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Abstract

Machine learning methods and in particular Graph Neural Networks (GNNs) have revolutionized many tasks within
the high energy physics community. We report on the novel use of GNNs and a domain-adversarial training method
to identify Λ hyperon events with the CLAS12 experiment at Jefferson Lab. The GNN method we have developed
increases the purity of the Λ yield by a factor of 1.95 and by 1.82 using the domain-adversarial training. This work
also provides a good benchmark for developing event tagging machine learning methods for the Λ and other channels
at CLAS12 and other experiments, such as the planned Electron Ion Collider.
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1. Introduction

The internal dynamics of the nucleon are governed
by the strong interaction, one of the four fundamen-
tal forces in nature, and present a significant and yet
unconquered intellectual challenge. As the name sug-
gests, the strong interaction creates a strongly coupled
system within the nucleon making it extremely diffi-
cult to calculate. Fortunately, due to the asymptotic
freedom of the strong interaction at high energies, one
way study these interactions is through scattering events
where subatomic particles such as electrons and protons
are accelerated to high energies and collided together.
The momentum and trajectories of particles produced
in these interactions may be measured with a variety of
detector systems. From this final state information, one
may begin to infer the original dynamics of the nucleon
before the collision.

The Λ hyperon is typically detected via the two-body
decay Λ → pπ−. It is of particular interest because the
polarization of the Λ is preserved in the cross-section
of the decay protons, allowing one to infer informa-
tion about the spin structure of the Λ. One may iden-
tify the Λ signal by looking at the invariant mass spec-
trum of the proton pion (pπ−) pairs for a peak around the
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nominal Λ mass 1.1157 GeV. However, at CLAS12 this
becomes complicated because of the large background
from non-strange final states and combinatorics. One of
the goals of this study has been to develop a method of
increasing the Λ signal to background ratio while still
preserving the signal shape in order to be able to extract
the Λ yield from a fit to the signal.

Graph Neural Networks (GNNs) have been used to
great efficacy for event classification, for example at the
Large Hadron Collider (LHC) for tagging jet types us-
ing the four-momenta of the constituent particles [1].
GNNs build on the concept of a neural network by treat-
ing each node of the input graph as an input channel of a
neural network layer. Node values in subsequent layers
are obtained by computing a convolution over neigh-
boring nodes within the current layer. GNNs are well-
suited to event-level classification tasks because they are
permutation invariant with respect to the order of the in-
put particles and they can handle a variably sized input.
GNNs also rely on the correlations between the nodes
of the input graph which makes them a natural choice
for identifying events based on the products of a decay.

1.1. Physics Observables
Semi-Inclusive Deep Inelastic Scattering (SIDIS) [2]

events occur when a high-energy lepton ` collides with
a target nucleon N and the scattered lepton and at least
one hadron are detected in the final state. SIDIS pro-
vides one of the ideal laboratories in which to probe
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Figure 1: Semi-Inclusive Deep Inelastic Scattering

the internal dynamics of the nucleon. The hadrons may
be produced from the struck quark q′, i.e. in the Cur-
rent Fragmentation Region (CFR), or from the rem-
nant quarks, i.e. in the Target Fragmentation Region
(TFR). Characteristics of final-state hadrons and corre-
lations between them can reveal information about the
spin and momentum structure of the nucleon. Some rel-
evant kinematic variables for this study include the fol-
lowing:

Q2 = −q2 (1)

W2 = (P + q)2 (2)

ν = E − E′ (3)

x =
Q2

2Mν
(4)

y =
P · q
P · `

(5)

z =
P · Ph

P · q
(6)

xF =
2Ph · q
W |q|

. (7)

The virtual photon γ∗ from the interaction of the in-
coming lepton ` with the struck quark imparts a mo-
mentum transfer `− `′ with virtuality Q2. The incoming
lepton has energy E and the outgoing lepton `′ has en-
ergy E′ such that ν is the difference in energy between
` and `′ and y is the fraction of the incoming lepton en-
ergy transferred to the virtual photon. The total energy
in the γ∗N center of mass frame is W and the fraction
of the nucleon momentum carried by the struck quark
is x. A final-state hadron h carries a fraction z of the
virtual photon energy and a fraction xF , the so-called

x-Feynman variable, of the hadron’s longitudinal mo-
mentum in the virtual photon direction relative to the
maximum value W/2 allowed by momentum conserva-
tion in the struck-quark center of mass frame. xF is used
to distinguish between the CFR and TFR since it favors
positive values for hadrons travelling in the direction
of the incoming virtual photon and negative values for
backward-going hadrons.

1.2. The CLAS12 Experiment

In order to realize these high energy scattering events
the Continuous Electron Beam Accelerator Facility
(CEBAF) at Jefferson Lab delivers a high luminosity
polarized electron beam to four experimental halls for
fixed target experiments [3]. The CLAS12 (CEBAF
Large Acceptance Spectrometer 12 GeV) Experiment is
located in the experimental Hall B and provides excel-
lent momentum and angular coverage and good parti-
cle identification capabilities for both charged and neu-
tral particles produced in high energy electron-proton
or electron-deuteron scattering events [4]. The detector
is centered around two large magnets, a solenoid in the
central region of the detector and a torus magnet in the
forward region. The torus magnet is operated in two dif-
ferent configurations, either bending negatively charged
particles in toward the beamline (inbending configura-
tion), or out away from the beamline (outbending con-
figuration).

2. Data

The data used in this study was all taken during the
fall 2018 run period in the outbending toroidal config-
uration with a 10.6 GeV polarized electron beam and
an unpolarized liquid hydrogen target. Events were re-
quired to have an identified scattered electron (e−) and
a proton-pion (pπ−) pair in the reconstruction. Fur-
ther restrictions on the scattered electron were that it be
the trigger particle, be detected in the forward region
of the detector, and have the highest momentum of all
electrons in the event. The scattered electron was also
required to have a particle identification (PID) assign-
ment quality factor estimate |χ2| < 3. Note that the χ2

PID quality factor is not an actual χ2 statistic value al-
though it has the same name. For electrons it is related
to the difference of the energy deposition from an ex-
pected value estimated from the measured momentum,
and for charged hadrons it is related to the difference
from the expected vertex time. No estimate is given for
neutral particles. Kinematic cuts were Q2 > 1 GeV2,
W > 2 GeV, y < 0.8, zpπ− < 1 and xF > 0 for the

2



pπ− pair to select Λs produced in the CFR. Addition-
ally, the invariant mass of the pπ− pair was restricted to
Mpπ− < 1.24 GeV so that events were sufficiently close
to the Λ mass peak.

2.1. Monte Carlo Data Set

The sample of Monte Carlo (MC) simulation events
was produced with the same run configuration as the
actual data from the fall 2018 run period. Events were
generated with an MC algorithm based on Pepsi Lund
program [5]. For the purpose of training our neural net-
works, Λ signal events were identified as those that con-
tained a Λ→ pπ− decay in the MC truth. A comparison
of the full invariant mass spectrum to the spectrum of
signal events is shown in Fig. 2.
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Figure 2: The MC invariant mass spectrum for reconstructed pπ−

pairs is shown for both the full set of events and signal events with
a Λ decay in the MC truth.

2.2. Signal Extraction

The invariant mass spectrum of all reconstructed pπ−

pairs passing kinematic cuts is shown in Fig. 3 for both
the real data and MC simulation. A peak around the
nominal Λ mass M = 1.1157 GeV is apparent, but
the background contribution is very high especially in
data. The main background contributions come from
the ∆0 → pπ− decay which peaks at 1.232 GeV and
from combinatorics of random pπ− pairs. A Crystal
Ball [6] signal over a quadratic background was used
to model the invariant mass spectrum. The Crystal Ball
function consists of a Gaussian peak with a power-law
tail such that both the function and its first derivative are
continuous

f (x;α, n, µ, σ) = N


exp− (x−µ)2

2σ2 , x−µ
σ
> α

A(B − x−µ
σ

)−n, x−µ
σ
≤ α

(8)

where N, A, and B are constants defined by the func-
tion parameters and satisfying the continuity require-
ments and normalization. The signal is much more pro-
nounced in MC but the fit parameters were similar up to
scale factors between MC and data. The number of sig-
nal events Nsig is estimated using the histogram counts
over the fitted background function within a ±2σ region
around the signal mean µ from the fit. The histogram
counts are used instead of the fit function integral since
the histogram has some noticeable excess above the fit
function at the signal peak. The signal fit region limits
have been optimized so as to maximize the signal purity
and minimize the signal error.
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Figure 3: A Crystal Ball signal over a quadratic background fit func-
tion was used to extract the Λ signal statistics from data (top) and MC
(bottom). The number of signal events Nsig is estimated using the
histogram counts over the fitted background function (small outlined
histogram).

3. Machine Learning Methods

The following sections assume a basic familiarity
with supervised learning and neural networks; however,
a comprehensive introduction may be found in Ref. [7].
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3.1. Graph Neural Networks
GNNs are well suited to many physics applications

since they are able to take inputs with irregular and un-
ordered structure, e.g. unordered sets of varying num-
bers of final-state particles in a SIDIS event. A graph
may be described as a set of vertices V and edges E.
At the simplest level, GNNs operate similarly to Con-
volutional Neural Nets (CNNs) by taking a convolu-
tion of over the neighborhood of each node to compute
its representation in the following layer as depicted in
Fig. 4. CNNs take a rectangular input such as a two-
dimensional pixel array and use an aggregation of the
information from the neighboring pixels to compute the
representation a pixel in the next layer. GNN convolu-
tion works the same way except that the neighbors are
determined by the structure of the input graph, which
may be highly irregular. In fact, CNNs are a subclass of
GNNs since a rectangular array is in effect just a graph
with a regular rectangular structure.

Specifically, to update the graph representation in the
kth layer of a network, the representation h(k)

m of a given
node or edge m is formed from some aggregation func-
tion A of the information contained in the neighboring
nodes and edges in the previous layer.

h(k)
m = A({h(k−1)

n : n ∈ N}). (9)

The aggregation function must not depend on the or-
der of the inputs and must be able to handle a variable
number of arguments, e.g. a sum, maximum, or mini-
mum function. The set of neighbors N of a node m is
defined by the structure of the input graph and may in-
clude the node m itself. A more detailed discussion may
be found in Ref. [8]. Using this concept of graph con-
volution, many different types of convolutional blocks
may be formed, and these blocks may be combined to
construct the different layers of a GNN.

3.1.1. Graph Isomorphism Networks
Graph Isomorphism Networks (GINs) are theoreti-

cally the most powerful form of GNNs and have been
quite successful at graph classification tasks [9]. GINs
essentially add two important modifications to the graph
convolution algorithm. After the aggregation step over
the neighboring nodes in the graph, a Multi-Layer Per-
ceptron (MLP) is introduced so that on the kth iteration
the updated node h(k) becomes

h(k)
m = MLP

(
(1 + ε) · h(k−1)

m + A({h(k−1)
n : n ∈ N})

)
, (10)

where ε is an optional learnable parameter and N is the
set of all neighbors of node hm [9].

The second modification is that in the final layer the
hidden representations of the graph from each layer of
the GIN are pooled together to obtain the final repre-
sentation. The reasoning for this type of pooling is
that localized information can be lost deeper in the net-
work. Pooling over all previous representations gives
a good compromise between the localized information
contained within the initial layers and more generalized
information reached in later ones.

3.2. Domain Adversarial Networks

Supervised learning relies on the training sample be-
ing representative of actual data. With SIDIS events,
this means the simulation events should closely match
the real data events intended for classification. How-
ever, simulation cannot perfectly match data for all
physics channels. Thus, performance on real data may
not live up to performance on MC test events.

One way to overcome this without trying to com-
pletely re-tune the simulation is to use a domain-
adversarial training routine first introduced in [10]. If
there is some shared phase space between the training
sample and the real data another training objective may
be introduced. In addition to minimizing the loss of
the classifier, one also maximizes the loss of an addi-
tional head network on top of the base network (in this
case the GNN) which is simultaneously trained to dis-
tinguish between training data and data from the real
test domain. This forces the base network to converge
towards a hidden representation that relies only on fea-
tures common to both training and test domains.

In practice this means that there are three networks:
a base network which produces a latent space represen-
tation of the input and then two adversarial head net-
works. The first head network, the discriminator, takes
the latent space representation from the base network
and makes a prediction whether the input came from the
labelled training dataset or the unlabelled test dataset.
Then the loss is computed between those predictions
and the actual domains from which the inputs came.
The discriminator loss LD is back-propagated through
the discriminator to update its weights. The second head
network, the classifier, then takes the latent space repre-
sentation from the base network and makes a prediction
for our end classification task. The classifier loss LC

is back-propagated through the classifier, updating its
weights. Finally, the loss of the discriminator and the
classifier are back-propagated through the base network
with a reversed gradient from the discriminator

∂Ltotal

∂x
= −α

∂LD

∂x
+
∂LC

∂x
. (11)
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Figure 4: Convolution in a GNN is analogous to the convolution step in a CNN except that the neighbors of each node are defined by the structure
of the graph.

The reversed gradient from the discriminator loss acts
as a penalizing term for the base network so that it is bi-
ased toward representations which the discriminator is
unable to distinguish. Here, α is another hyperparame-
ter of the training, a coefficient that can depend on the
training epoch or iteration. After training, the discrimi-
nator is discarded and the network consists solely of the
base network and the classifier. The domain-adversarial
process is depicted in Fig. 5.

3.3. Network Training and Evaluation

Our training sample consisted of 140k events from
the MC outbending sample filtered so that they each
contained an identified p, π−, and scattered e− in the
reconstructed event. The sample consisted of a random
sample of half MC truth Λ signal events and half MC
truth background. Signal events were identified as those
events with a Λ → pπ− decay in the MC truth, and all
other events were marked as background. The real data
sample for the domain-adversarial approach consisted
of roughly 140k events from the fall 2018 outbending
runs. The samples were split 80% for training, 10% for
model validation, and 10% for model testing.

3.3.1. Data Preprocessing
The same preprocessing routine was applied to both

MC and real data. Events were mapped into fully con-
nected graphs containing all the particles from the re-
constructed event. Each node in the graph represented a
particle and its data consisted of the reconstructed trans-
verse momentum pT , polar and azimuthal angles θ and
φ, velocity β, PID, χ2 estimate for the PID assignment,

and detector status. The continuous quantities pT , θ,
φ, and β first had the event mean for that variable sub-
tracted from them and were then normalized to the max-
imum difference from the event mean. The large de-
fault values for unassigned PID χ2 estimates were set
to +10 since these sometimes correspond to hadrons for
which the χ2 estimate is not required. Then, the PID χ2

estimate was cut to be within the range [−10, 10] and
normalized. Discrete quantities, particle PID and detec-
tor status, were reassigned to arbitrary float values from
−1 to 1. The PID reassignment values are listed in Ta-
ble 1. For charged particles the replacement value had
the same sign as the charge of the particle and particle-
antiparticle pairs had identical magnitudes. Otherwise
replacement value choice was arbitrary. Detector sta-
tus values are confined within (−5000, 5000) so the sta-
tus was just normalized by 5000. The renormalization
of inputs to values in [−1, 1] is a standard step in the
machine learning process to avoid large gradient values
during optimization.

True PID Replacement value
22 0.0
±11 ∓1.0
±2212 ±0.8
2112 0.5
111 0.1
±211 ±0.6
311 0.3
±321 ±0.4

Table 1: PID replacement values used to renormalize discrete PID
values.
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Figure 5: Domain-adversarial network optimization process

3.3.2. Model Architecture

The default architecture for the GIN consists of a 5
layer network with each MLP having 2 layers and a hid-
den dimension hdim = 64. The default final dropout
rate is 0.5 and the default graph and node pooling func-
tions are a simple mean. These architecture parameters
(except pooling functions) were varied for the hyper-
parameter optimization search. Each MLP layer used
a ReLU activation function was followed with a batch
normalization layer to reduce overfitting. The final clas-
sification layer obviously only had hdim = 2 corre-
sponding to our two classification categories signal and
background and was followed with a sigmoid activation
function. Final classification assignments were normal-
ized to probabilities with the softmax function

σ(x) =
exi∑
i exi

. (12)

For the Domain-Adversarial GIN (DAGIN) the GIN
architecture was the same except the dimension of the
final layer still had the same hidden dimension as the
previous layers. The classifier and discriminator had
identical architectures: each was an MLP with the same
hidden dimension as the GIN in each layer except the
final classification layer. Each layer used ReLU acti-
vation except the final layer which used sigmoid acti-
vation. Final classification predictions were also nor-
malized with the softmax function from Eq. 12. The
hyperparameters left for optimization for the classifier
and discriminator architecture were just the number of
layers in each network.

3.3.3. Training Parameters
The ADAM optimizer [11] was used to train each

model but the choice of batch size and learning rate η
was left for the hyperparameter optimization process.
The loss function for each model was a cross-entropy
loss, except the discriminator which used binary cross-
entropy loss. For the DAGIN the learning rates of the
three different networks base, classifier, and discrimina-
tor (η, ηC , ηD) were left as separate hyperparameters for
optimization.

3.3.4. Hyperparameter Optimization
A Bayesian optimization search of the hyperparame-

ter phase space was carried out using the Optuna Hyper-
parameter Optimization package [12]. Optuna’s builtin
TPESampler was used which is based on the Tree-
structured Parzen Estimator (TPE) algorithm [13]. The
ROC (Receiver Operating Characteristic) curve is a plot
of the fraction of true positives versus the fraction of
false positives as a function of the threshold value for a
binary classification task. Hyperparameter choice was
optimized based on the Area Under the (ROC) Curve
(AUC) metric of trained model when evaluated on the
reserved test data. The more area under this curve, i.e.
the higher the AUC, the less dependence there is on the
threshold value and the more robust the model is. This
metric is preferred instead of a simple accuracy since it
allows one to simultaneously maximize efficiency and
purity for a binary classification task.

The hyperparameter phase space allowed for the opti-
mization search is listed for the basic GIN model in Ta-
ble 2 and for the DAGIN in Table 3. Roughly 1500 tri-
als were performed for each hyperparameter search and
each trial model was trained for up to 50 epochs. The
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training and validation metrics as a function of training
epoch for the GIN and DAGIN are shown in Figs. 6 and
7 respectively.

Hyperparameter Range
nlayers [2, 8]
hdim [25, 28]

MLP nlayers [2, 4]
dropout [0.5, 0.8]
batch [26, 28]
η [10−5, 10−2]

Table 2: Hyperparameter ranges for basic GIN optimization search.

Hyperparameter Range
nlayers [2, 8]

Classifier/Discriminator nlayers [2, 8]
hdim [25, 28]

Classifier/Discriminator hdim [25, 28]
MLP nlayers [2, 4]

dropout [0.5, 0.8]
batch [26, 28]
η [10−5, 10−2]
ηC [10−5, 10−2]
ηD [10−5, 10−2]
α [1, 100]

Table 3: Hyperparameter ranges for DAGIN optimization search. α is
the coefficient for the discriminator loss in the gradient-reversal layer.

As a sanity check, this same hyperparameter opti-
mization routine was run with similar datasets filtered so
that the MC background events came from varying frac-
tions of the two main background contributions: combi-
natorial background and ∆ → pπ− decays. The perfor-
mance achieved with these datasets was essentially the
same as that achieved on the original dataset, demon-
strating that there was not any wild dependence of the
training process on the composition of the background
sample.

4. Results

4.1. Evaluation on Monte Carlo

After training, the performance of each model was
evaluated on the reserved 10% of the MC dataset. The
invariant mass spectrum of the GNN-identified signal
events was fit to the same Crystal Ball signal over
quadratic background function to determine if the signal
shape was changed at all by the application of the GNN.
Note that two of the fit parameters for the background

Figure 6: Training accuracy (top) and loss (bottom) vs. epoch for the
hyperparameter-optimized GIN.

quadratic, those describing the peak height and location
of the parabola, were held constant and only the cur-
vature parameter of the background was varied for the
fit. Both the GIN and DAGIN roughly preserve the sig-
nal shape as shown in Fig. 8 for the optimized models.
There is some increase in the σ parameter of the Crystal
Ball fit function, particularly for the DAGIN. However,
this is mainly due to a loss in signal efficiency centered
around the signal peak. This eliminates the slight excess
above the fit function at the signal peak evident in Fig. 3
allowing the σ parameter to increase without actually
significantly impacting the width of the signal. The ef-
ficiency of the network on background events is fairly
stable as a function of the invariant mass as shown in
Fig. 10. Employing the decorrelation method described
in Ref. [14] as a sanity check to decorrelate the perfor-
mance of the network from the invariant mass produced
similar results. Efficiencies of the GIN and DAGIN net-
works trained with the decorrelation method are shown
in Fig. 9.
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Figure 7: Training accuracy (top) and loss (bottom) vs. epoch for the
hyperparameter-optimized DAGIN.

4.2. Evaluation on Data

The figure of merit (FOM = Nsig/
√

Ntot) used to
evaluate the performance on data is calculated within
the ±2σ region around the signal peak location µ from
the fit to the mass spectrum of events the GNN identifies
as signal. Maximizing this FOM should simultaneously
maximize the purity Nsig/Ntot while minimizing the er-
ror, 1/

√
Ntot assuming Poissonian statistics. The FOM

and purity were computed for various values of the cut
on the GNN output in order to maximize the FOM and
purity. The GNN output distributions on data are shown
in comparison with the distributions on MC in Fig. 11,
and the scans of the cut values are shown in Fig. 12 for
both GIN and DAGIN. Note that the output probability
from the DAGIN is taken just after the final classifica-
tion layer without applying the softmax function. The
maximal FOMs and corresponding purities obtained are
listed in Table 4. The invariant mass spectra after the ap-
plication of the optimized GIN and DAGIN respectively
with maximized FOM are shown in Fig. 13. The signal
shape is still relatively well preserved by the application

Figure 8: Signal mass spectra identified by the hyperparameter-
optimized GIN (top) and DAGIN (bottom) with signal extraction fits
applied. The stacked histograms are separated into true signal (or-
ange) and false signal (blue).

of either the GIN or DAGIN. The Kolmogorov-Smirnov
distances between the NN output distributions and data
and MC are also computed. These values are 0.262 and
0.217 for the GIN and DAGIN respectively.

Method No GNN GIN DAGIN
Nsig/

√
Ntot 34.11 65.74 42.09

Nsig/Ntot 0.195 0.382 0.354
NN cut N/A 0.13 0.22

Table 4: Figure of Merit from evaluation on data for all three methods.

5. Conclusions

We have developed a GNN architecture for tagging
Λ hyperon events that reaches up to 83% test accuracy
and 0.9 AUC values after training. The method also
roughly preserves the Λ signal shape in both data and
simulation. While there remains room for further im-
provement, already the GIN model increases the Λ sig-
nal purity by a factor of 1.95. Interestingly, the DAGIN
model only increases the purity by a factor of 1.82. This
could occur if the features that the domain-adversarial
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Figure 9: Efficiency of the hyperparameter-optimized GIN (top) and
DAGIN (bottom) on background events as a function of the invariant
mass. Errors are solely statistical.

method forces the network to use are not as discriminat-
ing as those used by the GIN even if they are common
to both datasets. However, the DAGIN model produces
a more consistent output between data and MC with a
Kolmogorov-Smirnov statistic of 0.217 compared to the
GIN with a statistic of 0.262. The methods developed
here may also be applied to other channels at CLAS12
and provide a baseline for future efforts using GNNs
in this area. Another potential use case could be ex-
tending these networks to filter out feed-down contribu-
tions to the Λ signal from decays of heavier hyperons,
e.g. Σ0 → Λγ. This would be especially useful at the
planned Electron Ion Collider where feed-down is ex-
pected to be more of an issue [15]. We plan to further
check this method by evaluating how much it improves
Λ longitudinal spin transfer measurements at CLAS12.
Future improvements include exploring other network
architectures, specifically Subgraph Networks, which
are theoretically even more powerful than GINs [16]
and expanding the input data to the graphs to include
detector level information.

Figure 10: Efficiency of the GIN (top) and DAGIN (bottom) using the
MoDeLoss decorrelation method on background events as a function
of the invariant mass. Errors are solely statistical.
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