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The target normal single-spin asymmetry in inclusive electron-nucleon scattering is studied in
the low-energy regime that includes the ∆ resonance. The particular interest in the asymmetry
resides in that it is driven by two-photon exchange effects. It probes the spin-dependent absorptive
part of the two-photon exchange amplitude, which is free of infrared and collinear singularities and
represents the most pristine expression of two-photon exchange dynamics. The study presented here
uses the 1/Nc expansion of QCD, which combines the N and ∆ through the emergent SU(4) spin-
flavor symmetry in the baryon sector and allows for a systematic construction of the transition EM
currents. The analysis includes the first subleading corrections in the 1/Nc expansion and presents
results for elastic and inelastic final states. The asymmetry is found to be in the range 10−3–10−2.
The ∆ resonance plays an important role as an intermediate state in the elastic asymmetry and as
a final state in the inclusive asymmetry.

I. INTRODUCTION

The electromagnetic interaction is a fundamental tool
for the study of hadronic structure and dynamics. In
general, the processes involved have been traditionally
analyzed at the leading order in the EM interaction. In
electron-hadron scattering this is O(αem), the so called
one-photon exchange approximation (OPE). In hadronic
observables there are however important effects that re-
quire the consideration of genuine higher order EM inter-
actions, such as the isospin breaking in hadronic masses,
e.g., the mass difference between the charged and neutral
pions that is almost entirely due to EM, and the impor-
tant contribution to the proton-neutron mass difference
where the EM contribution is of similar magnitude to the
one due to the isospin breaking by the quark masses. In
electron scattering, the subleading EM contributions due
to two-photon exchange (TPE) have been identified as
the likely source of the discrepancy observed in the OPE
approximation extraction of the ratio GpE/G

p
M from mea-

surements using the Rosenbluth separation versus the
polarization transfer methods [1–3]. Measurements that
expose the TPE effects are thus of particular interest.
One of them consists in the comparison of the cross sec-
tions of electron and positron scattering on the proton,
such as the recent experiments at DESY [4, 5] and possi-
ble future experiments at Jefferson Lab [6]. In addition,
observables in parity-violating electron scattering receive
corrections from TPE [7]. In general the theoretical study
of the TPE effects is affected by significant uncertainties
as it requires knowledge of EM hadronic structure beyond
the EM form factors, namely the doubly-virtual-photon
Compton amplitudes, and is thus still a work in progress.
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A particularly interesting TPE effect is the transverse
target single-spin asymmetry (TSSA) in electron-nucleon
scattering with quasi-two-body final states, i.e. elas-
tic scattering e + N → e′ + N or inclusive scattering
e+N → e′+X. If the target nucleon is polarized trans-
versely to the scattering plane, the cross section gener-
ally depends on the scalar product of the spin vector
and the normal vector of the plane. Due to P and T
invariance, such a spin dependence can arise only from
TPE, because it requires a non-zero absorptive part of the
electron-nucleon EM scattering amplitude [8]. The spin-
dependent cross section produced in this way is given by
on-shell matrix elements of the EM current, is free of
collinear and infrared divergences, and can be considered
independently of radiative corrections related to real pho-
ton emission into the final state. These features make the
TSSA the most unambiguous TPE effect in electron scat-
tering. (The same TPE mechanism gives rise to a beam
single-spin asymmetry in the case of transverse electron
polarization; this effect is proportional to the electron
mass and generally much smaller than the TSSA; see
discussion in Sec. V.)

The TSSA in elastic eN scattering has been stud-
ied theoretically in Refs. [9–12], and more recently in
Refs. [13, 14], using hadronic physics methods. This
asymmetry is expected to be of the order ∼ 10−2 for
momentum transfers Q2 . 1 GeV2. Experiments per-
formed with recoil polarization in ep elastic scattering
obtained values consistent with zero; see [15] and refer-
ences therein. Further tests will become possible with
contemporary elastic scattering experiments.

The TSSA in inclusive eN scattering has been analyzed
in deep-inelastic kinematics in Refs. [16–19] using a par-
tonic picture and various assumptions regarding QCD in-
teractions. These calculations predict values in the range
10−4–10−3, substantially smaller than the elastic TSSA.
Measurements in DIS kinematics have been performed
with a proton target at HERMES at 27.5 GeV beam en-

mailto:goity@jlab.org
mailto:weiss@jlab.org
mailto:cintiawillemyns@gmail.com


2

ergy [20], and with a 3He target at Jefferson Lab Hall A
with beam energies 2.4, 3.6, and 5.9 GeV [21–23]. A next-
generation measurement with proton target and electron
and positron beams with energies from 2.2 to 6.6 GeV
has been proposed at Jefferson Lab [24].

A question of great interest is the behavior of the TSSA
in inclusive eN scattering in the first resonance region,
where the ∆ isobar can appear both as an intermediate
state in the TPE amplitude and as a final state in in-
elastic scattering. This region lies between the domain
of elastic scattering at low energies and that of deep-
inelastic scattering at high energies. If one understands
the behavior of the TSSA in the resonance region, one
could follow its evolution with energy, connect the elas-
tic and deep-inelastic domains, and explain the different
order-of magnitude predicted for the two regions. Lit-
tle is presently known about the inclusive TSSA in the
resonance region from either theory or experiment. Mea-
surements could be performed in electron scattering with
energies ∼ 0.5–1.5 GeV, perhaps at the lower end of the
proposed experiment of Ref. [24], or in future dedicated
experiments.

The elastic TSSA in the resonance region can be cal-
culated in terms of the empirical electroproduction am-
plitudes extracted from eN scattering data; see Ref. [25]
and references therein. Theoretical uncertainties are sig-
nificant, as the effect is sensitive to the phases and arises
as a sum over contributions of comparable size and vary-
ing sign. The inelastic or inclusive TSSA in the resonance
region is much more difficult to calculate, as it requires
also amplitudes such as ∆ → ∆, which cannot be mea-
sured in eN scattering. In addition to the ∆ it can also
receives contributions from nonresonant πN final states.
This calls for a theoretical framework that can organize
the hadronic intermediate/final states and predict the
EM transition amplitudes.

The 1/Nc expansion organizes hadron structure and
reactions on the basis of the scaling behavior in the num-
ber of colors in QCD [26, 27]. It is particularly useful for
baryons and permits a unified description of the N and
∆. In the large-Nc limit the baryon sector of QCD de-
velops a dynamical spin-flavor symmetry SU(2Nf ), with
Nf = 2 the number of light flavors here [28–32]. N and
∆ belong to the SU(4) totally symmetric irreducible rep-
resentation with I = S = 1

2 , · · · ,
Nc
2 , where I and S are

the baryon’s isospin and spin. N → N , N → ∆, and
∆ → ∆ transition matrix elements are thus related by
the SU(4) symmetry. A systematic 1/Nc expansion of
the EM transition currents can be performed, including
subleading corrections, with all parameters fixed by the
nucleon sector. A parametric distinction between reso-
nant ∆ and nonresonant πN states appears, with the lat-
ter relegated to subleading level. These features of the
1/Nc expansion allow one to develop an efficient frame-
work for the present purpose.

In this work the TSSA in low-energy electron-nucleon
scattering with TPE is analyzed using the 1/Nc expan-
sion. The study covers the energy region below and above

the ∆ excitation threshold and considers the TSSA for
both elastic scattering eN → e′N and inclusive scatter-
ing eN → e′X, X = N,∆. The application of the 1/Nc
expansion to the kinematic variables of electron scatter-
ing is discussed, and versions of the expansion appropri-
ate in the different kinematic regimes are defined. Us-
ing the 1/Nc expansion of the EM current operators and
their matrix elements between N and ∆ states, the TSSA
resulting from TPE is computed to first subleading or-
der in 1/Nc. The TSSA is evaluated numerically, and
the contributions of ∆ isobars as intermediate states (in
elastic or inclusive scattering) and final states (in inclu-
sive scattering) are quantified. Possible extensions of the
techniques to the beam spin asymmetry and other ob-
servables in low-energy eN scattering are discussed.

In the regime of interest one can identify a low-energy
domain below the onset of the ∆ resonance, where only
the elastic contribution in the TPE amplitude is present
(the low-energy πN continuum contributes only beyond
the order in 1/Nc considered here); a low-energy domain
above the ∆ resonance, where elastic and inelastic chan-
nels are open; and an intermediate energy domain that
extends from the ∆ resonance up to the onset of the
higher resonances. Because the photon virtualities in the
TPE amplitude cover a broad range (limited only by the
CM energy of the eN collision), the form factors of the
baryon EM currents play an important role. It is shown
that they dramatically affect the contributions of the ∆
resonance to the TSSA. This underscores the need of a
systematic treatment of the transition currents as pro-
vided by the 1/Nc expansion.

The article is organized as follows: Section II summa-
rizes the general methods for describing the target spin
dependence of eN scattering and implementing the 1/Nc
expansion in the baryon sector. Section III describes the
application of the 1/Nc expansion in the different kine-
matic regions, construction of the one- and two-photon
exchange amplitudes, and calculation of the TSSA. Sec-
tion IV presents the numerical results and compares the
contributions of various intermediate/final states. Sec-
tion V discusses the significance of the results and pos-
sible extensions of the methods. Appendices A–E sum-
marize technical material supporting the calculations, in-
cluding the SU(4) spin-flavor symmetry, the integrals ap-
pearing in the 1/Nc expansion of the TSSA, the results
for the spin-independent and dependent cross sections,
and the treatment of the ∆ width.

II. METHODS

A. Target spin dependence in inclusive electron
scattering

This work considers the process of inclusive scattering
of an unpolarized electron on a transversely polarized
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FIG. 1. Inclusive electron-nucleon scattering in the electron-
nucleon CM frame. The nucleon is polarized in the direction
normal to the scattering plane.

nucleon,

e(ki) + N ↑(pi)→ e(kf) +X, (1)

where X = N, πN, ... denotes the hadronic final states
accessible at the incident energy. In the regime to be
studied here the inelastic final states are πN and dom-
inated by the decay of the ∆ resonance (as explained
below), and the contributions of elastic and inelastic fi-
nal states will be analyzed separately in the following.
The 4-momentum transfer is given by

q ≡ ki − kf = pf − pi, (2)

and the process is characterized by the invariants

s ≡ (ki + pi)
2, t ≡ q2, M2

X = (q + pi)
2 = p2

f . (3)

The differential cross section can be represented as [17]

dσ

dΓf
=
dσU
dΓf

+ eµNaµ
dσN
dΓf

, (4)

where dΓf is the invariant phase space of the final elec-
tron. The first term in Eq. (4) is the unpolarized cross
section and the second one results from the effect of the
polarization of the target nucleon. aµ is the spin 4-vector
of the target nucleon, and eµN is the normalized space-like
4-pseudovector given by

eµN ≡
Nµ

√
−N2

, Nµ ≡ εµαβγpiαkiβkfγ ,

N2 =
t

4
[st+ (s−m2

N )(s−M2
X)]. (5)

The quasi-two-body scattering process Eq. (1) can be
viewed in reference frames where the 3-momenta (bold-
face fonts are used for spatial vectors) ki,kf and pi lie in
a plane, e.g. the target nucleon rest frame (pi = 0), the
electron-nucleon center-of-mass (CM) frame (pi+ki = 0),
or the virtual photon-nucleon CM frame (pi+ki−kf = 0).
In such a frame the vector eN is normal to the scattering
plane (see Fig. 1) and given by

eN = (0, eN ), eN =
ki × kf

|ki × kf |
, (6)

where mN is the nucleon mass. The cross section Eq. (4)
thus depends on the normal component of the nucleon
spin. The target normal single-spin asymmetry is defined
as the ratio

AN ≡
dσN
dΓf

/
dσU
dΓf

. (7)

It can be measured either as the asymmetry of the cross
sections with the nucleon polarized up and down for the
same scattered electron momentum (up-down asymme-
try), or as the asymmetry of the cross sections with the
electron scattered to the left and to the right for the same
nucleon polarization (left-right asymmetry).

The following theoretical analysis uses the electron-
nucleon CM frame, where the 3-momenta in the initial
and final states are pi = −ki,pf = −kf (see Fig. 1). They
are related to the invariants by

|ki| =
s−m2

N

2
√
s

, |kf | =
s−M2

X

2
√
s

,

t = −2|kf ||ki|(1− cos θ), (8)

where θ ≡ angle(kf ,ki) is the scattering angle. The ex-
pressions in the following do not refer to any specific co-
ordinate system but are formulated in terms of abstract
3-vector products in this frame.

B. 1/Nc Expansion

The 1/Nc expansion is a powerful method for organiz-
ing hadron structure and reactions on the basis of the
scaling behavior in the number of colors in QCD. The
expansion needs definition, as it results from comparing
QCD with varying number of degrees of freedom and al-
lows for choices of the scaling behavior of the parameters
of the theory (scale parameter, number of flavors, quark
masses). The commonly adopted version, which works
best for the phenomenology of the real world with Nc = 3
and two or three light flavors, is the ’tHooft expansion,
where the number of flavors is fixed and particular phys-
ical observables (e.g., for Nf = 2, the ρ and the π meson
masses) are used to define the quark masses and the QCD
scale. The expansion can furthermore be implemented at
the hadronic level by identifying the Nc scaling of the dif-
ferent quantities. That implementation can be made into
a systematic 1/Nc expansion, in particular in the context
of effective theories.

The 1/Nc expansion is particularly useful in the baryon
sector of QCD; see Ref. [33] and references therein. The
baryon masses are O(Nc), and the πN interaction is
O(
√
Nc). The latter requires for consistency that in

the large-Nc limit the baryon sector develops a dynam-
ical contracted spin-flavor symmetry described by the
SU(2Nf ) group, or SU(4) for Nf = 2 [28–30]. In the
rest frame of the baryons, the fifteen generators of SU(4)

can be identified with the spin Ŝi, isospin Îa and spin-
flavor Ĝia operators (see Appendix A). In frames where
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the baryons have momenta O(N0
c ), their velocities are

O(N−1
c ), because the masses areO(Nc), and their motion

is effectively nonrelativistic. Transition matrix elements
between baryon states in frames where the momenta are
O(N0

c ) can therefore be computed in a non-relativistic ex-
pansion, where they are expressed in terms of the SU(4)
generators and the initial/final baryon momenta.

The ground-state baryons belong to the totally sym-
metric SU(4) multiplet. It consists of states with
isospin/spin I = S and S = 1

2 , · · · ,
Nc
2 , which includes

the N and ∆ states with I = S = 1
2 and 3

2 . States in
the multiple are characterized by S and the projections
S3 and I3 and denoted by |SS3I3〉. The mass splitting
between the states is O(N−1

c ). In this multiplet the gen-

erators Ĝia have matrix elements O(Nc) between states

with S = O(N0
c ), while the generators Îa and Ŝi obvi-

ously have matrix elements O(N0
c ).

This work requires the matrix elements of the EM
current operators between baryon states in the ground
state multiplet. The assignment of electric charges to
the quarks at arbitrary Nc [34] can be made in such a
way that the Standard Model gauge and gravitational
anomalies vanish as required for consistency, and such
that the charges of the baryons are simply given by the
usual relation Q = 1/2 + Î3, independent of Nc. The
quark charges are then given by Qq = 3

2Nc
+ I3. In

the following the current is considered for transitions be-
tween baryon states with 3-momenta p,p′ = O(N0

c ), and
generally different spins S′ 6= S, and therefore different
masses; the 4-momentum transfer is q ≡ p′ − p, and its
components are q = O(N0

c ) and q0 = O(N−1
c ). Including

leading and subleading terms in the 1/Nc expansion, the
isoscalar (S) and isovector (V ) components of the EM
current are given by [34] 1

JµS (q) = GSE(q2)
1

2
gµ0 − i1

2

GSM (q2)

Λ
ε0µijqiŜj , (9)

JµaV (q) = GVE(q2)Îagµ0 − i6
5

GVM (q2)

Λ
ε0µijqiĜja, (10)

JµEM(q) = JµS (q) + Jµ3
V (q), (11)

where GSE,M and GVE,M are the form factors of the elec-

tric and magnetic components.2 The currents are ex-
pressed in terms of the SU(4) spin-flavor generators

1 Terms in the currents with higher powers of momenta have been
neglected, such as the isovector contribution to the time compo-
nent, which stems from a relativistic correction and is propor-
tional to 1

mNΛ
ε0ijkqipjĜka. Such terms are suppressed except

at the upper end of the energy domain considered here and are
subleading in 1/Nc. The electric quadrupole component of the
current, which mediates N − ∆ transitions, is suppressed by a
factor 1/N2

c with respect to the leading term [35] and thus irrel-
evant to the present calculation.

2 For the sake of convenience in the calculations and without sig-
nificant difference the GE form factor is taken to be equal to the
corresponding F1 rather than the Sachs form factor.

and understood to be evaluated between multiplet states
〈S′S′3I ′3|...|SS3I3〉. The magnetic terms are written with
a generic mass scale Λ = O(N0

c ), whose value is identified
with the physical nucleon mass (exempt from Nc scal-
ing); this formulation is natural for the 1/Nc expansion
and avoids the appearance of spurious powers of Nc that
would come from using the scaling mN in the denomi-
nator. The form factors in Eqs. (9) and (10) are defined
such that they coincide with the physical nucleon form
factors for Λ = mN (physical) and Nc = 3. In particular,
the factor 6/5 in the magnetic term of the isovector cur-
rent was introduced such that, for Nc = 3, GVM coincides
with the physical nucleon isovector magnetic form factor.

The currents given by Eqs. (9) and (10) satisfy cur-
rent conservation to the necessary accuracy in 1/Nc. For
the magnetic terms (spatial components), this follows
from the vector product structure of the vertices; for the
electric terms (time components), it is realized because
q0 = O(N−1

c ).

The order in 1/Nc of the components of the currents
in Eqs. (9) and (10) is as follows. The isovector magnetic
current is O(Nc), being represented by the spin-flavor

operator Ĝia that has matrix elements O(Nc). This re-
flects the fact that the nucleon anomalous magnetic mo-
ment is O(Nc). (In the quark picture of baryons, this
happens because the magnetic moments of the quarks
add up coherently to form the total magnetic moment
of the baryon, see for instance Ref. [36].) The remain-
ing terms in the current are O(N0

c ), being proportional

to the operators 1̂, Ŝi, and Ia that have matrix ele-
ments O(N0

c ). At leading order in the 1/Nc expan-
sion, the dominant current component is therefore the
isovector magnetic current proportional to the operator
Ĝia. Clear evidence of this dominance is the ratio of the
isovector and isoscalar magnetic moments of the nucleon,
GVM (0)/GSM (0) = O(Nc) = 5.34. The dominant isovector
magnetic current also induces theM1 transitionsN → ∆;
the other current components only have matrix elements
between states with same spin/isospin.

Equations (9) and (10) capture the 1/Nc expansion of
the EM currents to the accuracy needed in the present
calculation. Higher-order corrections beyond that accu-
racy arise from the nonrelativistic expansion of the mo-
tion of the baryons. For momenta O(N0

c ), both the spa-
tial components of the convection current and the time
component of the magnetic currents are O(N−1

c ). Fur-
ther higher-order corrections arise from the contribution

of subleading spin-flavor operators, namely Ŝi ~̂S2 for the
isoscalar magnetic current, and {Ĝi3, Ŝ2} and ŜiÎ3 for
the isovector one. These higher-body spin-flavor opera-
tors are accompanied by factors 1/Nn−1

c , where n is the
number of spin-flavor generator factors in the composite
operator [31, 37]. The corrections to the magnetic cur-
rents are therefore suppressed by O(N−2

c ) relative to the
dominant isovector magnetic current. To the accuracy of
the present calculation, these higher order terms in the
currents are therefore irrelevant.
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Energy regime 1/Nc expansion regime Channels open Final states possible

I mN <
√
s < m∆

√
s−mN ∼ N−1

c , k ∼ N−1
c N elastic

II m∆ <
√
s� mN∗

√
s−mN ∼ N−1

c , k ∼ N−1
c N,∆ elastic or inelastic

III m∆ <
√
s . mN∗

√
s−mN ∼ N0

c , k ∼ N0
c N,∆, N∗(suppr) elastic or inelastic

TABLE I. Kinematic regimes in application of the 1/Nc expansion to low-energy electron scattering.

The momentum dependence of the form factors plays
an essential role in the present calculation. The scale
governing the momentum dependence of the form factors
— the baryon “size” in the large-Nc limit — is O(N0

c ),
and the momentum transfer is t = O(N0

c ), so that the
functions are evaluated in a region where they differ sig-
nificantly from their varlues at zero momentum transfer.
The form factors in Eqs. (9) and (10) can be determined
by matching the expressions for Nc = 3 with the empiri-
cal proton and neutron form factors, which gives

GS,VE (t) = GpE(t)±GnE(t),

GS,VM (t) = GpM (t)±GnM (t). (12)

In the subsequent calculations, the small contribution of
the neutron’e electric form factor is neglected for sim-
plicity, GnE ≡ 0, such that GSE = GVE = GpE . Fur-
thermore, it is assumed that the t-dependence of all the
form factors is of dipole form with a common mass scale
Λ2

EM = 0.71 GeV2.
The construction of the currents Eqs. (9) and (10)

demonstrates the predictive power of the 1/Nc expansion.
The structure is dictated by the spin-flavor symmetry in
the large-Nc limit. The coefficients are fixed by observ-
ables measured in N → N transitions. Together, this
then predicts the matrix elements of the same operator
for N → ∆ and ∆→ ∆ transitions.

III. CALCULATION

A. Kinematic regimes for the 1/Nc expansion

In this work the 1/Nc expansion is used to study the
spin dependence of inclusive eN scattering Eq. (1). When
applying the 1/Nc expansion to the scattering process, it
is necessary to specify the parametric order in 1/Nc of
the kinematic variables – the scattering energy, momen-
tum transfer, and final-state mass, Eq. (3). The physical
scales for the scattering energy and final-state mass are
set by the excitation energy of the ∆ and N∗ baryon
resonances, which are of the parametric order

m∆ −mN = O(N−1
c ), (13)

mN∗ −mN = O(N0
c ). (14)

Another physical scale arises from the excitation energy
of non-resonant πN states, namely mπN −mN ; this scale
permits various choices for the assignment of its 1/Nc

scaling (see below). How the scattering energy is chosen
relative to the scales Eq. (14) determines what channels
are open in the process, and how the 1/Nc expansion is
to be applied to the transition currents. Different choices
are possible, leading to different versions of the 1/Nc ex-
pansion.

The present study considers three kinematic regimes
(see Table I for a summary):

I) Low-energy elastic regime: This is the regime of scat-
tering energies below the physical ∆ threshold, mN <√
s < m∆. The 1/Nc scaling of the scattering energy and

CM momentum in this regime are
√
s −mN = O(N−1

c )
and k = O(N−1

c ). This regime therefore has vanishing
extent O(N−1

c ) in the large-Nc limit. In this regime the
only open channel in the intermediate and final states
is the nucleon. Both in this regime (and the following
inelastic regime II) the electric term in the current and
the isovector magnetic one become of the same order.
As seen later, in those regimes, the effect of terms in
the asymmetry involving the electric charge become very
important for the proton.

II) Low-energy inelastic regime: This is the regime of
scattering energies above the physical ∆ threshold but
significantly below the N∗ threshold, m∆ <

√
s� mN∗.

The 1/Nc scaling of the scattering energy and CM mo-
mentum in this regime are

√
s − mN = O(N−1

c ) and
k = O(N−1

c ) (same as I), but the ∆ channel is now open.
This regime can be treated within the low-energy ex-
pansion, in which the momenta are counted as O(N−1

c )
[34, 38]. Because the momentum transfer at the vertices
is parametrically small, t = O(N−1

c ), the t-dependence of
the form factors is formally suppressed. In reality one ob-
serves significant numerical effects from the momentum
dependence of the form factors already in this regime (see
Sec. IV)

III) Intermediate-energy inelastic regime: This is the
regime where the scattering energy is above the ∆ thresh-
old and can reach values up to and including the first
resonance region, m∆ <

√
s . mN∗. The 1/Nc scal-

ing of the scattering energy and CM momentum are now√
s−mN = O(N0

c ) and k = O(N0
c ), parametrically larger

than in I and II. Both ∆ and N∗ states are now acces-
sible as intermediate states (the amplitude for N → N∗

transitions are suppressed compared to N → N,∆ tran-

sitions by N
−1/2
c [39, 40]). This regime corresponds to

the conventional 1/Nc expansion of baryon form factors
at momentum transfers t = O(N0

c ) and was considered
in Ref. [41]. The t-dependence of the baryon form factors
plays an essential role in this regime.
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Besides the baryon resonances, also non-resonant πN
states can contribute to the TSSA in inclusive eN scat-
tering as intermediate and final states. The importance
of these contributions can be rigorously assessed in the
three regimes I–III. In the low-energy regimes I and II,
one can perform a combined chiral and 1/Nc expansion
using the ξ power counting scheme [34, 38], where k and
1/Nc are counted as O(ξ). The pion-baryon coupling

is given by 6gA
5Fπ

kiπĜ
ia, where gA = O(Nc) is the nucleon

isovector axial coupling, kπ is the pion momentum, and a
is the pion isospin. The three body phase space brings in
a generic suppression factor k2/(32π2). With these ingre-
dients, and using the spin-flavor algebra, one finds that in
the low-energy regimes I and II the contribution of non-
resonant πN states to the eN cross section is suppressed
by at least O(ξ2) with respect to the leading order of the
present calculation, and thus it is consistent to neglect
it. In the intermediate-energy regime III, where the pion
momenta are O(N0

c ) and not small, the suppression is no
longer as effective, and non-resonant πN states can con-
tribute at subleading order of the calculation performed
in this work. If one limits oneself to the final states N
and ∆ as in this work, then the calculation only misses
the πN continuum in the box diagram, and those are
only affecting subleading contributions in regime III.

The numerical boundaries of these regimes in the eN
CM momentum k, Eq. (8), are as follows: The ∆ thresh-
old
√
s = m∆ = 1.23 GeV is at k = 0.26 GeV; the

generic N∗ threshold
√
s = mN∗ ≈ 1.5 GeV is at k ≈

0.46 GeV. The expansion scheme of regime II should be
applicable for 0.26 < k . 0.35 GeV; that of regime III for
0.3 . k . 0.6 GeV [41]. The quality of the approxima-
tion at upper end of the CM momentum ranges depends
on the size of N∗ contributions, which cannot be esti-
mated with the present method.

B. Amplitude and cross section

The scattering amplitude for the process eN →
e′B (B = N,∆) in the CM frame of the eN collision
(see Fig. 1) is denoted by

M(kf ,ki|λ;SfSf3If3;SiSi3Ii3). (15)

Here λ is the electron helicity – the spin projection on ki

in the initial state and kf in the final state, which is con-
served in the scattering process (the electron mass is ne-
glected). SiSi3Ii3 are the spin-isospin quantum numbers
of the initial nucleon state, where Si = 1

2 and Ii3 = ± 1
2

for proton/neutron. SfSf3If3 are the quantum numbers
of the final baryon state, with Sf = 1

2 or 3
2 for N or ∆,

and If3 = Ii3. The spins of the initial and final baryons
are quantized along a common axis, which can be chosen
e.g. as the direction of the initial momenta in the CM
frame. The differential cross section for the scattering of
unpolarized electrons on polarized nucleons, Eq. (4), is

e

N, ∆

N, ∆

N, ∆N, ∆

N, ∆

(b)

N(a)

e

e

e

e

e

N

N

e

e

e

i f

f ifi

f i

e

e e

γ

γ

∆

N

NNN

n

N(c)

FIG. 2. Inclusive electron-nucleon scattering cross section
with N and ∆ final states in large-N limit. (a) Spin-
independent cross section from square of e2 amplitudes. The
circle denotes the electromagnetic current matrix element be-
tween baryon states. (b) Spin-dependent cross section from
interference of e4 and e2 amplitudes. (c) Interference of real
photon emission from electron and baryon (not included in
this work).

obtained as3

dσ

dΩ
=

|kf |
64π2|ki|s

∑
SfSf3

∑
S̄i3Si3

ρ(Si3S̄i3)
1

2

∑
λ

×M∗(kf ,ki|λ;SfSf3;SiS̄i3) M(kf ,ki|λ;SfSf3;SiSi3).
(16)

The initial nucleon spin projection is averaged over with
the spin density matrix

ρ(Si3S̄i3) =
1

2

[
δ(Si3S̄i3) + a · σ(Si3S̄i3)

]
, (17)

where a is nucleon spin 3-vector in Eq. (4) in the CM
frame and σ are the Pauli matrices. The unpolarized

3 The amplitude Eq. (15) and the cross section Eq. (16) use the
relativistic normalization convention for the electron and baryon
momentum states, 〈p′|p〉 = 2p0(2π)3δ(3)(p′ − p). Reference [41]
used the nonrelativistic normalization 〈p′|p〉 = (2π)3δ(3)(p′−p)
for the baryon states. The relativistic convention used here is
more transparent for keeping track of kinematic effects caused
by the N–∆ mass difference, which appear in higher orders of
the 1/Nc expansion.
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cross section is given by the diagonal sum over initial nu-
cleon spins. The polarized cross section for polarization
normal to the scattering plane a = ey is given by the
non-diagonal sum over nucleon spins with the matrix σy.

Equation (16) includes the summation over the final
baryon spin Sf = 1

2 ,
3
2 (N,∆) and represents the cross

section for inclusive scattering. In the following also the
individual contributions of N and ∆ final states will be
computed and quoted.

C. Spin-independent cross section

The eN scattering amplitude is computed as an ex-
pansion in the EM coupling,

M(kf ,ki|λ;SfSf3;SiSi3) ≡ Mfi = M
(e2)
fi +M

(e4)
fi + · · ·

(18)

The e2 term is the standard OPE amplitude. It is given
by the contraction of the electron and baryon current
with the photon propagator,

M
(e2)
fi = −e

2

q2
ū(kf)γµu(ki) 〈Bf |JµEM(q)|Bi〉, (19)

where B ≡ {SS3I3} collectively denotes the baryon spin-
flavor quantum numbers. The squared modulus of this
amplitude gives the OPE cross section (see Fig. 2a),
which is independent of the target spin. The explicit form
of the OPE cross section generated by the 1/Nc-expanded
baryon currents, Eqs. (9) and (10), can be obtained from
Eqs. (16) and (19) using standard techniques. The result
is summarized in Appendix C, Eq. (C1), for the case of
elastic scattering (final N , Sf = 1

2 ).
For the purpose of the present study the spin-

independent cross section is needed only as the denomi-
nator of the TSSA Eq. (7) and can be taken at the lowest
order in EM coupling, i.e. as the OPE cross section. For
simplicity in the following the asymmetry will be com-
puted with the elastic rather than the inclusive OPE
cross section in the denominator; this choice facilitates
the discussion of the behavior near the ∆ threshold.

D. Spin-dependent cross section from two-photon
exchange

The spin-dependent cross section for unpolarized elec-
tron scattering is zero at the OPE order because the
amplitude is real (Christ-Lee theorem) [42]. The first
non-zero contribution appears through the interference
between the OPE amplitude and the imaginary (absorp-
tive) part of the TPE amplitude, which is given by the
order e4 box diagram (see Fig.2b). The imaginary part
arises from the TPE process with physical (on-shell) in-
termediate states, and can be computed by taking the
product of the OPE amplitudes of order e2 and integrat-
ing over the phase space of the intermediate states.

Explicitly, the e4 amplitude resulting from the box di-
agram is given by

M
(e4)
fi (Sn)

= −ie4

∫
d4kn

(2π)4

1

((ki − kn)2 + iε)((kn − kf)2 + iε)

× ū(kf)γν
1

/kn −me + iε
γµu(ki)

×
∑
S3nI3n

〈Bf |JνEM(kn − kf)|Bn〉

× 2mBn

(pi + ki − kn)2 −m2
Bn

+ iε
〈Bn|JµEM(ki − kn)|Bi〉,

(20)

where kn is the 4-momentum of the electron in the in-
termediate state. The amplitude is presented for a given
spin of the baryon Bn in the intermediate state, Sn; the
spin/isospin projections S3n and I3n are summed over.
In the present case, where the initial baryon is a nu-
cleon, Si = 1

2 , the intermediate baryons can only be N

or ∆, Sn = 1
2 or 3

2 . The absorptive part of the ampli-
tude is obtained by applying the Cutkosky rules. The
interference of the e2 and e4 amplitudes needed for the
spin-dependent cross section then becomes

M
(e2)∗

fi M
(e4)
fi (Sn)|abs + c.c.

=
e6mBn

32π2 t
√
s |ki||kf ||kn|

× Im

(∫
dΩkn

Lµνρ(ki, kf , kn)Hµνρ
fi,n (ki, kf , kn)

(1− k̂i · k̂n)(1− k̂f · k̂n)

)
. (21)

Here the momenta are in the CM frame. k̂i, k̂f and k̂n are
the unit vectors along the initial, final and intermediate
electron momenta; the moduli |ki| and |ki| are given by
Eq. (8), amd |kn| is given by the same expression with
the intermediate baryon mass mBn

. The spin-dependent
cross section resulting from TPE is then given by

eµNaµ
dσN
dΩ

(I3i, Sf , Sn)

=
α3

16π

|kf |
|ki|

mNmBf
mBn

ts3/2|ki||kf ||kn|

× Im

(∫
dΩk̂n

Lµνρ(ki, kf , kn)Hµνρ
fi,n (ki, kf , kn)

(1− k̂i · k̂n)(1− k̂f · k̂n)

)
. (22)

The leptonic and hadronic tensors in the above expres-



8

sions are given by

Lµνρ(ki, kf , kn)

= Tr(/kiγ
µ/kfγ

ν/knγ
ρ)

= 4 (kµi k
ρ
nk
ν
f + kµi k

ν
nk

ρ
f

+ kρi (kνnk
µ
f + kµnk

ν
f − kn ·kf g

µν)

+ kνi (kρnk
µ
f − k

µ
nk

ρ
f + kn ·kf g

µρ)

− (kµi kn ·kf − ki ·kf k
µ
n + ki ·kn k

µ
f ) gνρ

− ki ·kf k
ρ
n g

µν − ki ·kf k
ν
n g

µρ

−ki ·kn k
ν
f g

µρ + ki ·kn k
ρ
f g

µν) , (23)

Hµνρ
fi,n (ki, kf , kn)

=
∑
S̄i3Si3

1

2
a · σ(Si3S̄i3)

∑
Sf3If3

∑
Sn3In3

× 〈Bi|(JµEM(ki − kf))
†|Bf〉

× 〈Bf |JνEM(kn − kf)|Bn〉 〈Bn|JρEM(ki − kn)|Bi〉. (24)

Equation (22) presents the cross section depending on
the isospin projection of the initial nucleon Ii3 = ± 1

2 ,

the spin of the final baryon Sn = 1
2 ,

3
2 ; and the spin of

the intermediate baryon in the box diagram Sn = 1
2 ,

3
2 ;

the contributions of the different final and intermediate
states will be discussed below.

The 1/Nc expansion is now implemented for the
hadronic tensor. The method makes use of the t-channel
spin and isospin of the tensor, J and I, which can be
viewed as the quantum numbers of an operator connect-
ing the nucleon states. In the spin-dependent cross sec-
tion, only the J = 1 component of the tensor is needed,
and because it is a forward matrix element between the
initial nucleon state and its conjugate, only the total I =
0 or 1 components of the tensor can contribute. Thus,
in the end those components of the hadronic tensor will
reduce to the operators Ŝi and ŜiÎ3. The spin-flavor
reduction of the hadronic tensor can be carried out for
general Nc making use of the SU(4) algebra. The sketch
of the calculation is as follows: starting with the general
structure of the product of currents

(JµEM(ki − kf))
†|Bf〉

× 〈Bf |JνEM(kn − kf)|Bn〉 〈Bn|JρEM(ki − kn), (25)

the spatial and the time components of the currents,
as well as the isoscalar and the isovector components
need separate consideration along with the projections
onto the final and the intermediate baryon states. The
product of currents is decomposed in two steps, namely
the currents in the box diagram are first coupled to t-
channel (J1, I1), and then the result is coupled to the
(conjugate) current of the one-photon exchange to total
(J = 1, I = 0, 1) as needed here. At each stage the re-
sulting composite spin-flavor operators are decomposed

into the basis of spin-flavor operators. An advantage of
this procedure is that one obtains explicitly the results
for generic Nc, making possible a detailed organization
in powers of 1/Nc of the different combinations of the
EM current components, with even more details such as
the individual contributions of the different (J1, I1) and
(J, I) projections.

The integrals over the intermediate momentum direc-
tion k̂n in Eq. (21) are reduced to cases where the nu-

merator is a tensor product of k̂n multiplied by powers
of k̂i · k̂n and k̂f · k̂n (see Appendix B). As explained in
Sec. II B, the momentum dependence of the form factors
needs to be included in the integral, and a common dipole
form is chosen for the form factors of all components of
the EM current. The integrations with these form factors
are performed analytically in Appendix B.

In general, the individual integrals show IR or collinear
divergencies resulting from one of the photons in the box
diagram becoming soft or real within the integration do-
main. The collinear singularities occur for a photon cou-
pling to a current making a transition between N and
∆, where a real photon with energy equal to the mass
difference is possible, the other cases are IR singulari-
ties. Those divergencies are regulated by including an in-
finitesimal photon mass whose effect is represented by the
parameter ε = 0+ in Appendix B. The end result is, for
both cases with and without the inclusion of form factors
4, that those divergencies of the individual contributions
cancel in the imaginary part of the spin-dependent part of
the integral in Eq. (22). It is important to emphasize that
the cancellations of the divergencies only occur for the
precise on-shell kinematics. The divergencies cancel in-
dividually for the different final and intermediate baryon
states, and for each possible t-channel (J = 1, I = 0, 1)
and (J1, I1) projection of the box diagram, as far as in
the TPE absorptive amplitude EM gauge invariant com-
binations of the two hadronic currents are considered,
i.e., for terms with two different components of the EM
current the two possible orderings must be added up. In
particular, those cancellations serve as one useful check
of the calculations.

The explicit calculation shows that for a stable ∆ the
interference differential cross section has a finite discon-
tinuity at the ∆ threshold. This discontinuity is only
present in the elastic asymmetry, i.e., nucleon final state.
It is explained as follows: the leptonic tensor is propor-
tional to the energy En of the electron in the box, the
absorptive part of the diagram has a phase space propor-
tional to En, and each photon propagator gives a factor
1/En, so that there is a finite contribution in the limit
En → 0, which is at the threshold for the ∆. This fi-
nite threshold enhancement is thus understood as the
two photons becoming real and collinear with ki and kf .

4 The IR and collinear divergencies of individual integrals do de-
pend on the form factors, thus additional cancellations occur in
this case.
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Although the ∆ width is O(N−2
c ), it is then necessary

to include it to reproduce the realistic behavior at the
onset of its contribution, resulting in a smoothing of the
mentioned discontinuity. In the present calculation the
width is implemented by a Breit-Wigner form, as shown
in Appendix E. The effect of the width is reduced to a
smearing of the ∆ mass in the calculation at zero width
using Eq. (E2).

IV. RESULTS

A. Evaluation and validation

The TSSA is now evaluated numerically, using the
expressions obtained from the 1/Nc expansion of the
hadronic tensor. The results cover the parametric regions
I–III identified in Sec. III A and are accurate to sublead-
ing order in 1/Nc. In regions I and II the present results
are new and predict the behavior of the TSSA below and
above the ∆ threshold. In region III the present results
can be matched with the leading-order 1/Nc expansion
results of our previous publication [41] but include also
the subleading 1/Nc corrections, which improve the pre-
dictions and illustrate the theoretical uncertainty.

The results shown here have been validated with two
independent tests: (i) Comparison with the leading-order
1/Nc expansion results [41], which were evaluated using
an independent algebraic method. (ii) Comparison of
the nucleon-only contribution (i.e., nucleon in interme-
diate and final state) with the well-known result of the
relativistic Feynman diagram calculation, expanded such
as to match the 1/Nc expansion calculation.

B. Role of form factors and electric/magnetic
currents

It is instructive to first display the results when the t
dependence of the form factors is neglected, as this gives
a rough idea of the role of the different components of the
EM current, and also serves as a reference point for the
calculation with form factors. As indicated earlier, the
TSSA AN is defined in the following with respect to the
unpolarized elastic cross section Eq. (C1). The results
for the separate contributions to the interference term
of the cross section dσN by the nucleon and ∆ in the
intermediate and final states are given in Appendix D
Eq. (D1). The contributions are at most linear in the
electric form factors5, and in the strict non-relativistic

5 A non-relativistic expansion of the cross section starting with the
relativistic one gives terms that are proportional to (GE/mN )2;
such terms are of higher order in 1/Nc and are not captured by
the present expansion. They involve the contributions from the
spatial components of the convection EM current, which to the
order of the present calculation are irrelevant.

limit, independent of the nucleon mass, as one would
expect. As mentioned earlier, neglecting the width of
the ∆ leads to a finite discontinuity in the interference
differential cross section in the case of a final nucleon at
the ∆ threshold.

Figure 3 shows the TSSA AN evaluated without form
factors (here and in the following k ≡ |ki|). It is observed
that the ∆ intermediate state in the box amplitude makes
a large contribution to the elastic asymmetry. On the
other hand, the ∆ final state makes a very small contri-
bution to the inclusive asymmetry. This was observed
already in the leading-order 1/Nc expansion in the kine-
matic region III in Ref. [41]. As shown below, the inclu-
sion of the t dependence in the form factors profoundly
affects the suppression of the ∆ state in the inelastic
asymmetry. For the proton the behavior of the asymme-
try is very much affected in the kinematic domains I and
II by the terms proportional to GE , which are of opposite
sign to the purely magnetic ones and larger, leading to
the cross-over to negative values shown in Fig. 3.

Figure 4 shows the results obtained with inclusion of
the form factors and the ∆ width (these represent our
final numerical results and will be discussed further be-
low). The width is implemented using Γ∆ = 0.125 GeV
and Q = 0.2 GeV. Comparing with Fig. 3 one observes
that the form factors have only a moderate effect on the
elastic asymmetries (dashed curves in Fig. 4). However,
they have a dramatic effect on the inelastic asymmetry
(∆ final state). This is further illustrated by Figs. 5 and
6, which directly compare the results with and without
form factors for the inelastic and inclusive (elastic + in-
elastic) asymmetries. In fact, for energies above the ∆
threshold, the inelastic asymmetry has opposite sign to
that of the elastic one and becomes increasingly dom-
inant with energy. This effect of the form factors was
observed in the LO 1/Nc expansion [41].

There is no simple argument explaining the effects of
the form factors in the absorptive part of the box dia-
gram observed here. However, some insight can be gained
from considering the large-Nc limit, where the leading-
order 1/Nc expansion result becomes exact. One finds
that logarithmic terms ∝ log sin2 θ

2 are important in the
interference cross section for elastic and inelastic final
states. In the inelastic case there is a strong cancellation
between these logarithmic terms and polynomial terms
in sin2 θ

2 when the form factors are neglected, giving the
small inelastic interference cross section. This cancella-
tion is upset when the form factors are included, resulting
in the strong sensitivity of the inelastic TSSA to the form
factors. In the strict large Nc limit, the contribution to
the elastic asymmetry by the ∆ intermediate state in the
box is twice that of the N . In the physical case, with the
subleading terms in the EM current included, one finds
a similar result for the case of the neutron, while the
contribution of the ∆ is further enhanced for the proton.
On the other hand, for ∆ in the final state, in the strict
large Nc limit, the contribution of the N in the box is five
times as large as that of the ∆. This remains roughly the
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FIG. 3. AN vs k with no form factors and stable ∆. Top panels: Elastic AN with only nucleon in the TPE amplitude. Middle
panels: Elastic AN with nucleon and ∆ in TPE amplitude. Bottom panels: Inclusive AN .

same in the physical case for both proton and neutron.

C. Size of 1/Nc corrections

It is interesting to investigate the size of 1/Nc cor-
rections in the TSSA. This serves to illustrate the con-
vergence of the parametric expansion and quantify the
numerical uncertainty.

The LO 1/Nc expansion in kinematic region III, k =
O(N0

c ), was considered in Ref. [41]. In this order the N
and ∆ are degenerate, and only the isovector magnetic

component of the EM current contributes. The LO con-
tributions to the TSSA are O(αNc) and arise from the
hadronic currents in the box being coupled to I1 = J1,
which can only be I1 = J1 = 0 if the final state is N
(elastic) and I1 = J1 = 2 if the final state is ∆ (inelas-
tic). Using the results of the present calculation, it is
now possible to compute the 1/Nc corrections in region
III. They arise from the LO components of the two cur-
rents in the box diagram coupled to I1 6= J1, and from
the subleading components of the EM current. At this
order also the mass differencem∆−mN must be included.
Furthermore, it is possible to compute the size of 1/Nc
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corrections in regions I and II, k = O(N−1
c ), which is also

covered by our present expressions.

Figure 7 shows the comparison of the LO and NLO
results. Here the correct phase space, with the finite
N–∆ mass splitting, is used for the LO result. For the
neutron one sees that the LO result is close to the NLO
one, which is easy to understand as the contributions are

purely magnetic, and the only difference is the disregard
of the isoscalar magnetic term at LO. On the other hand,
for the proton the effect of the electric term in the cur-
rent, which is not present at LO, leads to a big difference
at NLO. As mentioned earlier, the modified power count-
ing implied in the kinematic regions I and II shows the
relevance of the electric contributions, especially at the
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target (right panel). Comparison between the LO in 1/Nc

(dashed lines) and the results of this work (solid lines). Form
factors are included, and the physical phase space is used in
the LO result.

smaller angles. At larger energies and scattering angle
the purely magnetic contributions become dominant, and
the LO approximation is remarkably good (black curve
in Fig. 7).

D. Final results

The results of Fig. 4 represent our final numerical es-
timate of the TSSA and should be used to discuss its
kinematic dependencies and potential measurements. It
is worth noting the following features: (i) The elastic and
inclusive asymmetries are of the order few ×10−3 for k .
0.5 GeV, for both proton and neutron. (ii) The inelas-
tic contribution to the asymmetry above the ∆ threshold
has opposite sign to the elastic one, and at large angles
and energy k > 0.35 GeV is about a factor two larger
in magnitude than the elastic one. (iii) As a function of
the scattering angle, the elastic TSSA has its maximum
magnitude at increasing angles for increasing energy, for
both proton and neutron. The elastic asymmetries do
not change sign, while the inclusive ones do.

V. DISCUSSION

The TSSA for electron nucleon scattering was eval-
uated in the energy range below the second resonance
region employing a method based on he 1/Nc expansion.
The method makes use of the dynamical constraints that
the large Nc limit imposes in the baryon sector, which
result in a spin-flavor approximate symmetry broken by
subleading corrections that are organized in a 1/Nc ex-
pansion. That symmetry in particular unifies the treat-
ment of the nucleon and ∆ resonance, allowing for the
systematic analysis carried out here that includes the
first subleading terms in the 1/Nc expansion. The anal-
ysis gives results for the elastic and inelastic asymmetry,
and also provides details on the separate N and ∆ con-
tributions in the absorptive part of the TPE scattering
amplitude.

It is found that form factors play a crucial role, in par-
ticular in enhancing the inelastic asymmetry. The latter
turns out to have, for CM scattering angles larger than
90◦, opposite sign to that of the elastic one and signif-
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icantly larger in magnitude. For electron CM momenta
below 0.5 GeV the TSSA is found to be in the range
10−3− 10−2. If experiments in this energy domain could
be performed, measurements of the TSSA should be fea-
sible.

Some comments are in order regarding the accuracy
of our estimates based on the 1/Nc expansion. At the
NLO accuracy of our calculation, all the structures in
the baryon EM currents are nonzero (magnetic and elec-
tric). NNLO terms do not bring in any new structures
but only modify the coefficients of the NLO result. The
NNLO terms neglected in our calculation should there-
fore have natural size, and their relative effect can be
estimated as ∼ 1/N2

c |Nc=3 = 1/9, times a coefficient of
order unity. Such an accuracy was observed in previous
implementations of the 1/Nc expansion as a low-energy
expansion with k = O(N−1

c ) [34, 38]. In the kinematic
regions I and II, where the 1/Nc expansion of the TSSA
is implemented as a low-energy expansion, the accuracy
of our estimates should be of this order. In kinematic re-
gion III, where the 1/Nc expansion is implemented with
k = O(N0

c ), the accuracy should be similar as long as the
CM energy remains below the N∗ threshold,

√
s . 1.5

GeV or k . 0.5 GeV.

When the energy rises above the threshold, the N∗’s
can appear as an intermediate state in the TPE ampli-
tude. Generically, the transition matrix elements of the
EM current from ground state baryons to higher res-
onances carry an additional suppression factor 1/

√
Nc

[37, 39, 40]. The contribution of individual N∗ reso-
nances to the TPE amplitude are therefore suppressed
by a factor O(N−1

c ) relative to the leading order of our
calculation in kinematic region III; however, they might
be numerically large. The inclusion of N∗ intermediate
states in the present calculation of the TSSA in kinematic
region III would be an interesting future extension of our
study.

The transition of the TSSA to the high-energy regime
will involve the cumulative contributions of many res-
onances, as intermediate states in the TPE amplitude
and as final states in the cross section. In this situation
the O(N−1

c ) suppression of individual N∗ contributions
is no longer effective, and the accounting changes. It is
expected that both the elastic and the inclusive TSSA
in this regime are generated by TPE amplitudes at the
quark level. Different arguments have been put forward
regarding the dominance of scattering from same quark
or different quarks. The duality of the descriptions as
cumulative resonance contributions and scattering from
quarks is an interesting theoretical problem. Measure-
ments of the TSSA in the resonance region could provide
valuable material for further studies.

The cross section for inclusive eN scattering at O(α3)
includes also real photon emission into the final state,
e+N → e′+γ+X ′. A TSSA can appear from the interfer-
ence of the amplitudes of real photon emission by the nu-
cleon and by the electron — the so-called virtual Comp-
ton scattering and Bethe-Heitler processes (Fig. 2c). It

requires that the amplitude of real photon emission from
the nucleon have an imaginary part [8]. In the low-energy
regime considered here, this is possible if the intermedi-
ate state is a ∆. This contribution to the TSSA can be
analyzed in our 1/Nc expansion approach in the same
manner as the TPE contribution (Fig. 2b). In our kine-
matic region III, where k = O(N0

c ), parametric analysis
shows that the real photon emission contribution is sup-
pressed at least by a factor 1/Nc compared to the TPE
contribution. This happens because the energy of the
emitted photon in the CM frame is of the order of the
N–∆ mass difference m∆−m = O(N−1

c ); its momentum
is therefore kγ = O(N−1

c ); and its coupling to the dom-
inant isovector magnetic vertex is suppressed by 1/Nc.
Here the 1/Nc expansion reproduces the well-known re-
sult from “soft photons” physics in QED, that such pho-
tons couple only to the charge of the colliding particles
but not to their spin [43]. The calculation of real photon
emission in kinematic region III to leading non-vanishing
order, and the extension of the above analysis to region
II, remain interesting problems for future study.

TPE also gives rise to a transverse beam spin asym-
metry in eN scattering. It is proportional to the elec-
tron mass and expected to be several orders of magni-
tude smaller than the target spin asymmetry [13, 44–48].
The transverse beam spin asymmetry can be measured
in electron scattering experiments with high beam po-
larization quality as used for parity-violating scattering;
it represents an important background to the longitu-
dinal beam spin asymmetry caused by weak interactions
parity-violating electron scattering. It could also be mea-
sured in µN scattering, where it is enhanced by the muon
mass [48]. The 1/Nc expansion method developed here
can be extended to calculate the beam spin asymmetry in
elastic or inclusive eN scattering in the resonance region.
Work on this extension is in progress.
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Appendix A: SU(4) algebra

This appendix summarizes properties of the SU(4)
spin-flavor symmetry group used in the present analy-
sis. The algebra of SU(4) contains fifteen generators:

the spin generators Ŝi, the isospin generators Îa, and
the spin-flavor generators Ĝia, where i and a run from 1
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to 3. The commutation relations are

[Ŝi, Ŝj ] = iεijkŜk, [Îa, Îb] = iεabcÎc, [Îa, Ŝi] = 0,

[Ŝi, Ĝja] = iεijkĜka, [Îa, Ĝib] = iεabcĜic,

[Ĝia, Ĝjb] =
i

4
δijεabcÎc +

i

4
δabεijkŜk. (A1)

The ground state baryon states fill the SU(4) representa-
tion formed by totally symmetric tensors with Nc indices.
These states have spin/isospin S = I = 1

2 · · ·
Nc
2 and are

denoted by |SS3I3〉. The matrix elements of the SU(4)
generators in these states are

〈S′S′3I ′3|Ŝi|SS3I3〉

=
√
S(S + 1)δS′SδI′3I3〈SS3, 1i|S′S′3〉, (A2)

〈S′S′3I ′3|Îa|SS3I3〉

=
√
S(S + 1)δS′SδI′3I3〈SI3, 1a|S

′I ′3〉, (A3)

〈S′S′3I ′3|Ĝia|SS3I3〉

=
1

4

√
2S + 1

2S′ + 1

√
(Nc + 2)2 − (S − S′)2(S + S′ + 1)2

× 〈SS3, 1i|S′S′3〉〈SI3, 1a|S′I ′3〉. (A4)

Ŝi and Îa have matrix elements O(N0
c ) and connect only

states with S′ = S; Ĝia have matrix elements O(Nc) and
can connect states with S′ = S or S ± 1.

Appendix B: Phase space integrals

This appendix describes the phase space integrals aris-
ing in the calculation of the absorptive part of the box
diagram in Eqs. (21) and (22). Giving explicit analytic
results is important because individual integrals present
infrared and/or collinear divergencies due to the photon
propagators in the box, which cancel in the final result.
The divergencies of the individual integrals are regulated
by including an infinitesimal photon mass, provided by
the regulator ε = 0+ below.

1. Integrals without form factors

The first set of integrals is for the case where no form
factors are included. In the following the unit vector
K̂ is the integration variable [the intermediate electron

direction k̂n in Eq. (21)], and k̂ and k̂′ are external unit
vectors on which the integral depends [the initial/final

electron direction k̂f,i in Eq. (21)]. The integrals with a

single denominator arising in the calculation are:

J(n) =

∫
dΩK

(k̂ · K̂)n

1− k̂ · K̂ + ε

= −2π

log
ε

2
+ 2

[n−1
2 ]∑

m=0

1

2m+ 1

 ,

J i(k̂, n) =

∫
dΩK

K̂i(̂k̂ · K̂)n

1− k̂ · K̂ + ε

= k̂iJ(n+ 1),

J ij(k̂, n) =

∫
dΩK

K̂iK̂j (̂k̂ · K̂)n

1− k̂ · K̂ + ε

=
1

2

{
δij [J(n)− J(n+ 2)]

+ k̂ik̂j [3J(n+ 2)− J(n)]
}
. (B1)

The integrals with a double denominator are:

J(k̂, k̂′, n, n′)

=

∫
dΩK

(k̂ · K̂)n(k̂′ · K̂)n
′

(1− k̂ · K̂ + ε)(1− k̂′ · K̂ + ε)
,

J i(k̂, k̂′, n, n′)

=

∫
dΩK

K̂i(k̂ · K̂)n(k̂′ · K̂)n
′

(1− k̂ · K̂ + ε)(1− k̂′ · K̂ + ε)
,

J ij(k̂, k̂′, n, n′)

=

∫
dΩK

K̂iK̂j(k̂ · K̂)n(k̂′ · K̂)n
′

(1− k̂ · K̂ + ε)(1− k̂′ · K̂ + ε)
. (B2)

The results for these integrals as needed in the present
work are given in the following tables. Here k̂ ·k̂′ = cos θ,
where θ is the scattering angle.

n n′ J(k̂, k̂′, n, n′)

0 0
4π

1− cos θ

(
log sin2 θ

2
− log

ε

2

)
1 0 J(k̂, k̂′, 0, 0)− J(0)

1 1 J(k̂, k̂′, 1, 0)− J(1)

2 0 k̂iJ i(k̂, k̂′, 0, 0)− cos θ J(1)
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n n′ J i(k̂, k̂′, n, n′)

0 0 −2π
k̂i + k̂′i

sin2 θ

[
(1 + cos θ) log

ε

2
− 2 log sin2 θ

2

]
1 0 J i(k̂, k̂′, 0, 0)− k̂′iJ(1)

1 1 J i(k̂, k̂′, 0, 0)− (k̂i + k̂′i)J(1)

2 0 J i(k̂, k̂′, 1, 0)− k̂jJ ij(k̂′, 0)

n n′ J ij(k̂, k̂′, n, n′)

0 0
2π

cos2 θ
2 sin2 θ

[
−δij sin2 θ log sin2 θ

2

+2(k̂ik̂j + k̂′ik̂′j)

(
log sin2 θ

2
− cos θ cos2 θ

2

− cos4 θ

2
log

ε

2

)
+2(k̂ik̂′j + k̂jk̂′i)

(
cos2 θ

2
+ sin2 θ

2
log sin2 θ

2

)]
1 0 J ij(k̂, k̂′, 0, 0)− J ij(k̂′, 0)

(B3)

2. Integrals with form factors

The second set of integrals is for the case where form
factors are included. The choice is a common form factor
for all components of the current with the dipole form,

F (t) =
Λ4

EM

(Λ2
EM − t)2

. (B4)

The integrals can be given analytically, rendering very
large expressions. They are obtained through the fol-
lowing steps. One first expresses the form factor as the
derivative of a monopole,

F (t) = −Λ4
EM

∂

∂a

1

a− t

∣∣∣∣
a→Λ2

EM

. (B5)

The momentum transfer at the EM vertices in the box di-
agram are t = −2kK(1−k̂·K̂) and t′ = −2k′K(1−k̂′·K̂),
where k and K, and k′ and K, are the moduli of the elec-
tron 3-momenta entering in the respective vertices. The
box integrals involving the form factors are of the general
form, where Pol indicates polynomial in the arguments:

∫
dΩK

Λ8
EMPol(k̂ · K̂, k̂′ · K̂, K̂i)

(1− k̂ · K̂ + ε)[Λ2
EM + 2kK(1− k̂ · K̂)]2(1− k̂′ · K̂)[Λ2

EM + 2k′K(1− k̂′ · K̂)]2
(B6)

=
Λ8

EM

(4kk′K2)2

∂

∂a

∂

∂a′

∫
dΩK

Pol(k̂ · K̂, k̂′ · K̂, K̂i)

(1− k̂ · K̂ + ε)(1− k̂′ · K̂ + ε)(a− k̂ · K̂)(a′ − k̂′ · K̂)

∣∣∣∣∣
a(′)→1+

Λ2
EM

2k(′)K

.

Using partial fractions

1

(1− k̂ · K̂ + ε)(a− k̂ · K̂)

=
1

a− 1

(
1

1− k̂ · K̂ + ε
+

1

a− k̂ · K̂

)
(B7)

reduces the integrals to be calculated to the general form

∫
dΩK

Pol(k̂ · K̂, k̂′ · K̂, K̂i)

(a− k̂ · K̂ + ε)(a′ − k̂′ · K̂ + ε)
, (B8)

where a, a′ ≥ 1. By expanding the numerator these in-
tegrals can be reduced to integrals with single or double
denominators. The integrals with single denominators

are:

J(a, n)

=

∫
dΩK

(k̂ · K̂)n

a− k̂ · K̂ + ε

= 2π

an log(
a+ 1

a− 1 + ε
)− 2

[n−1
2 ]∑

m=0

an−1−2m

2m+ 1

 ,

J i(k̂, a, n)

=

∫
dΩK

K̂i(k̂ · K̂)n

a− k̂ · K̂ + ε

= k̂iJ(a, n), (B9)
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J ij(k̂, a, n)

=

∫
dΩK

K̂iK̂j(k̂ · K̂)n

a− k̂ · K̂ + ε

=
1

2

{
δij [J(a, n)− J(a, n+ 2)]

+ k̂ik̂j [3J(a, n+ 2)− J(a, n)]
}
, (B10)

The integrals with double denominators are:

J(k̂, k̂′, a, a′, n, n′)

=

∫
dΩK

(k̂ · K̂)n(k̂′ · K̂)n
′

(a− k̂ · K̂ + ε)(a′ − k̂′ · K̂ + ε)
, (B11)

J i(k̂, k̂′, a, a′, n, n′)

=

∫
dΩK

K̂i(k̂ · K̂)n(k̂′ · K̂)n
′

(a− k̂ · K̂ + ε)(a′ − k̂′ · K̂ + ε)
, (B12)

J ij(k̂, k̂′, a, a′, n, n′)

=

∫
dΩK

K̂iK̂j(k̂ · K̂)n(k̂′ · K̂)n
′

(a− k̂ · K̂ + ε)(a′ − k̂′ · K̂ + ε)
. (B13)

Explicit results are shown in the following tables,

where A(a, a′, θ) ≡
√
a2a′2 − 2aa′ cos θ − sin2 θ:

n n′ J(k̂, k̂′, a, a′, n, n′)

0 0
2π

A(a, a′, θ)

(
log

2 sin2 θ
2 − a(a− a′) +A(a, a′, θ)

2 sin2 θ
2 − a(a− a′)−A(a, a′, θ)

+ a↔ a′

)

1 0 aJ(k̂, k̂′, a, a′, 0, 0)− J(a′, 0)

1 1 4π + aa′ J(k̂, k̂′, a, a′, 0, 0)− aJ(a, 0)− a′ J(a′, 0)

2 0 aJ(k̂, k̂′, a, a′, 1, 0)− cos θ J(a′, 0)

(B14)

J i(k̂, k̂′, a, a′, n, n′)

= − csc2 θ
[
(cos θ k̂i − k̂′i)J(k̂, k̂′, a, a′, n, n′ + 1) + (cos θ k̂′i − k̂i)J(k, k′, a, a′, n+ 1, n′)

]
, (B15)

J ij(k̂, k̂′, a, a′, n, n′)

= δij
{
J(k̂, k̂′, a, a′, n, n′)

− csc2 θ
[
−2 cos θ J(k̂, k̂′, a, a′, n+ 1, n′ + 1) + J(k̂, k̂′, a, a′, n, n′ + 2) + J(k̂, k̂′, a, a′, n+ 2, n′)

]}
+ csc4 θ

{
k̂ik̂j

[
− sin2 θ J(k̂, k̂′, a, a′, n, n′) + (cos2 θ + 1)J(k̂, k̂′, a, a′, n, n′ + 2)

−4 cos θ J(k̂, k̂′, a, a′, n+ 1, n′ + 1) + 2J(k̂, k̂′, a, a′, n+ 2, n′)
]

+ {k, a, n} ↔ {k′, a′, n′}
}

+ csc4 θ
(
k̂′ik̂j + k̂ik̂′j

){
(3 cos2 θ + 1)J(k̂, k̂′, a, a′, n+ 1, n′ + 1) + cos θ sin2 θ J(k̂, k̂′, a, a′, n, n′)

−2 cos θ
[
J(k̂, k̂′, a, a′, n, n′ + 2) + J(k̂, k̂′, a, a′, n+ 2, n′)

]}
. (B16)

Appendix C: Spin-independent OPE cross section

This appendix presents the explicit expression of the
OPE cross section for elastic scattering eN → eN , which

is used as denominator in the calculation of the TSSA in



17

this work. The OPE cross section is given by6

dσU
dΩ

=
α2

4m2
Nst

2

{[
G2
E

(
4m2

N − t
)

+
2

Λ
GEGMmN t

]
×
[
(s−m2

N )2 + st
]

− 1

Λ2
G2
Mm

2
N t
[
(s−m2

N )2 + st− 2m2
N t
]}

, (C1)

where Λ is the generic mass scale accompanying the mag-
netic form factors introduced in Sec. II B. When used in
the context of the 1/Nc expansion, Eq. (C1) is expanded
to the corresponding order in the non-relativistic expan-
sion The cross section for general Nc is obtained by re-

placing in Eq. (C1)

GE ≡ GE(I3) = GSE + 2I3G
V
E ,

GM ≡ GM (I3) = GSM +
2

5
I3(Nc + 2)GVM , (C2)

where GSE , etc. are the isoscalar and isovector physi-
cal form factors, Eq. (12), and I3 = ± 1

2 is the isospin
projection of the initial nucleon state. Then, the strict
1/Nc expansion is performed with the scaling assign-
ments mN = O(Nc), Λ = O(N0

c ),
√
s − mN = O(N0

c ),
and t = O(N0

c ).

Appendix D: Spin-dependent TPE cross section

This appendix presents the results for the spin-
dependent interference cross section the CM frame,
Eq. (22), for the case where the form factors and the
∆ width are ignored. The expressions display sepa-
rately the contributions where the final and intermedi-
ate baryon states are N or ∆. The notation (Ni, Bf , Bn)
indicates the initial nucleon Ni = p, n with isospin pro-
jection I3 = ± 1

2 , the final baryon Bf = N,∆ and the
intermediate baryon Bn = N,∆.

dσN
dΩ

(Ni, N,N) =
α3k2m3

N

4000 Λ3 s3/2 t (1 + x)

[
2(1 + x)− (x+ 3) log

1− x
2

]
× [(Nc − 3)GM (−I3)− (Nc + 7)GM (I3)]

2

× {10ΛGE(I3) + k [(Nc − 3)GM (−I3)− (Nc + 7)GM (I3)]} ,

dσN
dΩ

(Ni, N,∆) =
Θ(k∆)α3m2

Nm∆

2000 Λ3 s3/2 t (1 + x)
(Nc − 1)(Nc + 5) [GM (−I3)−GM (I3)]

2

×
{

2kk∆ (1 + x)− log
1− x

2

[
k2(1 + x) + 2k2

∆

]}
× {k [(Nc − 3)GM (−I3)− (Nc + 7)GM (I3)]− 5ΛGE(I3)} ,

dσN
dΩ

(Ni,∆, N) =
Θ(k∆)α3k∆m

2
Nm∆

16000 Λ3 s3/2 t (1 + x)
(Nc − 1)(Nc + 5) [GM (−I3)−GM (I3)]

2

×
(

2 log
1− x

2

{
20ΛGE(I3) [2k − k∆(1 + x)]

− [(Nc − 3)GM (−I3)− (Nc + 7)GM (I3)]
[
2k2 − 3kk∆ (x− 1)− 2k2

∆(x− 2)
]}

− (1 + x)
{(

11k2 − kk∆ + 4k2
∆

)
[(Nc − 3)GM (−I3)− (Nc + 7)GM (I3)]

−40 ΛGE(I3)(k − k∆)}
)
,

6 This is the cross section in terms of the form factors GE = F1

and GM = F1 + F2.
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dσN
dΩ

(Ni,∆,∆) =
Θ(k∆)α3k2

∆m
2
Nm∆

80000 kΛ3 s3/2 t (1 + x)
(Nc − 1)(Nc + 5)(GM (−I3)−GM (I3))2

×
(

200 ΛGE(I3)

{
(1 + x)(k − k∆) + log

1− x
2

[k(1 + x)− 2k∆]

}
+ [(Nc − 23)GM (−I3)− (Nc + 27)GM (I3)]

×
{

2 log
1− x

2

[
−6k2 + kk∆ (5x+ 3)− 6k2

∆

]
+ k∆(1 + x)(9k − 23k∆)

})
. (D1)

Here x ≡ cos θ; k and k∆ are the CM momenta in eN
and e∆ states given by Eq. (8), and t = −2kikf(1 − x)
in each of the above expressions, with ki = k and kf = k
or k∆ depending on the final baryon state. GM,E(I3) are
the form factors for initial nucleon isospin projection I3
given by Eq. (C2). Since the above expressions are for
the case where the momentum dependence of the form
factors is neglected, GpE = 1 and GnE = 0.

The expansion in 1/Nc of the cross sections Eq. (D1)
is easily performed using the scaling of the masses as
mN = O(Nc), m∆ − mN = O(N−1

c ), and Λ = O(N0
c )

(to be chosen equal to the physical nucleon mass). For
the scaling of the CM momentum k there are the three
distinguished regimes described in Sec. III A: the low-
energy elastic regime, where the energy is below the
∆ threshold and k = O(N−1

c ); the low-energy inelas-
tic regime, where the energy is above the ∆ threshold
and k = O(N−1

c ); and the intermediate-energy inelas-
tic regime where k = O(N0

c ). The expressions Eq. (D1)
cover all three regimes and can be expanded further with
the appropriate scaling assignment for the momenta in
each regime.

Appendix E: Implementation of ∆ width

This appendix describes the implementation of the ∆
width in the context of the present approach based on the
1/Nc expansion. The decay width of the ∆ is a quantity
O(N−2

c ), it however plays an important role in the shape
of the asymmetry as the electron energy is near te excita-
tion energy of the ∆. A Breit-Wigner form is used, which
leads to the following convolution (smearing) in the cal-

culation of the absorptive part of the box diagram. At
vanishing width the integrals in the absorptive part are
of the general form:∫

d4K

(2π)4
δ+(K2)δ(p0 + q0 −∆m)

Pol(K)

q2q′2
, (E1)

where q, q′ are the photon momenta in the box, and
∆m the N -∆ mass difference. With finite width Γ the
corresponding integral becomes:

1

4 arctan 2Q
Γ

∫ Q

−Q
dµ

Γ

µ2 + Γ2

4

×
∫

d4K

(2π)4
δ+(K2)δ(p0 + q0 − (∆m− µ))

Pol(K)

q2q′2
. (E2)

The domain of integration in µ must be limited by the
scale Q, as otherwise the result diverges for large |µ|. It is
also logical that |µ| < ∆m. Results have little sensitivity
to Q as far as Γ < Q < ∆m. The factor in front of the
above expression provides the proper normalization for
the convolution.

The end result is that the implementation of the ∆
width in the interference cross section is simply given by
a smearing of the cross section as follows:

dσN (N,Bf , Bn)→
1

4 arctan 2Q
Γ

∫ Q

−Q
dµ

Γ

µ2 + Γ2

4

dσN (N,Bf , Bn)|m∆→m∆−µ.

(E3)
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