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1 Introduction

Decays of the lowest-lying charmonium states provide an excellent environment to study
light hadron spectroscopy, search for exotic mesons, test QCD and QCD-based models, as
well as testing theoretical techniques in a region where both non-perturbative and pertur-
bative QCD effects play a role.

In this work we analyze the decay J/ψ → π+π−π0, to study the dynamics of the three-
pion system at low and intermediate energies under rather clean conditions. Here, the final
state invariant mass distribution can contain contributions from the P -wave (JPC = 1−−)
and F -wave (JPC = 3−−) states of the ππ subsystem. Previous experimental studies from
BESII [1] and BABAR [2] showed that the P -wave ρ(770)π intermediate state dominates
the process, but limited statistics prevented any detailed study of substructures in the 3π
system. While the dominance of the ρ(770) resonance can be clearly seen in the Dalitz
plot distribution and projection measurements by the BESIII collaboration obtained with
roughly 1.9 million J/ψ → π+π−π0 events [3], there are hints of contributions other than
the ρ(770). For example, the absence of events in the center of the Dalitz plot indicates the
contribution from additional states and/or partial waves which may interfere destructively
with the ρ(770). Exactly the opposite situation is found for the partner reaction ψ(2S)→
π+π−π0. There, the 7872 events from BESIII [3] show a completely different shape of the
ππ invariant mass distribution and the Dalitz plot — the ρπ contribution is subleading
and almost all events are found in the center of the Dalitz plot, with data indicating that
the main contribution comes from a higher mass resonance, i.e. the ρ(2150) resonance with
JPC = 1−−. The different picture between the J/ψ and ψ(2S) decays into π+π−π0 is
known as the ρπ puzzle and still remains largely unresolved (see e.g. [4–8], and references
therein). New high-statistics BESIII data on J/ψ decays will soon be available [9, 10],
which could be used to greatly improve the theoretical uncertainties associated to vector
charmonium decays. In particular, they might help clarify the ρπ puzzle, as well as provide
access to high-precision ρ-ω mixing effect analyses and motivate coupled channel studies
with the decays J/ψ → K+K−π0 and J/ψ → KSK

±π∓.
The decay J/ψ → π+π−π0 has previously been studied within the context of the

Veneziano model [11], and using aspects of unitarity and analyticity constraints [12, 13].
Here, we adapt the Khuri-Treiman (KT) framework [14], applied extensively in the isospin-
violating decay η → 3π [15–21] and in the decay of light vector isoscalar resonances ω, φ→
3π [22–24], to the analysis of the vector charmonium decay J/ψ → π+π−π0. We show
that one subtraction in the KT equations satisfactorily describes the BESIII experimental
di-pion mass distribution at the peak of the ρ(770). In addition, we find that F -wave effects
are needed to describe the intermediate energy region around 1.5 GeV. We also apply our
analysis techniques to predict the J/ψ → π0γ∗ transition form factor. Our study lays the
groundwork for a detailed analysis of J/ψ decays using the large data sample currently
being collected at BESIII.

This paper is organized as follows. In Section 2 we review the KT formalism for the
J/ψ → 3π decay. In Section 3 we apply the formalism to the BESIII data and discuss the
results. In Section 4, we present predictions for the J/ψ → π0γ∗ transition form factor,
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and we summarize our findings in Section 5.

2 Formalism

2.1 Decay amplitude and kinematics

The amplitude for the decay J/ψ(pV )→ π0(p0) π+(p+) π−(p−) can be expressed in terms
of a kinematic prefactor and a single invariant scalar function F (s, t, u) containing the
dynamical information,

M(s, t, u) = i εµναβ ε
µ(pV ) pν+ pα− p

β
0 F (s, t, u) , (2.1)

where εµναβ is the Levi-Civita tensor and εµ(pV ) is the polarization vector of the J/ψ

meson. The particle momenta are related to the Mandelstam variables through:

s = (p+ + p−)2 , t = (p0 + p+)2 , u = (p0 + p−)2 , (2.2)

with s + t + u = m2
J/ψ + 3m2

π. In this manuscript, we work in the isospin limit with
mπ

.= mπ± = mπ0 and mπ = (2mπ± +mπ0)/3. Arkaitz: A bit of a pedantic request,
what is the pion mass used? Sergi: added to be specific. The scattering angle in the
s-channel, defined by the center of mass of the π+π− pair, is denoted by θs and is given
by:

cos θs(s, t, u) = t− u
4 p(s) q(s) , sin θs(s, t, u) =

√
φ(s, t, u)

2
√
s p(s) q(s) , (2.3)

where the momenta p(s) and q(s),

p(s) = λ
1
2 (s,m2

π,m
2
π)

2
√
s

, q(s) =
λ

1
2 (s,m2

J/ψ,m
2
π)

2
√
s

, (2.4)

are, respectively, the momenta of the π± and π0 in the s-channel. λ(a, b, c) = a2 + b2 +
c2 − 2ab− 2bc− 2ca is the Källén, or triangle, function [25]. The zeroes of the well-known
Kibble function [26] ,

φ(s, t, u) = (2
√
s sin θs p(s) q(s))2 = s t u−m2

π(m2
J/ψ −m

2
π)2 , (2.5)

define the boundaries of the physical regions of the process. The Dalitz-plot boundaries in
t for a given value of s for J/ψ → 3π lie within the interval [tmin(s), tmax(s)], with

tmax,min(s) =
m2
J/ψ + 3m2

π − s
2 ± 2 p(s) q(s) , (2.6)

while the allowed range for s is given by smin = 4m2
π to smax = (mJ/ψ −mπ)2 .

Finally, the measured differential decay width can be written in terms of the invariant
amplitude F (s, t, u) as

d2Γ
ds dt

= 1
(2π)3

1
32m3

J/ψ

1
3
φ(s, t, u)

4 |F (s, t, u)|2 . (2.7)

– 3 –



2.2 Khuri–Treiman equations for J/ψ → 3π

The KT formalism for the J/ψ → 3π amplitude F (s, t, u) is formally identical to the well-
established one for the ω → 3π decay amplitude [22–24, 27], and has been discussed in [28]
(see also Ref. [29]). As shown in these references, the s-channel partial-wave expansion for
F (s, t, u) is given by

F (s, t, u) =
∞∑

J odd
(p(s) q(s))J−1 P ′J(zs) fJ(s) , (2.8)

where zs = cos θs and P ′J(zs) is the differentiated Legendre polynomial. The KT repre-
sentation of the scalar function F (s, t, u) in Eq. (2.8) may be obtained by replacing the
infinite sum of partial waves in the s-channel with the sum of three so-called isobar ampli-
tudes, one for each of the s-, t- and u-channels. By truncating the partial wave expansion
of each isobar amplitude at Jmax = 1 we obtain the following crossing-symmetric isobar
decomposition [22, 23, 30]:

F (s, t, u) = F1(s) + F1(t) + F1(u) , (2.9)

where each isobar amplitude, F1(x), has only a right-hand or unitary cut in its respec-
tive Mandelstam variable. The relation between F1(s) and f1(s) is obtained by projecting
Eq. (2.9) onto the s-channel partial wave,

f1(s) = F1(s) + F̂1(s) , (2.10)

F̂1(s) ≡ 3
∫ 1

−1

dzs
2 (1− z2

s ) F1(t(s, zs)) , (2.11)

where the inhomogeneity, F̂1(s), contains the s-channel projection of the left-hand cut con-
tributions due to the t- and u-channels, and its evaluation in the decay region requires a
proper analytical continuation [31]. Assuming elastic unitarity with only two-pion inter-
mediate states, we arrive at the KT equation for the J/ψ → 3π decay, i.e. the unitarity
relation for the isobar amplitude F1(s):

discF1(s) = 2i
(
F1(s) + F̂1(s)

)
sin δ1(s) e−iδ1(s) θ(s− 4m2

π) , (2.12)

where δ1(s) is the P -wave ππ phase shift, which is real.
Given the discontinuity relation in Eq. (2.12), one can write an unsubtracted dispersion

relation for F1(s) as

F1(s) = 1
2πi

∫ ∞
4m2

π

ds′
discF1(s′)
s′ − s

, (2.13)

the solution of which can be written as:

F1(s) = Ω1(s)
(
a+ s

π

∫ ∞
4m2

π

ds′

s′
sin δ1(s′) F̂1(s′)
|Ω1(s′)| (s′ − s)

)
, (2.14)
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where Ω1(s) is the usual Omnès function [32],

Ω1(s) = exp
[
s

π

∫ ∞
4m2

π

ds′

s′
δ1(s′)
s′ − s

]
. (2.15)

The subtraction constant a in Eq. (2.14) is the only free parameter in the model. It is in
general complex, a = |a| eiφa . While its modulus |a| can be fixed from the experimental
J/ψ → 3π decay width using data, no observable of the decay is sensitive to the overall
phase φa, so we can set φa = 0. Since it determines the overall normalization of the
amplitude, the constant a can be factored out.

We note that due to the asymptotic behavior of F1(s) in Eq. (2.14), the amplitude
F (s, t, u) satisfies the Froissart-Martin bound [22, 33, 34]. Also note that, even though
F1(s)/Ω1(s) in Eq. (2.14) looks like a once-subtracted dispersion relation, F1(s) actually
satisfies the unsubtracted dispersion relation given in Eq. (2.13). Therefore, the energy
dependence of F1(s) is a pure prediction given solely by the phase shift δ1(s). Here, we
take δ1(s) from the phase shift parametrizations of Ref. [35] that are valid roughly up to√
s = 2 GeV. Therefore, the phase shift that we employ contains the physics of the ρ(770)

and also the effects of the higher ρ(1450) and ρ(1770) resonances. For our analysis, beyond
Λ ≡

√
s = 1.85 GeV we smoothly guide the δ1(s) to π through [27, 36]

δ∞(s) ≡ lim
s→∞

δ1(s) = π − α

β + (s/Λ2)3/2 , (2.16)

where α and β are parameters introduced so that the phase δ1(s) and its first derivative
δ′(s) are continuous at s = Λ2. Their explicit expressions read

α = 3
(
π − δ1(Λ2)

)2
2Λ2δ′1(Λ2) , β = −1 + 3

(
π − δ1(Λ2)

)
2Λ2δ′1(Λ2) . (2.17)

This ensures the expected asymptotic 1/s behavior of Ω1(s). The phase shifts δ1(s) that
we use as an input are shown in Fig. 1 up to 2.5 GeV. There are several solutions for the
phase shifts in Ref. [35]. We use solution I (solid black line) as our central input for the
phase and use solutions II (dashed blue line) and III (dot-dashed green line) to quantify
the systematic uncertainties in our calculations. The solution of Ref. [37] (dotted red line)
is valid up to about 1.3 GeV, and is also shown in the figure for completeness.

We solve Eq. (2.14) following a numerical iterative procedure similar to Refs. [16, 20–
22, 38]. We use F1(s) = Ω1(s) as an efficient initial input to calculate F̂1(s) from Eq. (2.11),
which subsequently is inserted as an input in Eq. (2.14) for the computation of an updated
F1(s). This cyclic calculation is repeated until the solution converges. In Fig. 2, we show
the solutions for F1(s) (normalized to a = 1) after each iteration step along with the initial
input (dashed blue line). As can be seen, convergence is achieved after three iterations. The
difference between the final solution (solid black) and the starting point, i.e. F1(s) = Ω1(s)
(dashed blue), is rather small, hinting at moderate crossed-channel effects.

Note that when the crossed-channel rescattering effects are removed from the isobar
F1(s), i.e. when F̂1(s) = 0 in Eq. (2.14), F1(s) is simply the pure Omnès function multiplied
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Figure 1. Solutions I, II and III for the P -wave phase shift δ1(s) from Ref. [35] valid roughly up
to
√
s = 2 GeV. The solution of Ref. [37] (dotted red line) is valid up to about

√
s = 1.3 GeV, and

is shown for completeness.
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Figure 2. Convergence behavior of the iterative procedure for the real (left plot) and imaginary
(right plot) parts of the amplitude F1(s) given in Eq. (2.14). The vertical line denotes the two-pion
threshold.
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by a constant,
F1(s) = a′Ω1(s) , (2.18)

which implies the following isobar decomposition of the full amplitude (cf. Eq. (2.9)):

F (s, t, u) = a′ (Ω1(s) + Ω1(t) + Ω1(u)) . (2.19)

In this case, a new normalization constant a′ has to be chosen to reproduce the J/ψ → 3π
decay width. Also note that Eq. (2.14) can be written in the form

F1(s) = Ω1(s)
(
a+ b′ s+ s2

π

∫ ∞
4m2

π

ds′

(s′)2
sin δ1(s′) F̂1(s′)
|Ω1(s′)| (s′ − s)

)
, (2.20)

where b′ satisfies the following sum rule [22]:

b ≡ b′/a = 1
π

∫ ∞
4m2

π

ds′

(s′)2
sin δ1(s′) F̂1(s′)/a

|Ω1(s′)| . (2.21)

The subtraction constant, b, is complex due to the presence of the three-particle cut in the
physical region of the decay amplitude. This value is found to be:

bsum ' 0.141 e2.321 i GeV−2 . (2.22)

Had we used solution II or III of the phase shift δ1(s) (cf. Fig. 1), we would have obtained
bsum ' 0.129 e2.640 i GeV−2 and bsum ' 0.124 e2.811 i GeV−2, respectively.

Performing a subtraction on the dispersive solution in Eq. (2.13) leads to the expres-
sion [20, 22, 30]:

F1(s) = a [Fa(s) + b Fb(s)] , (2.23a)
where now b is not constrained to satisfy Eq. (2.21), and the functions Fa(s) and Fb(s) are
given by

Fa(s) = Ω1(s)
[
1 + s2

π

∫ ∞
4m2

π

ds′

s′2
sin δ1(s′) F̂a(s′)
|Ω1(s′)|(s′ − s)

]
, (2.23b)

Fb(s) = Ω1(s)
[
s+ s2

π

∫ ∞
4m2

π

ds′

s′2
sin δ1(s′) F̂b(s′)
|Ω1(s′)|(s′ − s)

]
. (2.23c)

These functions only need to be calculated once since they are independent of the numer-
ical values of a and b and, as we will discuss in Sec. 3, a and b will become fit parameters.
In Fig. 3, we show the solutions for Fa(s) and Fb(s) using a numerical iterative proce-
dure similar to the one described previously. In this case, nine iterations are needed to
obtain convergent solutions. Strictly speaking, the amplitude F (s, t, u) built from F1(s) in
Eq. (2.23a) does not satisfy the asymptotic Froissart-Martin bound for an arbitrary value of
the parameter b 6= bsum [cf. Eq. (2.22)]. The main advantage of introducing one subtraction
is that, due to the additional 1/s′ factor introduced, we reduce the importance of the high
energy region of the dispersion integrals where the phase shift is not well-known. By letting
the subtraction constant b be a free parameter, we can partially absorb our ignorance of
the higher energy part of the integral. This allows us to parametrize some unknown energy
dependence of the J/ψ → 3π interaction not directly related to ππ rescattering. As we will
show in the following section, the once-subtracted parametrization provides an excellent
representation of the data from BESIII in the ρ(770) resonance region.
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Figure 3. Convergence behavior of the iterative procedure for the real (left plots) and imaginary
(right plots) parts of the amplitudes Fa(s) (Eq. (2.23b), upper plots) and Fb(s) (Eq. (2.23c), lower
plots). The vertical line denotes the two-pion threshold.

3 Results

3.1 P -wave contribution

We now compare our KT amplitudes defined in the previous section to the experimental
data from the BESIII collaboration [3]. Given that the Dalitz plot distribution is not
publicly available, we are only able to analyze the di-pion mass projection of Eq. (2.7),
computed on the s ≡ m2

ππ = (p+ +p−)2 invariant mass. We start by using the unsubtracted
KT amplitude Eq. (2.14). The single free parameter a only affects the overall normalization
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Figure 4. BESIII (red circles) [3] measurement of the mππ invariant mass distribution for the
decay J/ψ → 3π as compared to our prediction without crossed-channel effects (dotted brown
line), with the unsubtracted KT amplitude (dashed green line) and our fit in Eq. (3.2) including
one subtraction (black solid line).

of the amplitude and can be fixed from the J/ψ → π+π−π0 decay width. Using the PDG
values ΓJ/ψ = 92.6 keV and BR(J/ψ → π+π−π0) = 2.10(8)% [39] one finds |a| ' 0.051
GeV−3. In Fig. 4, we compare our prediction, denoted as KT 0 sub (dashed green line),
to the mππ distribution of the measured number of events by BESIII (red circles) with
proper normalization (cf. Eq. (3.1)). In the figure, we also show the result obtained when
the crossed-channel rescattering is neglected (cf. Eq. (2.19)), in which case the global
normalization is found to be |a′| ' 0.046 GeV−3. As can be observed, the result of the
Omnès solution (dotted brown line) lies below that of the unsubtracted KT F1(s) solution
at the peak of the ρ-meson, and neither reproduce the experimental data in this region.
In addition, both appear to fail at describing the intermediate energy region. In order to
achieve a better description of the data, we next use the more flexible, once-subtracted
amplitude Eqs. (2.23b) and (2.23c), with the additional subtraction constant b fitted to
BESIII data. For our analysis, we define

χ2
data =

∑
i=1

(
Nev,i −NdΓth

i /dmππ

σNev,i

)2

, (3.1)

where Nev,i and σNev,i are, respectively, the experimental number of events distribution
and the corresponding error in the i-th bin and dΓth

i /dmππ is the theoretical expression
for the decay distribution (cf. Eq. (2.7)). The constant N is at this stage an arbitrary
normalization. Since we are not determining the branching ratio, we reabsorb the global
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normalization of the amplitude a into N and fix alone this overall constant from the fit to
the BESIII data. The sum in Eq. (3.1) runs over the 80 data points.

The χ2
data minimization yields

|b| = 0.198(1)(35) GeV−2 , φb = 2.675(3)(300) , (3.2)

which implies |a| = 0.0565(0)(22) GeV−3 for the normalization of the amplitude upon using
the BR(J/ψ → π+π−π0) from the PDG. The first error is statistical and the second one is
the theoretical systematic uncertainty attached to our calculations. The latter is obtained
from the absolute value of the difference between the fits performed with solutions I (central
solution) and III of the phase shift δ1

1(s) (cf. Fig. 1), which gives the largest variation. We
observe that the systematic errors attached are sizable, of about 18% and 11% for |b| and
φb, respectively. We also note that this value stays close to its sum-rule prediction given
in Eq. (2.22). Therefore, we conclude that the pion-pion P -wave phase shift saturates the
sum rule for the J/ψ → 3π partial wave to about 75%. This result is to be compared to
similar sum rules for ω → 3π in Ref. [38], where the fitted value of b was found to be quite
different than its sum-rule bsum, and for φ → 3π in Ref. [22], where it was observed that
the difference between the fitted b and bsum was small. The result of the fit is shown in
Fig. 4 as the solid black line with the normalization of the events distribution resulting
from the fits, N = 7.64(1)(33) × 108 in units of (2.4 MeV)−1. The gray error band in the
figure accounts for the systematic uncertainties associated to our calculations. It can be
seen that this fit provides a satisfactory description of experimental data up to mππ ∼ 1
GeV (the elastic region). However, we obtain high values of the χ2/dof of about 2001 , but
this problem is not critical. We shall come back to discuss this point below. Here we stress
that the once-subtracted KT amplitude is able to reproduce the ρ(770) function shape and
note that contributions of partial waves other than the P -wave seem to be required to
describe the intermediate energy region around mππ ∼ 1.5 GeV. The next allowed partial
wave is the F -wave, which we will include in the following subsection. As we will see, the
inclusion of an explicit F -wave improves the quality of the fit.

In Fig. 5, we show the Dalitz plot distribution resulting from our fit (the function
φ(s, t, u)|F (s, t, u)|2 with |a| = 1 is plotted, cf. Eq. (2.7)), which exhibits unambiguous
contributions from ρ(770) resonances which appear as bands along the Dalitz plot bound-
aries, with almost no events in the center of the Dalitz plot. The visual comparison with
the corresponding BESIII Dalitz-plot data shows a good agreement (see Fig. 2 in Ref. [3]).

3.2 Inclusion of the F -wave contribution

The isobar decomposition of the amplitude including F -waves follows from Eq. (2.8) and
reads [22, 38]:

F (s, t, u) = F1(s) + F1(t) + F1(u)

+ 1
16
[
κ2(s)P ′3(zs)F3(s) + κ2(t)P ′3(zt)F3(t) + κ2(u)P ′3(zu)F3(u)

]
,

(3.3)

1For our analysis we have read the data points from the paper’s figure and taken
√
Nevents,i as the error

corresponding to the i-th bin. Furthermore, we have taken into account an efficiency ε ' 0.3 for the number
of events and the errors.
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Figure 5. Dalitz plot distribution resulting from our fit in Eq. (3.2).

where F1(s) is the P -wave isobar (cf. Eq. (2.23a)), κ(x) = σπ(x)λ1/2(x,m2
J/ψ,m

2
π) with

σπ(x) =
√

1− 4m2
π/x, P ′3(z) is the derivative of the Legendre polynomial, F3(x) is the

F -wave isobar amplitude which only has a right-hand cut, and zt = (s − u)/κ(t), zu =
(s− t)/κ(u). The discontinuity of the F -wave is expressed by:

discF3(s) = 2i
(
F3(s) + F̂3(s)

)
sin δ3(s) e−iδ3(s) θ(s− 4m2

π) , (3.4)

where δ3(s) and F̂3(s) are the F -wave phase shift and inhomogeneity, respectively. Here,
we will simplify Eq. (3.4) by neglecting F̂3(s). The solution is then given by:

F3(s) = p3(s)Ω3(s) , (3.5)

where Ω3(s) is the F -wave Omnès function (cf. Eq. (2.15))

Ω3(s) = exp
[
s

π

∫ ∞
4m2

π

ds′

s′
δ3(s′)
s′ − s

]
. (3.6)

In order to obtain the required input phase δ3(s), we model the F -wave contribution
by a ρ3(1690) resonance (JPC = 3−−), which can be represented by a Breit-Wigner as
follows:

F3(s)|BW =
m2
ρ3

m2
ρ3 − s− imρ3Γ`=3

ρ3 (s) , (3.7)

with the energy-dependent width given by

Γ`R(s) = ΓRmR√
s

(
pπ(s)
pπ(m2

R)

)2`+1 (
F `R(s)

)2
, pπ(s) =

√
s

2 σπ(s) . (3.8)
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Figure 6. F -wave phase shift δ3(s) Eq. (3.10) (left plot) and output for the Omnès function Ω3(s)
Eq. (3.6) (right plot).

The F `R(s) denotes the Blatt-Weisskopf factor that limits the growth of the isobar [40].
For ` = 3 it is given by:

F `=3
R (s) =

√
z0(z0 − 15)2 + 9(2z0 − 5)2

z(z − 15)2 + 9(2z − 5)2 , z = r2
Rp

2
π(s) , z0 = r2

Rp
2
π(m2

ρ3) , (3.9)

with the hadronic scale rR = 2 GeV−1.
The phase can then be computed from the relation

tan δ3(s) = ImF3(s)|BW
ReF3(s)|BW

, (3.10)

which completes our representation of the F -wave isobar F3(s). Using mρ3 = 1688 MeV
and Γρ3 = 161 MeV from the PDG, in Fig. 6 we display the model for the phase δ3(s)
Eq. (3.10) and the output for the corresponding Omnès function Ω3(s) Eq. (3.6) that we
use for our analysis.

Finally, the function p3(s) in Eq. (3.5) is a polynomial that parametrizes the energy
dependence not directly related to the propagation of the ρ3(1690) resonance and fixes
the strength of the F -wave amplitude. In order to achieve a satisfactory description of
the data, we take p3(s) linear in s with parameters relative to the P -wave amplitude, i.e.
p3(s) = a(|c|eiφc + |d|eiφd s), such that the overall normalization of the amplitude a can be
factored out in Eq. (3.3) and absorbed in N (cf. Eq. (3.1)) as in the previous subsection.
By minimizing Eq. (3.1), we obtain the following values for the fit parameters:

|b| = 0.205(1)(34) GeV−2 , φb = 2.784(3)(298) , (3.11)

for the P -wave subtraction constant, and

|c| × 102 = 4.38(1)(1.46) GeV−2 , φc = 3.80(1)(5) ,

|d| × 102 = 1.58(1)(46) GeV−2 , φd = 0.65(1)(8) ,
(3.12)
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Figure 7. BESIII (red circles) [3] measurement of the mππ invariant mass distribution for the decay
J/ψ → 3π as compared to our fits in Eqs. (3.2) (solid black line), (3.11) and (3.12) (dot-dashed
blue line).

for the parameters of the F -wave subtracted polynomial p3(s). Again, the second error
in the previous equations is the systematic uncertainty obtained from using the different
P -wave phase shifts δ1(s) as input. The result of this fit implies |a| = 0.0581(1)(60) GeV−3

for the overall normalization of the amplitude and it is plotted in Fig. 7 as the dash-dotted
blue line using the event distribution normalization from the fits, N = 8.09(1)(41) × 108

in units of (2.4 MeV)−1. In the figure, the result of the standalone P -wave fit (cf. Eq.(3.2))
is also shown for comparison. As seen, the ρ3(1690)-induced F -wave contribution improves
the description of the data around 1.5 GeV. Numerically, we find that the individual F -
wave contribution is rather small, while the interference between the P - and F -waves gives
a correction of a few percent in the region mππ ∼ 1.5 GeV. The χ2/dof remains high (about
100). However, given the systematic uncertainties associated to our fits (blue error band
in Fig. 7), we conclude that our representation of the amplitude is capable of describing
within errors the two more prominent features shown by the data: the line shape of the
BESIII measurements in the vicinity of the ρ(770) resonance as well as the movement of the
function at mππ ∼ 1.5 GeV due to the F -wave effects.2 As for the Dalitz-plot distribution,
the F -wave effects provides no significant change with respect to Fig. 3.2 and we thus
refrain to show them here.

2We shall wait for the arrival of new Dalitz distribution experimental data from BESIII to ascribe a
strict statistical meaning to our χ2 fits.
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Figure 8. Diagrammatic representation of the two-pion contribution to the discontinuity of the
J/ψπ0 transition form factor [cf. Eq. (4.1)]. The blue and red circles represent, respectively, the full
s-channel P -wave J/ψ → 3π amplitude f1(s) and the pion vector form factor FVπ (s).

4 J/ψ → π0γ∗ transition form factor

The J/ψπ0 transition form factor (TFF), fJ/ψπ0(s), governs the J/ψ → π0γ∗ amplitude
and its energy dependence is experimentally accessible from the decays J/ψ → π0e+e− and
J/ψ → π0µ+µ−. At present, there is no measurement of the shape of the form factor and
the only experimental information on these decays is the measurement of the branching
ratio by the BESIII collaboration, BR(J/ψ → π0e+e−) = (7.56± 1.32± 0.50)× 10−7 [41].
This measurement was obtained subtracting the ρ resonance contribution and assuming
that the excited cc̄ resonance contributions dominate the energy-dependence of the form
factor. Refs. [28, 42] showed that subtracting this contribution is not well motivated, as the
light vector meson contributions to the form factor actually dominate the decay. Using the
formalism previously employed for the decays of light vector mesons ω/φ→ π0γ∗ [24, 43],
we present a dispersive description of fJ/ψπ0(s) comparable to [28], but with the difference
that our analysis is driven by the J/ψ → 3π experimental data analysis presented in Sec. 3.

A dispersive representation of fJ/ψπ0(s) is fully determined, up to possible subtractions,
by the discontinuity across the right hand cut. Here, we focus on the light-quark resonance
contributions to the discontinuity, which dominate the form factor at low and intermediate
energies. Additional cc̄ contributions can arise close to the upper limit of the accessible
phase space,

√
s = mJ/ψ − mπ0 , and in fact can dominate the transition form factor

there [28, 42], but these contributions appear in a region of the Dalitz decays which are
strongly suppressed by phase space [28, 42], rendering the task of experimentally observing
them nearly impossible. Bearing this in mind, and because of the absence of experimental
data for the form factor, we do not consider them in our analysis.

In order to be consistent with the elastic approximation in the J/ψ → π+π−π0 study,
we include only the two-pion intermediate state contribution to the discontinuity (see Fig. 8
for a diagrammatic interpretation):

discfJψπ0(s) = i
p3(s)
6π
√
s
F Vπ
∗(s) f1(s) θ(s− 4m2

π) , (4.1)

which requires as input the full s-channel P -wave J/ψ → 3π amplitude f1(s) given in
Eq. (2.10) and the pion vector form factor complex-conjugate F Vπ

∗(s), which we approxi-
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mate by the Omnès function (complex-conjugate) given in Eq. (2.15). Given that we are
using a once-subtracted dispersion relation for the J/ψ → 3π KT equations, an unsub-
tracted dispersion relation for the TFF, as used for instance in Ref. [28], would result in
a divergent integral if no cutoff is used. We, therefore, use a once-subtracted dispersion
relation for the TFF itself,

fJ/ψπ0(s) = |fJ/ψπ0(0)| eiφJ/ψπ0 (0) + s

12π2

∫ ∞
4m2

π

ds′

(s′)3/2
p3(s′) F Vπ

∗(s′) f1(s′)
(s′ − s) , (4.2)

where we indicate explicitly the existence of a non-vanishing phase of fJ/ψπ0(s) at s = 0.
This is implied by the cross-channel effects, i.e. the functions F Vπ

∗(s) and f1(s) do not
have the same phase, and the discontinuity of fJ/ψπ0(s) is in general complex [24, 43]. The
modulus of the subtraction constant |fJ/ψπ0(0)| can be fixed from the J/ψ → π0γ partial
decay width

Γ(J/ψ → π0γ) =
e2(m2

J/ψ −m
2
π0)3

96πm3
J/ψ

|fJ/ψπ0(0)|2 . (4.3)

Using the PDG value for J/ψ → π0γ [39] in combination with the above equation, one
obtains:

|fJ/ψπ0(0)| = 6.0(3)× 10−4 GeV−1 . (4.4)

The phase φJ/ψπ0(0) is a free parameter that can only be accessed from the transition form
factor experimental data (see e.g. [24]). Due to the absence of data for J/ψ → π0γ∗, we
set φJ/ψπ0(0) = 0 in our study.

In Fig. 9, we show our prediction for the absolute value of the transition form factor
resulting from Eq. (4.2) up to

√
s = 2 GeV (solid black line). In this figure, we also show

the result of using the unsubtracted KT solution for J/ψ → 3π (dashed blue line). It is
worth noting that both curves are similar and only a slight difference is observed at the ρ
peak. Additionally, the calculations when an unsubtracted dispersion relation for the form
factor is used are also shown in the figure, both with an unsubtracted (dotted red line) and
once-subtracted (dot-dashed green line) J/ψ → 3π amplitude. In the latter case, we have
cut the dispersive integral at 4 GeV2 to avoid the dispersion relation to diverge. Again,
both curves are similar. In this case, the value at the real photon energy can be calculated
from the sum rule [28, 43]:

fJ/ψπ0(0) = 1
12π2

∫ ∞
4m2

π

ds′
p3(s′)F V ∗π (s′)f1(s′)

(s′)3/2 . (4.5)

This value is found to be |fJ/ψπ0(0)| ≈ 5.0× 10−4 GeV−1, for both versions of the unsub-
tracted dispersion relation, and is in qualitative agreement with the value extracted from
the measured J/ψ → π0γ in Eq. (4.4), indicating that the normalization is saturated by
the two-pion intermediate state contribution by roughly 85%. The difference between the
various lines provides an estimate of the theoretical uncertainty associated to our descrip-
tion. We expect our study to strengthen the case for new experimental measurements of
the shape of this form factor, which would allow improving the understanding of radiative
J/ψ decays.
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Figure 9. Prediction for the absolute value of the transition form factor J/ψ → π0γ∗ using Eq. (4.2)
(solid black line) and variants of it. See main text for details.

5 Summary

We have analyzed the decay J/ψ → π+π−π0 within the framework of the Khuri-Treiman
equations, which satisfy the constraints imposed by unitarity, analyticity and crossing sym-
metry. We have included the P -wave effects of the ππ subsystem up to around 2 GeV, which
are controlled by the ππ P -wave scattering-phase shift. We have seen that one subtraction
in the P -wave amplitude is necessary to achieve a good description ot the experimental
data in the ρ(770)-region. The corresponding subtraction constant, which is complex, was
fixed from fits to the di-pion invariant mass distribution from BESIII. We have also seen
that the P -wave alone is not capable of reproducing the data in the mass region around
mππ ∼ 1.5 GeV, and that the inclusion of an F -wave contribution arising from the ρ3(1690)
brings theory closer to data in this region. In addition, we have provided predictions for
the transition form factor J/ψ → π0γ∗ up to 2 GeV. Our study lays the groundwork for
an event-by-event likelihood fit of high-precision data from J/ψ decays, which will soon be
available from BESIII.
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