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Radiative effects in semi-inclusive hadron leptoproduction of unpolarized particles are calculated
within the leading order approximation. The contributions of the infrared-free sum of the effects of
real and virtual photon emission as well as the contribution of exclusive radiative tail are considered.
It is demonstrated how the obtained formulae in the leading log approximation can be obtained using
the standard approach of the leading log approximation as well as from the exact expressions for the
radiative correction of the lowest order. The method of the electron structure function is used to
calculate the higher order corrections. The results are analytically compared to the results obtained
by other groups. Numeric illustrations are given in the kinematics of the modern experiments at
Jefferson Laboratory.

I. INTRODUCTION

Modern experiments on semi-inclusive deep inelastic in
ep-scattering (SIDIS) provide information about multidi-
mensional structure of the nucleon that is not accessible
in inclusive DIS. Current and planned experiments in
several laboratories, such as JLab, BNL, and CERN have
precision that necessitates consideration and implemen-
tation of radiative corrections (RC). The main contribu-
tion to RC in SIDIS comes from emission of real photons
by the initial and final electrons. The radiated photon
is not detected in the detector by the design of SIDIS
measurements, therefore the observed cross sections have
to be integrated with respect to the phase space of the
radiated photons. The integration in the soft photon re-
gion (i.e., when the photon energy is small) cannot be
completed because of the infrared divergence that can-
cel in the sum with the contributions of loop diagrams
(e.g., the vertex function in the lowest order). A special
procedure of covariant extraction and cancellation of the
infrared divergence developed by Bardin and Shumeiko
[1] is usually applied. An attractive property of the ap-
proach is the lack of simplifying assumptions that make
the obtained formulae non-exact and dependent on arti-
ficial parameters, like ∆, minimal photon energy in Mo
and Tsai formalism [2]. An additional contribution to RC
is the radiative tail from the exclusive peak (or exclusive
radiative tail) that is characterized by the radiated pho-
ton and a single hadron in the unobserved hadronic state.
This process contributes to RC to SIDIS when the invari-
ant mass of the radiated photon and unobserved hadron
equals the mass of the unobserved hadronic state in the
base SIDIS process. The complete set of Feynman dia-
grams that are needed to be considered to calculate the
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lowest order RC is shown in Fig. 1.
The original formalism for RC in SIDIS in the sim-

ple quark-parton model was suggested in [3, 4], that was
later implemented in POLRAD 2.0 as a patch SIRAD [5].
The formulae allowed for calculating RC for the three-
dimensional SIDIS cross section averaged over polar an-
gle and transverse momentum of the final hadron. The
formalism was then generalized in [6] to allow the cal-
culation for the five-dimensional SIDIS cross section in
scattering of unpolarized particles. The exclusive radia-
tive tail was firstly calculated in [7].
The general calculation of RC for polarized particles

was recently performed in [8], and the code for numeric
calculation of RC to the SIDIS cross section of electron
scattering arbitrary polarized particles was created. This
calculation provides the so-called exact computation of
RC. By “exactly” calculated RC we understand the esti-
mation of the lowest order RC contribution with any pre-
determined accuracy. The structure of the dependence
on the electron mass in RC cross section is:

σRC = A log
Q2

m2
+B +O(m2/Q2), (1)

where A and B do not depend on the electron mass m. If
only A is kept in the formulae for RC, this is the leading
log approximation which evaluates the contributions of
photons radiated collinerly to the initial or final electrons.
If both contributions are kept (i.e., contained A and B),
this is the calculation with the next-to-leading accuracy,
practically equivalent to exact calculation.
The leading log formulae can be extracted from the ex-

act formulae. Traditionally, such calculation represents
a reasonable step in obtaining the formulae for RC (e.g.,
exact [9] and leading log [10] formulae for RC to DVCS
cross section) because the obtained formulae are compact
and provide actually leading contribution of RC to the
cross section. Generally, three approaches to extract the
leading log contributions for the SIDIS cross section (i.e.,
to calculate A) include: i) use our exact formulae, col-
lect all terms that result in leading log after integration
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FIG. 1. Feynman graphs for the contributions to the lowest
order RC from semi-inclusive processes (a-d) and exclusive
radiative tail e) and f)

over photon angles, combine them into the final expres-
sion; ii) extract the poles that correspond to radiation
collinear to initial and final electron, integrate over an-
gles, and find the factorized form traditional for leading
log calculations, and iii) use the method of the electron
structure functions [11]. All these approaches are applied
and discussed in our paper. Recently, a new factorized
approach to SIDIS was suggested which treats QED and
QCD radiation equally [12]. The approach is similar to
the methods of electron structure functions, and the re-
sults obtained admit analytical comparison with our for-
mulae.

We introduce the set of kinematical variables and cal-
culate the Born cross section in Section II. The calcu-
lations of RC using the three approaches are presented
in Section III. Both SIDIS RC and the contribution
of the exclusive radiative tail are studied in the leading
and next-to-leading approximations. Numeric estimates

in the kinematical conditions of modern experiments at
JLab are presented in Section IV. The leading, next-to-
leading, as well as higher order correction obtained us-
ing the electron structure functions are numerically com-
pared. Section V contains discussion of the obtained re-
sults, computational tricks, role of the results in data
analyses of SIDIS experiments, and comparison with the
results obtained in [12].

II. BORN CROSS SECTION

The SIDIS process

l(k1) + n(p) → l(k2) + h(ph) + x(px) (2)

(k21 = k22 = m2, p2 = M2, p2h = m2
h), are traditionally

described by the set of kinematical variables

x = − q2

2qp
, y =

qp

k1p
, z =

php

pq
, t = (q − ph)

2, ϕh. (3)

Here q = k1 − k2, ϕh is the angle between (k1,k2) and
(q,ph) planes.

In most analyses the transverse momentum of the de-
tected hadron pt or its square is used instead of t. Their
relationship is presented below in eq. (6). Formally, the
pt is the orthogonal part of the 3-vector ph with respect
to q in the lab frame.

The set of additional quantities are used to describe
the Born cross section. So, the invariants dependent on
lepton momenta are identical to those used in DIS:

S = 2pk1, Q
2 = −q2, X = 2pk2, Sx = S −X,

λS = S2 − 4m2M2, λX = X2 − 4m2M2,

Sp = S +X, λY = S2
x + 4M2Q2,

λ1 = Q2(SX −M2Q2)−m2λY ,

W 2 = (p+ q)2 = Sx −Q2 +M2, (4)

whereas involvement of the detected hadron generates a
set of new invariants:

V1,2 = 2k1,2ph, V+ = 1
2 (V1 + V2),

V− = 1
2 (V1 − V2) =

1
2 (m

2
h −Q2 − t),

S′ = 2k1(p+ q − ph) = S −Q2 − V1,

X ′ = 2k2(p+ q − ph) = X +Q2 − V2,

p2x = (p+ q − ph)
2 = M2 + t+ (1− z)Sx.

λ′
S = S′2 − 4m2p2x, λ

′
X = X ′2 − 4m2p2x. (5)

Noninvariant variables, such as the energy ph0, longi-
tudinal pl, and transverse pt (kt) three-momenta of the
detected hadron (the incoming or scattering lepton) with
respect to the virtual photon direction, in the target rest
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frame are expressed in terms of the above invariants:

ph0 =
zSx

2M
,

pl =
zS2

x − 4M2V−

2M
√
λY

=
zS2

x + 2M2(t+Q2 −m2
h)

2M
√
λY

,

pt =
√

p2h0 − p2l −m2
h,

kt =

√
λ1

λY
. (6)

As a result the quantities V1,2 can be written through
cosϕh and other variables defined in Eqs. (3)-(6) as

V1 = ph0
S

M
− pl(SSx + 2M2Q2)

M
√
λY

− 2ptkt cosϕh,

V2 = ph0
X

M
− pl(XSx − 2M2Q2)

M
√
λY

− 2ptkt cosϕh.

(7)

From the other side

cosϕh =
SpSx(zQ

2 + V−)− λY V+

2pt
√
λY λ1

. (8)

The lowest order QED (Born) contribution to SIDIS
is presented by the Feynman graph in Fig. 2. The cross
section for this process reads

dσB =
(4πα)2

2SQ4
Wµν(q, p, ph)L

µν
B dΓB , (9)

where the phase space is parametrized as

dΓB = (2π)4
d3k2

(2π)32k20

d3ph
(2π)32ph0

=
1

4(2π)

Sxdxdy

2

Sxdzdp
2
tdϕh

4Mpl
. (10)

The leptonic tensor can be presented as

Lµν
B =

1

2
Tr[(k̂2 +m)γµ(k̂1 +m)γν ]

= 2kµ1 k
ν
2 + 2kµ2 k

ν
1 −Q2gµν . (11)

According to [8] the hadronic tensor can be written in
the covariant form

Wµν(q, p, ph) =

4∑
i=1

wi
µν(q, p, ph)Hi = −g⊥µνH1

+p⊥µ p
⊥
ν H2 + p⊥hµp

⊥
hνH3 + (p⊥µ p

⊥
hν + p⊥hµp

⊥
ν )H4 (12)

Here g⊥µν = gµν − qµqν/q
2, for any four-vector a⊥µ = aµ +

aq qµ/Q
2.

Finally, we find the Born contribution in the form

σB(S,Q
2, x, z, pt, cosϕh) ≡

dσB

dxdydzdp2tdϕh

=
πα2S2

x

4MQ4plS

4∑
i=1

θBi (S, x, y, z, pt, cosϕh)

×Hi(Q
2, x, z, pt), (13)

k
1

k
2

p

p
h

FIG. 2. Feynman graph for the lowest order SIDIS

where θBi = Lµνwi
µν/2,

θB1 = Q2,

θB2 = (SX −M2Q2)/2,

θB3 = (V1V2 −m2
hQ

2)/2,

θB4 = (SV2 +XV1 − zQ2Sx)/2. (14)

The generalized structure functions can be expressed
in terms of another set of the structure functions [13]

FUU,T , FUU,L, F
cosϕh

UU and F cos 2ϕh

UU :

H1 = C1[FUU,T − F cos 2ϕh

UU ],

H2 =
4C1

λ2
Y p

2
t

[
λY p

2
tQ

2FUU,L + λ2
3S

2
x(F

cos 2ϕh

UU + FUU,T )

−λ2λY (FUU,T − F cos 2ϕh

UU )

+2Sxλ3ptQ
√
λY F

cosϕh

UU

]
,

H3 =
2C1

p2t
F cos 2ϕh

UU ,

H4 = − 2C1

λY p2t
[2λ3SxF

cos 2ϕh

UU + ptQ
√
λY F

cosϕh

UU ], (15)

where C1 = 4Mpl(Q
2 + 2xM2)/Q4, λ2 = V 2

− + m2
hQ

2,
λ3 = V−+zQ2. The Born cross section (13) expressed in
the terms of these structure functions has a rather simple
structure,

σB =
πα2

xQ2

y

1− ε

(
1 +

γ2

2x

){
FUU,T + εFUU,L

+
√
2ε(1 + ε) cosϕhF

cosϕh

UU + ε cos 2ϕhF
cos 2ϕh

UU

}
,(16)

where γ = 2Mx/Q and ε is the ratio of the longitudinal
and transverse photon fluxes,

ε =
1− y − γ2y2/4

1− y + y2/2 + γ2y2/4
. (17)

III. RADIATIVE CORRECTIONS

The QED RC come from three principal contribu-
tions: loop diagrams [Figs. 1(a) and 1(b)] and emission of
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the unobserved real photon in semi-inclusive [Figs. 1(c)
and 1(d)] and exclusive [Figs. 1(e) and 1(f)] processes.
The calculation of the loop diagrams involves the pro-
cedure of subtraction of the ultraviolet divergence which
is based on the idea of the electric charge renormaliza-
tion. After that the integral over loop momentum still
contains the infrared divergence that cancels in the sum
with the contribution of the real photon emission in a
semi-inclusive process. The contribution of the exclusive
radiative tail does not contain the infrared divergence
because of kinematical restrictions and can be calculated
separately from other contributions.

A. Extraction of the Collinear Poles

The contribution of real photon emission

l(k1) + n(p) → l(k2) + h(ph) + x(px) + γ(k) (18)

(k2 = 0) from the lepton leg shown in Fig. 1(a), 1(b), can
be presented as a convolution of the leptonic tensor with
the real photon emission whose structure is well-known:

Lµν
R = −1

2
Tr[(k̂2 +m)Γµα

R (k̂1 +m)Γ̄ν
Rα],

Γµα
R =

(
kα1
kk1

− kα2
kk2

)
γµ − γµk̂γα

2kk1
− γαk̂γµ

2kk2
,

Γ̄ν
Rα = γ0Γ

ν†
Rαγ0

=

(
k1α
kk1

− k2α
kk2

)
γν − γν k̂γα

2kk2
− γαk̂γ

ν

2kk1
, (19)

and hadronic tensor (12):

dσR =
(4πα)3

2S(q − k)4
Wµν(q − k, p, ph)L

µν
R dΓR, (20)

where

dΓR = (2π)4
d3k

(2π)32k0

d3k2
(2π)32k20

d3ph
(2π)32ph0

=
1

8(2π)4
SSxdxdy

2
√
λS

Sxdzdp
2
tdϕh

4Mpl

d3k

k0
. (21)

Integration over the photon angles can result in the
leading log term. For example,∫

dΩk

kk1
=

1

Eγ

∫
dΩk

E1 − p1 cos θγ
=

2π

Eγp1
log

E1 + p1
E1 − p1

≈ 2π

EγE1
log

4E2
1

m2
. (22)

Similarly, integration of the terms with (kk1)
−2 results

in:∫
dΩk

(kk1)2
=

1

E2
γ

∫
dΩk

(E1 − p1 cos θγ)2
≈ 2π

E2
γE

2
1

2E1

m2
.

(23)

Since the squared propagators appear with a factor of
m2, i.e., as m2/(kk1)

2 and m2/(kk2)
2, such terms do

not result in the leading log terms. Thus, the proce-
dure of extraction of leading log term in the standard
leading log approximation [10, 14–17] contains the fol-
lowing steps. In each convolution of leptonic tensor Lµν

R
with the tensor structures wi

µν in the hadronic tensor,
the electron mass can be neglected everywhere in the nu-
merators. Then, the terms containing 1/kk1 and 1/kk2
have to be extracted, i.e., the convolutions have to be
presented in the form of two terms, that are historically
known as s- and p-peaks

Lµν
R wi

µν(q − k, p, ph)Hi(q − k) =
Gi

s(k, ...)Hi(q − k)

kk1

+
Gi

p(k, ...)Hi(q − k)

kk2
. (24)

We note, that the convolutions can have the terms with
1/(kk1 kk2) that can be decomposed as

1

kk1 kk2
= − 1

k(k1 − k2)

1

kk1
+

1

k(k1 − k2)

1

kk2
. (25)

The term k(k1− k2) is regular (i.e., not equaling zero for
any peak) and can be included to a respective Gi

s,p(k, ...).

Since Gi
s,p are regular functions of the momentum k, this

momentum (as well as all kinematical variables contain-
ing k) can be taken in the respective peaks in Gi

s,p as
well as in arguments of structure functions Hi. The four
arguments of structure functions Hi come from the four
scalar products pq, pph, q

2, and qph. Only the vector
q has to change if the photon is radiated q → q − k.
Therefore, we can write for (24):

Lµν
R wi

µν(q − k, p, ph)Hi(q − k)

(q − k)2

=
Gi

s(ks, ...)Hi(q − ks)

(q − ks)2kk1
+

Gi
p(kp, ...)Hi(q − kp)

(q − kp)2kk2
. (26)

In the standard leading log approximation the substitu-
tions of the vector k in the s- and p-peaks are performed
by introduction of dimensionless variables z1 and z2, that
reflect remaining degree of freedom, i.e., photon energy,
as follows k → ks,p where

ks = (1− z1)k1, kp = (z−1
2 − 1)k2 (27)

for s-, p-peaks respectively. The possibility to substi-
tute k in Gi

s,p is justified by the fact that the difference

Gi
s(k, ...)−Gi

s(ks, ...) is exactly zero in the peak respec-
tive integration of this difference divided by kk1 does not
result in the leading log.
The integration of (26) over angular variables can be

formally presented as:

d3k

k0

1

k1k
= 2πlmdz1,

d3k

k0

1

k2k
= 2πlm

dz2
z22

, (28)
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where

lm = log
Q2

m2
. (29)

The above procedure can be formalized in terms of
leptonic tensor (19), which split in two respective parts
in the leading log approximation:

Lµν
Rs =

1 + z21
z1(1− z1)

1

k1k
Lµν
B (k1 → z1k1),

Lµν
Rp =

1 + z22
1− z2

1

k2k
Lµν
B (k2 → k2/z2). (30)

The convolution with the hadronic tensor is:

Lµν
R Wµν(q − k, p, ph) = Lµν

RsWµν(q − ks, p, ph)+ (31)

+Lµν
RpWµν(q − kp, p, ph).

This approach has a useful geometric interpretation.
We see that the matrix element squared is calculated
as convolution of Born leptonic tensor with a shifted
momentum of initial (or final) electron for s-(and p-)
peaks. This means the parametrization (27) allows to
write collinear bremsstrahlung in terms of the Born cross
section but in a so-called shifted born condition

z1k1 + p = k2 + ph + px,

k1 + p = k2/z2 + ph + px. (32)

The kinematics of the process is sketched in Fig. 3. The
momentum transfer q = k1 − k2 is chosen along the axis
z, and vectors k1, k2 constitute x, z-plane. This fixes the
coordinate system. In the leading approximation k →
(1 − z1)k1 or k → (1/z2 − 1)k2 lies entirely in the xz-
plane.

After substitution of (21,30,27) into (20) and taking
into account the angular integration of the first-order
poles (28) one can find that the leading order approx-
imation of the real photon emission to s- and p-peaks
can be expressed through the Born contribution σB (13)
with so-called shifted variables in a following way:

dσR
s =

α

2π
lmdz1

1 + z21
1− z1

plsS
2
x

pl(z1S −X)2

×σB(z1S, z1Q
2, xs, zs, pts, cosϕhs),

dσR
p =

α

2π
lmdz2

1 + z22
z22(1− z2)

plpS
2
x

pl(S −X/z2)2

×σB(S, z
−1
2 Q2, xp, zp, ptp, cosϕhp). (33)

k

q

k

φ

1

2

z

x

y

p
q z

θ

θz h

h

h

FIG. 3. The momenta of the particles of SIDIS process (2)
in the lab. frame; q and qz are the momenta of the virtual
photon in the original and shifted kinematics.

The quantities with the subscripts s and p read:

xs =
z1Q

2

(z1S −X)
, zs =

zSx

(z1S −X)
,

λY s = (z1S −X)2 + 4z1M
2Q2,

pls =
zSx(z1S −X)− 2M2(z1V1 − V2)

2M
√
λY s

,

pts =

√
z2S2

x

4M2
− p2ls −m2

h,

cosϕhs =
1

4z1pts
√
λY sλ1

[
(z1S +X)(2z1zSxQ

2

+(z1S −X)(z1V1 − V2))− λY s(z1V1 + V2)

]
,

xp =
Q2

(z2S −X)
, zp =

zSx

(S − z−1
2 X)

,

λY p = (S − z−1
2 X)2 + 4z−1

2 M2Q2,

plp =
zSx(S − z−1

2 X)− 2M2(V1 − z−1
2 V2)

2M
√

λY p

,

ptp =

√
z2S2

x

4M2
− p2lp −m2

h,

cosϕhp =
z2

4ptp
√

λY pλ1

[
(S + z−1

2 X)(2z−1
2 zSxQ

2

+(S − z−1
2 X)(V1 − z−1

2 V2))− λY p(V1 + z−1
2 V2)

]
.

(34)

The expressions (33) are infrared divergent at
z1,2 → 1. This infrared divergence is cancelled in the
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sum with the contribution from the vertex function pre-
sented by Feynman graph in Fig. 1(a). In the leading
log approximation the incorporation of the vertex func-
tion contribution and respective cancellation of the in-
frared divergence is implemented using the electron split-
ting function, which was originally suggested for the use
in QCD by Dokshitzer [18], Gribov-Lipatov [19], and
Altarelli-Parisi [20] and then adapted for QED RC by
Blümlein [15] and Kripfganz, Mohring and Spiesberger
[16]. The splitting function is defined through the so-
called (+)-operator:

P (z) =
1 + z2

(1− z)+
, (35)

where (+)-operator is defined by

1∫
x

dzP (z)f(z) =

1∫
x

dz
1 + z2

1− z
(f(z)− f(1))

−f(1)

x∫
0

dz
1 + z2

1− z
. (36)

Application of the splitting function to equations (33)
leads to a final expression for the RC in SIDIS in the
leading log approximation:

σin
1L =

[
1 +

α

π
δlvac(Q

2)

]
σB(S,Q

2, x, z, pt, ϕh)

+
α

2π
lm

1∫
0

dz1
1 + z21
1− z1

[
θ(z1 − zm1 )

plsS
2
x

plS2
xs

σB(z1S, z1Q
2, xs, zs, pts, cosϕhs)− σB(S,Q

2, x, z, pt, cosϕh)

]

+
α

2π
lm

1∫
0

dz2
1 + z22
1− z2

[
θ(z2 − zm2 )

z22

plpS
2
x

plS2
xp

σB(S, z
−1
2 Q2, xp, zp, ptp, cosϕhp)− σB(S,Q

2, x, z, pt, cosϕh)

]
(37)

Here we added the contribution of vacuum polarization
by electron [Fig. 1(b)] in leading approximation which is
external to the approach involving the splitting function
and has to be added separately:

δlvac(Q
2) =

2

3
lm. (38)

A direct proof that the splitting function works for SIDIS
is presented in Appendix A.

The lowest limits of integration can be found through
SIDIS pion threshold

zm1 = 1 + (M2
th − p2x)/S

′,

zm2 =
1

(1 + (p2x −M2
th)/X

′)
. (39)

Here Mth is the minimal value of the invariant mass of
the undetected hadrons px for the SIDIS process, e.g.,
Mth = M +mπ when the detected hadron is the pion.

Similar calculation can be applied for extracting the
leading approximation from the exclusive radiative tail
depicted in Figs. 1(e) and 1(g)

l(k1) + n(p) → l(k2) + h(ph) + u(pu) + γ(k), (40)

where pu is the four-momentum of a single undetected
hadron (p2u = m2

u). This process gives the contribution
to SIDIS because the mass square of the undetected par-
ticles (pu+k)2 can exceed the pion threshold M2

th for the

rather hard photon emission. As a result the exclusive
radiative tail does not contain infrared divergence. More-
over, since the fifth SIDIS variable z is fixed by the energy
of the emitted photon in leading approximation photonic
variables z1,2 are also fixed. The explicit expression for
the exclusive radiative tail in the leading approximation
presented below by Eq. (74) of Subsection III C.

B. From exact to leading log: Semi-inclusive RC

The expression for the lowest order RC calculated ex-
actly in [8] is:

σin =

[
1 +

α

π
(δV R + δlvac + δhvac)

]
σB(S,Q2, x, z, pt, ϕh)

+σF
R + σAMM. (41)

Two quantities, δhvac (σ
AMM), do not contribute to RC in

the leading approximation, since δhvac is independent on
the electron mass and σAMM is proportional to it. The
expressions for δV R and δlvac in the leading approximation
are presented in Eqs. (A7) and (38) respectively.
The exact expression for σF

R is defined by Eq. (43) of
[8] through the integration over three photonic variables

R = 2kp, τ = kq/kp, ϕk, (42)
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where ϕk is an angle between (k1,k2) and (k,q) planes

σF
R = − α3SS2

x

32πMplλS

√
λY

τmax∫
τmin

dτ

2π∫
0

dϕk

Rmax∫
0

dR

×
4∑

i=1

[
3∑

j=1

Hi(Q
2 + τR, x̃, z̃, p̃t)θ

0
ijR

j−2

(Q2 + τR)2

−θ0i1Hi(Q
2, x, z, pt)

RQ4

]
. (43)

Here the variable with tilde are defined as

x̃ =
Q2 + τR

Sx −R
, z̃ =

zSx

Sx −R
,

p̃2t =
z2S2

x

4M2
− (zSx(Sx −R)− 2M2(2V− −R))2

4M2((Sx −R)2 + 4M2(Q2 + τR))

−m2
h. (44)

and have meaning of the usual SIDIS variables in the
shifted kinematics. The limits of integrations are

Rmax =
p2x −M2

th

1 + τ − µ
, τmax/min =

Sx ±
√
λY

2M2
, (45)

where

µ =
kph
kp

=
ph0
M

+
pl(2τM

2 − Sx)

M
√
λY

−2Mpt cos(ϕh + ϕk)

√
(τmax − τ)(τ − τmin)

λY
.

(46)

After replacing variable R by

R′ = (1 + τ − µ)R, (47)

the region of integration transform into cuboid

Rmax∫
0

dR →
p2
x−M2

th∫
0

dR′

1 + τ − µ
, (48)

that allow us to perform the integration over R′ as ex-
ternal.

The quantities θ0ij (i = 1, . . . , 4 and j = 1, . . . , 3) in
(43) are defined in Appendix B of [8]. They result from
convolution of the leptonic tensor (19) with hadronic
structures wi

µν . These quantities contain the terms cor-
responding to s- and p-peaks, which are localized in (B.5)
of [8] and can be presented in our notation as:

Fd =
R2

4kk1 kk2
=

1

τ

(
R

2kk2
− R

2kk1

)
,

F1+ =
R

2kk2
+

R

2kk1
,

F2± =
R2

4kk22
± R2

4kk21
, (49)

with

2kik

R
= ai + b cosϕk, (50)

where

a1 =
Q2Sp + τ(SSx + 2M2Q2)

λY
,

a2 =
Q2Sp + τ(XSx − 2M2Q2)

λY
,

b = −
2M
√
(τmax − τ)(τ − τmin)λ1

λY
. (51)

The integration of these terms over ϕk give (n = 1, 2)

2π∫
0

dϕk

an + b cosϕk
=

2π√
Cn

,

2π∫
0

dϕk

(an + b cosϕk)2
=

2πan

C
3/2
n

, (52)

with

C1 =
S2(τ − τs)

2 + 4m2M2(τ − τmin)(τmax − τ)

λY
,

C2 =
X2(τ − τp)

2 + 4m2M2(τ − τmin)(τmax − τ)

λY
.

(53)

Due to the smallness of the lepton mass the the expres-
sions for C1,2 have a sharp peak for τ → τs ≡ −Q2/S and
τ → τp ≡ Q2/X, respectively. Note the quantities τs,p
can be also obtained from τ = kq/kp by the replacement
k → ks,p from (27).
The integration over τ of expressions (52) can be per-

formed analytically,

τmax∫
τmin

dτ

2π∫
0

dϕk

a1 + b cosϕk
= 2π

√
λY LS ,

τmax∫
τmin

dτ

2π∫
0

dϕk

a2 + b cosϕk
= 2π

√
λY LX .

τmax∫
τmin

dτ

2π∫
0

dϕk

(ai + b cosϕk)2
=

2π
√
λY

m2
, (54)

with

LS =
1√
λS

log
S +

√
λS

S −
√
λS

=
1

S

[
lm + log

S2

Q2M2

]
+O

(
m2

Q2

)
,

LX =
1√
λX

log
X +

√
λX

X −
√
λX

=
1

X

[
lm + log

X2

Q2M2

]
+O

(
m2

Q2

)
. (55)
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We see, that only the first order poles (1/k1k and 1/k2k)
contribute to RC in the leading approximation.

Actually, the integrand in (54) depends on τ and ϕk

not only in θ0ij but also in arguments of structure func-

tions Hi, the photonic propagator squared (Q2 + τR)−2,
and the factor (1+ τ −µ) that appeared after the substi-
tution of the integration variable R → R′ in Eq. (48). All
these functions are regular (i.e., equivalent neither zero
nor infinity in the integration region). Therefore, we can
make the identical transformation for extraction of the
leading and next-to-leading terms:

τmax∫
τmin

dτ

2π∫
0

dϕk
G(τ, ϕk)

a1 + b cosϕk
= 2π

√
λY LSG(τs, 0)

+

τmax∫
τmin

dτ

2π∫
0

dϕk
G(τ, ϕk)− G(τs, 0)

a1 + b cosϕk
,

τmax∫
τmin

dτ

2π∫
0

dϕk
G(τ, ϕk)

a2 + b cosϕk
= 2π

√
λY LXG(τp, 0)

+

τmax∫
τmin

dτ

2π∫
0

dϕk
G(τ, ϕk)− G(R′, τp, 0)

a2 + b cosϕk
, (56)

where G(τ, ϕk) is a regular function of τ and ϕk. The sec-
ond terms in the right-hand side of these transformation
do not include the leading terms and vanish in the our
approximation.

Following to Eq. (56) the quantities θ0ij from (43) can
be decomposed as

θ0ij =
θsij

a1 + b cosϕk
+

θpij
a2 + b cosϕk

+ θrestij , (57)

where the quantities θsij and θpij contain the terms pro-

portional to 1/kk1 and 1/kk2 and independent on the
integration variables τ and ϕk. They are obtained in the
limit m → 0, ϕk = 0 and τ → τs and τ → τp for s-
and p-peaks, respectively. The quantity µ at the peaks
become µ → µs ≡ V1/S and µ → µp ≡ V1/X. The last
term in Eq. (57), θrestij , does not give the contribution to
the leading approximation.

The quantities θsij and θpij are expressed in terms of

respective Born θBi defined in Eq. (14)

θs,pij = ds,pj θBi , (58)

where

ds1 = −4S, ds2 = 4, ds3 = − 2

S
,

dp1 = −4X, dp2 = 4, dp3 = − 2

X
. (59)

Then the sums over j can be explicitly calculated:

3∑
j=1

[
R′

1 + τs − µs

]j−2

dsj = −2
(S′ −R′)2 + S′2

S′R′ ,

(1 + τs − µs)

R′ ds1 = −4
S′

R′ ,

3∑
j=1

[
R′

1 + τp − µp

]j−2

dpj = −2
(X ′ +R′)2 +X ′2

X ′R′ ,

(1 + τp − µp)

R′ dp1 = −4
X ′

R′ , (60)

where we used 1+τs−µs = S′/S and 1+τp−µp = X ′/X.

Substitution of the decomposition (57) into (43) results
in separation of σF

R into two parts corresponding to s-
and p- collinear singularities. Integration over R′ can be
further replaced by z1 and z2 for these two parts using
the substitutions R′ → (1− z1)S

′ and R′ → (z−1
2 −1)X ′:

p2
x−M2

th∫
0

dR′ → S′
1∫

zm
1

dz1,

p2
x−M2

th∫
0

dR′ → X ′
1∫

zm
2

dz2
z22

, (61)

where the lowest limits of integration over variables z1,2
are defined by Eqs. (39). The expression from the r.h.s.
of Eq. (60) are reduced as:

(S′ −R′)2 + S′2

S′R′ =
1 + z21
1− z1

,

(X ′ +R′)2 +X ′2

X ′R′ =
1 + z22

z2(1− z2)
. (62)

The obtained equations are combined as follows re-
sulting in final expressions in the leading log approxi-
mation. The substitution of Eq. (57) into (43) with
dropped θrestij splits the expression σF

R into two parts that
correspond to s- and p-peaks according to the upper in-
dex in the first and second terms of θij in the r.h.s. of
Eq. (57): σF

R = σF
s + σF

s . Integration over τ and ϕk is
performed using (56) in which the second terms in the
r.h.s. have to be dropped. The arguments of the struc-
ture functions Hi(Q

2 + τR, x̃, z̃, p̃t) are transferred into
Hi(z1Q

2, xs, zs, pts) or Hi(z
−1
2 Q2, xp, zp, ptp) for s- or p-

peaks respectively, where the quantities with the sub-
scripts s and p are defined by Eq. (34). Finally, the
representation of θs,pij in the form (58,59) allows us to

perform summation over j as it was shown in Eqs. (60)
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and obtain the final expressions in the form:

σF
s =

α3S2
x

8MplS
lm

1∫
zm
1

dz1

×
4∑

i=1

[
1 + z21
1− z1

Hi(z1Q
2, xs, zs, pts)θ

B
i

z21Q
4

−2
θBi Hi(Q

2, x, z, pt)

(1− z1)Q4

]
,

σF
p =

α3S2
x

8MplS
lm

1∫
zm
2

dz2
z22

×
4∑

i=1

[
1 + z22

z2(1− z2)

z22Hi(z
−1
2 Q2, xp, zp, ptp)θ

B
i

Q4

−2
θBi Hi(Q

2, x, z, pt)

(1− z2)Q4

]
. (63)

Using Eq. (13) we represent the products of θBi and Hi

through the Born cross section in the shifted kinematics
for s- and p-peaks respectively:

Hi(z1Q
2, xs, zs, pts)θ

B
i

z21Q
4

=
4M2plsS

πα2(z1S −X)2
σB(z1S, z1Q

2, xs, zs, pts, cosϕhs),

z22Hi(z
−2
2 Q2, xp, zp, ptp)θ

B
i

Q4

=
4M2plpS

πα2(S − z−1
2 X)2

σB(S, z
−1
2 Q2, xp, zp, ptp, cosϕhp).

(64)

and obtain the expressions (A3) and, after cancellation
of the infrared divergence, (A6). Finally, the expressions
in the leading log approximation, (37), can be obtained
from (A6) using the integral representation for δV R that
is defined by Eq. (A7). Indeed, the difference between
(A3) and (37) is exactly α/π δV Rσ

B :

δV R =
lm
2

[ 1∫
zm
1

dz1(1 + z1)−
zm
1∫

0

dz1
1 + z21
1− z1

+

1∫
zm
2

dz2
2 + z2 + z22

z2
−

zm
2∫

0

dz2
1 + z21
1− z1

]
. (65)

Up to now the lowest order RC to SIDIS in the lead-
ing approximation have been considered. The second or-
der RC to the cross section of unpolarized inclusive DIS
withing leading order was firstly estimated by Kripfganz,
Mohring and Spiesberger in [16] and were generalized to
polarized DIS by our group [21]. The approach to sum-
ming up the leading logarithmic RC of all orders over

D(z
1
 ,Q

2
) D(z

2
 ,Q

2
)

k
1

z
1
k

1

k
2

k
2
 /z

2

p

p
h

FIG. 4. The diagram for the cross section in the methods of
the electron structure functions

α that involves the electron structure function was sug-
gested by Fadin, Merenkov and Kuraev in [22, 23]. This
method was applied for polarized inclusive DIS in [11].
The main features of the method of the electron struc-
ture functions as well as the detailed comparison between
different approaches for calculation of RC to polarized in-
clusive DIS is presented in [24].
The cross section of SIDIS within the method of the

electron structure functions (illustrated in Fig. 4) reads:

σin
hL =

1∫
zm
1

dz1D(z1, Q
2)

1∫
ẑm
2

dz2
z22

D(z2, Q
2)r2

(
z1
z2

Q2

)

× p̂lS
2
x

pl(z1S −X/z2)2
σB(z1S,

z1
z2

Q2, x̂, ẑ, p̂t, cos ϕ̂h),

(66)

where zm1 is defined by Eq. (39), and

ẑm2 =

[
1 +

p2x − (1− z1)S
′ −M2

th

X − V2 + z1Q2

]−1

. (67)

The explicit expressions for the electron structure func-
tions D(z1,2, Q

2) can be found in Eqs. (4-7) of [11] and
the coefficient

r(Q2) =

∞∑
i=0

( α

2π
δlvac(Q

2)
)i

=

[
1− α

2π
δlvac(Q

2)

]−1

(68)

is defined as in the running coupling constant.
The shifted variables occurring in (66) are generaliza-
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tion of the variables defined by Eqs. (34):

x̂ =
z1Q

2

z1z2S −X
, ẑ =

zSx

z1S − z−1
2 X

,

λ̂Y = (z1S − z−1
2 X)2 + 4z1z

−1
2 M2Q2,

p̂l =
zSx(z1S − z−1

2 X)− 2M2(z1V1 − z−1
2 V2)

2M
√
λ̂Y

,

p̂2t =
z2S2

x

4M2
− p̂2l −m2

h,

cos ϕ̂h =
z2

4z1p̂t
√
λ̂Y λ1

[(
z1S +

X

z2

)(
2
z1
z2

zSxQ̂
2

+

(
z1S − X

z2

)(
z1V1 −

V2

z2

))
− λ̂Y (z1V1 +

V2

z2

)]
.

(69)

C. Exclusive radiative tail

Exact contribution calculated in [8] reads:

σex
R = − α3SS2

x

28π4MplλS

√
λY

τmax∫
τmin

dτ

2π∫
0

dϕk

×
4∑

i=1

3∑
j=1

Hex
i (Q2 + τRex, W̃

2
ex, t̃ex)θ

0
ijR

j−2
ex

(1 + τ − µ)(Q2 + τRex)2
, (70)

where

Rex =
p2x −m2

u

1 + τ − µ
, W̃ 2

ex = W 2 − (1 + τRex),

t̃ex = t+Rex(µ− τ). (71)

As it was presented in Appendix A of [7] the exclu-
sive structure functions Hex

i can be expressed through
the standard set of the two-fold cross sections dσL/dΩ,
dσT /dΩ, dσLT /dΩ and dσTT /dΩ.
The leading log terms are extracted from θ0ij using

methods of Subsection III B. In these analyses we have
to keep in mind that only angular integrations, i.e. over
τ and ϕk, have to be performed for the exclusive tail.
Since the Born cross section of the exclusive process is

σB
ex(S,Q

2,W 2, t, cosϕh) =
dσB

ex

dxdydptdϕh

=
α2MSx

16π2Q4Spl(Sx + 2M2)

×
4∑

i=1

Hex
i (Q2,W 2, t)θBi (z → 1 +

t+M2 −m2
u

Sx
),(72)

we obtain

σex
1L = σexs

1L + σexp
1L , (73)

where

σexs
1 =

α

2π
lm

1 + z21e
1− z1e

plse
pl

S2
x

S′

[
1

z1eS −X
+

1

2M2

]
×σB

ex(z1eS, z1eQ
2,W 2

s , ts, cosϕhse),

σexp
1 =

α

2π
lm

1 + z22e
1− z2e

plpe
pl

S2
x

X ′

[
1

S −X/z2e
+

1

2M2

]
×σB

pex(S,Q
2/z2e,W

2
p , tp, cosϕhpe), (74)

and

z1e = 1− (p2x −m2
u)/S

′,

z2e = (1 + (p2x −m2
u)/X

′)−1. (75)

The variables with the indexes s, se, p and pe are defined
as:

W 2
s = z1e(S −Q2)−X +M2,

ts = m2
h − z1e(Q

2 + V1) + V2,

As = W 2
s − z1eV1 + V2 +m2

h −m2
u

plse = pls(z1 → z1e, zSx → As),

cosϕhse = cosϕhs(z1 → z1e, zSx → As),

W 2
p = S − z−1

2e (X +Q2) +M2,

tp = m2
h − V1 + z−1

2e (V2 −Q2),

Ap = W 2
p − V1 + z−1

2e V2 +m2
h −m2

u

plpe = plp(z2 → z2e, zSx → Ap),

cosϕhpe = cosϕhp(z2 → z2e, zSx → Ap), (76)

where pl{s,p}, and cosϕh{s,p} was defined in Eq. (34).

Generalization on high order can be performed into
two steps. First we introduce the following cross sections

σ̂exs
h (z2) =

p̂lse
p̂lp

(S − z−1
2 X)2

S − V1 − z−1
2 Q2

×
(

1

z1eS − z−1
2 X

+
1

2M2

)
r2
(
z1e
z2

Q2

)
×D(z1e, Q

2)σB
ex(S, z1ez

−1
2 Q2, Ŵ 2

s , t̂s, cos ϕ̂hs)

σ̂exp
h (z1) =

p̂lpe
p̂ls

(z1S −X)2

X − V2 + z1Q2

×
(

1

z1S − z−1
2e X

+
1

2M2

)
r2
(

z1
z2e

Q2

)
×D(z2ex, Q

2)σB
ex(z1S, z1z

−1
2e Q2, Ŵ 2

p , t̂p, cos ϕ̂hp).

(77)

in such a way that σ̂exs
h (1) (σ̂exp

h (1)) is the exclusive ra-
diative tail with multi photon emission collinear to the
initial (final) electron direction. Here the quantities with
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the hat have the following structure

Ŵ 2
s = z1e(S − z−1

2 Q2)− z−1
2 X +M2,

t̂s = m2
h − z1e(z

−1
2 Q2 + V1) + z−1

2 V2,

Âs = Ŵ 2
s − z1eV1 + z−1

2 V2 +m2
h −m2

u

p̂lse = p̂l(z1 → z1e, zSx → Âs)

p̂ls = plse(z1e → z1),

cos ϕ̂hs = cos ϕ̂h(z1 → z1e, zSx → Âs), (78)

where p̂l and cos ϕ̂h were defined by Eqs. (69). All quanti-
ties with indexes p and pe can be obtained from ones with
indexes s and se by the following replacement z2 → z2e
and z1e → z1.

Finally

σex
hL =

S2
x

pl

[ 1∫
zm
2

dz2
z22

D(z2, Q
2)

ppl
S2
px

σexs
h (z2)

+

1∫
zm
1

dz1D(z1, Q
2)

psl
S2
sx

σexp
h (z1)

]
, (79)

where the lowest limits of the integration is defined by
Eqs. (39).

IV. NUMERICAL RESULTS

The main characteristics used in the RC procedure of
experimental data analysis is the RC factor defined as
a ratio of radiative corrected cross section to the Born
contribution

δ =
σobs

σB
. (80)

For numerical estimates we applied the parametriza-
tion of the SIDIS structure functions in Wandzura-
Wilczek-type approximation [25]. The exclusive struc-
ture functions are expressed through the two-fold cross
sections dσL/dΩ, dσT /dΩ, dσLT /dΩ and dσTT /dΩ us-
ing MAID2007 parametrization [26]. The RC factor, δ,
constructed from the Born and observed cross sections
of semi-inclusive π+ electroproduction averaged over ϕh

and pt, is presented in Fig. 5. The solid lines show the
total correction, dashed lines represent the correction ex-
cluding the exclusive radiative tail. The difference be-
tween exact and leading RC increases with growing z
and pt. The ϕh-dependence of RC factor constructed
from completely differential cross sections are presented
in Fig. 6. The RC factor reaches its maximum value at
the region near ϕh = 180o and small z. In certain cases
the curves for the RC factor are not smooth, e.g., for
angles ϕh = 160/200o and ϕh = 110/260o in the right
column plots in Fig. 6. This reflects the contributions
of the exclusive radiative tail that is not small in these
kinematic regions. The RC factor can be both higher and

lower than one. The calculated (observed) RC factor is
always a trade-off between i) the exclusive radiative tail
contribution that is always positive, ii) semi-inclusive RC
that can be negative because of the contribution of the
vertex function, and iii) the vacuum polarization contri-
bution that is always positive. The blue lines in Figs. 5
and 6 represent the RC factors calculated using the ex-
act equations (41) and (70). The red and black curves
show the RC factor in the leading log approximation in
the lowest order (37,73) and in all orders in respect to α
(66,79), respectively. In all cases dashed and solid lines
show the pure semi-inclusive RC and total RC, where the
total RC additionally includes the contribution of the ex-
clusive radiative tails.
For purposes of numerical analysis we had to modify

the cross sections in (80) to provide clear and well in-
terpreted comparison of the exact and leading log RC.
This is because the difference between exact and lead-
ing log RC comes not only because of difference in ex-
act and leading log formulae for σin, what is one of the
main focuses of the numerical analysis, but also due to
a quite strong effect from the contribution from the vac-
uum polarization induced by µ-, τ -leptons and hadrons
[see Fig. 1(b)] that are not included in the leading log
formulae. The latter contribution [denote it as δnlovac(Q

2)]
is trivial and is not of interest for the numerical compar-
ison, so, we added δnlvac(Q

2) to δlvac(Q
2) in Eq. (37) and

multiply the integrand in (66) on 1 + αδnlvac(z1Q
2/z2)/π

to mask its effects in the difference between exact and
leading log formulae.

V. DISCUSSION AND CONCLUSION

In this paper we calculated RC in leading log approxi-
mation using three different approaches. First we applied
the standard approach in the leading log approximation
[10, 14–20] and calculated the RC from the scratch. In
this approach the only terms contributing to the cross
section in the leading log approximation are extracted
and kept, i.e., the poles that correspond to radiation
collinear to initial and final electron (i.e., the terms that
contain 1/kk1 and 1/kk2 and do not include the electron
mass in the numerator). Integration over the photon an-
gles can be performed analytically. Then, all these terms
are combined resulting in the factorized form traditional
for leading log calculations, i.e., the Born cross section
in the so-called shifted kinematics depicted in Fig. 3 for
which the 3-vector of the virtual photon is shifted in the
plane XOZ and the angle of this shift is determined by
the photon energy (or equivalent variable z1,2 for the
photon emitted collinear to the initial or final electron
line), so there is a remaining one-dimensional integration
variable in the final leading log formulae. This calcula-
tion resulted in exact expression for the term A in (1).
The infrared divergence is canceled in the usual way so
the final formula (37) is infrared free. The second ap-
proach is based on explicit extraction of the leading log
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FIG. 5. The pt-dependence of RC factor for the cross sections of semi-inclusive π+ electroproduction averaged over ϕh with
the lepton beam energy equal 10.65 GeV. Solid lines show the total RC factor, and dashed lines represent RC factor calculated
excluding the exclusive radiative tail. The blue, red and black lines show RC factor calculated exactly, using the methods of the
leading log approximation in the lowest order in respect of α, and the method of the electron structure functions, respectively.

contribution from the exact formulae presented in [8] by
collecting all terms contribution to RC in the leading
log approximation after integration over photon angles,
and combined them into the final expression exactly co-
inciding to the expression obtained in the first approach.
Third, we used the method of the electron structure func-
tions [11, 22, 23]. In this approach the QED radiative
corrections to the corresponding cross sections can be
written as a convolution of the two electron structure
functions corresponding to multiple real photon emission
along to the initial and final electron and the Born cross
section with shifted kinematics. Traditionally, these RC
include effects caused by loop corrections and soft and
hard collinear radiation of photons and e+e− pairs. This
method can be improved by including effects due to ra-
diation of one noncollinear photon. The corresponding
procedure results in a modification of the hard part of
the cross section, which takes the lowest-order correction
into account exactly and allows going beyond the leading
approximation [24].

Recently, Liu et al. [12] proposed a QCD-like factor-
ization to take into account the QED RC to the exper-
imentally measured cross sections of both inclusive and
semi-inclusive lepton-nucleon DIS. This approach is simi-
lar to the approach for RC calculations involving the for-
malism of electron structure functions [11, 22–24]. Since

this approach is one of the three approaches we used in
this paper the resulting formula in the leading approxi-
mation (66) has to be comparable to Eq. (3.30) obtained
by Liu et al. [12]. We note however, that the comparison
deserves some comments.

First, the lowest limits of integration in [12], ξmin and
ζmin, are given by Eqs. (2.24a) and (2.24b) and identical
for both inclusive and semi-inclusive RC. The expressions
for ξmin and ζmin are calculated ignoring the restriction
of the photon phase space by the pion threshold. The
formulae for the lower limits of integration z1m and z2m,
that are given by Eq. (11) (and subsequent formula) of
[11] for inclusive case and Eqs. (39,67) in the present
paper. The formulae for z1m and z2m are not identical for
DIS and SIDIS. This is expected because they can depend
on x and y for DIS case, and on all five variables (3) that
describe the kinematics of SIDIS process. These formulae
for inclusive case contain the term zth and reproduce ξmin

and ζmin when this term tends to zero.

We believe that the pion threshold is necessary for
both DIS and SIDIS RC to appropriately separate the
contributions of the parts of the total RC with a single
hadron and a continuum of particles in the final unob-
served hadronic state. These two types of the contribu-
tions to RC require different models of hadronic struc-
ture (e.g., DIS/SIDIS structure functions for continuum
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FIG. 6. The ϕh-dependence of RC factor for semi-inclusive π+ electroproduction for the lepton beam energy equal 10.65 GeV.
Solid lines show the total RC factor, and dashed lines represent RC factor calculated excluding the exclusive radiative tail. The
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of unobserved particles and form factors for the elastic
radiative tail or exclusive structure functions for the ex-
clusive radiative tail) and different models for the phase
of space of unobserved particles (fixed invariant mass of
the final hadronic state reduces the number of integra-
tion over the photon kinematical variables by one). Ig-
noring the pion threshold in the formula for RC implies
that the elastic radiative tail for DIS RC and exclusive
RC for SIDIS RC can be obtained from the expressions
for RC for continuum of particles by their extrapolation
through the pion threshold and applying the obtained
approximate formulae for the RC with one hadron in the
final unobserved hadronic state. This approximation is
poor and is not used since the seminal paper of Mo and
Tsai [2] for calculation of RC in DIS.

Second, the expressions for the electron structure func-
tions that are constructed and used in the formalism of
the electron structure functions [11, 22–24] are not iden-
tical to the lepton distribution and lepton fragmentation
functions obtained by Liu et al. [12]. The standard for-
mula for the electron structure functions, D, includes
three terms:

D = Dγ +De+e−

N +De+e−

S , (81)

where Dγ is responsible for the photon radiation whereas

De+e−

N and De+e−

S describe pair production in nonsin-
glet (by single photon mechanism) and singlet (by dou-
ble photon mechanism) channels, respectively [24]. The
functions Dγ in the formalism of the electron structure
functions that correspond to the initial and final state
radiation are identical, but respective functions obtained
and used in [12] (they are refereed as the universal lep-
ton distribution and lepton fragmentation functions) are
not due to the difference in the factor under the leading
log in (2.18) and (2.20) of [12]. We note, that this dif-
ference does not affect the leading log part of the total
RC. Furthermore, the functions D presented in [12] are
not complete because they do not include the effects of

collinear electron pair production (i.e., De+e−

N = 0 and

De+e−

S = 0) and the effects of multiple photon emission
is presented in the lowest order only, i.e., the function
Dγ contains only the term with the δ-function and first
term in the sum over k in eq. (8) of [11].

Finally, several contributions unavoidable when we cal-
culate the total RC exactly or in the leading log approx-
imation are not presented in the formulae of ref. [12].
These include the elastic and exclusive radiative tails for
inclusive and semi-inclusive RC (as we partly discussed
above) and the effect of vacuum polarization for both
processes.

The availability of both exact and leading log formulae
allowed us to perform detailed comparison of RC calcu-
lated using both approaches. We found that generally the
leading log approximation gives the main contribution in
the kinematics of modern JLab measurements. The fac-
tor logQ2/m2 is of order 15 for JLab energies, so leading
log approximation provides a reasonable approximation
in the broad range of kinematics. However, we also de-
tected the regions where the next-to-leading correction
cannot be avoided, e.g., at the region near ϕh = 180o

and small z. The role of the next-to-leading terms is ex-
pected to be more important in the case of polarization
measurement. For asymmetries the leading log terms are
(partly) factorized, so can have a tendency for cancella-
tion in the numerator (spin-dependent part of the cross
section) and denominator (unpolarized part of the cross
section).
We note that the formula (1) gives an idea on how

to extract the leading log results numerically using the
available code for exact RC computation. We need to ob-
tain the results for σ′

RC calculated for an artificial value
of the electron mass n m, (where n is an arbitrary value,
e.g.,mass n m, n = 10) in addition to the results calcu-
lated using the regular value of m. Since both A and
B are independent on the electron mass, the value of
A can be obtained as σ′

RC − σRC =
(
log(Q2/n2m2) −

log(Q2/m2)
)
A = − log(n2)A. This approach provides a

tool allowing us to test both leading log codes and codes
that is based on the exact formulae.

Appendix A: Treatment of the infrared divergence

According to the Bardin-Shumeiko approach [1] the
infrared divergence in (33) has to be extracted using an
identical transformation:

dσR
s,p = dσR

s,p − dσIR
s,p + dσIR

s,p = dσF
s,p + dσIR

s,p, (A1)

where

dσIR
s =

α

2π2
dσB

1

(1− z1)kk1

d3k

k0
,

dσIR
p =

α

2π2
dσB

z2
(1− z2)kk2

d3k

k0
. (A2)

The transformation (A1) is performed in the dimensional
regularization. The terms dσF

s,p obtained as the result of
subtraction of (A2) are infrared free, so can be further
dealt with in the regular four-dimensional space. The
methods describing in Section IIIA allow to represent
these terms in the form:
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σF
s = σR

s − σIR
s

=
α

2π
lm

1∫
zm
1

dz1

(
1 + z21
1− z1

plsS
2
x

pl(z1S −X)2
σB(z1S, z1Q

2, xs, zs, pts, cosϕhs)−
2

1− z1
σB(S,Q

2, x, z, p−t, cosϕh)

)
,

σF
p = σR

p − σIR
p

=
α

2π
lm

1∫
zm
2

dz2
z2

(
1 + z22

z2(1− z2)

plpS
2
x

pl(S −X/z2)2
σB(S, z

−1
2 Q2, xp, zp, ptp, cosϕhp)−

2

1− z2
σB(S,Q

2, x, z, pt, cosϕh)

)
,

(A3)

where the lowest limits of integration are defined by
Eqs. (39).

The remaining terms dσIR
s,p are infrared divergent, so all

further manipulations with them have to be performed
in the dimensional regularization. Using methods of Ap-
pendix C of [8] we obtain the resulting expressions in the
leading order:

σIR
s + σIR

p =
α

π
δIRσB(S,Q

2, x, z, pt, cosϕh)

=
α

π

[
lm

(
2PIR + 2 log

m

ν
+ log

(p2x −M2
th)

2

S′X ′

)

+
1

2
l2m

]
σB(S,Q

2, x, z, pt, cosϕh). (A4)

Both the infrared divergence PIR term and the term
containing the square of lm cancel in the sum with the
corresponding vertex contribution that can be obtained

from Eq. (50) of [8] in the limit m → 0:

δvert = lm

(
3

2
− 2PIR − 2 log

m

ν

)
− 1

2
l2m. (A5)

Summing up σF
s,p defined by Eq. (A3), σIR

s,p,

α/πδvertσB(S,Q
2, x, z, pt, cosϕh) and vacuum polariza-

tion α/πδlvac(Q
2)σB(S,Q

2, x, z, pt, cosϕh) we can find
that radiative corrected cross section in leading approxi-
mation reads

σin
1L =

[
1 +

α

π
(δV R + δlvac(Q

2))

]
σB(S,Q

2, x, z, pt, ϕh)

+σF
s + σF

p , (A6)

where

δV R = δIR + δvert = lm log
(p2x −M2

th)
2

S′X ′ +
3

2
lm, (A7)

and δlvac(Q
2) is defined by Eq. (38).

The expression for σin
1L can be explicitly presented in

terms of the splitting function (35):

σin
1L =

[
1 +

α

π
δlvac(Q

2)

]
σB(S,Q

2, x, z, pt, ϕh) +
α

2π
lm

[ 1∫
zm
1

dz1P (z1)
plsS

2
x

pl(z1S −X)2
σB(z1S, z1Q

2, xs, zs, pts, cosϕhs)

+

1∫
zm
2

dz2
P (z2)

z22

plpS
2
x

pl(S −X/z2)2
σB(S,Q

2/z2, xp, zp, ptp, cosϕhp)

]
.

(A8)

The explicit expression for σin
1L is given in Eq. (37).
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