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OPTIMIZING SHIFT SELECTION IN MULTILEVEL MONTE CARLO FOR

DISCONNECTED DIAGRAMS IN LATTICE QCD

TRAVIS WHYTE1, ANDREAS STATHOPOULOS1, ELOY ROMERO2, AND KOSTAS ORGINOS2,3

Abstract. The calculation of disconnected diagram contributions to physical signals is a computationally ex-
pensive task in Lattice QCD. To extract the physical signal, the trace of the inverse Lattice Dirac operator, a large
sparse matrix, must be stochastically estimated. Because the variance of the stochastic estimator is typically large,
variance reduction techniques must be employed. Multilevel Monte Carlo (MLMC) methods reduce the variance
of the trace estimator by utilizing a telescoping sequence of estimators. Frequency Splitting is one such method
that uses a sequence of inverses of shifted operators to estimate the trace of the inverse lattice Dirac operator,
however there is no a priori way to select the shifts that minimize the cost of the multilevel trace estimation. In
this article, we present a sampling and interpolation scheme that is able to predict the variances associated with
Frequency Splitting under displacements of the underlying space time lattice. The interpolation scheme is able to
predict the variances to high accuracy and therefore choose shifts that correspond to an approximate minimum
of the cost for the trace estimation. We show that Frequency Splitting with the chosen shifts displays significant
speedups over multigrid deflation, and that these shifts can be used for multiple configurations within the same
ensemble with no penalty to performance.

1. Introduction

Lattice Quantum Chromodynamics (LQCD) is the foremost theoretical tool for estimating physical properties
of hadrons. In the extraction of physical observables, it is often required to calculate the contribution of dis-
connected diagrams, which involves calculating the trace of the inverse of the lattice Dirac operator, D. Often,
it is not only the trace of D−1 that is desired, but the trace of ΓD−1, where Γ is a unitary rotation of D−1

corresponding to a desired physical observable. In addition, our motivation comes from the calculation of the
disconnected contribution to the flavor separated Generalized Parton functions [5, 17], which requires the calcu-
lation of Tr(ΓΩpD

−1) where Ωp = WΠp. Πp is a permutation matrix corresponding to a [0, 0, p, 0]-displacement
that we assume is in the z lattice direction without loss of generality, and W is the Wilson line, a product of
gauge links in the z-direction. The lattice Dirac operator is a large sparse matrix, so explicitly calculating the
trace of the inverse is computationally infeasible. The only resort is then to estimate the trace stochastically.
Generally, for a non singular matrix A ∈ CN×N , the Hutchinson method [24] estimates the trace of the inverse
as Tr(A−1) = E[z†A−1z] = E(t(A−1)), i.e., with the estimator

(1) t(A−1) =
1

s

Ns
∑

j=1

z
†
jA

−1zj,

where zj are Ns random vectors whose elements are drawn from {1,−1, i,−i} with equal probability. The variance
of the estimator is given by

(2) Var[t(A−1)] = 2(||A−1||2F −
N
∑

i=1

|(A−1)ii|2),

which depends on the magnitude of the off-diagonal elements of A−1. In lattice QCD the ill-conditioning of D
and thus the above variance grow with the lattice size. It is therefore necessary to develop variance reduction
methods.

Probing [31] is one variance reduction technique, wherein a coloring of the graph of A results in a set of
orthogonal vectors that remove specific nonzero elements of A−1. Hierarchical probing [28, 25] is an extension of
probing that allows for reuse of the quadratures in the stochastic trace estimation by identifying nested colorings
at increasing lattice distances. Deflation [18, 7] computes the singular pairs corresponding to the smallest singular
values of A, which contribute the most to the variance. It has been shown in [18] that deflation and probing
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act complementary to one another, with probing removing the heaviest elements in short lattice distances and
deflation removing the contribution of elements at long distances. While effective, deflation poses a problem for
LQCD practitioners. As the lattice volume grows, the density of the low lying singular space of D increases,
and therefore more singular triplets must be deflated out to achieve similar reductions in variance. Therefore,
the resulting memory and computational costs to compute and apply deflation become prohibitive. Multigrid
deflation [27] was developed as a method to mitigate these scaling costs of deflation. In multigrid deflation, the
singular triplets of a coarsened lattice Dirac operator are calculated, rather than those of D. Due to the reduced
size of the coarsened operator, many more singular triplets can be calculated in comparison to that of D.

Multilevel Monte Carlo methods reduce the variance of the estimator by utilizing a telescoping sequence of
estimators [19] with each term in the sequence corresponding to a level l. Given the sequence X0, X1, ..., XL, the
unbiased estimator of XL can be written as

(3) E[XL] = E[X0] +

L
∑

l=1

E[Xl −Xl−1].

The variance of the multilevel estimator will then be lower than that of the single level method due to the
correlation between Xl and Xl−1, and will have a lower computational cost than that of the single level method.
Recent examples of multilevel trace estimation can be found in [23], where a sequence of Chebyshev polynomials
were used to estimate the trace of f(A), and in [16], where Tr(A−1) was estimated using a hierarchy of coarsened
operators from a multigrid construction.

A third multilevel method, and the one that is the focus of our study, is Frequency Splitting (FS) [20]. FS
splits the low and high frequency modes of the inverse lattice Dirac operator by creating a telescoping series of
inverses of shifted operators. FS then avoids the computation and storage of singular vectors, which is known
to scale as O(V 3) or higher for a lattice of volume V [26], making it a good candidate for variance reduction
in the exascale regime. We also expect the variance associated with the FS method to be smaller than that of
deflation when deflating with a number of singular pairs that is practical to compute, due to the rapid decay of
the off-diagonal elements of D−1 at large quark mass. However, FS is not without its own complications. There
is no a priori way to predict the optimal shifts that give the minimum multilevel cost.

The scalability limitations of deflation with respect to lattice volume and the clear advantage of a shifting
strategy can be demonstrated by examining the approximate decay coefficient of the inverse. The magnitude of
the elements of the inverse Dirac operator decay approximately according to e−ρ|x−y| for large source and sink
separation, where ρ is proportional to the pion mass and thus is dependent on the shift σ [9]. Therefore, the
variance of the trace estimator in (2) decreases as the lattice Dirac operator is shifted. We illustrate this in the
following experiment.

The inverse was sampled by randomly choosing a lattice point and solving the set of linear equations for each
color spin index on a lattice of size 323 × 64 at physical quark mass. The lowest 200 singular values λi and their
singular vectors were calculated and used to deflate the inverse using i = {0, 1, 2, 4, 8, 16, 32, 64, 100, 150, 200}
singular triplets. We then use the corresponding value of λi to shift the lattice Dirac operator. In both cases, the
value of ρ is extracted from an exponential fit of the propagator as a function of the Euclidean distance between
source and sink. It can be readily seen in Figure 1 that the decay coefficient of the inverse rapidly increases, and
thus the variance decreases when shifting by λi. For deflation, the decay coefficient plateaus very early on. It
would take deflating many thousands of singular pairs to achieve the same rate of decay and variance reduction
as shifting due to the density of the low singular space. This observation further motivates our use of FS and the
need to obtain near optimal shifts.

The rest of the paper follows the following structure: Section 2 discusses probing for displacements of the
lattice, FS, and multilevel Monte Carlo in the context of FS. Section 3 discusses our sampling and interpolation
technique which chooses near optimal shifts for the multilevel trace estimation. Section 4 gives experimental
results using the chosen shifts to compare to multigrid deflation, and Section 5 gives our conclusions and resulting
open avenues of study.

2. Background

2.1. Probing. Probing [31] is a method that has been used in many applications, but can be used in trace
estimation to reduce the variance of the estimator. Many matrices, such as the lattice Dirac operator D, exhibit
decay of the off-diagonal elements of the inverse with respect to the distance of their corresponding points in the
graph of the matrix or in the lattice. Classical Probing eliminates elements that correspond to distances up to k

by computing a distance-k coloring of the graph of A (which is the same as the distance-1 coloring of Ak). Since
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Figure 1. The decay coefficient extracted from (D + λI)−1 and (I − P (λ))D−1, where P (λ) is
the projector to the low singular space that includes all singular triplets up to λ.

coloring optimality is not important, the task is performed with a greedy coloring algorithm. The resulting c

colors are then used to construct a set of orthogonal probing vectors zj , j = 1, 2, ..., c,

(4) zj(i) =

{

1 if color(i) = j

0 otherwise
.

Note that these vectors calculate exactly Tr(Ak) =
∑c

j=1 z
T
j A

kzj. When used for Tr(A−1) they have the desired

effect to eliminate from the variance in (2) all elements corresponding to distances up to k.
Recently, Classical Probing has been extended when an estimation of the trace of ΠpA

−1 is desired, where
Πp is a permutation matrix that corresponds to a displacement p in the underlying four dimensional space-time
lattice [30]. In our LQCD application, we are interested in displacements in the z dimension of the lattice.
The coloring can then be performed on the symmetric part of ΠpA

k, given by ΠpA
k + (ΠpA

k)T . For a node
x = [x1, ..., x4] in the lattice, this corresponds to a distance-k coloring not of the neighborhood centered at x but
of the neighborhoods centered at x+ = [x1, ..., x4 + p] and x− = [x1, ..., x4 − p]. The probing vectors produced
with the resulting colors and (4) are then used in the trace estimation of ΠpA

−1. They have the effect of removing
the contribution of neighboring nodes up to distance k from any node displaced by p with the same color. These
will be the heaviest off-diagonal elements of ΠpA

−1. Finally, although the probing vectors zj are deterministic,
we can combine them with a set of s random noise vectors, which is equivalent to taking s steps of Hutchinson
on the matrix ΠpA

−1⊙ZZT , where the columns of Z are the probing vectors and ⊙ is the element-wise product.

2.2. Frequency Splitting. Given a set of L real shifts of increasing magnitude, σ, D−1 can be written as a
telescoping sum of inverses separated by the shifts

(5) D−1 =

L−1
∑

l=0

(

(D + σlI)
−1 − (D + σl+1I)

−1
)

+ (D + σLI)
−1

where 0 = σ0 < σ1 < ... < σL. FS then makes use of the identity

(6) A−1(A−B)B−1 = B−1 −A−1

for A and B square, non singular matrices. In LQCD, this identity was first introduced as the “One End Trick"
and was used in the stochastic estimation of the trace for the twisted mass discretization of fermions [8]. In FS,
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the inverses differ only by a shift, so Equation (5) can be written as

(7) D−1 =

L−1
∑

l=0

(σl+1 − σl)(D + σlI)
−1(D + σl+1I)

−1 + (D + σLI)
−1.

This can be generalized to the product ΓD−1 through left multiplication with any matrix Γ. Then, taking the
trace yields

Tr(ΓD−1) =
L−1
∑

l=0

(σl+1 − σl)Tr
(

Γ(D + σlI)
−1(D + σl+1I)

−1
)

+ Tr(Γ(D + σLI)
−1).

(8)

In Ref. [20], the trace estimator of any term within the summation is referred to as the “standard random-noise
estimator". It was further shown that the terms within the summation can be rewritten using the commutation
of the inverses and the cyclic property of the trace, yielding

Tr(Γ(D + σlI)
−1(D + σl+1I)

−1) = Tr((D + σlI)
−1Γ(D + σl+1I)

−1).(9)

The trace estimator of the right hand side is known as the “split-even estimator" and was shown to have lower
variance than that of the standard random-noise estimator. While Equation (9) shows the equality of the traces,
Γ(D+σlI)

−1(D+σl+1I)
−1 6= (D+σlI)

−1Γ(D+σl+1I)
−1. The insertion of Γ in between the two inverses results

in a change of the singular spectra, which accounts for the reduction in the variance of the split-even estimator.
Equation (8) can be further generalized using similar means to our target matrix ΓΩpD

−1 for any combination
of Γ and Ωp,

(10) ΓΠpD
−1 =

L−1
∑

l=0

(σl+1 − σl)ΓΠp(D + σlI)
−1(D + σl+1I)

−1 + ΓΠp(D + σLI)
−1.

Taking the trace, using its cyclic property, and the fact that inverses of shifted matrices commute, Equation (10)
can be written as

Tr(ΓΩpD
−1) =

L−1
∑

l=0

(σl+1 − σl)Tr
(

(D + σlI)
−1ΓΩp(D + σl+1I)

−1
)

+ Tr(ΓΩp(D + σLI)
−1).

(11)

The trace of each term in Equation (11) can then be estimated independently. The variances of these trace
estimators given by Equation (2) and can be defined as a function, Vl and VL, of Γ, Ωp, and shifts α and β, for
l = 0, . . . , L− 1

(12) Vl(α, β,Γ,Ωp) = V ar[t((α − β)(D + αI)−1ΓΩp(D + βI)−1)]

and for the last term as a function of one shift τ ,

(13) VL(τ,Γ,Ωp) = V ar[t(ΓΩp(D + τI)−1)].

When Γ and Ωp are implied in the context, we simplify the notation as Vl(α, β) and VL(τ). When all parameters
are implied we refer to the variances as Vl and VL.

We remark that when Γ = Ωp = I, any variance reduction achieved is due to the correlation between (D +
σlI)

−1(D + σlI)
−1 and (D + σl+1I)

−1(D + σl+1I)
−1 due to the equality of the One End Trick. As the shift

is increased, the inverses become less correlated and therefore many shifts would need to be taken in order to
effectively reduce the variance. It is also prudent to mention here that deflation is not a viable method of variance
reduction to use in conjunction with FS. Due to the complex, non symmetric nature of D, the insertion of ΓΩp

in between the two inverses means that the terms within the summation will have different spectra for every
combination of Γ and Ωp. The effect of shifting D further changes the singular spectrum. Variance reduction
with deflation would then require calculating singular pairs for every product term associated with an individual
combination of Γ and Ωp for every shift. As an example, if the trace of ΓΩpD

−1 is being estimated for 16 different
combinations of the Γ matrices, 9 different displacements of the lattice, and six shifts, there are 864 split even
estimators that require the calculation of singular vectors in order to deflate. Such a calculation is too expensive.
FS poses an additional complication: because the relation of the singular values of D to the shift σl are not
known, the variance of the individual terms in Equation (11) cannot be predicted analytically.
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2.3. Multilevel Monte Carlo. In this section, we introduce the concepts of optimizing the multilevel Monte
Carlo in the context of our FS application. An open question with regard to FS was whether it reduced the total
computational work compared to estimating the trace of ΓΩpD

−1 with other variance reduction techniques. To
answer this question, we first follow the work of Giles for multilevel Monte Carlo [19] to adjust how accurately
we must solve each level so that the cost to estimate Equation (11) is minimized for a particular Γ and Ωp.

For a single level method, the total computational cost of estimating Tr(ΓΩpD
−1) to a target variance ǫ2 is

given by

(14) ǫ−2CV,

where C is the solver cost of the linear equations and V is the estimator variance, V = Var[t(ΓΩpD
−1)]. For our

multilevel FS application, the total computational cost of estimating Equation (11) is given by

(15) CFS = ǫ−2

( L
∑

l=0

√

ClVl

)2

,

where ǫ−2 is similarly defined, and Cl and Vl are respectively the solver cost and estimator variance for a given set
of shifts, Γ, and Ωp at level l. Specifically, Vl = Vl(σl, σl+1,Γ,Ωp), for l = 0, . . . , L − 1, and VL = VL(σL,Γ,Ωp).
The cost CFS is also a function of these parameters.

Given the Cl, Vl for some Γ,Ωp and a set of shifts, to achieve the optimal cost of Equation (15), according to
the analysis of Giles, the optimal number of samples required at each level is

(16) Nl = µ

√

Vl

Cl

,

where the Lagrangian multiplier µ is given by µ = ǫ−2
(

∑L

l=0

√
VlCl

)

. Then the total variance of the multilevel

trace estimation is given by

(17) VFS =

L
∑

l=0

Vl

Nl

,

and the trace estimator by

t(ΓΩpD
−1) =

L−1
∑

l=0

(σl+1 − σl)

Nl

Nl
∑

s=0

z
†
s,l(D + σlI)

−1ΓΩp(D + σl+1I)
−1zs,l

+
1

NL

NL
∑

s=0

z
†
s,LΓΩp(D + σLI)

−1zs,L

(18)

with zs,l and zs,L random vectors with elements from {1,−1, i,−i}. For the purposes of later discussion regarding
the efficacy of our interpolation scheme, we define Vtotal to be the sum of the estimator variance of the levels as

(19) Vtotal =

L
∑

l=0

Vl.

Then, our goal is to find the set of shifts σ that minimizes Equation (15) over all sets of shifts. Unfortunately,
Equations (12) and (13) do not provide a way to determine the shifts analytically. Moreover, the cost Cl is
measured in number of multigrid iterations and, thus, is a discrete function of the shifts. In the following section,
we describe our sampling and interpolation method that is able to predict the variances associated with Vl and
VL and therefore return an approximately optimal set of shifts. Then, we address the question of whether the
increase in the number of solves due to multiple levels results in a gain compared to a single level trace estimation
at equal target variance.

3. Methods

We describe how the variances corresponding to the functions Vl and VL of Equations (12) and (13) are
estimated through sampling, our polynomial interpolation method, how both the number of optimal shifts and
their respective values are chosen as a result of the interpolation and our motivation for the choice of probing
vectors to use in conjunction with FS.

To facilitate the sampling and interpolation discussion, we define three distinct sets of shifts. The sampling

set ŝ is a set of m real shifts that are used to solve m linear systems in order to sample the values of Vl and VL

with ŝ0 = 0 < ŝ1 < ... < ŝm−1.
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The evaluation set s is a set of n real shifts, s0 = 0 < s1 < ... < sn−1, where we evaluate the interpolating
polynomials to obtain a prediction of the variances Vl and VL at each pair of values si, sj or each value si
respectively. The discretization is chosen to capture the shape of the manifold to be interpolated. sn−1 is chosen
to be a value well within the interior of the spectrum of D. The evaluation set contains the sampling set.

The optimal set is the set of L shifts chosen from s that minimize Equation (15) over all choices of si, i.e.,
σ0 = s0 = 0 < σ1 = sj1 < ... < σL = sjL with

(20) σ = argmin
1≤j1<j2<...<jL≤n

CFS(s0, sj1 , . . . , sjL).

3.1. Sampling the Variance. Given our set of sampling shifts ŝ, we wish to estimate the variances

Vl(ŝi, ŝj,Γ,Ωp) = (ŝj − ŝi)
2V̄l(ŝi, ŝj ,Γ,Ωp)(21)

VL(ŝi,Γ,Ωp) = Var[t(ΓΩp(D + ŝiI)
−1)],(22)

for i = 0, . . . ,m− 1 and j = i, . . . ,m− 1. Here, we introduce V̄l as

(23) V̄l(ŝi, ŝj ,Γ,Ωp) = Var[t((D + ŝiI)
−1ΓΩp(D + ŝjI)

−1)],

which will be sampling instead of Vl since Vl decreases quadratically with the term (ŝj − ŝi) and therefore poses
difficulties for interpolation that the sampling of V̄l alleviates. These difficulties are discussed in Section 3.2.

The variance of the trace estimator t(A) cannot be computed in practice using Equation (2) but is instead
estimated via

(24) V ar[t(A)] =
1

Ns

Ns
∑

k=1

(z†kAzk)
∗(z†kAzk)− t(A)∗t(A).

If the vectors zk are random vectors with elements {1,−1, i,−i}, then Equation (24) is an estimator of Equation
(2), i.e., of the Frobenius norm of the off-diagonal elements of A. Thus, to estimate the variance in Equation
(23), we compute Equation (24) with A = (D + ŝiI)

−1ΓΩp(D + ŝjI)
−1 for i = 0, ...,m − 1 and j = i, ...,m− 1.

In the case of Equation (22), we compute Equation (24) with A = ΓΩp(D + ŝiI)
−1 for i = 0, ...,m− 1.

Computationally, Equations (23) and (22), require the solution of systems of linear equations of the form

(D + ŝiI)x = z(25)

(D + ŝiI)
†y = z.(26)

While this procedure can be done for a general random noise vector z, we employ the use of full spin-color dilution
[33, 14] and probing, therefore z has support on lattice sites specified by the coloring of the lattice and for a single
spin-color index. For details on the parameters of the linear solves, such as configuration details, see Sec. 4.
Additionally, due to the γ5-hermiticity of D, the use of full spin-color dilution allows us to obtain the solutions of
Equation (26) from the solutions of Equation (25). This results in 12cmNs total inversions, where c is the number
of probing vectors and the factor of 12 arises from the use of spin-color dilution. The algorithm for computing
the variances VL and V̄l is given below for general noise vectors, z, as the extension to using spin-dilution and
probing vectors is straight forward.

Input: The m sampling shifts, ŝ, operators D, Γ, Ωp, and Ns noise vectors, z.
Output: Sampled variances VL(ŝi,Γ,Ωp) and V̄l(ŝi, ŝj ,Γ,Ωp).

(1) For k = 0 : Ns − 1
(2) For i = 0 : m− 1

(3) Solve (D + ŝiI)x
(i)
k = zk

(4) Compute y
(i)
k = γ5x

(i)
k as the solution of Eqn. (26)

(5) For i = 0 : m− 1

(6) Compute z
†
kAzk = z

†
kΓΩpx

(i)
k with A = ΓΩp(D + ŝiI)

−1

(7) Update VL(ŝi) estimation from Eqn. (24)
(8) For j = i : m− 1

(9) Compute z
†
kAzk = y

(i)†
k ΓΩpx

(j)
k with A = (D + ŝiI)

−1ΓΩp(D + ŝjI)
−1

(10) Update V̄l(ŝi, ŝj) estimation from Eqn. (24)

Given this large number of inversions, a judicious choice of the number of samples, Ns, is required that is both
practical to compute and gives an accurate estimate of the true variance. In [21], it was shown that accurate
order of magnitude estimate of the Frobenius norm of a matrix can be obtained with a small number of samples.
Since the calculation of the variance of the trace estimator is in fact an estimation of the Frobenius norm of
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the off-diagonal elements, we can obtain an accurate estimate of the variance of the trace estimators given by
Equations (23) and (22) with just a few samples. We therefore sample the variance with Ns = 5 samples in order
to keep the expense of sampling practical. The number of inner products required to compute VL and V̄l scales as
O(12cm2Ns), so their cost is negligible compared with the cost of O(12cmNs) inversions in the sampling phase.

Since the total cost of sampling scales linearly with m, the number of shifts in the sampling set ŝ, a fine enough
discretization of ŝ from which to obtain the optimal shifts σ through sampling alone is too expensive. This is the
reason why we pick a small set of sampling shifts and produce the larger evaluation set s through interpolation.
The choice of the sampling set of shifts is motivated by the following factors: In order for Equation (11) to hold,
ŝ0 = 0 is required. We also choose the largest shift ŝm to be a value well within the interior of the spectrum of D,
as the variance of the trace estimator of (D+ ŝm−1I)

−1 will be small due to the decay coefficient of the inverse, as
inferred from Figure 1. Additionally, the behavior of V̄l(ŝi, ŝj) as a function of ŝi motivates our choice for the first
non zero sampled shift, ŝ1. In Figure 2, we observe that the sampled points of V̄l, given by red bursts, decrease
rapidly for small shifts away from 0. To accurately capture this rapidly changing area with interpolation, we
choose ŝ1 to be a value near zero. The other values of ŝ can be chosen equidistant in log space, as it is observed
that V̄l exhibits near exponential decay for shifts larger than 0.15. This motivates our choice to choose m = 5
sampling shifts in order to keep the expense of sampling practical, with ŝ = {0.0, 0.05, 0.25, 0.50, 1.00}.

We also remark that the variance of Equation (22) can be reduced when the value of the bare quark mass
parameter, mq, is large through the use of the Generalized Hopping Parameter Expansion [22][20]. We employ
the use of the Generalized Hopping Parameter Expansion for values of ŝi when mq + ŝi > 0, truncating the
expansion at an order of k = 4. Even though it is not required in the sampling stage, we remark that the trace
of the terms of order k < 4 can be calculated exactly with the use of distance-3 displacement-p probing vectors,
where p corresponds to the size of the displacement from Ωp. Having completed this sampling procedure, we have
all the necessary values to interpolate the sampled values of V̄l and VL to obtain predicted variances using our
evaluation set of shifts, s.

3.2. Interpolation. Once the sampled values of V̄l and VL have been calculated, we are now in a position to
interpolate the values to obtain a much larger “shift space" to explore in order to find the set of shifts σ from our
evaluation set s that approximately minimizes Equation (15). While the values of VL are simple to interpolate,
the values of V̄l are more difficult due to the two dimensional dependence on the sampling shifts. A naive two
dimensional interpolation and interpolating the variances of Vl directly instead of V̄l resulted in poor accuracy.
This is especially true for small shift differences where the Vl vanishes rapidly, as shown in the bottom right graph
of Figure 2. Moreover, without the shift difference term, V̄l displays near exponential decay with larger shifts,
as shown in the top two subgraphs of Figure 2, which can be captured easily by interpolating in log space. The
above two reasons motivated us to sample values of V̄l as defined in Equation (23).

Because of the monotonic decrease of V̄l with larger shifts, we use piecewise cubic Hermite interpolating
polynomials (PCHIP) [15] from the Boost library [1] in order to interpolate the variances corresponding to V̄l

and VL, as PCHIP preserves monotonicity and continuity (see [15] for details). First, we use the sampled points
ln(VL(ŝi)) to form the piecewise cubic Hermite interpolating polynomial, q, on the interval [0, ŝm−1].

Then, we can predict the variance VL(sk) for all n evaluation shifts sk as

(27) VL(sk) = eq(sk).

The interpolation of V̄l is also performed in logarithmic scale. However, due to the two dimensional dependence
of V̄l on the sampling set, the interpolation of V̄l is performed first along the first dimension, producing Vl(sk, ŝj)
for all sk, then along the diagonal of the two dimensions producing all Vl(sk, sk), and finally along the second
dimension using all sampled or produced points up to now to interpolate any arbitrary Vl(sk, sj). Figure 2 gives
the algorithm for the two dimensional interpolation of V̄l and the right subgraphs illustrate the process. We
remark that when only two sampled points of V̄l are available (e.g. in step 3 of the algorithm with j = 1) PCHIP
cannot be used. In such cases, linear interpolation is used instead.

Lastly, we address how the interpolation of the level costs is performed. Specifically, these are the predicted
costs of the solution of the systems (25) and (26) for each evaluation shift si. The cost of the inner products does
not change with the choice of shift and therefore is not considered in the optimization. The solver costs at each
sampled point ŝi are given by

(28) C(ŝi) = 12cr(ŝi)

where c is the number of colors used in probing and r(ŝi) is the number of iterations required for the convergence
of linear equations at the shift ŝi. A hallmark of multigrid solvers in LQCD is that the number of fine grid
iterations remains small or increases only slightly as the quark mass approaches zero [6, 10, 32]. Thus, as the
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Input: The sampled variances V̄l, the m sampled shifts, ŝ and n

evaluation shifts, s.
Output: Predicted variances Vl.

(1) for j = 1 : m− 1
(2) w = ln(V̄l(ŝi, ŝj)) with i = 0, . . . , j
(3) q = Interpolate(ŝ0,...,j , w)
(4) for k = 0 : n− 1
(5) V̄l(sk, ŝj) = eq(sk)

(6) end
(7) end
(8) w = ln(V̄l(ŝi, ŝj)) with i = j = 0, . . . ,m− 1
(9) q = Interpolate(ŝ0,...,m−1, w)

(10) for k = 0 : n− 1
(11) V̄l(sk, sk) = eq(sk)

(12) end
(13) for i = 0 : n− 1
(14) w = ln(V̄l(si, ŝj)) with j = 0, . . . ,m− 1
(15) q = Interpolate(ŝ0,...,m−1, w)
(16) for k = 0 : n− 1
(17) Vl(si, sk) = (sk − si)

2eq(sk)

(18) end
(19) end

Figure 2. (Left) The algorithm for the 2D interpolation of V̄l. (Top right) The sampled variances
V̄l(ŝi, ŝj) (red bursts) for ŝi, ŝj ∈ {0.0, 0.05, 0.25, 0.5, 1.0}. The red dashed lines denote the
polynomials generated at fixed ŝj at step 3 of the algorithm. The blue dashed line denotes the
polynomial generated when ŝi = ŝj at step 9 of the algorithm. (Right Center) Rotated 45◦ with
respect to top subgraph and shown for an evaluation set of size n = 9. Green squares denote the
evaluated points of polynomials generated at fixed ŝj and ŝi = ŝj at steps (4− 6) and (10− 12).
These evaluated points can then be used to form interpolating polynomials at fixed si, denoted by
green dashes, at step 15. Purple crosses denote the evaluated points of the polynomials generated
at fixed si in step 17. (Right bottom) The final manifold of Vl for n = 20.

lattice Dirac operator is shifted away from zero, r(si) decreases slightly in a piecewise fashion. We use next
neighbor interpolation to obtain the solver cost at each evaluation point, r(si) = r(ŝj), where ŝj−1 < si ≤ ŝ+ j.
We remark that next nearest neighbor communication guarantees not to overestimate the cost of the solver, and
thus not to underestimate the number of Nl iterations at each level.

3.3. Shift Selection. The combination of all shifts used in the interpolation gives rise to an L-dimensional
manifold of the multilevel cost in Equation (15), where L is the number of levels. To find the values of σ

corresponding to the minima of the manifold given by Equation (20) we iterate over all allowed combinations of
the n shifts used for evaluation of the interpolating polynomials. The value of n has to then remain somewhat
modest. It is also important to properly choose how many shifts (or levels) to use in the multilevel trace estimation.
We therefore examine the predicted minimum cost as a function of the number of shifts at equal target variance

ǫ2. Figure 3 displays the normalized predicted multilevel cost,
CFS(Γ,Ωp,σk)
CFS(Γ,Ω0,σ1)

. It can be observed that the cost

rapidly begins to plateau and very little gain can be made beyond five or six shifts. Thus, we choose to use six
shifts (e.g. seven levels) for the duration of this work.

Initial attempts at interpolation focused heavily on shifts near zero due to the large variance associated with
ΓΩpD

−1. This is because by splitting the inverse more finely at lower shifts, large variances near zero are
suppressed by the effect of (σj − σi)

2. However, experimentation with the values of s show that, although this is
true in general, having a very fine discretization extremely close to zero is unnecessary.
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p = 6
p = 7
p = 8

Figure 3. The normalized predicted minimum cost for γ3 and γ5γ4 for all displacements as a
function of the number of shifts, where p is the size of the z-displacement.

To examine this behavior, we explore the region around the minimum multilevel cost given by the set of
shifts σ from Equation (20). We vary each σi where i = 1, . . . , 6 to take on values of sk for all k such that
1 ≤ ji−1 < k < ji+1 ≤ n − 1. The other five elements of σ take on values to create a new set of six shifts σ′

that minimizes the multilevel cost such that 0 ≤ σ′
i−1 < σ′

i = sk < σ′
i+1 ≤ sn−1. This allows us to examine the

predicted multilevel cost as a function of each σ′
i as shown in Figure 4. Effectively, each plot shows a slice of the six

dimensional manifold of the multilevel cost. We observe that it is much more important to finely discretize larger
shifts than it is to finely discretize smaller shifts. Examining the cost as a function of σ′

1 (upper left) shows that the
cost displays a very gradual increase for shifts near zero, so we expect the contribution of C0V0 to the multilevel cost
given by Equation (15) to be very small for small values of s. It is therefore much less important to finely discretize
the region corresponding to small values of s. The other five shifts display much more pronounced minima and it
is therefore more important to finely discretize that region. Thus, to evaluate the interpolating polynomials we
use a shift discretization s = [logspace(-5,-2,4) logspace(log10(1e-2+1e-3),0,76)] (MATLAB notation),
which focuses on shifts larger than 0.1. Finally, we mention that the discontinuities in the multilevel cost seen
in Figure 4 are due to the piecewise, discontinuous interpolation of the solver costs and the small number of fine
grid iterations that multigrid takes. If a solver with more iterations were chosen, the cost interpolation would
have more granularity and this discontinuity would not be present.

3.4. Selection of Probing Vectors. The choice of probing vectors is independent from the above issues and
is motivated by the following factors: The number of colors should remain relatively small to control the cost in
Equation (28), as the same set of probing vectors is used for all levels. Due to the approximate exponential decay
of D−1, the trace rapidly decays as a function of the displacement in the lattice. This leads to large relative error
in the estimation of the trace for large displacements [30]. The probing vectors selected should then reduce the
variance at large displacements of the lattice such that the relative error of the trace remains small.

Based on the above, we examine three sets of (displacement-p, distance-k) probing vectors: p4k4, p6k7 and
p8k7, having 14, 37 and 16 colors, respectively, and generated with [2]. We use each set of vectors for all
displacements. To assess the efficacy of each probing set, we must compare their performance at equal solver cost,
which is defined as

(29) Cp,k = 12cp,k

L
∑

l=0

rlNl

where, for each (p, k) probing set, cp,k is the number of colors, and rl and Nl are the number of solver iterations
and number of samples for the level l, respectively. By setting a target variance ǫ2, the number of noise vectors
can be calculated using Equation (16) for each probing set. Equation (29) can then be used to scale the costs for
all sets of probing vectors such that they have equal cost.

Figure 5 displays the variance given by Equation (17) and relative error of estimating the trace of γ3ΩpD
−1

using the FS method at equal solver cost, where the shifts for each set of probing vectors were chosen through
the sampling and interpolation method as outlined in Sec. 3.1-3.3. It can be seen that all sets of probing vectors
display equal performance for low displacements, however the variance using p4k4 probing vectors is several orders
of magnitude larger than that of the other two probing schemes at large displacements, and the quality of the
relative error degrades accordingly. It can also be observed that p8k7 probing vectors offer a slight reduction in
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Figure 4. The predicted multilevel cost CFS as a function of each σ′
i. Each σ′

i is fixed to a value
of s and the other five take on the values that minimize the predicted multilevel cost for that
value of s, to create a new set of shifts, σ′. The values where σ′

i = σi, given by Equation (20),
are given in red.

variance at larger displacements than p6k7 vectors, while having similar effects at lower displacements. It is for
this reason that we use p8k7 vectors for all displacements for the duration of this work.

Figure 5. The FS variance given by Equation (17) (left) and relative error (right) of γ3ΩpD
−1

for each set of chosen probing vectors. The optimal shifts were selected as outlined in Sec. 3.1-3.3.

4. Results

We test the efficacy of our resulting method in three contexts. First, we establish that the interpolation
scheme predicts the Vtotal and CFS , given by Equations (19) and (15), to high accuracy by estimating the Vtotal
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and CFS using the found optimal σ. Second, we compare the performance of FS using σ to multigrid deflation
at constant solver cost on a single gauge configuration. Finally, we show that σ can be used across multiple
configurations with little performance loss, and show that significant speed up is gained over multigrid deflation
for each configuration. All calculations were performed with a lattice of size 323×64 using the Clover discretization
with even-odd preconditioning and a quark mass of mq = −0.2390, corresponding to the physical light quark
mass of the gauge configuration using the Chroma library [12] on 8 KNL nodes. For our solver, we use a multigrid
preconditioner [3, 4] for block FGMRES [11, 13], with the near null space being calculated once for σ0 = 0.0, and
subsequently reused for the larger shifts. The variances were sampled using 5 Z4 noise vectors with full spin-color
dilution and p8k7 probing vectors.

γ3

p Pred. Vtotal Est. Vtotal Pred. CFS (×105) Est. CFS (×105)

0 4.9504 5.2968 0.2921 0.3422
1 82.1364 99.4092 1.4293 1.7824
2 20.8019 23.7536 0.7521 0.8781
3 4.4729 4.6869 0.2371 0.2665
4 1.1335 1.1263 0.0680 0.0742
5 0.3491 0.3578 0.0215 0.0245
6 0.1469 0.1528 0.0084 0.0094
7 0.0826 0.0887 0.0041 0.0052
8 0.0410 0.0367 0.0030 0.0030

γ5γ4

p Pred. Vtotal Est. Vtotal Pred. CFS (×104) Est. CFS (×104)

0 18.8176 21.6828 4.8145 5.7190
1 9.3321 9.7361 3.9570 4.4446
2 2.4040 2.5149 1.4491 1.6664
3 0.7998 0.8279 0.4895 0.5648
4 0.3110 0.3111 0.1812 0.2080
5 0.1509 0.1443 0.0796 0.0875
6 0.0581 0.0464 0.0408 0.0389
7 0.0356 0.0279 0.0253 0.0227
8 0.0320 0.0234 0.0217 0.0185

Table 1. The predicted and estimated Vtotal and CFS of ΓΩpD
−1 for the Γ = γ3, γ5γ4 operators

for each displacement of size p. The shifts used for each (Γ,Ωp) pair are those coming from a
minimization of CFS for that (Γ,Ωp) pair.

4.1. Accuracy of Interpolation. In order to establish the accuracy of the interpolation scheme, we use the
predicted shifts from the interpolation and shift selection scheme with the same gauge configuration to estimate
Vl and VL and therefore calculate Vtotal given by Equation (19). While many different combinations of Γ and
Ωp may be desired in an experimental setting, and thus many different trace estimations, it is too expensive to
verify the accuracy of the interpolation scheme for every combination of Γ and Ωp, as the found optimal shifts are
different for each individual combination of Γ and Ωp. We therefore choose to restrict our sampling to variances
associated with Γ = γ3 and Γ = γ5γ4, with Ωp corresponding to displacements of size p = {0, ..., 8}, as these are
of particular importance in ongoing calculations pertaining to GDPs.

The estimate of the Vtotal was performed with 5 independent Z4 noise vectors from those used for sampling and
are independent for each level, so we expect the results to be decorrelated. Table 1 displays the predicted Vtotal

and CFS as well as the thei estimated values of Vtotal and CFS for the γ3 and γ5γ4 operators. For the purposes
of stochastic trace estimation, we observe that our interpolation scheme is able to predict Vtotal to high accuracy.
Many of the displacements of size p ≥ 3 have predicted Vtotal with one digit of accuracy. We also observe that the
multilevel cost CFS is well predicted, despite the error introduced through the interpolation of the solver costs.
This indicates that the shifts selected are close to those that would give the true minimum cost of the multilevel
trace estimation.

4.2. Comparison to Multigrid Deflation. We compare the estimated variance of FS using the optimal shifts
to the variance achieved by multigrid deflation with probing and to random noise. In the case of multigrid
deflation, we deflate the smallest 400 singular pairs of the coarsened lattice Dirac operator computed with the
PRIMME library [29, 34]. However, p8k7 probing, which only uses 16 colors, was not as effective when combined
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with multigrid deflation in reducing the variance over all displacements. We therefore use a probing scheme p5k8
that has 256 colors and thus offers more effective variance reduction, making it a more difficult test for FS.

The shifts used are those resulting from the optimization of the (Γ,Ωp) pair (γ3,Ω4), which gave σ =
[0, 10−5, 0.053, 0.146, 0.360, 0.618, 1.000]. We use this particular pair for three reasons: 1) the error in
the interpolation was found to be much smaller when using Ωp = Ω4. 2) Optimizing the shifts at Ωp = Ω4

provided an additional variance reduction at low displacements compared to optimizing the shifts for high dis-
placements. 3) γ3 was found to be more sensitive to the shifts than γ5γ4 at low displacements. When the shifts
found from an optimization of γ5γ4 were used, the performance of the trace estimator of γ3ΩpD

−1 suffered.
To compare the three methods, we first calculate the number of samples required per level for FS to reach a

target variance ǫ2 = 0.001 using Equation (16). The total solver cost for FS is given by Equation (29), C = C8,7.
The total cost for multigrid deflation is defined for a single level as cdrdNd, where cd and rd are the number of
colors and number of iterations for deflation, respectively. Equating the total solver costs of both methods yields

(30) Nd =
C

cdrd

for the required number of samples for multigrid deflation. The same calculation can be performed for the number
of samples required for random noise. Since the variance decreases linearly with the number of samples, we can
estimate the variance for all (Γ,Ωp) pairs after Nl steps of Hutchinson on the appropriate level using Equation
(17).

Figure 6 shows the results of such a calculation for the γ3 and γ5γ4 operator as a function of the z displacement.
For both the γ3 and γ5γ4, we observe that FS is competitive with deflation at low displacements, despite not
being optimized for those displacements. As the displacement increases, FS becomes vastly superior to that of
deflation. In the case of the γ3 operator, FS displays a speedup (the ratio of the variances) of approximately
20 over deflation and approximately 500 over random noise at the largest displacement. In the case of the γ5γ4
operator, FS displays a speedup of approximately 20 over deflation and approximately 200 over random noise at
the largest displacement. In the case of the relative error, we also observe improvements for both the γ3 and γ5γ4
operators. The average trace reported for each method in Figure 6 is computed with Ns = 5 noise vectors, with
the error bars being the associated standard deviation. For results using other Γ operators, see A.

4.3. Multiple Configurations. In an actual trace estimation setting, it is too costly to perform the sampling
and interpolation method for each configuration, as hundreds or even thousands of configurations may be required,
each of them requiring an estimation of the trace of ΓΩpD

−1. Therefore, it is important that the same set of shifts
behave similarly well for multiple configurations within a particular gauge ensemble. To this end, we examine
the estimated Vtotal of ten configurations using the same set of shifts as in Sec. 4.2. The estimation is performed
with independent noise vectors for each level and each configuration. The gauge configurations are separated by
100 HMC steps. More information regarding these gauge configurations can be found in [35]. Table 2 displays
the mean Vtotal and the relative standard deviation of Vtotal across the ten configurations for all displacements of
the γ3 and γ5γ4 operators. The relative standard deviation was calculated with jackknife resampling. As can be
seen from the relative standard deviation of both operators, Vtotal has very little deviation from one configuration
to another. This indicates that the shifts found through the sampling and interpolation of variances from one
configuration can be used for others within the same ensemble without impacting performance.

γ3

Displacement Mean Vtotal Rel. Std. Dev. Vtotal

0 5.4108 0.0052
1 41.4419 0.0029
2 16.0299 0.0038
3 4.7654 0.0047
4 1.1777 0.0056
5 0.3883 0.0058
6 0.1772 0.0061
7 0.1123 0.0083
8 0.0932 0.0100

γ5γ4

Displacement Mean Vtotal Rel. Std. Dev. Vtotal

0 11.3365 0.0022
1 7.4778 0.0024
2 2.6171 0.0023
3 0.8827 0.0036
4 0.3455 0.0065
5 0.1727 0.0080
6 0.1079 0.0106
7 0.0826 0.0114
8 0.0733 0.0130

Table 2. The mean Vtotal and relative standard deviation of Vtotal for ten configurations from
the same gauge ensemble. The relative standard deviation was calculated through jackknife
resampling.
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Figure 6. The estimated variance (top), relative error (middle) for Γ = γ3 (left) and Γ = γ5γ4
(right) after Nl samples with p8k7 probing vectors using FS compared to MG deflation with p5k8
probing vectors after Nd samples for a target variance of ǫ2 = 0.001 at equal solver cost. (Bottom)
The average trace for each Γ operator using Ns = 5 samples. The individual points have been
shifted along the x-axis for clarity. The shifts used in FS were selected from an optimization of
(Γ,Ωp) = (γ3,Ω4).

We also examine the performance of FS in comparison to multigrid deflation over multiple configurations for
the (Γ,Ωp) = (γ3,Ω4) pair. In order to do so, we estimate Vtotal for each method, and calculate the number of
noise vectors required for each method to reach a target variance ǫ2 = 0.001. The estimated wallclock time is
calculated by using the average wallclock time for the solver to converge for one set of linear equations. Table 3
displays a consistent speedup of the estimated wallclock time of FS over multigrid deflation for each configuration.

5. Summary

We have developed a sampling and interpolation scheme that is able to predict variances to high accuracy and
allows us to select a set of near optimal shifts for minimizing the cost of the multilevel trace estimation using the
FS method in conjunction with probing for a particular (Γ,Ωp) pair. We have shown that the use of these near
optimal shifts in FS with probing is competitive with or more effective than multigrid deflation with probing,
in particular for reducing the variance of the trace estimation corresponding to large lattice displacements. We
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Config. # 1 2 3 4 5
Est. Speedup 4.8436 5.4360 4.8494 4.5541 5.0838

Config. # 6 7 8 9 10
Est. Speedup 3.4911 4.9955 4.5245 4.5861 5.7280

Table 3. The estimated speedup of FS over multigrid deflation for reaching a target variance
ǫ2 = 0.001 for the (γ3,Ω4) pair.

have also shown that the shifts can be safely reused for multiple configurations with very little impact to overall
performance of the trace estimation for each configuration, displaying consistent speed up over multigrid deflation.

There is also a question of optimization regarding the techniques to use at each level. While we used all
variance reduction techniques at our disposal with FS, it is possible that there could be savings by forgoing the
use of probing vectors and/or spin-color dilution for certain levels, especially those where the variance is small.
A remaining avenue of exploration is an extension of the FS method itself. Since the multilevel analysis allows
us to examine the cost of the multilevel trace estimation, it is possible that further recursion of the telescoping
series could result in additional gain of performance. We leave such a study for future work.
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Appendix A.

Table 4 displays the speedup of FS over multigrid deflation for all (Γ,Ωp) pairs computed. Since FS and
multigrid deflation are examined at equal cost, we define the speed up to be the ratio of the variances:

(31) Speedup =
VFS

VDefl

.

We remark that the performance of FS for many of the operators listed in Table 4 at low displacements is
worse than that of deflation. In an actual physics simulation, this is not much of a concern since the relative
error is much larger for traces that are non vanishing under large statistics (many gauge configurations) at low
displacements. For traces that are vanishing under large statics, the trace will average towards zero. We also
observe from table 4 that the speedup increases as the lattice displacement increases, resulting in an order of
magnitude improvement at a displacement of 8.
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Speedup

Γ Displacement

0 1 2 3 4∗ 5 6 7 8

I 0.13 0.16 0.25 0.53 1.36 3.13 5.89 8.58 10.24

γ1 0.40 0.92 2.12 4.81 8.95 12.72 15.78 17.28 18.02

γ2 0.39 0.91 2.10 4.90 9.19 13.47 15.95 17.18 18.43

γ1γ2 0.66 1.08 1.48 2.52 4.34 6.72 9.16 10.99 11.95

γ∗
3 3.00 0.57 1.16 2.40 5.36 10.01 14.44 16.95 18.62

γ1γ3 0.45 0.68 1.17 2.33 4.27 6.79 9.32 11.24 12.45

γ2γ3 0.48 0.69 1.17 2.29 4.33 7.03 9.74 11.60 12.45

γ5γ4 1.07 1.54 3.03 5.68 9.45 12.85 15.33 16.65 17.80

γ4 0.55 1.07 2.23 4.84 9.13 13.25 16.45 18.00 18.48

γ1γ4 0.40 0.62 1.09 2.15 4.09 6.69 9.34 11.57 12.73

γ2γ4 0.43 0.64 1.10 2.11 4.03 6.58 9.21 11.28 12.38

γ3γ5 0.98 1.83 3.57 6.19 9.29 12.45 14.33 16.16 16.98

γ3γ4 0.64 0.62 0.95 1.94 3.79 6.36 9.10 11.28 12.53

γ2γ5 1.23 1.71 3.13 5.48 8.84 12.15 14.41 16.31 17.84

γ1γ5 1.22 1.71 3.13 5.60 8.87 12.40 15.00 16.28 17.31

γ5 0.17 0.25 0.50 1.10 2.51 5.09 8.58 11.22 12.72

Table 4. The speed up of FS over multigrid deflation for all tested combinations of Γ,Ωp.
∗

denotes the (Γ,Ωp) pair used for optimization.
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