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We investigate how the charge distributions of both the unpolarized and transversely polarized
∆ baryon change as the longitudinal momentum (Pz) of the ∆ baryon increases from Pz = 0 to
Pz = ∞ in a Wigner phase-space perspective. When the ∆ baryon is longitudinally polarized, its
two-dimensional charge distribution is kept to be spherically symmetric with Pz varied, whereas
when the ∆ baryon is transversely polarized along the x-axis, the quadrupole contribution emerges
at the rest frame (Pz = 0). When Pz grows, the electric dipole and octupole moments are induced.
The induced dipole moment dominates over other higher multipole contributions and governs the
deformation of the charge distribution of the ∆ baryon.

I. INTRODUCTION

The electromagnetic (EM) form factors of the nucleon have been one of the essential observables in understanding
its structure well over decades. They provide crucial information on the charge and magnetization distributions inside
a nucleon. This interpretation assumes that the nucleon is at rest in the Breit frame (BF) [1]. This assumption is valid
only if the nucleon’s spatial size RN were larger than the Compton wavelength 1/MN , so the spatial wave functions
could have been well defined. In reality, however, the size of the nucleon is comparable to 1/MN , so the nucleon wave
function is no more localized below the Compton wavelength. It causes ambiguous relativistic corrections that mar the
probabilistic interpretation of the 3D EM distributions in the BF [2–4]. This flaw of the 3D charge and magnetization
distributions was already pointed out in the 1950s [5]. To understand the EM distributions of the nucleon without
any ambiguity, one needs to view the nucleon from the light-front (LF) or, equivalently, the infinite momentum frame
(IMF), where the relativistic corrections are kinematically suppressed. Then, the charge distribution emerges in the
two-dimensional (2D) plane transverse to the nucleon momentum with the probabilistic meaning properly borne [2, 3].
It is obtained as the 2D Fourier transform of the EM form factors and called the transverse charge distribution of the
nucleon [6, 7]. The only problem with the transverse charge distribution is that we lose information along the infinite
momentum direction. Since then, the transverse charge distributions of the nucleon, ∆ baryon, deuteron, pion, kaon,
and ρ meson have been extensively studied [8–33] (see also a review [34]).

When the transverse charge density of the neutron was reported [6], many were perplexed by the result: While
the positive charge is centered in the 3D charge distribution of the neutron, the negative one was situated in the
center of the neutron for the neutron 2D transverse charge density. Recently, Lorcé resolved the discrepancy by
showing that when the longitudinal momentum increases from the rest to infinity, the charge distribution in the
transverse plane undergoes drastic changes from the positive center value to the negative one [35]. As the longitudinal
momentum grows, a Wigner rotation and a mixing of the four-current components under Lorentz boost give rise to a
magnetization contribution [35–37], which makes the sign of the neutron transverse charge density is changed to be
negative. In doing so, Lorcé introduced the elastic frame (EF) to interpolate from the BF to the IMF in the Wigner
phase-space perspective, which makes it possible to observe the change in the charge distribution explicitly as the
longitudinal momentum increases. This approach was extended to the case of the polarized nucleon [38], where the
Abel tomography was emphasized. It was recently elaborated and enlarged by considering the EM distributions for
the spin-0 and spin-1/2 particles [39] and the EM and energy-momentum tensor (EMT) distributions of the spin-1
particle [25]. Compared to the spin-0 and -1/2 particles [35, 39, 40], the spin-1 particle reveals rather complicated
multipole sturctures [22, 25, 40]. In this work, we want to investigate the multipole structure of the EM distributions
for the spin-3/2 ∆ baryon and see how they are altered under Lorentz boost.

The EM form factors of the ∆ baryon can be parametrized in terms of four multipole form factors [41] (see also
a review [42]): electric monopole (E0), quadrupole (E2), magnetic dipole (M1), and octupole (M3) ones. While it
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is extremely difficult to measure them experimentally because of the ∆’s ephemeral nature, the ∆ EM form factors
and corresponding transverse charge densities were computed in lattice QCD [19, 41]. In the rest BF, we can define
four frame-dependent functions, which are respectively related to the EM multipole form factors. The Lorentz boost
induces the electric dipole (E1) and octupole (E3) contributions to the transverse charge densities of the ∆ baryon. In
the IMF, all the frame-dependent functions coming from the third spatial component of the EM four current become
equivalent to those from the temporal one. It is crucial to analyze these consequences arising from the Lorentz boost.
In this work, thus, we examine the expressions for the ∆ baryon matrix elements of the EM current in terms of the
frame-dependent functions defined in the 2D EF. They are given as the functions of the momentum transfer t and
the longitudinal momentum Pz. For any values of Pz, we are able to define the frame-dependent functions and their
2D Fourier transforms, so each contribution to the transverse ∆ charge densities can be examined with the Pz given.
If we take Pz = 0, the frame-dependent functions are reduced to the EM multipole form factors. To investigate the
transverse charge densities of the moving ∆ baryon, we need information on the EM form factors. In the present
work, we will take the numerical results of the EM form factors obtained in the SU(3) chiral quark-soliton model [43].
We will then visualize in the 2D space how the charge distributions are deformed under the Lorentz boost.

The present work is organized as follows: In Section II, we construct the formalism for the multipole structure of the
transverse charge densities of the ∆ baryon. In Section III, we present the numerical results for the transverse charge
distributions interpolating from the BF to the IMF. We also examine each contribution of the multipole components
to the transverse charge distributions of the moving ∆+ and ∆0 and discuss it. In Section IV, we summarize and
draw conclusions of the current work. In Appendix, we list the explicit expressions for the frame-dependent functions.

II. MULTIPOLE STRUCTURE OF THE TRANSVERSE CHARGE DENSITIES

The matrix element of the EM current is defined as

Jµ(x) = ψ̄(x)γµQ̂ψ(x), (1)

where ψ(x) denotes the quark field. The charge operator of the quarks Q̂ is written in terms of the flavor SU(3)
Gell-Mann matrices λ3 and λ8

Q̂ =

 2
3 0 0
0 − 1

3 0
0 0 − 1

3

 =
1

2

(
λ3 +

1√
3
λ8

)
. (2)

The matrix elements of the EM current between the ∆ baryon states with spin 3/2 can be parametrized in terms of
four form factors F ∗i (i = 1, · · · , 4) as follows:

〈∆(p′, σ′)|eJµ(0)|∆(p, σ)〉 = −eBuα(p′, σ′)

[
γµ
{
F ∗1 (t)gαβ + F ∗3 (t)

qαqβ
4M2

∆

}
+ i

σµνqν
2M∆

{
F ∗2 (t)gαβ + F ∗4 (t)

qαqβ
4M2

∆

}]
uβ(p, σ), (3)

where M∆ denotes the mass of the ∆ baryon, and eB stands for the corresponding electric charge in unit of e. q
designates the momentum transfer q = p′ − p and its square is given as q2 = t with −t > 0. uα(p, σ) represents the
Rarita-Schwinger spinor, carrying the momentum p and the spin component σ projected along the direction of the
momentum. The explicit expression for the Rarita-Schwinger spinor is given by

uµ(p, σ) =
∑
λ,s

C
3
2σ

1λ 1
2 s
us(p)ε

µ
λ(p), and us(p) =

√
M∆ + p0

(
1
~σ·~p

M∆+p0

)
φs, (4)

where us(p) and φs stand for the Dirac and Pauli spinors with its spin polarization s, respectively. Here, we choose the
canonical spin states (see relevant discussions [35, 44, 45]). By coupling the Dirac spinor to the spin-one polarization
vector, one can construct the Rarita-Schwinger spinor. The spin-one vector εµ in any frame is expressed by

εµλ(p) =

(
êλ · ~p
M∆

, êλ +
~p(êλ · ~p)

M∆(M∆ + P0)

)
, (5)

where ê is the polarization vector in the rest frame.

ê+1 =
1√
2

(−1,−i, 0) , ê0 = (0, 0, 1), ê−1 =
1√
2

(1,−i, 0) . (6)
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In order to discuss the multipole structure of the EM form factors in a systematical way, it is convenient to introduce
the rank-n irreducible tensors and multipole operators in 2D space. The rank-n irreducible tensors in coordinate (or
momentum) space are defined by

X0 := 1, Xi1···in
n :=

(−1)n+1

(2n− 2)!!
xn⊥∂

i1 · · · ∂in lnx⊥ with n > 0, in = 1, 2. (7)

For a spin-3/2 baryon, the quadrupole- and octupole-spin operators Q̂ij(rank-2 tensor) and Ôijk(rank-3 tensor) appear

in the matrix element of the EM current and are respectively defined in terms of the spin operator Ŝi as follows:

Q̂ij :=
1

2

[
ŜiŜj + ŜjŜi − 2

3
S(S + 1)δij

]
,

Ôijk :=
1

6

[
ŜiŜjŜk + ŜjŜiŜk + ŜkŜjŜi + ŜjŜkŜi + ŜiŜkŜj + ŜkŜiŜj

− 6S(S + 1)− 2

5
(δijŜk + δikŜj + δkjŜi)

]
. (8)

Since the tensor operators are irreducible, so they are fully symmetrized under the exchanges of the indices i, j, k =
1, 2, 3 and traceless (Q̂ii = 0 and δijÔ

ijk = 0). The spin operators can be expressed in terms of SU(2) Clebsch-Gordan
coefficients in the spherical basis

Ŝaσ′σ =
√
S(S + 1)CSσ

′

Sσ1a with (a = 0,±1. σ, σ′ = 0, · · ·,±S). (9)

To see how the matrix element of the EM current is changed under Lorentz boost, we need to employ the EF,
where space-like momentum transfer q lies in the transverse plane with conditions q0 = 0 and P 6= 0, as suggested
in Ref. [35]. Without loss of generality, in the EF, the average momentum P = (p′ + p)/2 and momentum transfer q
with the on-shell constraint are taken to be

P = (P0,~0, Pz) q = (0, ~q⊥, 0), P0 =
√

(1 + τ)M2
∆ + P 2

z , (10)

with τ = −t/(4M2
∆). Then, the matrix element of the temporal component of the EM current J0 in the EF from

Eq. (3) is written in terms of the multipole n-rank irreducible tensors in momentum space and in spin polarization
together with the frame-dependent scalar functions GE0,E1,E2,E3:

〈J0〉σ′σ

2P 0
=

{
GE0(t;Pz)−

2

3
τGE2(t;Pz)

}
δσ′σ +

{
Ga

′a
E0 (t;Pz) +

4

3
τGE2(t;Pz)

}
δa′a

+ 2
√
τ

{
GE1(t;Pz)−

2

5
τGE3(t;Pz)

}
iεij3Siσ′σX

j
1(θq⊥)

+ 2
√
τ
{
Ga

′a
E1 (t;Pz) + τGE3(t;Pz)

}
iεij3Sia′aX

j
1(θq⊥)

+
4

3
τGE2(t;Pz)Q

ij
σ′σX

ij
2 (θq⊥) + 8τ3/2GE3(t;Pz)iε

3jkOjmlσ′σX
klm
3 (θq⊥), (11)

where we introduce the following short-handed notation δa′a = δσ′a′δσaδσ′σ with a′, a = − 1
2 ,

1
2 and 〈Jµ〉σ′σ :=

〈∆(p′, σ′)|Ĵµ(0)|∆(p, σ)〉. Here, θq⊥ denotes the 2D angle of the qi⊥ variable.
Before discussing the EM form factor in the 2D EF, we want briefly to mention the 2D and 3D BFs. To study

the 3D spatial distributions, the 3D BF is adopted, where q0 = 0 and P = 0. It yields the well-known Sach-type or
multipole form factors. Since we interpolate the 2D BF to 2D IMF distributions in this work, we introduce the 2D
BF, where each component of the four momenta P and q are taken to be the same as in the 3D BF. It can simply be
achieved by taking qz = 0.

In the 3D BF, 〈J0〉σ′σ yields normally two contributions: the electric monopole (E0) and electric quadrupole (E2)
ones. However, the projection from the 3D BF to the 2D one and the Lorentz boost induce various contributions.
Firstly, in the presence of the E2 contribution, the projection from the 3D BF to the 2D one induces the monopole
contribution. In addition, it is split into the spin-polarizations σ = − 3

2 , · · · ,
2
3 and its subsystem a = − 1

2 ,
1
2 . Secondly,

under the Lorentz boost, the matrix element of the temporal component of the EM current J0 is subject to the Wigner
spin rotation and the admixture with the spatial component of the EM current. It results in the induced electric
dipole (E1) and induces the E3 contributions, and the Lorentz boost brings about the frame dependence on Pz in
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the matrix element of J0. These effects from the Lorentz boost are conveyed to the frame-dependent GE0,E1,E2,E3

given as the functions of Pz and t. The explicit expressions for them are listed in Appendix A. In the BF (Pz = 0),
these frame-dependent functions are reduced to the 2D BF expressions:

〈J0〉σ′σ

2P 0

Pz→0
=

1√
1 + τ

[(
GE0(t) +

1

3
τGE2(t)

)
δσ′σ −

2τ

3
GE2(t)δa′a −

2τ

3
GE2(t)Qijσ′σX

ij
2 (θ∆⊥)

]
. (12)

In the 2D BF limit, we recover the traditional definitions of the Sach-type EM form factors together with the relativistic
factor 1/

√
1 + τ , which comes into play when interpolating the BF expressions to the IMF ones:

GE0(t;Pz = 0) =
1√

1 + τ
GE0(t), Ga

′a
E0 (t;Pz = 0) = 0, GE1(t;Pz = 0) = 0,

Ga
′a
E1 (t;Pz = 0) = 0, GE2(t;Pz = 0) = − 1

2
√

1 + τ
GE2(t), GE3(t;Pz = 0) = 0, (13)

where the EM multipole form factors are expressed in terms of F ∗i :

GE0(t) =

(
1 +

2

3
τ

)[
F ∗1 (t)− τF ∗2 (t)

]
− 1

3
τ(1 + τ)

[
F ∗3 (t)− τF ∗4 (t)

]
,

GE2(t) =

[
F ∗1 (t)− τF ∗2 (t)

]
− 1

2
(1 + τ)

[
F ∗3 (t)− τF ∗4 (t)

]
,

GM1(t) =

(
1 +

4

5
τ

)[
F ∗1 (t) + F ∗2 (t)

]
− 2

5
τ(1 + τ)

[
F ∗3 (t) + F ∗4 (t)

]
,

GM3(t) =

[
F ∗1 (t) + F ∗2 (t)

]
− 1

2
(1 + τ)

[
F ∗3 (t) + F ∗4 (t)

]
. (14)

They are called, respectively, the electric monopole (E0), electric quadrupole (E2), magnetic dipole (M1), and
magnetic octupole (M3) form factors. The M1 and M3 form factors will be obtained in the matrix element of the
spatial component of the EM current J i. By taking Pz → ∞ in Eq.(11), we can naturally recover the results from
the LF formalism [19]:

GE0(t;Pz →∞) =
1

1 + τ

(
GE0(t) +

1

3
τGM1(t)− 4

15
τ2GM3(t)

)
,

Ga
′a
E0 (t;Pz →∞) = − 4τ

(1 + τ)2

[
GE0(t) +

1

3
τGE2(t)− 1

3
(2− τ)GM1(t)− τ

15
(2− τ)GM3(t)

]
,

GE1(t;Pz →∞) = − 1

(1 + τ)2

[(
1 +

τ

15

)
GE0(t) +

2τ

15

(
2− τ

3

)
GE2(t)− 1

3

(
1− 9

5
τ

)
GM1(t) +

14

75
τ2GM3(t)

]
,

Ga
′a
E1 (t;Pz →∞) =

2τ

3(1 + τ)2

[
GE0(t)−GM1(t) +

τ

3
GE2(t)− τ

5
GM3(t)

]
,

GE2(t;Pz →∞) =
1

2(1 + τ)2

[
3GE0(t)−GE2(t)− (2− τ)GM1(t)− τ

5
(7 + 4τ)GM3(t)

]
,

GE3(t;Pz →∞) = − 1

6(1 + τ)2

[
GE0(t)−GE2(t)

(
1 +

2τ

3

)
−GM1(t) +

(
1 +

4τ

5

)
GM3(t)

]
. (15)

At the zero momentum transfer t = 0 in Eq.(15), we have

GE0(t;Pz →∞) = GE0(t), Ga
′a
E0 (t;Pz →∞) = 0, GE1(t;Pz →∞) = −

[
GE0(0)− 1

3
GM1(0)

]
,

Ga
′a
E1 (t;Pz →∞) = 0, GE2(t;Pz →∞) =

1

2

[
3GE0(0)−GE2(0)− 2GM1(0)

]
,

GE3(t;Pz →∞) = −1

6

[
GE0(0)−GE2(0)−GM1(0) +GM3(0)

]
. (16)

The above results are consistent with those in Ref. [19]. It is also interesting to study how the spatial components of
the EM current varies under the Lorentz boost. Since we take the z-axis as a boost direction, J3 and J i⊥ with i = 1, 2
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will behave differently under the Lorentz boost. In the 2D EF, the matrix element of the transverse component of
the EM current J i⊥ is given by

〈J i⊥〉σ′σ

2P0
= 2
√
τ

[
G⊥M1(t;Pz)−

1

5
τG⊥M3(t;Pz)

]
iεi3kS3

σ′σX
k
1 (θ∆⊥)

+ 2
√
τ
[
G⊥,a

′a
M1 (t;Pz) + 2τG⊥M3(t;Pz)

]
iεi3kS3

a′aX
k
1 (θ∆⊥) + 4τG⊥M2(t;Pz)Q

l3
σ′σX

li
2 (θ∆⊥)

− 2τG⊥M2(t;Pz)Q
i3
σ′σ + 4τ

√
τG⊥M3(t;Pz)iε

i3k
(
2O3ml

σ′σX
klm
3 (θ∆⊥) +O3kl

σ′σX
l
1(θ∆⊥)

)
. (17)

The frame-dependent functions from the transverse components of the EM current are labeled by ⊥ in the superscript.
The matrix element of the transverse EM current yields the magnetic dipole and octupole contributions together with

the induced magnetic quadrupole one. In the 2D BF limit, the frame-dependent functions G⊥M1, G
a′a,⊥
M1 , G⊥M2, G

⊥
M3

are reduced to the Sach-type magnetic dipole (M1) and magnetic octopole (M1) form factors given in Eq. (14):

〈J i⊥〉σ′σ

2P0

Pz→0
=

2

3

√
τ

1 + τ

(
GM1(t)− τ

10
GM3(t)

)
iεi3kS3

σ′σX
k
1 (θ∆⊥)− 2

3
τ

√
τ

1 + τ
GM3(t)iεi3kS3

a′aX
k
1 (θ∆⊥)

− 2

3
τ

√
τ

1 + τ
GM3(t)iεi3k

(
2O3ml

σ′σX
klm
3 (θ∆⊥) +O3kl

σ′σX
l
1(θ∆⊥)

)
, (18)

where

G⊥M1(t;Pz = 0) =
1

3
√

1 + τ
GM1(t), G⊥,a

′a
M1 (t;Pz = 0) = 0,

G⊥M2(t;Pz = 0) = 0, G⊥M3(t;Pz = 0) = − 1

6
√

1 + τ
GM3(t). (19)

Note that the induced magnetic dipole contribution G⊥M2 vanishes. Thus, we can regain the results from the LF
formalism [19] as in the electric case. We observe that the unusual structure O3klX l

1 in the last term in Eq. (18) is
induced by the projection from the 3D space to 2D one. As shown in the case of the nucleon [39], all the relevant
frame-dependent functions go to zero in the IMF due to the Pz suppression:

G⊥M1(t;Pz →∞) = 0, G⊥,a
′a

M1 (t;Pz →∞) = 0, G⊥M2(t;Pz →∞) = 0, G⊥M3(t;Pz →∞) = 0, (20)

so that the matrix element of the transverse components of the EM current J i⊥ becomes zero in the IMF, i.e.,
〈Ji

⊥〉
2P0

Pz→∞= 0. Lastly, we obtained the expression of the matrix element of the z-component of the EM current as
follows

〈J3〉σ′σ

2P0
=

[
G3
M0(t;Pz)−

2

3
τG3

M2 − 4τG⊥M2

]
δσ′σ +

[
G3,a′a
M0 (t;Pz) +

4

3
τG3

M2(t;Pz) + 8τG⊥M2(t;Pz)

]
δa′a

+ 2
√
τ

[
G3
M1 −

2

5
τG3

M3

]
iε3jkSjσ′σX

k
1 (θ∆⊥) + 2

√
τ
[
G3,a′a
M1 + τG3

M3

]
iε3jkSja′aX

k
1 (θ∆⊥)

+
4

3
τG3

M2Q
lm
σ′σX

lm
2 (θ∆⊥) + 8τ

√
τG3

M3iε
3jkOjmlσ′σX

klm
3 (θ∆⊥). (21)

The frame-dependent functions from the z-component of the EM current are labeled by the 3 in the superscript.
The J3 matrix element produces the M1 and M3 contributions together with the induced M0 and M2 contributions.
Similar to the transverse component of the EM current J i⊥, the z-component of the EM current is reduced to the
Sach-type magnetic dipole and octupole form factors at Pz = 0, and the other frame-dependent functions vanish:

〈J3〉σ′σ

2P0

Pz→0
=

2

3

√
τ

1 + τ

(
GM1 +

τ

5
GM3

)
iε3jkSjσ′σX

k
1 −

1

3
τ

√
τ

1 + τ
GM3iε

3jkSja′aX
k
1

− 4

3
τ

√
τ

1 + τ
GM3iε

3jkOjmlσ′σX
kml
3 , (22)

where

G3
M0(t;Pz = 0) = 0, G3

M1(t;Pz = 0) =
1

3
√

1 + τ
GM1, G3,a′a

M1 (t;Pz = 0) = 0,

G3,a′a
M0 (t;Pz = 0) = 0, G3

M2(t;Pz = 0) = 0, G3
M3(t;Pz = 0) = − 1

6
√

1 + τ
GM3. (23)
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In the IMF, all the frame-dependent functions of the J3 turn out to be equivalent to those of the J0:

G3
M0(t;Pz →∞) = GE0(t;Pz →∞), G3,a′a

M0 (t;Pz →∞) = Ga
′a
E0 (t;Pz →∞),

G3
M1(t;Pz →∞) = GE1(t;Pz →∞), G3,a′a

M1 (t;Pz →∞) = Ga
′a
E1 (t;Pz →∞),

G3
M2(t;Pz →∞) = GE2(t;Pz →∞), G3

M3(t;Pz →∞) = GE3(t;Pz →∞), (24)

so we have 〈J
3〉

2P0

Pz→∞= 〈J0〉
2P0

. A similar relation for the nucleon was first derived in Ref. [39], and we see that such a
relation is also satisfied for the ∆ baryon as shown in the current work.

We are now in a position to define the transverse charge distributions. In this work, we will consider the temporal
component of the EM current only, i.e., J0. In the BF, the 3D distribution is traditionally defined as a 3D Fourier
transformation of the corresponding form factor. As mentioned in the Introduction, the baryon cannot be localized
below the Compton wavelength, which causes ambiguous relativistic corrections. Recently, these 3D distributions in
the BF and the 2D distributions of the moving baryon in the EF were understood as quasi-probabilistic distributions in
the phase space or the Wigner distributions [25, 35, 46, 47]. We will first construct the transverse charge distribution
of the moving ∆ baryon by introducing the EF and will show the connection between the 2D BF and 2D IMF
distributions.

In the Wigner phase-space perspective, the Fourier transform of the matrix element of the EM current conveys
information on the internal structure of the particle. Since the average momentum and momentum transfer of the
initial and final states are respectively given by P = (P0,0⊥, Pz) and q = (0, q⊥, 0) in EF, the EF distributions depend
on the impact parameter x⊥ and momentum P = (0, Pz), where the ∆ baryon moves along the z-direction without
loss of generality. Thus, the charge distribution can be expressed as the 2D Fourier transform of the matrix element
〈∆(p′, σ′)|Ĵµ(0)|∆(p, σ)〉:

ρch(x⊥, σ
′, σ;Pz) =

∫
d2q⊥
(2π)2

〈J0〉σ′σ

2P 0
e−i~q⊥·~x⊥

= ρ0(x⊥;Pz)δσ′σ + ρa
′a

0 (x⊥;Pz)δa′a

+ ρ1(x⊥;Pz)ε
ij3Xj

1(θx⊥)Siσ′σ + ρa
′a

1 (x⊥;Pz)ε
ij3Xj

1(θx⊥)Sia′a

+ ρ2(x⊥;Pz)Q
ij
σ′σX

ij
2 (θx⊥) + ρ3(x⊥;Pz)ε

3jkOjmlσ′σX
klm(θx⊥), (25)

where

ρ0(x⊥;Pz) = G̃0(x⊥;Pz), ρa
′a

0 = G̃a
′a

0 (x⊥;Pz), ρ1(x⊥;Pz) = − 1

M∆

d

dx⊥
G̃1(x⊥;Pz),

ρa
′a

1 (x⊥;Pz) = − 1

M∆

d

dx⊥
G̃a

′a
1 (x⊥;Pz), ρ2(x⊥;Pz) = − 1

3M2
∆

x⊥
d

dx⊥

1

x⊥

d

dx⊥
G̃2(x⊥;Pz),

ρ3(x⊥;Pz) =
1

M3
∆

x2
⊥

d

dx⊥

1

x⊥

d

dx⊥

1

x⊥

d

dx⊥
G̃3(x⊥;Pz). (26)

The variable θx⊥ denotes the 2D angle of the xi⊥. Here we have used the 2D Fourier transform of the generic function

F = {G0, G
a′a
0 , G1, G

a′a
1 , G2, G3}:∫

d2q⊥
(2π)2

e−i~q⊥·~x⊥F (t;Pz) = F̃ (x⊥;Pz), (27)

where we define the following functions for convenience

G0(t;Pz) =

{
GE0(t;Pz)−

2

3
τGE2(t;Pz)

}
, Ga

′a
0 (t;Pz) =

{
Ga

′a
E0 (t;Pz) +

4

3
τGE2(t;Pz)

}
,

G1(t;Pz) =

{
GE1(t;Pz)−

2

5
τGE3(t;Pz)

}
, Ga

′a
1 (t;Pz) =

{
Ga

′a
E1 (t;Pz) + τGE3(t;Pz)

}
,

G2(t;Pz) = GE2(t;Pz), G3(t;Pz) = GE3(t;Pz). (28)

Thus, one can clearly see that the multipole patterns ρmon, ρdip, ρquad, and ρoct of the charge distributions are given
by the combinations of the ρ0, ρ1, ρ2, and ρ3.
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III. NUMERICAL RESULTS AND DISCUSSIONS

In this Section, We present the numerical results of the transverse charge distribution of the spin-3/2 baryon and
discuss them. We consider those of ∆+ and ∆0, regarding them as representatives for a spin-3/2 baryon. To study
the charge distribution in the Wigner phase-space perspective, we need information on the ∆ EM form factors. While
there is a plenty of available experimental data on the EM form factors of the nucleon, those of the ∆ baryons are
almost unexplored on the experimental side due to their short-lived nature. One could import the lattice data [19] but
they did not consider the EM form factors of the ∆0, of which the transverse charge distribution undergo a remarkable
change under the Lorentz boost as in the case of the neutron [6, 35]. Thus, we will take the results from the SU(3)
chiral quark-soliton model (χQSM) [43], where the available data of the EM form factors of the baryon decuplet exist.
Note that the electric monopole, quadrupole, and magnetic dipole were calculated in the χQSM, but the magnetic
octopole was ignored. This form factor is strongly suppressed in the large Nc expansion, which is consistent with the
lattice QCD data on the GM3 form factor [19]. It is compatible with zero within the statistical accuracy.

In Fig. 1, we show the y−axis profiles of the transvere charge distribution of the moving ∆+ baryon with the
longitudinal momentum Pz varied from Pz = 0 to Pz = ∞. Its spin is polarized along the z-axis with sz = 3/2 and
sz = 1/2, respectively. Taking Pz = 0, we obtain the 2D BF charge distribution. Here one should keep in mind
that the 2D BF distribution is distinctive from the 3D one [40]. By carrying out the Abel transformation, one can
project out the 2D distribution from the 3D one. In the projection, the quadrupole structure induces the monopole
contribution, so the monopole charge distribution is subjected to the quadrupole contribution [40, 48]. In addition,
this projection brings about the spin-polarization dependence of the monopole charge distribution. In addition, under
the Lorentz boost, the transverse charge distributions with sz = 1/2 and sz = 3/2 are altered in a different manner.
As demonstrated in Fig. 1, ρch with sz = 1/2 changes stronger than that with sz = 3/2 as Pz increases.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
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0.4
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0.8

1.0

1.2

(a) sz = 3/2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b) sz = 1/2

FIG. 1. The y−axis profiles of the transverse charge distributions of the moving ∆+ baryon as the longitudinal momentum Pz

increases from Pz = 0 to Pz = ∞. Its spin is polarized along the z-axis with sz = 3/2 and sz = 1/2, respectively. In the left
(right) panel, ρch with sz = 3/2 (sz = 1/2) is depicted.

In Fig. 2, we draw the y−axis profiles of the transverse charge distributions of the moving ∆0 baryon as Pz increases
from Pz = 0 to Pz = ∞. Again, its spin is polarized along the z-axis with sz = 3/2 and sz = 1/2, respectively. We
observe that the relativistic effects (or Lorentz-boost effects) are prominent in the neutral ∆0 baryon. Note that the
transverse charge distribution of the neutral ∆0 is normalized to its zero charge. It indicates that ρch must at least
have one nodal point. For the sz = 3/2, the charge distribution spread widely and its nodal point is placed at a
distance. As Pz increases from Pz = 0 to Pz = ∞, the core part of the charge distribution gets weaker, whereas
the tail part slowly gets lessened. So, the nodal point moves away to the outer part of the baryon. When it comes
to sz = 1/2, the configuration of the transverse charge distribution is dramatically changed under the Loretz boost.
In the rest frame (Pz = 0), the center of the ∆0 baryon is positively charged, whereas the outer part is negatively
charged. When the system is boosted, the positive core gets weaker and then turns negative at around Pz ∼ 2.8 GeV.
It is very similar to the behavior of the transverse neutron charge distribution under the Lorentz boost [35].

If the baryon is longitudinally polarized, then one can get access to the electric monopole and quadrupole form
factors only. To see the additional contributions from the other form factors, the spin of the ∆ baryon should be
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(a) sz = 3/2
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(b) sz = 1/2

FIG. 2. The y−axis profiles of the transverse charge distributions of the moving ∆0 baryon as the longitudinal momentum Pz

increases from Pz = 0 to Pz = ∞. Its spin is polarized along the z-axis with sz = 3/2 and sz = 1/2, respectively. In the left
(right) panel, ρch with sz = 3/2 (sz = 1/2) is depicted.

polarized transversely. We express the transverse spin basis sx in terms of the sz basis. Then the spin states sx = 1/2
and sx = 3/2 are given [19] by

|sx = 3/2〉 =
1√
8

(
|sz = 3/2〉+

√
3|sz = 1/2〉+

√
3|sz = −1/2〉+ |sz = −3/2〉

)
,

|sx = 1/2〉 =
1√
8

(√
3|sz = 3/2〉+ |sz = 1/2〉 − |sz = −1/2〉 −

√
3|sz = −3/2〉

)
. (29)

When the ∆ baryon is transversely polarized along the x-axis, its transverse charge distribution starts to get
deformed as Pz increases. In the presence of the external magnetic field B, the electric dipole moment is induced
by the moving ∆ baryon, which produces the electric field E′ depending on the velocity v of the moving ∆, i.e.,
E′ = γ(v × B). A similar feature was also observed in the case of the neutron [7]. In addition, the induced
electric octupole moment is also caused by this relativistic motion and results in the deformed charge distribution
with the octupole pattern, unlike the nucleon. Figures 3(a)-(d) depict the numerical results of the monopole, dipole,
quadrupole, and octupole patterns of the ∆ baryon charge distribution, respectively, when the ∆ is polarized along the
x-axis with sx = 3/2. One can obviously see that while the higher multipole contributions are found to be marginal,
the dipole contribution arises as the most dominant one to deform the transverse charge distribution. At the rest
frame, the dipole contribution is null, so the charge distribution is symmetric with respect to y = 0. Once the ∆ is
boosted, the dipole contribution starts to increase and reaches its maximum value at around Pz ∼ 1.4 GeV. Then it
diminishes gradually. At Pz ∼ 10 GeV, the size of the dipole contribution arrives at the minimum and then it start
to increase again but its sign is reversed (see Fig. 3(b)).

In the rest frame, the quadrupole contribution survives and makes the transverse charge distribution broaden. If
the ∆ is boosted, the positive quadrupole contribution turns negative at around Pz ∼ 1.4 GeV. Figure 3(e) draws the
charge distribution of the ∆+ baryon with sx = 3/2, which is the sum of Figs. 3(a)-(d). As shown in Fig. 3(e), the
transverse charge distribution starts to be tilted to the positive x⊥-direction till Pz = 1.4 GeV and becomes symmetric
with respect to x⊥ = 0 at around Pz ∼ 10 GeV again. When Pz increases more, the charge distribution starts to
move to the left x⊥-direction. In the IMF (Pz = ∞), we obtain the ∆+ charge distribution with sx = 3/2 shifted
to the left direction, which is consistent with the results from the lattice QCD [19]. Note that the induced electric
dipole moment of the proton is defined as GNM1(0) − GNE0(0) > 0, whereas that of the ∆ baryon is proportional to
G∆
M1(0)− 3G∆

E0(0) < 0, so that charge distribution of the ∆+ is shifted to the left, which is opposite to the transverse
proton charge distribution (see also Ref. [19]).

In Figs. 4(a)-(d) we present the numerical results for the monopole, dipole, quadrupole, and octupole patterns of
the transverse ∆+ charge distribution when it is polarized along the x-axis with sx = 1/2. The sum of the total
contributions is drawn in Fig. 4(e). They show a tendency similar to the sx = 3/2 case. However, the strength of the
dipole contribution is almost a half of that with sx = 3/2. So, the shape of the charge distribution is almost kept
to be symmetric, and in the IMF they are shifted to the negative x⊥-direction with respect to x⊥ = 0, which is also
consistent with the results from Ref. [19].
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(d) Octupole, sx = 3/2
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(e) sx = 3/2

FIG. 3. (a) Monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) transverse
charge distributions of the ∆+ baryon when its spin is polarized along the x-axis with sx = 3/2.
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FIG. 4. (a) monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge
distributions of the ∆+ baryon when its spin is polarized along the x-axis with sx = 1/2.
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In the upper panel of Fig. 5, we illustrate the transverse charge distributions of the moving ∆+ baryon transversely
polarized along the x-axis with sx = 3/2. As shown in Fig. 3 and Fig. 4, the charge distribution is deformed along
the y-axis due to the presence of the quadrupole contribution, so that it is not spherically symmetric. Of course,
there are no induced electric dipole and octupole contributions. The first column in Fig. 6 (Figs. 6(a), 6(e), 6(i), and
6(m)) shows the separate multipole contributions when the ∆+ is at rest. Since the electric dipole moment is induced
as the ∆+ baryon is boosted along the z-axis, the transverse charge distribution starts to get deformed. At around
Pz = 2 GeV, the charge distribution is shifted to the positive x⊥-axis due to the induced dipole contribution. On the
other hand, the quadrupole contribution is relatively small in comparison with the dipole one. One of the remarkable
features is that the sign of the quadrupole contribution is reversed at around Pz ∼ 1.4 GeV. See the second column
in Fig. 6 (Figs. 6(b), 6(f), 6(j), and 6(n)). However, when the system is boosted larger than Pz ∼ 10 GeV, the sign of
the induced dipole contribution is reversed, so the charge distribution is moved to the opposite direction, while the
higher multipoles contribute marginally to the charge distribution. In the IMF, however, the quadrupole contribution
dominates over the dipole contribution. See the last column in Fig. 6 (Figs. 6(d), 6(h), 6(l), and 6(p)). When it comes
to the sx = 1/2, the tendency is almost the same as the case of sx = 3/2, but the quadrupole contribution has the
opposite sign at the rest frame. So, the charge distribution broadens along the x-axis instead of the y-axis. See the
first column in Fig. 7 (Figs. 7(a), 7(e), 7(i), and 7(m)).

(a) sx = 3/2 (b) sx = 3/2 (c) sx = 3/2 (d) sx = 3/2

(e) sx = 1/2 (f) sx = 1/2 (g) sx = 1/2 (h) sx = 1/2

FIG. 5. (a)-(d) 2D charge distributions of the moving ∆+ baryon transversely polarized along x-axis with sx = 3/2; (e)-(h) 2D
charge distributions of the moving ∆+ baryon transversely polarized along x-axis with sx = 1/2

We also examine how the transverse charge distribution of the ∆0 baryon transversely polarized along the x-axis
varies under the Lorentz boost. In Fig. 8, we draw the transverse charge distributions of the ∆0 baryon when its
spin is polarized along the x-axis with sx = 3/2. See Fig. 8 (Figs. 8(a)-(e)). We found that the transverse ∆0 charge
distribution is dramatically changed under the Lorentz boost, in contrast with that of the ∆+ baryon. At the rest
frame, the monopole contribution is positive at the inner part, whereas the quadrupole contribution is negative over r.
Obviously, there are no induced dipole and octupole contributions. So, while the transverse charge distribution is kept
to be positive at the core part, the quadrupole contribution pulls it down to be negative at the outer part. As a result,
the nodal point of the transverse charge distribution gets close to the center of the ∆0 baryon due to the quadrupole
contribution. As Pz increases, the charge distribution starts to be deformed. The dominant contribution to ρch(x⊥)
is the monopole one, and it is always kept to be positive at the core part. As we explained before, the monopole
contribution to the transversely polarized charge distribution under the Lorentz boost turns out to be always positive
at the core part, though there is a sign flip of the longitudinally polarized charge distribution. The quadrupole
contribution turns positive at around Pz ∼ 4.0 GeV at the core part. At the same moment, the induced dipole
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(a) sx = 3/2, Monopole (b) sx = 3/2, Monopole (c) sx = 3/2, Monopole (d) sx = 3/2, Monopole

(e) sx = 3/2, Dipole (f) sx = 3/2, Dipole (g) sx = 3/2, Dipole (h) sx = 3/2, Dipole

(i) sx = 3/2, Quadrupole (j) sx = 3/2, Quadrupole (k) sx = 3/2, Quadrupole (l) sx = 3/2, Quadrupole

(m) sx = 3/2, Octupole (n) sx = 3/2, Octupole (o) sx = 3/2, Octupole (p) sx = 3/2, Octupole

FIG. 6. (a)-(d) monopole, (e)-(h) dipole, (i)-(l) quadrupole, and (m)-(p) octupole contributions of ∆+ with sx = 3/2 to the
2D charge distribution.
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(a) sx = 1/2, Monopole (b) sx = 1/2, Monopole (c) sx = 1/2, Monopole (d) sx = 1/2, Monopole

(e) sx = 1/2, Dipole (f) sx = 1/2, Dipole (g) sx = 1/2, Dipole (h) sx = 1/2, Dipole

(i) sx = 1/2, Quadrupole (j) sx = 1/2, Quadrupole (k) sx = 1/2, Quadrupole (l) sx = 1/2, Quadrupole

(m) sx = 1/2, Octupole (n) sx = 1/2, Octupole (o) sx = 1/2, Octupole (p) sx = 1/2, Octupole

FIG. 7. (a)-(d) monopole, (e)-(h) dipole, (i)-(l) quadrupole, and (m)-(p) octupole contributions of ∆+ with sx = 1/2 to the
2D charge distribution.
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contribution pushes the charge distribution to the negative y-direction, which dominates over the higher multipole

contributions. The value of the G∆0

M1(0) ∼ −0.3µN [43] is solely governed by the induced dipole moment because

of the G∆0

E0(0) = 0. This is the reason why the transverse charge distribution of the ∆0 is deformed as that of the
neutron, i.e, GnM1(0) = −1.91µN [49], as shown in Fig. 8(e).

In the IMF, we finally obtain the transverse charge distribution shifted to the negative y-axis. When the spin
projection is sx = 1/2, we are able to see that quadrupole contribution is opposite to the sx = 3/2 case in the rest
frame. See Fig. 9 (Fig. 9(a)-(d)). The quadrupole contribution makes a rather weak plateau at the core part of
the charge distribution, which is a similar feature to the deuteron charge distribution [25, 40]. When the system is
boosted, the quadrupole contribution is relatively suppressed and the induced dipole contribution dominates over it.
In the IMF, we obtained the ∆0 charge distribution sx = 1/2, which has a similar shape and strength to that with
sx = 3/2.

In the upper panel of Fig. 10, we draw the 2D charge distributions of the moving ∆0 baryon transversely polarized
along the x-axis with sx = 3/2. As shown in Fig. 8 and Fig. 9, the charge distribution is squeezed along the y-axis due to
the presence of the quadrupole contribution at the rest frame. See the first column in Fig. 11 (Figs. 11(a), 11(e), 11(i),
and 11(m)). If the ∆0 baryon starts to move along the z-axis, the electric dipole is induced and deforms the charge
distribution. So, the charge distribution starts to be tilted to the negative y-direction, and the dipole contribution

is saturated to G∆0

M ∼ −0.3 in the IMF. Together with the quadrupole and octupole contributions, we obtained a
rather complicated structure of the charge distribution of the ∆0 with sx = 3/2 in the IMF in Fig. 10. When it
comes sx = 1/2, the tendency is almost kept to be the same as sx = 3/2, but the opposite sign of the quadrupole
contribution squeezes the charge distribution along x-axis instead of y-axis at the rest frame. See the first column in
Fig. 12 (Figs. 12(a), 12(e), 12(i), and 12(m)).

IV. SUMMARY AND CONCLUSIONS

In the present work, we aimed at investigating how the transverse charge distributions of both the unpolarized and
transversely polarized ∆ baryon change under the Lorentz boost from Pz = 0 to Pz =∞ in the Wigner phase-space
perspective. We first observed that the elastic frame naturally interpolates the transverse charge distributions between
the Breit frame and infinite momentum frame, even for the spin-3/2 particle. In this elastic frame, the transverse
charge distributions acquire four different contributions: the monopole, quadrupole, induced dipole, and induced
octupole contributions. To visualize them in the 2D space, we employed the electromagnetic form factors of the ∆
baryon extracted from the SU(3) chiral quark-soliton model. The Loretz boost and the geometrical projection from
the 3D to 2D spaces yield a split in the spin-polarization of the monopole and induced dipole contributions. When
both the ∆+ and ∆0 baryons are polarized along the z-axis, we found that their charge distributions are always kept
to be spherically symmetric under the Lorentz boost. For the ∆0, the shape of the transverse charge distribution
was dramatically changed under the Lorentz boost, which is similar to the neutron case. When the ∆ baryon is
transversely polarized along the x-axis, all the multipole structures start to appear. In the rest frame, the quadrupole
contribution does not vanish and makes the charge distribution deformed. When Pz increases, the dipole and octupole
contributions are induced and cause the asymmetry of the transverse charge distribution. For the ∆+ baryon with
sx = 1/2 and sx = 3/2, the charge distributions start to be shifted to the positive y-direction and reach the maximal
values of the electric dipole moments at around Pz ∼ 1.4 GeV and gradually diminish. They turn negative at around
Pz = 10 GeV. As a result, the transverse charge distributions of the transversely polarized ∆+ baryon along the x-axis
is moved to the negative y-direction in the infinite momentum frame. We found that these results are consistent with
the results from the lattice QCD for the ∆+. For the ∆0 baryon, the positive charges, which represent the up quark
inside the ∆0 baryon, were displaced to the negative y-direction whereas the negative charges or the down quarks were

moved toward the positive y-direction. This is due to the negative values of the electric dipole moment (G∆0

M1 ∼ −0.3)
of the ∆0 baryon.
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FIG. 8. (a) Monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge
distributions of the ∆0 baryon when its spin is polarized along the x-axis with sx = 3/2.
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FIG. 9. (a) monopole, (b) dipole, (c) quadrupole, and (d) octupole contributions to the y-axis profiles of the (e) 2D charge
distributions of the ∆0 baryon when its spin is polarized along the x-axis with sx = 1/2
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(a) sx = 3/2 (b) sx = 3/2 (c) sx = 3/2 (d) sx = 3/2

(e) sx = 1/2 (f) sx = 1/2 (g) sx = 1/2 (h) sx = 1/2

FIG. 10. (a)-(d) 2D charge distributions of the moving ∆0 baryon transversely polarized along x-axis with sx = 3/2; (e)-(h)
2D charge distributions of the moving ∆0 baryon transversely polarized along x-axis with sx = 1/2
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(a) sx = 3/2, Monopole (b) sx = 3/2, Monopole (c) sx = 3/2, Monopole (d) sx = 3/2, Monopole

(e) sx = 3/2, Dipole (f) sx = 3/2, Dipole (g) sx = 3/2, Dipole (h) sx = 3/2, Dipole

(i) sx = 3/2, Quadrupole (j) sx = 3/2, Quadrupole (k) sx = 3/2, Quadrupole (l) sx = 3/2, Quadrupole

(m) sx = 3/2, Octupole (n) sx = 3/2, Octupole (o) sx = 3/2, Octupole (p) sx = 3/2, Octupole

FIG. 11. (a)-(d) monopole, (e)-(h) dipole, (i)-(l) quadrupole, and (m)-(p) octupole contributions of ∆0 with sx = 3/2 to the
2D charge distribution.
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(a) sx = 1/2, Monopole (b) sx = 1/2, Monopole (c) sx = 1/2, Monopole (d) sx = 1/2, Monopole

(e) sx = 1/2, Dipole (f) sx = 1/2, Dipole (g) sx = 1/2, Dipole (h) sx = 1/2, Dipole

(i) sx = 1/2, Quadrupole (j) sx = 1/2, Quadrupole (k) sx = 1/2, Quadrupole (l) sx = 1/2, Quadrupole

(m) sx = 1/2, Octupole (n) sx = 1/2, Octupole (o) sx = 1/2, Octupole (p) sx = 1/2, Octupole

FIG. 12. (a)-(d) monopole, (e)-(h) dipole, (i)-(l) quadrupole, and (m)-(p) octupole contributions of ∆0 with sx = 1/2 to the
2D charge distribution.
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Appendix A: frame-dependent functions

In this Appendix, We listed the explicit expressions of the frame-dependent functions for both temporal and spatial
components of the EM current. To express them in a compact way, we introduce the following functions:

A =
1

M(M + P0)
, β⊥n = 1 +

~q2
⊥

nM(M + P0)
, βzn = 1 +

P 2
z

nM(M + P0)
. (A1)

All the frame-dependent functions appearing in the matrix element of the temporal component of the EM current are
listed as follows:
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All the frame-dependent functions appearing in the matrix element of the spatial components of the EM current are
listed as follows:
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