or the side of the nitrogen elastic peak closest to ν = 0.

In this region, we integrate the yields from any materials associated with the energy setting,

as well as the yields produced with the simulation at packing fractions of 0.4 and 0.6. We

can perform a linear fit through the simulated yields and then plug in the integrated nitrogen

yields to find their packing fraction. For the 2.2 GeV, 2.5T, Transverse setting, the shape of

the elastic peaks was very different between the two materials, due to the Septa configuration

changing between the time of the relevant runs being taken. It was therefore necessary to run

the simulation for each Septa configuration and produce two different linear fits to fit these

materials. The comparison between data and simulation is shown below, followed by the

linear fits produced for each setting. As only the elastic peak is generated for the simulations,

the higher ν region displays nothing but noise that should be ignored. The comparison is

performed in the superelastic region, ending at the peak of the elastic peak.
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Figure 6.10: 2.5T 1.7 GeV Transverse Simulation & Yields.

Figure 6.11: 2.5T 2.2 GeV Transverse Simulation & Yields.
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Figure 6.12: 5T 2.2 GeV Transverse Simulation & Yields.

Figure 6.13: 5T 2.2 GeV Longitudinal Simulation & Yields.
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Figure 6.14: 2.5T 1.7 GeV Transverse Linear pf Fit.

Figure 6.15: 2.5T 2.2 GeV Transverse Linear pf Fit.
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Figure 6.16: 5T 2.2 GeV Transverse Linear pf Fit.

Figure 6.17: 5T 2.2 GeV Longitudinal Linear pf Fit.
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After iterating the above procedure until the initial packing fraction guess converges, the

final packing fractions are presented in Table 6.1.

Setting Material ID Packing Fraction Stat. Error (%) Syst. Error (%)

2.5T 1.7GeV T
7 0.51 1.51 6.03
8 0.58 1.33 6.03

2.5T 2.2GeV T
7 0.56 1.69 6.15
8 0.62 1.82 6.15

5T 2.2GeV L
17 0.56 2.09 6.06
18 0.65 1.86 6.06

5T 2.2GeV T
19 0.64 1.98 7.74
20 0.68 1.98 7.74

5T 3.3GeV T
19 0.64 1.98 9.51
20 0.68 1.98 11.24

Table 6.1: Final Packing Fractions for E08-027.

6.3 Dilutions

To produce the experimental asymmetry we will need to calculate a dilution factor f . This

factor is used to eliminate contributions from scattering off materials in the beam path other

than the proton of interest. On a fundamental level, the dilution factor is defined as the

ratio of the proton cross section to the full production cross section:

f =
σproton

σprod

(6.6)

To determine this, we define the production cross section as being a linear sum of the

contributions from each material it may scatter from. The leading contributors are nitrogen,

due to the target material being NH3, helium, due to the liquid helium used to cool the

target, and aluminum, from the end-caps of the target cell. Other contributions, such as

those from the NMR coils used to measure the target polarization, are small enough that

they can be ignored due to the small amount of material present in the target. Taking

σprod = σproton + σN + σHe + σAl we can rewrite the dilution factor as:
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f = 1− σN + σHe + σAl

σprod

(6.7)

Because this is a ratio of cross sections, we can cancel shared factors in the cross section

and instead simply compare the yields of (6.5). However, we now recall that instead of having

individual yields for Nitrogen, Helium, and Aluminum, we have several types of dilution run

collected during the experiment. We have Carbon runs, where the beam scatters off a carbon

disk of known length. We have Empty runs, where the beam passes through an open target

cell completely filled with liquid helium. And finally, we have Dummy runs, where the beam

passes through a target cup identical to the production cup, but with no material in it;

namely, a cup filled with helium and NMR coils, and covered by aluminum end-caps.

To express the nitrogen contribution, we use the Carbon dilution runs, since Carbon-14

and the Nitrogen-14 present in the ammonia have the same nucleon number, their cross

sections will be very similar. We use the Bosted-Fersch model [64] to generate a carbon and

nitrogen cross section in the correct kinematic region for each setting. The ratio of these

cross sections at every given energy bin produces a scale factor we define as:

SC→N =
σBosted
N

σBosted
C

(6.8)

In addition to this, since the cross section definition of (6.4) contained a material-dependent

factor of 1
ρ∆Z

, with ρ being the number density of the material and ∆Z being the length

of the scattering material, we will also need to include a ratio of these factors for carbon

and nitrogen respectively. The length of the carbon disk is known, and the ‘length’ of the

nitrogen in the target cell can be defined as the total length of the target cell, times the

packing fraction pf determined in the previous section.

By using the Dummy and Empty yields together, we can actually express both the helium

and aluminum contributions together. If we remove the contribution in the Dummy yield

from any space that will be filled by ammonia in the production yield, we are left with
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a combined yield which contains all the contributions from helium scattering, aluminum

scattering, and even any small contribution from the NMR coils. To do this, we can simply

scale the pure helium yield represented by our Empty run by the packing fraction of the

production run, to represent how much helium will be lost to the presence of the production

material.

Putting all of this together, our dilution factor becomes:

f = 1−
SC→N

ρN (pf)Ztg

ρCZC
YC +

(
YDummy − (pf)YEmpty

)
Yprod

(6.9)

Up until now, we have only considered scattering off of the volume of the target cell

itself. But the cell is immersed in a bath of liquid helium exterior to the cell. To get a

pure ‘nitrogen’ yield, we will need to remove helium both in and out of the cell, as well as

consider the total length of helium that is being measured when scaling our empty yield to

subtract from our dummy yield. Defining Zout as the length of helium outside the cell and

Ztot = Ztg + Zout as the total length of helium, we now write:

f = 1−
SC→N

ρN (pf)Ztg

ρCZC

[
YC − (Ztot−ZC

Ztot
)YEmpty

]
+
(
YDummy − pf( Ztg

Ztot
)YEmpty

)
Yprod

(6.10)

One final length correction is now still needed. The radiation length seen by the beam

is different for each type of dilution run. The radiation thicknesses for each type of run are

listed in [1]. In other words, a different amount of energy is lost before scattering depending

on which types of materials the beam must pass through. To solve this, we employ the

same Bosted-Fersch model to create two more scaling factors. SHe(E)→He(C) is a ratio of

the model cross section for helium with the radiation length of the Empty run, versus the

radiation length of the Carbon run. SHe(D)→He(P ) is similar, but instead scales two helium

cross sections for the radiation length of the dummy run and the production run. SC→N also

includes the appropriate radiation lengths for both cross sections such that both terms end
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with the effective radiation length of the production target. This gives us a final dilution

factor of:

f = 1−
SC→N

ρN (pf)Ztg

ρCZC

[
YC − (Ztot−ZC

Ztot
)SHe(E)→He(C)YEmpty

]
+ SHe(D)→He(P )

(
YDummy − pf( Ztg

Ztot
)YEmpty

)
Yprod

(6.11)

The yields employed in the dilution are shown in the following figures. These yields had a

number of issues which complicated the analysis. First and foremost, the momentum accep-

tance of the spectrometers resulted in data near the edge of each momentum setting being

somewhat distorted. This distortion was internally consistent, meaning that for the asym-

metries of the following section, this effect mostly cancels out entirely, since the asymmetry

is a ratio of yields taken from the same momentum setting. However, each dilution run had

slightly different momentum settings from each other, and from the production runs. This

means that the distortion was actually in many cases magnified by only being present on

one side of the ratio.

To deal with this, the yields used in producing the dilution had an extremely tight

momentum cut applied, limiting the measured momentum to a window of -3.2%<dp<1.0%.

This eliminates most of the badly distorted data but also leaves large gaps in the momentum

coverage of the yield. These gaps are equally troublesome as they appear in different places

for each dilution run type. To deal with this, the Bosted-Christy model [20] was used to

create yields for each material. These yields, without proper normalization, vary greatly

from the data normalization. For each gap, the model result was used internal to the gap,

but first, had a linear scaling applied to it that would fix the beginning of the model in the

gap to the last data point before the gap, and the end of the model to the first data point

after the gap. This was done simply by doing a linear fit to the points on either side of the

gap, fixing the first point of the model to match the data at the same Q2, and then applying

the linear fit to the model inside the gap region.
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Another issue that complicated the dilution analysis was the presence of yield drifts due

to a BPM miscalibration [65]. These yield drifts are a known factor in the analysis, but

they do not contribute to the systematic of the asymmetry because, as for the distortion

above, they cancel out due to the ratio nature of the asymmetry. For the dilution analysis,

the settings with a known BPM miscalibration discussed in [65] were simply shifted linearly

up or down until the first data point for each setting aligned with the last data point from

nearby settings with no known BPM issues. Because this method is not necessarily trust-

able and relies on the assumption that the real yield will be smooth, we apply an increased

systematic to these yields of magnitude equal to the applied shift.

Additionally, for the 1.7 GeV, 2.5T setting, there is a mismatch between the Septa and

dipole current caused by the Septa issues discussed previously. The ratio nature of the

asymmetry again cancels this issue as discussed in [1], but like the others, it contributes

strongly to the dilution analysis. Without these runs, the overall statistical error bar is

more than doubled, but including them distorts one region of the dilution tremendously.

To avoid this, the Bosted model is used to produce all components of the dilution in the

distorted region, and the model dilution is employed for that section of the final result. A

systematic contribution must be added from this, equal to the difference between the model

and distorted dilution. A model dilution is also used for the 3.3 GeV setting in many places,

as a significantly reduced range of dilution data was collected.
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(a) Carbon (b) Empty

(c) Dummy

Figure 6.18: 2.5T 1.7 GeV Transverse Dilution Yields.

(a) Material 7 (b) Material 8

Figure 6.19: 2.5T 1.7 GeV Transverse Production Yields.
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(a) Carbon (b) Empty

(c) Dummy

Figure 6.20: 2.5T 2.2 GeV Transverse Dilution Yields.

(a) Material 7 (b) Material 8

Figure 6.21: 2.5T 2.2 GeV Transverse Production Yields.
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(a) Carbon (b) Empty

(c) Dummy

Figure 6.22: 5T 2.2 GeV Longitudinal Dilution Yields.

(a) Material 17 (b) Material 18

Figure 6.23: 5T 2.2 GeV Longitudinal Production Yields.
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(a) Carbon (b) Empty

(c) Dummy

Figure 6.24: 5T 2.2 GeV Transverse Dilution Yields.

(a) Material 19 (b) Material 20

Figure 6.25: 5T 2.2 GeV Transverse Production Yields.
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(a) Carbon (b) Empty

(c) Dummy

Figure 6.26: 5T 3.3 GeV Transverse Dilution Yields.

(a) Material 19 (b) Material 20

Figure 6.27: 5T 3.3 GeV Transverse Production Yields.
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Considering these corrected yields and dilution formalism established above, the final

dilutions are presented in the following figures. Note that the final dilutions still suffer from

visible jumps and edge effects, even with a significant amount of work to correct these. To

fully correct these would require a fix for the BPM calibration issues and full and accurate

modeling of the detector acceptance. Without a solution for these issues, the dilution must

be used as-is, and consequently contributes one of the leading systematics to the final result.

However, these effects become less notable in a larger binning, as they tend to cancel each

other when enough data is averaged. A larger 30 MeV binning is used for the 5T asymmetries,

and an even larger binning which scales up to 50 MeV is used for the 2.5T asymmetries.
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(a) Material 7

(b) Material 8

Figure 6.28: 2.5T 1.7 GeV Transverse Dilutions.
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(a) Material 7

(b) Material 8

Figure 6.29: 2.5T 2.2 GeV Transverse Dilutions.
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(a) Material 17

(b) Material 18

Figure 6.30: 5T 2.2 GeV Longitudinal Dilutions.
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(a) Material 19

(b) Material 20

Figure 6.31: 5T 2.2 GeV Transverse Dilutions.
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(a) Material 19

(b) Material 20

Figure 6.32: 5T 3.3 GeV Transverse Dilutions.
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6.4 Asymmetries

Now that we have the dilution, we can calculate the experimental asymmetry necessary to

get the polarized cross section differences. As mentioned in the previous section’s discussion,

the measured asymmetry is defined as a ratio of cross sections, comparing measured electrons

with forward (+) helicity, and those with backward (-) helicity:

A =
σ+ − σ−

σ+ + σ−
=

Y+ − Y−

Y+ + Y−
(6.12)

where

Y± =
N±

LT±Q±
(6.13)

Where the yield is formed from the measured counts N, livetime L, and deposited charge

Q for forward and backward helicity electrons.

The final measured asymmetry is generated by combining results at similar energies into

a single energy ‘bin’ through a statistically weighted average. The statistical error is given

to first order by Poisson statistics, where

δN =
1√
N

(6.14)

with N equal to the total number of measured events. Because of the prescale factor men-

tioned earlier, not every event which occurs is collected in the final results, so it is necessary

to introduce a second order correction factor S defined as [1]:

S =

√
1− LT

Naccepted

Ntotal

(1− 1

ps
) (6.15)

Here, LT is the livetime of the detector, ps is the prescale factor, and Naccepted and Ntotal are

the total number of measured counts and the fraction accepted by the DAQ respectively.
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The final statistical error for each bin can then be written as:

δA =
1

2

√
S2
+

N+

+
S2
−

N−
(6.16)

We combine the asymmetry from different runs in a statistically weighted average to find

the asymmetry for each bin:

∆Ameas =

√
1∑
i

1
δA2

i

(6.17)

Ameas = (∆Ameas)
2
∑
i

Ai

δA2
i

(6.18)

The final sign of the asymmetry depends on whether the insertable half-waveplate is in

(+) or out (-) of the beamline, whether the target has positive (+) or negative (-) polarization,

and for the transverse settings, whether the data was measured in the left HRS (+) or right

HRS(-) [1]. Combining all of these gives the final sign of the asymmetry.

A detailed description of the analysis cuts performed on the asymmetry can be found

in [1], nothing has changed from the description in that work for the cuts on the final

analysis. Because the asymmetry is a ratio quantity, much of the necessary correction to the

acceptance is canceled out, allowing the use of a wider cut in phase space and the inclusion

of more data. In general, the employed cuts are:

• -4% < dp < 4%

• -0.04 < ϕtarget < 0.04

• -0.04 < θ⊥target < 0.08

• -0.06 < θ
∥
target < 0.06

Where dp is the measured momentum in terms of the center of the current momentum

setting.
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To reduce the statistics, the asymmetry results from both the LHRS and RHRS are com-

bined. To prove that they are statistically compatible, a reduced χ2 test is performed. For

each HRS, the asymmetry is compared to a set of random fluctuations within the statistical

error bar of the asymmetry, iterated 10,000 times to find a reduced χ2 of around 1.3. The

LHRS And RHRS results are then compared to each other. For all settings, it was found that

the resulting χ2 was less than the statistically random result of 1.3, tending to an average

χ2 of around 1.1. This is taken to imply that the results are statistically compatible, and

they are combined to form a final asymmetry.

By using (6.3) with the dilution factor calculated in the previous section, and the mea-

sured beam and target polarizations, we can get the experimental asymmetry from these

total combined asymmetries. Due to the reduced 2.5T target polarization discussed earlier,

the statistics on the 2.5T settings are much larger, and consequently, a larger binning is

taken to obtain similar statistical error bars, including more data in each energy bin. The

final asymmetries are shown in the following figures.

Figure 6.33: 2.5T 1.7 GeV Transverse Asymmetry.
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Figure 6.34: 2.5T 2.2 GeV Transverse Asymmetry.
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Figure 6.35: 5T 2.2 GeV Longitudinal Asymmetry.

Figure 6.36: 5T 2.2 GeV Transverse Asymmetry.
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Figure 6.37: 5T 3.3 GeV Transverse Asymmetry.
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6.5 Model Cross Section

The asymmetry gives us half of what we need to form the polarized cross sections. To get

the unpolarized cross section we will need to use (6.4) to form a cross section. However, the

acceptance ∆Ω has all the same issues that plagued the dilution analysis, so to form cross

sections we would need to correct them. This is done by using the same g2psim simulation

that was used for the packing fractions [12] to reproduce and correct the acceptance. For

the longitudinal setting, this process is well understood. But the transverse settings create

a very complex acceptance which is extremely challenging to model and reproduce.

The acceptance has consequently only been accurately modeled for the longitudinal set-

ting to produce a smooth cross section, which is shown in Figure 6.38. Fortuitously, though

the asymmetry represents a polarized part of the scattering which has never been measured

before, unpolarized protons and their cross sections have been measured over a broad kine-

matic range. This large amount of world data means the models for unpolarized proton cross

section are quite good, especially the Bosted-Christy model of [20]. This model is therefore

an excellent cross section input for the settings where producing a cross section from the

data is impossible.

The Bosted-Christy model’s validity for this purpose is tested by comparing it to the

longitudinal setting’s cross section. The model reproduces the structure of the data quite

well, but the central value is lower by around a factor of 1.15. If we scale the model by

1.15, the agreement is very good, as is shown in the resonance region in Figure 6.39. We can

also check the use of this model by forming a longitudinal polarized cross section difference

with (6.2), and comparing the result formed with the data cross section versus the model

cross section. For the data cross section, it would normally be necessary to multiply it

by the dilution factor f to get a true experimental cross section. However, because the

asymmetry scales as 1
f
, we can actually exclude the dilution entirely as it cancels at the

level of the polarized cross section difference. This comparison is shown in Figure 6.40, and
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Figure 6.38: 5T 2.2 GeV Longitudinal Unpolarized Cross Section.

demonstrates very good agreement between both methods, acting as a sanity check on both

the use of the model, and the construction of the dilution factor.

Before finalizing the polarized cross section differences, however, the pressing question

is whether the scaling factor of 1.15 needed for model agreement is reasonable, and how

much systematic contribution it has. The Bosted-Christy model integrates a wide range of

experimental data into its phenomenological fit, but the fit in the kinematic region relevant

to the g2p experiment is driven by the results of the SLAC E61 experiment, consequently,

the model fits the data of that experiment with no scaling whatsoever. However, another

unpublished experiment in the same region, the SLAC ONEN1HAF experiment, requires a

very similar scaling factor as the g2p data for the model to fit well. The comparison between

the necessary scaling for all three experiments is shown in Figure 6.41. This figure makes it

clear that when statistical and systematic errors are considered, there is actually very little

tension between the three of them, and the choice of a scaling factor of 1.15 is consistent

with world data in this region.

118



Figure 6.39: 5T 2.2 GeV Longitudinal Cross Section Comparison to Bosted-Christy
Model [20].

It is now necessary to determine if this 15% scaling on the model is equivalent to a 15%

difference, and consequently systematic uncertainty, on the final results. To do this, we use

the model to form the structure functions following the procedure in the next section, both

with an unscaled model, and a model scaled by 1.15. We then integrate the result to form

moments, both second order and zero order:

M0 =

∫ xth

0

g1(x,Q
2)dx (6.19)

M2 =

∫ xth

0

x2g1(x,Q
2)dx (6.20)

Finally, we compare M0 including the scaled model to M0 with an unscaled model, and

do the same forM2. What we find is that the other terms of the structure function extraction

lead M0 to vary by a maximum of 6%, and the kinematic scaling on the higher order moment

causes the variation to be even lower. After considering the uncertainty on the longitudinal

g2p cross section itself, the total systematic error of employing the model is approximately
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Figure 6.40: 5T 2.2 GeV Longitudinal Polarized Cross Section Difference Data Comparison
to Bosted-Christy Model [20].

9-10%.

6.6 Scattering Angle and Out of Plane Polarization Angle

To employ (2.47) and (2.42) we will need to reconstruct two angles, the scattering angle from

the target θ, and the angle between the polarization and scattering planes, θOoP .

The scattering angle θ can be reconstructed from the vectors corresponding to the electron

beam before and after scattering. Before scattering, this vector is reconstructed from the

angles θb and ϕb measured by the BPMs [1]:

k⃗ =

(
sin θb cosϕb, sin θb sinϕb, cos θb

)
(6.21)

The scattered electron position and angle are measured by the drift chambers in the

high resolution spectrometers. Using the equations of motion for an electron in a magnetic
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Figure 6.41: Ratio of data to Bosted-Christy Model [20] for experiments in the low Q2 region.
The shaded region shows the approximate coverage of the transverse results of the E08-027
experiment.

field, as well as an experimentally measured field map of the target field [66], it is possible to

reconstruct angles ϕrec and θrec for the electron leaving the target relative to the central angle

of the detectors θ0. With these angles, we can write the vector for the scattered electron as:

k⃗′ =

(
[ϕrec cos θ0 + sin θ0], [−θrec], [cos θ0 − ϕrec sin θ0]

)
(6.22)

The scattering angle is defined as the angle between these two vectors [1]:

θ = cos−1

(
k⃗ · k⃗′

|⃗k||k⃗′|

)
(6.23)

The other angle we need is the out of plane polarization angle θOoP , to form the transverse

polarized cross section difference. This is defined as the angle between the normal vectors
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of the scattering plane and polarization planes. With the polarization vector for the proton:

n⃗s = k⃗ × k⃗′ (6.24)

n⃗p = k⃗ × s⃗ (6.25)

and the final angle is:

θOoP = cos−1

(
n⃗s · n⃗p

|n⃗s||n⃗p|

)
(6.26)

6.7 Polarized Cross Section Differences & Radiative Corrections

With an asymmetry from the g2p data and a scaled model cross section from the Bosted-

Christy model, we can now employ (6.2) and (6.1) to form polarized cross section differences.

Before forming the final structure functions, it is necessary to radiatively correct these polar-

ized cross section differences, as was discussed for the dilution factor. The Feynman diagram

originally discussed in Figure 2.1 actually depicts the Born-level process. In actuality, there

are many other diagrams which can take place, with the Born approximation being only a

small fraction of the true interaction. Additional diagrams, radiation of brehmstrahhlung,

and ionizing collisions cause the energy when an electron scatters off the target to differ

from that measured with the Arc method, and the energy observed in the spectrometer to

differ from the true scattered energy. The corrections for these complexities to restore the

data to the Born approximation assumed for most of the formalism in Chapter 2 are collec-

tively known as radiative corrections. This process is detailed at length in [1], and involves

the calculation of a cross section which can be subtracted from our polarized cross section

differences to obtain the Born cross section.

The Born interaction and bremstrahhlung corrections are shown in Figure 6.42. This can

be viewed as possible sources of energy loss for the scattering electrons. This includes the

possibility that energy is radiated before or after scattering, due either to bremstrahhlung
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Figure 6.42: Born Process and Bremstrahhlung corrections. Reproduced from [1].

or ionizing collisions, as well as the possibility that a photon is radiated before or after

scattering during the primary scattering diagram. To treat the Born level process as we

did in Chapter 2, it is necessary to handle the external energy loss through estimates of the

radiation thickness before and after the target, referred to as tb and ta respectively. It is

also necessary to calculate the cross section for internal diagrams other than the one-photon

exchange shown in Figure 6.42(a), such as one-loop corrections, internal bremstrahhlung,

and self-interaction of the electron.

In addition to being divided between external and internal corrections, the radiative

corrections process is split between the calculation of a large elastic tail corresponding to

energy loss in elastic collisions, and inelastic radiative corrections covering all other cases.

The formalism is then further divided into unpolarized radiative corrections, and polarized

radiative corrections, which must be considered for the spin-polarized beam of g2p. Each of

these contributions is detailed in depth in [1], and the calculation of a final radiative correc-

tions cross section there is ultimately subtracted from the polarized cross section differences

calculated with the Bosted-Christy unpolarized cross section and the g2p asymmetry results.

After applying these radiative corrections, the final Born-level polarized cross section

differences are shown in the following Figures.
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Figure 6.43: 2.5T 1.7 GeV Transverse Polarized Cross Section Difference.

Figure 6.44: 2.5T 2.2 GeV Transverse Polarized Cross Section Difference.
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Figure 6.45: 5T 2.2 GeV Longitudinal Polarized Cross Section Difference.

Figure 6.46: 5T 2.2 GeV Transverse Polarized Cross Section Difference.
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Figure 6.47: 5T 3.3 GeV Transverse Polarized Cross Section Difference.
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6.8 Extracting the Structure Functions

We know from (2.42) and (2.47) that the structure functions can be related to these polarized

cross section differences. For a Q2 of 0.045 GeV2, we have both longitudinal and transverse

data, so it is possible to solve these equations directly. But for the other settings, it is most

convenient to reformulate the solution for the structure functions as:

g1 = K1

[
∆σ∥

(
1 +

1

K2

tan
θ

2

)]
+

2g2(x,Q
2)

K2y
tan

θ

2
(6.27)

g2 =
K1y

2

[
∆σ⊥(K2 + tan

θ

2

)]
− g1(x,Q

2)y

2
(6.28)

where K1 and K2 are defined by:

K1 =
MpQ

2

4α

y

(1− y)(2− y)
(6.29)

K2 =
1 + (1− y) cos θ

(1− y) sin θ
(6.30)

This allows us to use the polarized cross section differences in combination with a smaller

contribution from the other structure function to form each structure function. Since we have

no Q2 with only longitudinal data, this is primarily a concern for the formulation of g2. In

this case, we make use of the high precision g1 proton data collected by other experiments,

and the phenomenological models based on it, in this case, the CLAS Hall B model [8]. This

g1 term is responsible for around 30% of the total g2 structure function. Using a g1 from this

model, we are able to form g2 for all settings without a relevant longitudinal measurement.

To form moments and obtain our final results, it is necessary to have our structure

function measurements at a constant Q2. Due to the variation in E ′ across a given energy

setting, each point of the structure function for that setting will land at a slightly different

Q2. We also employ the Hall B Model [8] to make this correction, by adding a correction

factor comparing the model structure function result at the desired constant Q2 and the
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model result at the Q2 of the relevant data point:

g1,2(x,Q
2
const) = gdata1,2 (x,Q2) +

(
gmodel
1,2 (x,Q2

const)− gmodel
1,2 (x,Q2)

)
(6.31)

This method was also checked with a multiplicative correction factor and found almost

no difference. This correction factor was also found to have an extremely small impact,

on the order of 2% or less, on the final structure function, meaning the model dependency

introduced by this correction is not large.

After these corrections, the final structure function results are shown in Figure 6.48.

Figure 6.48: Final structure functions results for all kinematic settings of the g2p experiment.
The solid lines indicate the Clas Hall B Model [8]. Red points indicate g1 results, while blue
points show the g2 results. The shaded regions show the respective systematic errors of each
structure function.

Though there is no other data in this kinematic region for the g2 structure function,
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the g1 results can be compared to recent gp1 results from the EG4 experiment at Jefferson

Lab [9]. This comparison is shown in Figure 6.49. For the most part, the g2p data agrees

within error bars with the EG4 result, though showing a slightly smaller ∆-resonance and

very good statistics. The major point of interesting difference is near the pion production

threshold at W=1073.2 MeV. Phenomenological models and EG4 results indicate a small

positive section and a zero crossing, while g2p data stays negative. Though the g2p data is

compatible with the positive result within error bars, the central value being negative has a

powerful impact on the moments, especially the kinematically weighted moments where the

data near threshold dominates the moment, in which case the sign of the structure function

near threshold has a colossal impact on the moment.

Figure 6.49: Comparison between the g1 data of the g2p [21] and EG4 [9] experiments at
Jefferson Lab.

129



6.9 Systematic Contributions

The final systematic uncertainty for the physics results is shown in Table 6.2. Here the

longitudinal setting is denoted with an (L) and the other settings are all transverse.

Q2 (GeV2) 0.021 0.045 (L) 0.045 0.09 0.13

Model Cross Section (dΩdE ′) 10% 10% 10% 10% 10%
Dilution Factor(f) & Packing Fraction (pf) 7% 4% 8% 7% 8%

Beam Polarization(Pb) & Target Polarization (Pt) 5% 5% 5% 5% 5%
Dilution Factor(f) & Packing Fraction (pf) 7% 4% 8% 7% 8%
Inelastic Radiative Corrections (∆σRC) 3% 3% 3% 3% 3%
Elastic Radiative Corrections (∆σtail) 3% 3% 3% 3% 3%

g1 Model Input 2% 2% 1% 1% 1%
Out-of-Plane Scattering Angle Correction(θOoP ) <1% <1% <1% <1% <1%

Adjustment to Const Q2 <1% <1% <1% <1% <1%
Total 14% 13% 14% 14% 14%

Table 6.2: Final systematics for E08-027.

The dominating systematic is the model cross section contribution discussed above. Due

to the uncertainty in the gp2 cross section and the issues scaling a phenomenological model

to it, this uncertainty is no less than 10%. The secondary uncertainty comes from the

dilution factor and the packing fraction, as a direct consequence of the acceptance issues,

BPM miscalibration, and septa/dipole current mismatch. The beam and target polarization

together have around a 5% systematic uncertainty, due to the uncertainty associated with the

Møller polarimeter and Q-Meter NMR system. The elastic and inelastic radiative corrections

both contribute around 3% systematic error, and the use of the Hall B model for the g1 part

of the g2 results contributes only 1-2%. The out of plane correction to the scattering angle,

introduced by the transverse target field, was investigated and found to contribute less than

1%. Likewise, the adjustment to constant Q2 with the Hall B model of the final structure

functions was a very small systematic. These errors were analyzed thoroughly and found to

be uncorrelated, so the final systematic error is all of the above errors added in quadrature,

and comes out to around 14%.
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CHAPTER 7

Results

The structure functions are a useful result on their own, because they provide information on

how the proton’s spin structure varies from pointlike behavior over a previously unmeasured

kinematic range. As discussed previously, the proton’s spin is a subject of tremendous

uncertainty, and having a test of its spin structure at low Q2 is valuable. But much of the

impact of these results comes from the moments you can form with this structure functions.

These quantities, derived in chapter 2, are kinematically weighted integrals of the structure

functions. They are valuable in large part because they can be directly compared to various

theoretical predictions, allowing a direct experimental test of effective theories of QCD in

the low energy regime.

7.1 Burkhardt-Cottingham Sum Rule (Γ2)

One of the easiest moments to form with the transverse results is the first moment Γ2, as

derived in (2.80). This is simply an integral of g2 over the full range in xbj. The major

prediction for this quantity is the Burkhardt-Cottingham Sum Rule, which states that the

full Γ2 integral must be equal to zero at every Q2. This sum rule has so far been proven

accurate by numerous measurements of the g2 structure function at higher Q2. To properly

test this sum rule, it is necessary to handle the full integral of the moment, but the measured

data is only in the resonance region. Consequently, we need a way to handle the inelastic,

low-x region, as well as the elastic x = 1 contribution.

The g2 elastic contribution can be calculated directly with [67]:
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Figure 7.1: The Γ2 moment. Light blue points represent an integral of the full measured
region of E08-027, while dark blue points are limited to a maximum W of 1725. The MAID
phenomenological model [22] is also run over this limited W range, as are the other ex-
periments’ results, to provide an even comparison. Results of RSS [23] are shown in red,
and results of SANE [24] are shown in yellow. The open symbols represent the sum of the
measured and elastic parts of the integral, excluding only the unmeasured high-W part.

gel2 (x,Q
2) =

τ

2
GM(Q2)

GE(Q
2)−GM(Q2)

1 + τ
δ(x− 1) (7.1)

Here, GE and GM represent the Sachs electric and magnetic form factors [5], and τ = Q2

4M2
p
.

The delta function makes integrating this to form a Γ2 trivial:

Γel
2 (Q

2) =
τ

2
GM(Q2)

GE(Q
2)−GM(Q2)

1 + τ
(7.2)

For this analysis, the Arrington fit to the Sachs form factors is used for GE and GM [68].
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The inelastic, low-x part is a bit trickier. To measure the full integral in this way at any

Q2 would require a measurement up to infinite W, so it is always necessary to estimate the

contribution of the unmeasured region. For other experiments, the method employed is to

use the Wandzura-Wilczek relation [69]. At high Q2, we make the assumption that leading

twist (twist-2) dominates. If we take our dispersion relation for dn (2.87) and set d2 to zero,

a series of Mellin transforms leads to the relation:

gWW
2 (x,Q2) =

∫ 1

x

1

y
g1(y,Q

2)dy − g1(x,Q
2) (7.3)

It is then possible to use g1 data and models to calculate g2 in the unmeasured region

and consequently fill out the Γ2 integral. However, in the very low Q2 regime of the g2p

experiment, the assumption that higher twist contributions are zero ceases to be valid. The

higher twist contribution causes this gWW
2 method to no longer be accurate, meaning that

there is no known good way to estimate the unmeasured part.

The results for the g2p calculation of Γ2 are shown in Figure 7.1. Due to the lack of

an unmeasured estimate, it is impossible to fully test the B.C. sum rule with this data,

and the fact that the total sum of the integral shown in the open symbols does not lay

along zero should not be viewed as a refutation of the Burkhardt-Cottingham sum rule.

However, due to the low Q2 of the experiment, the lowest measured x becomes very low by

the lowest point, down to x = 0.008. This means the unmeasured region grows very small,

and consequently, the data comes very close to agreeing with the B.C. sum rule without any

unmeasured estimate at all.

7.2 Transverse-Longitudinal Spin Polarizability (δLT )

One of the most exciting results of the g2p experiment is the Transverse-Longitudinal Spin

Polarizability δLT , derived in (2.65). Polarizabilities are a class of moment considered to be a

fundamental property of the nucleons, which describes the nucleonic response to an external
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Figure 7.2: The Transverse-Longitudinal Spin Polarizability δLT . The 8-pointed marker
indicates the Q2 where both transverse and longitudinal data from E08-027 are available,
while the other three points are formed with g1 from the CLAS Hall B Model [8]. The points
are compared to the MAID [22] and Hall B [8] phenomenological models, as well as χPT
calculations from Alarcon et al. [25] and Bernard et al [26]. The blue shaded region indicates
the systematic uncertainty.

field. In this case, δLT described a spin-dependent response to an external electromagnetic

field. It was considered to be a benchmark test of Chiral Perturbation Theory because it was

expected to be insensitive to the contribution of the ∆-resonance [44]. A vast disagreement

in 2001 with Neutron data for this moment produced the ‘δLT -puzzle’ discussed in Chapter

1. For this moment, unlike Γ2, it is not necessary to calculate an unmeasured part because

the kinematic weighting of the integral heavily biases the result towards the data near the

pion production threshold. This minimizes the contribution from low-x data. The same is

true for every other moment with a strong kinematic weighting, such as d2 and γ0.

The result shown in Figure 7.2 represents the world’s first experimental determination
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of δLT for the proton. The seemingly large error bar at the lowest point is a reflection of

the strong 1
Q6 weighting on the moment, drastically inflating the statistical error of points

at very low Q2. The result agrees well with one calculation of χPT produced by the Alarcon

et al. [25] group, showing no evidence of a ‘δLT -puzzle’ for the proton. However, the two

cutting-edge calculations of χPT disagree with each other, and the g2p data shows a much

larger discrepancy with the calculation of Bernard et al [26].

The reason for this disagreement is not yet well understood, though there are several

known differences between the two calculations. Firstly, the Bernard calculation makes the

assumption that the higher order terms of the expansion are negligible, but recent results

indicate that these terms may be important, and should be included in the expansion.

Secondly, the two calculations use a different method of power-counting to expand the VVCS

amplitudes. Bernard favors an ‘ϵ-counting’ method, where the assumption is made that the

pion mass mπ is of similar scale to the mass difference between the ∆-resonance and the

proton, which we will denote as ∆. This allows the two quantities to be expanded to the

same order. Alarcon instead uses a ‘δ-counting’ method, where the underlying assumption

is that the ratio between the pion mass and this mass difference mπ

∆
is similar to the ratio

between the mass difference and the nucleon mass ∆
Mp

. Finally, the Alarcon et al. paper

stresses their use of ‘consistent couplings’ to the ∆-field, where this consistency is not enforced

in the Bernard result. Alarcon stresses that the use of these consistent couplings will likely

not have an effect on the structure of the calculation, but may have an impact on the

normalization at Q2 = 0, which seems very similar to what we see for δLT .

The g2p result for this polarizability represents a new benchmark which can help to

discriminate between these calculations of chiral perturbation theory, and which other low-

energy effective theories such as Lattice QCD must be able to reproduce.
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Figure 7.3: The Twist-3 Local Operator d2. The 8-pointed marker indicates the Q2 where
both transverse and longitudinal data from E08-027 are available, while the other three
points are formed with g1 from the CLAS Hall B Model [8]. The points are compared to the
MAID [22] phenomenological model, as well as a χPT calculations from Alarcon et al. [25]
and a higher Q2 lattice QCD calculation [27]. Also shown are results from the RSS [23],
SANE [24] and SLAC E155 [28] experiments.

7.3 Twist-3 Local Operator (d2)

Another polarizability of interest which is dominated by the g2 structure function is the

twist-3 local operator d2, defined in (2.89). At high Q2, this moment is equated with a color

polarizability, considered by some to quantify a ‘color Lorentz force’ [70]. This means that

it shows the nucleon’s response to color electric and magnetic fields. However, at low Q2,

this definition drops out, and instead it can be interpreted as a ‘pure polarizability’, which

gives information about the quark-gluon correlations of the nucleon [25, 71].

The g2p results for d2 are shown in Figure 7.3. There is only one chiral perturbation
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theory calculation in this regime [25], but our data agrees very well with this calculation,

as well as with the phenomenological MAID model [22]. This moment is interesting also

because it must vanish at Q2 = 0 and at high Q2, where the twist-3 contribution to the

nucleon’s response becomes negligible. But in the strong-QCD regime and transition region,

its structure reveals the interaction between nucleonic quarks and gluons at low energy.

At higher Q2, the results of SANE [24] indicate that the behavior of d2 may be very

complex, with a potential sign change in contrast to the expectation of the models. But at

low Q2 our new data shows no tension with the theoretical predictions or models. The area

in between is a very interesting one, where a new measurement may be of great value in

determining the maximum value of d2 and mapping out the transition between high and low

Q2.

7.4 First Moment of g1 (Γ1)

The first moment of g1, similar to Γ2, is simply an integral of the longitudinal structure

function g1 as defined in (2.79). Data on this moment is useful for discriminating between

χPT calculations as it was for the other moments, and for checking the well known GDH-

Slope approaching Q2 = 0. Similar to the first moment of g2 we must add in an elastic

contribution:

Γel
1 (Q

2) =
τ

2
GM(Q2)

GE(Q
2) + τGM(Q2)

1 + τ
(7.4)

The new data point from g2p data is comparable to previously published data from the

EG1b [8] experiment. However, it trends slightly lower and has significantly lower statis-

tical uncertainty. Differences between the data sets can be explained by more than simple

uncertainty, as this g2p point includes both transverse and longitudinal data used together,

where the EG1b data uses only longitudinal data, with a model to reproduce the transverse

contribution, similar to how g2p uses a model for the longitudinal part for the other Q2

points. The g2p data also goes significantly closer to the pion production threshold, and
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Figure 7.4: The First Moment of g1, Γ1. The points are compared to the MAID [22] and
Hall B [8] phenomenological model, as well as a χPT calculations from Alarcon et al. [25]
and Bernard et al [26]. Also shown are results from the EG1B [8] experiment.

its behavior in this region shows possible differences from the model used for this region by

EG1b.

For this moment, the g2p data does not provide discriminating power between the two

leading χPT calculations, as the error bars make it essentially compatible with either. How-

ever, the Bernard group is aware of the seeming discrepancy between their calculation and

the data and model predictions at higher Q2, believing this to be an issue of the missing

next-to-next-to-leading-order diagrams discussed for the δLT moment.

7.5 Generalized Forward Spin Polarizability (γ0)

Like δLT , another important second moment spin polarizability is the complementary Gen-

eralized Forward Spin Polarizability γ0, which is defined in (2.63). This polarizability tracks

138



Figure 7.5: The Generalized Forward Spin Polarizability, γ0. The points are compared to
the MAID [22] and Hall B [8] phenomenological model, as well as a χPT calculations from
Alarcon et al. [25] and Bernard et al [26]. Also shown are results from the EG1B [8] and
EG4 [9] experiments.

a longitudinally-dominated spin-dependent response to an electromagnetic field. Similar to

the discussion for Γ1, the g2p data here differs from the other existing data sets in the area of

EG4 [9] and EG1b [8] due to its collection of both transverse and longitudinal data for this

Q2 point, and the very close approach to the pion production threshold. For these moments

with a strong x2 dependence in the integral, the total result is heavily weighted towards the

high x data near the pion production threshold, where the g2p g1 differs most from the other

experiments.
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Figure 7.6: The Extended GDH Sum, IA. The points are compared to the MAID [22] and
Hall B [8] phenomenological model, as well as a χPT calculations from Alarcon et al. [25]
and Bernard et al [26]. Also shown are results from the EG1B [8] and EG4 [9] experiments.

7.6 Extended GDH Sum (IA)

The Extended GDH Sum, as defined in (2.61). This moment too is dominated by the

longitudinal data, and thus Q2 points where we have only transverse data are not presented.

Though the g2p point here falls between the two χPT calculations as it does for the other

two longitudinally dominated moments, here it shows a slight preference for the Alarcon et

al. [25] calculation. One of the most important theoretical comparisons for this moment is

to the known value at the real photon point of Q2 = 0. Though the g2p data is not at low

enough Q2 to compare directly with the real photon point, its result is compatible with the

approach to this value.
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7.7 Hyperfine Structure

For most purposes of scattering interactions, the energy scale associated with the electron

orbitals of an atom differs greatly from the energy scale associated with its nucleus, meaning

that these two sets of interactions can be treated with very different theoretical and experi-

mental techniques. But as calculations and measurements become more precise, it becomes

very desirable to bridge the gap between these two treatments, to understand the interaction

between the atomic and nuclear regimes. The hydrogen atom is the simplest possible atom

in which to understand this interaction.

In Hydrogen, the dipole moment of the proton that forms a hydrogen nucleus interacts

with the dipole moment of its orbiting electron to create a splitting in the energy levels of the

hydrogen atom, a shift known as ‘hyperfine splitting’. The magnitude of this shift has been

measured with very high experimental precision, up to the level of 10−13 MHz uncertainty,

to a value of ∆Ehfs = 1420.405751767(9) MHz [1, 72]. However, theoretical calculations

of this value have an uncertainty more than a million times greater, on the level of 10−6.

The leading uncertainty in this calculation is related to our theoretical understanding of

the proton structure, and can be derived from the structure functions g1 and g2, making

their measurement necessary for bridging the gap between theory and experiment for the

hyperfine splitting.

The theoretical calculation of the hyperfine splitting is [1, 72]:

∆Ehfs = (1 + ∆R +∆small +∆QED +∆struc
p )Ep

F (7.5)

Where Ep
F = 1418.840 MHz is the magnetic dipole interaction energy, ∆R is a correction

due to recoil effects, ∆small is a correction associated with the muonic and vacuum polar-

izations and the weak interaction, ∆QED is a correction associated with radiative quantum

electrodynamics, and ∆struc
p is the correction associated with the proton structure. To fully

quantify this last correction, experimental measurements are necessary. This correction can
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be broken up into a ground state term and an excited state term [1]:

∆struc
p = ∆Z +∆pol (7.6)

The excited state term can be further broken up into two additional terms:

∆pol =
αme

πgpMp

(∆1 +∆2) (7.7)

Where α is the fine structure constant and gp is the proton g-factor. The first term can

be defined as:

∆1 =
9

4

∫ ∞

0

dQ2

Q2

[(
GM(Q2) +G2

E(Q
2)

1 + τ

)2

+
8M2

p

Q2
B1(Q

2)

]
(7.8)

B1(Q
2) =

∫ xpp

0

β1(τ)g1(x,Q
2)dx (7.9)

β1(Q
2) =

4

9

(
− 3τ + 2τ 2 + 2(2− τ)

√
τ(τ + 1)

)
(7.10)

A full calculation of ∆1 therefore requires measurements of g1 over a broad range in

Q2. The results for the B1 part of the integral from g2p longitudinal data are shown in

Figure 7.7. To perform the full integral would require an integration over all Q2, requiring

either additional data or a model contribution. The B1 result is in fairly good agreement

with phenomenological models and with the prior data from the CLAS EG1b experiment [8],

but when combined with the lowest data point of that experiment, is perhaps suggestive of

a slightly steeper descent than the models expect, which would result in a slightly larger

contribution to the value of ∆1

A similar equation for the other part of ∆pol gives:

∆2 = −24M2
p

∫ ∞

0

dQ2

Q4
B2(Q

2) (7.11)
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Figure 7.7: The B1(Q
2) part of the ∆1 integral. The points are compared to the MAID [22]

and Hall B [8] phenomenological model. Also shown are calculated results from internal data
of the EG1B [8] experiment.

B2(Q
2) =

∫ xpp

0

β2(τ)g2(x,Q
2)dx (7.12)

β2(Q
2) = 1 + 2τ − 2

√
τ(τ + 1) (7.13)

The results for the integrand of ∆2 are shown in Figure 7.8. This represents the first

experimental determination of this contribution. Though it is possible to form a BWW
2 using

the Wandzura-Wilczek g2 defined in (7.3), as the plot shows, this B2 has very different and

incorrect behavior at low Q2 when leading twist assumptions fail. The g2p data is otherwise

in relatively good agreement with the phenomenological models. Similar to B1, to perform

the full integral of B2 would require additional data over a broader Q2 range, or to use a

model for most of the range of the integral.

The uncertainty in current theoretical calculations of hyperfine splitting is driven almost
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Figure 7.8: The B2(Q
2) part of the ∆2 integral. The points are compared to the MAID [22]

and Hall B [8] phenomenological model.

entirely by the proton structure term, and consequently, by the lack of data for constructing

∆2 [72]. This data therefore helps to shrink the current largest uncertainty in understanding

the dipole interaction in atomic hydrogen.

7.8 P-N and P+N Channels

One outstanding question from these results is how they can help us to understand the dis-

crepancies between Neutron data and calculations and Proton data and calculations. This is

especially relevant considering the ”δLT Puzzle” in the Small-Angle GDH [4] neutron results,

and the discrepancy between Bernard [26] and Alarcon [25] calculations for moments such

as proton δLT , proton γ0, and neutron γ0. One way to begin investigating these differences

is by examining the difference of the proton and neutron moment results (the P-N channel)
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and comparing it to the sum of the respective nucleon results (the P+N channel.)

These channels are shown in the following plots for several moments where χPT calcula-

tions are available for both the proton and the neutron. For the following plots, data points

shown are a result of subtracting the Small-Angle GDH Neutron results from the g2p Proton

results shown in this chapter. A small correction is applied with the Hall B model to correct

for any difference in the central Q2 of the relevant data points.

Figure 7.9: The Transverse Longitudinal Spin Polarizability δLT in the P-N Channel. Chiral
Perturbation Theory calculations are shown from Alarcon et al. [25] and Bernard et al. [26].
Data is combined from the g2p [21] proton results and Small-Angle GDH [4] neutron results.

An interesting potential clue is found in the P-N channel, where for the Γ1 and γ0 mo-

ments, the discrepancy between χPT calculations nearly vanishes. This seems to indicate

that the difference between the calculations is constant between the two nucleons. However,

the situation is different for δLT , where the calculations already agree well for the neutron

(although both fail to satisfy the recent experimental results.) Consequently, the P-N chan-

nel for δLT shows a remaining discrepancy not present in the other moments. It is possible
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Figure 7.10: The Transverse Longitudinal Spin Polarizability δLT in the P+N Channel.
Chiral Perturbation Theory calculations are shown from Alarcon et al. [25] and Bernard et
al. [26]. Data is combined from the g2p [21] proton results and Small-Angle GDH [4] neutron
results.

that examining these differences provides important information on the strange issues with

δLT , and on the underlying disagreement between calculations present in several moments

and polarizabilities.
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Figure 7.11: The Generalized Forward Spin Polarizability γ0 in the P-N Channel. Chiral
Perturbation Theory calculations are shown from Alarcon et al. [25] and Bernard et al. [26].
Data is combined from the g2p [21] proton results and Small-Angle GDH [4] neutron results.
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Figure 7.12: The Generalized Forward Spin Polarizability γ0 in the P+N Channel. Chiral
Perturbation Theory calculations are shown from Alarcon et al. [25] and Bernard et al. [26].
Data is combined from the g2p [21] proton results and Small-Angle GDH [4] neutron results.
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Figure 7.13: The Γ1 moment in the P-N Channel. Chiral Perturbation Theory calculations
are shown from Alarcon et al. [25] and Bernard et al. [26]. Data is combined from the g2p [21]
proton results and Small-Angle GDH [4] neutron results.
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Figure 7.14: The Γ1 moment in the P+N Channel. Chiral Perturbation Theory calculations
are shown from Alarcon et al. [25] and Bernard et al. [26]. Data is combined from the g2p [21]
proton results and Small-Angle GDH [4] neutron results.
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CHAPTER 8

Physics Conclusions

The g2p experiment was the first ever measurement of a fundamental proton observable in

the region where the perturbative definition of QCD breaks down and our understanding

becomes more limited. The experiment was challenging, due to the low energy and necessary

transverse field in the polarized target, but obtained high precision data in a very difficult

regime to measure. The results clarify our understanding of the proton’s spin structure,

as well as our understanding of low Q2 QCD, by acting as a benchmark for several impor-

tant moments and polarizabilities which theoretical calculations must be able to reproduce.

This result is transformative and was recently published in the journal Nature Physics un-

der the title, “Proton spin structure and generalized polarizabilities in the strong quantum

chromodynamics regime” in October 2022.

In general, the g2p proton results show good agreement with the predictions of chiral

perturbation theory, giving no indication of a proton ‘δLT Puzzle’, and providing evidence in

favor of current cutting edge effective theories of QCD. However, which calculation the results

favor is highly moment dependent. The moments which are dominated by g2 such as δLT

tend to show very good agreement with the calculation of Alarcon et al. [25]. However, the

g2p data for the moments dominated by g1 is either unable to decisively favor one calculation

over the other, or in the case of γ0, actively favors the calculation of Bernard et al. [26]. This

is driven almost entirely by the behavior of the g1 result near the pion production threshold,

where the g2p result stays negative, while CLAS data and phenomenological models indicate

a small positive crossing.
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The results presented above imply a number of possibilities for future work to follow

up. Primarily, the major result for δLT and other moments shows that to fully understand

the low Q2 regime of QCD, and the structure of the particle which comprises most of the

mass of the visible universe, the proton, it is necessary for additional theory work to occur,

to reconcile the competing calculations of chiral perturbation theory for the polarizabilities,

and to accurately estimate the unmeasured part of the integral at low Q2 for other moments.

This theory work must be able to reproduce the newly published g2p data.

Several of the results also present an important motivation for a further measurement of

both structure functions g1 and g2 over a transition range from low to medium Q2 for the pro-

ton. d2 seems to have a maximum value in a region which has not yet been measured, finding

this maximum and understanding it may have theoretical implications for the connection

between the low Q2 realm of quark-gluon correlations and the high Q2 interpretation of color

polarizability. The behavior of g2 in this unmeasured range is also interesting. As can be

seen most prominently in Figure 7.1, the sign of g2 in the resonance region inverts from the

high Q2 RSS and SANE data to the low Q2 g2p data. Understanding exactly why this sign

flip happens and where it occurs may be extremely interesting for understanding the spin

structure of the proton. For both of these reasons, as well as the prospect of computing a

number of these moments in the regime of the upper limit of χPT calculations, I believe the

g2p results call for another measurement of the proton structure functions at slightly higher

Q2, with a large number of energy settings for the highest possible Q2 resolution. In an ideal

world, the best possible measurement would ensure that longitudinal data and transverse

data are taken at similar Q2 for all kinematic points, to reduce the model dependency of the

final result as was possible for the Q2 = 0.045 point in g2p.
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