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Abstract

N → ∆ transitions offer new possibilities for exploring the isovector component of the QCD quark angular momentum (AM)
operator causing the Ju−d flavor asymmetry in the nucleon. We extend the concept of QCD AM to transitions between baryon states,
using light-front densities of the energy-momentum tensor in transversely localized states. We calculate the N → ∆ transition AM
in the 1/Nc expansion, connect it with the Ju−d flavor asymmetry in the nucleon, and estimate the values using lattice QCD results.
In the same setup we connect the transition AM to the transition GPDs sampled in hard exclusive electroproduction processes with
N → ∆ transitions, enabling experimental study of the transition AM.

1. Introduction

Angular momentum (AM) has become an essential concept
in hadron structure physics. The AM operator is derived from
the QCD energy-momentum tensor (EMT) and represents the
conserved current associated with rotational invariance. It mea-
sures the AM of chromodynamic field configurations, arising
from their space-time dependence (orbital AM) and internal de-
grees of freedom (spin), and can be decomposed into quark and
gluon contributions. Its formal properties have been discussed
extensively and are now well understood; see Refs. [1, 2] for
reviews. Its experimental study becomes possible through the
connection with the generalized parton distributions (GPDs) de-
scribing hadron structure as probed in high-momentum-transfer
exclusive scattering processes; see Refs. [3, 4, 5, 6] for reviews.
Certain components of the EMT can be expressed as integrals
of the GPDs (moments) and thus indirectly be related to observ-
ables measured in exclusive processes [7, 8].

There is evidence of a large flavor asymmetry of the quark
AM in the nucleon, Ju−d. The normalization of the Pauli form
factor-type GPD E entering in the AM sum rules [7, 8] is con-
trolled by the nucleon anomalous magnetic moment, whose
isovector component is much larger than the isoscalar, κp−n =

3.7 vs. κp+n = −0.12. Lattice QCD calculations of the quark
AM show large flavor asymmetries [9, 10, 11, 12, 13]. GPD
models consistent with present experimental data also suggest
a large flavor asymmetry [3, 4, 5, 6]. The question of “isovector
AM” is central to the understanding of nucleon structure and
nonperturbative dynamics and needs further study.

Like any local composite operator in QCD, the quark fla-
vor components of the EMT have matrix elements not only be-
tween states of the same hadron (form factors) but also between
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states of different hadrons (transition form factors). This makes
it possible to formulate a concept of AM for transitions between
hadronic states. Of particular interest is the AM in N → ∆ tran-
sitions. Because the isospin difference is ∆I = 1, the transition
AM is a pure isovector and thus related to the Ju−d flavor asym-
metry in the nucleon. Because the structure of the N and ∆

baryons is closely connected, study of the transition AM can
provide further insight into nucleon structure. The transition
AM can be connected with the GPDs sampled in hard exclusive
processes with N → ∆ transitions, enabling its experimental
study [14, 15, 16].

The 1/Nc expansion of QCD is a powerful method for an-
alyzing the spin-flavor structure of hadronic matrix elements
of QCD operators such as the EMT and AM [17, 18]. It es-
tablishes a hierarchy among the spin-flavor components of the
N → N matrix elements of the EMT. It also connects the
N → N and N → ∆ (and even ∆ → ∆) matrix elements of
the EMT through the emergent spin-flavor symmetry in large-
Nc limit [19, 20, 21, 22, 23]. The method is therefore uniquely
suited for analyzing the flavor structure of QCD AM in the nu-
cleon and exploring its extension to N → ∆ transitions [3].

In this letter we study the isovector QCD AM in N → ∆

transitions and its connection with the Ju−d flavor asymmetry
in the nucleon. We formulate the concept of transition AM us-
ing light-front densities of the EMT in transversely localized
baryon states. We calculate the N → ∆ transition AM in the
1/Nc expansion, connect it with the Ju−d flavor asymmetry in
the nucleon, and estimate its numerical value using lattice QCD
results. In the same setup we connect the transition AM to the
GPDs sampled in hard exclusive processes with N → ∆ transi-
tions.

2. Transition angular momentum

The definition of the QCD AM operator and the interpreta-
tion of its N → N matrix elements have been discussed ex-
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tensively in the literature [1, 2]. The extension to transitions
B → B′ between baryon states with different mass and spin
raises new questions that require fresh consideration. The def-
inition of the nucleon AM of Ref. [7] uses the specific form
of the N → N matrix element of the EMT and cannot imme-
diately be extended to B → B′ transitions. The definition of
the nucleon AM density of Ref. [8] uses the Breit frame and
assumes heavy nucleons (non-relativistic motion) and becomes
ambiguous for transitions between states with different mass.

The formulation of AM as a transverse density at fixed light-
front time [2] offers a natural framework for the extension to
B → B′ transitions. The light-front formulation is fully rela-
tivistic and can be extended to transitions between states with
different mass and spin. It permits the preparation of trans-
versely localized states independently of their mass, using the
effectively non-relativistic kinematics in the transverse space.
It contains a prescription for defining the hadron spin states
through the light-front helicity, which enables consistent spin
decomposition of the matrix elements. It also provides a simple
mechanical picture of the longitudinal AM density as the cross
product of transverse position and the momentum density mea-
sured by the EMT, which can be applied directly to B → B′

transitions (see below). Transverse densities for N → ∆ tran-
sitions have been used successfully in the description of elec-
tromagnetic structure [24]. Here we employ this formulation to
define the AM in B→ B′ transitions and discuss its properties.

In the following we use the symmetric (Belinfante-improved)
version of the EMT, which gives rise to an AM operator mea-
suring the total AM; the separation of spin and orbital AM is
discussed below [1, 2]. The operator describing the contribu-
tion of quarks with flavor f is

T̂αβ
f (x) = iψ̄ f (x)γ{α

←→
∇ β}ψ f (x), (1)

where
←→
∇ µ ≡ 1

2 (
−→
∂ µ −

←−
∂ µ)− igAµ is the covariant derivative and

{αβ} ≡ 1
2 (αβ + βα); the operator for gluons is given in Ref.[2]

and not needed here. We assume two quark flavors and define
the isoscalar and isovector components as

(T̂ V,S )αβ ≡ T̂αβ
u ± T̂d

αβ. (2)

Note that these quark operators are not conserved currents; only
the sum of the isoscalar quark and gluon EMT is a conserved
current obtained from Noether’s theorem. We consider the tran-
sition matrix elements of the operators Eq. (2) between general
baryon states with masses m and m′ and 4-momenta p and p′,

〈B′, p′|T̂αβ(0)|B, p〉, (3)

where B ≡ {S , S3, I, I3} and B′ ≡ {S ′, S ′3, I′, I′3} collectively de-
note the spin-isospin quantum numbers. The choice of spin
states and the spin-isospin dependence of the matrix element
are discussed below. The 4-momentum transfer is ∆ ≡ p′ − p,
the invariant momentum transfer t ≡ ∆2, and the average baryon
4-momentum is P ≡ (p′ + p)/2. The 4-vectors and tensors are
described by the light-front components p± ≡ p0 ± p3, pT ≡

(p1, p2). We consider Eq. (3) in a class of frames where ∆+ = 0

and PT = 0 (generalized Drell-Yan-West frame). In these
frames t = −∆2

T < 0.1 In the notation p = [p+, p−, pT ], the
momentum components are given by

p =

[
p+,

m2 + |∆T |
2/4

p+
,−
∆T

2

]
,

p′ =

[
p+,

m′2 + |∆T |
2/4

p+
,
∆T

2

]
,

∆ =

[
0,

m′2 − m2

p+
,∆T

]
. (4)

p+ remains undetermined, and its choice selects a particular
frame in the class (boost parameter). The matrix element Eq.(3)
becomes function of ∆T . For constructing the AM, we take the
+i (i = 1, 2) component of the EMT

T +i(∆T |B′, B) ≡ 〈B′, p′|T̂ +i(0)|B, p〉, (5)

and define a transverse coordinate density as

T +i(b|B′, B) ≡
∫

d2∆T

(2π)2 e−i∆T bT +i(∆T |B′, B). (6)

This quantity can be interpreted as the transition matrix ele-
ment of T +i at the transverse position b between baryon states
localized in transverse space at the origin [26, 27, 28]. The
different masses m′ , m do not affect the preparation of the
localized states because the description of the transverse mo-
tion in light-front quantization is independent of the mass, as in
a non-relativistic system. We define the longitudinal transition
AM as (the superscript z denotes the 3-component)

2S z(S ′3, S3) JB→B′ ≡
1

2p+

∫
d2b
[
b × T+T (b|B′, B)

]z
, (7)

where the factor S z(S ′3, S3) accounts for the kinematic spin de-
pendence (to be specified below) and JB→B′ is independent of
the spin projections S3, S ′3 (reduced matrix element). Equa-
tion (7) generalizes the light-front AM definition for diagonal
transitions discussed in Refs. [2, 29, 30]. The integrand can be
interpreted as the transverse coordinate space density of AM
and gives rise to a simple mechanical picture [2, 29, 30]. In
terms of the transverse momentum-dependent matrix element
Eq. (5), the AM Eq. (7) is expressed as

2S z(S ′3, S3) JB→B′ =
1

2p+

[
−i

∂

∂∆T
× T+T (∆T |B′, B)

]z
∆T =0

. (8)

The baryon spin states in Eq. (5) are chosen as light-front he-
licity states. They are obtained by light-front boosts from rest-
frame spin states with spins quantized in z-direction, and thus

1In the matrix element Eq. (3) the invariant momentum transfer can also
attain timelike values 0 < ∆2 < (m′ − m)2. The following definition of the
transition AM and its density refers to the spacelike part of the form factors.
This is consistent with the standard definition of the transition magnetic mo-
ment through the t = 0 magnetic transition form factor in electromagnetic
processes [25]. In the 1/Nc expansion of N–∆ transition matrix elements,
(m∆ − mN )2 = O(N−2

c ) is strongly suppressed.
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effectively depend on the rest-frame spins S , S ′ and their pro-
jections S3, S ′3. The dependence of the matrix element Eq. (5)
on the transverse direction of ∆T and on the spin projections S3
and S ′3 is kinematic and can be made explicit by performing a
transverse multipole expansion. Showing only the dipole term
(linear in ∆T ) that gives rise to the longitudinal AM, we write

T+T (∆T |S ′3, S3) = 2p+[i∆T × ezS z(S ′3, S3)] F1(−∆2
T ) + . . . , (9)

where ez is the unit vector in the z-direction, S z(S ′3, S3) is the z-
component of a spin 3-vector depending on the rest-frame spin
projections S3 and S ′3 (in a form that is specific to the spins S
and S ′), and F1(t) is a form factor. For a 1

2 →
1
2 transition

(N → N), the z-component of the spin vector is

S z(S ′3, S3) ≡ S3 δ(S3, S ′3) = ± 1
2 . (10)

More generally, for any transition between states of the same
spin S → S with S = 1

2 ,
3
2 , . . . (N → N,∆ → ∆, . . .), the z-

component of the spin vector is

S z(S ′3, S3) =
√

S (S + 1) 〈S S3, 10|S S ′3〉, (11)

where 〈 j1m1 j2m2|JM〉 are the vector coupling coefficients. For
transitions between states with spins |S ′ − S | = 0, 1 such as
1
2 →

3
2 (N → ∆) we define the spin vector such that

S z(S ′3, S3) =
√

S (S + 1)

√
2S + 1
2S ′ + 1

〈S S3, 10|S ′S ′3〉, (12)

which reduces to Eq. (11) if S ′ = S (with this definition the
form factor is independent of S and S ′ in large-Nc limit; see
below). In each case, the AM obtained from Eq. (9) with Eq. (8)
is then given by the form factor at t = 0

JB→B′ = F1(0). (13)

The normalization of JB→B′ adopted here is such that the spin
sum rule for the nucleon, which involves the isoscalar quark
and the gluon EMT, is [2, 30]

JS
N→N + Jglu

N→N = 1
2 . (14)

The isospin dependence of the matrix element Eq. (3) is gov-
erned by the usual selection rules. The isoscalar component
of the EMT in Eq. (2) connects only states with I′ = I, while
the isovector component can connect states with |I′ − I| = 0 or
1. In both cases the isospin projection is conserved, I′3 = I3.
More generally, the matrix element of the isovector operator in
Eq. (2) is proportional to 〈II3, 10|I′I3〉; for the transition 1

2 →
3
2

(N → ∆) this factor is 〈 1
2 I3, 10| 32 I3〉 =

√
2/3 for both I3 = ± 1

2 .
These isospin factors are included in the values of the transition
AM defined in Eqs. (7) and (8).

3. N → ∆ transition angular momentum in 1/Nc expansion

In the Nc → ∞ limit of QCD, the dynamics is characterized
by the emergent SU(2N f ) spin-flavor symmetry (here N f = 2)
[19, 20, 21, 22, 23]. The N and ∆ baryons appear in the totally

Tµν

covariant form

T++, T+i, T ij

LF components
AM definition

T 00, T 0k, T kl

3D components
1/Nc expansion

matching

Figure 1: Matching of light-front and 3D components of the EMT.

symmetric representation with spin/isospin S = I = 1
2 ,

3
2 , ....

Transition matrix elements of QCD operators between these
states are thus connected by the symmetry. A systematic ex-
pansion in 1/Nc can be performed, including subleading cor-
rections [22, 23]. The baryon masses are mN,∆ = O(Nc), and
the mass splitting is m∆ − mN = O(N−1

c ). Here we apply this
method to the transition matrix elements of the EMT and the
transition AM.

The 1/Nc expansion of baryon transition matrix elements
is performed in a class of frames where the baryons have 3-
momenta |p|, |p′| = O(N0

c ), so that the velocities are parametri-
cally small, |p|/m, |p′|/m′ = O(N−1

c ). The 3-momentum transfer
is ∆ = p′ − p = O(N0

c ), and the energy transfer for transitions
within the same multiplet is ∆0 = E′ − E = O(N−1

c ). In par-
ticular, for the 1/Nc expansion of the EMT we choose the sym-
metric frame where the average baryon 3-momentum is zero,
P = (p′ + p)/2 = 0 (generalized Breit frame). In the notation
p = (p0, p), the 4-momentum components are given by

p = (E,−∆/2), E =
√

m2 + |∆|2/4,

p′ = (E′, ∆/2), E′ =
√

m′2 + |∆|2/4,

∆ = (E′ − E,∆). (15)

In this frame the only 3-vector arising from the particle mo-
menta is the momentum transfer ∆. The matrix elements of
the tensor operator obey standard angular momentum selection
rules, and a multipole expansion can be performed for the com-
ponents

T 00, T 0k, T kl (k, l = 1, 2, 3). (16)

The 1/Nc expansion of the light-front components of the
EMT of Sec. 2 is obtained by matching the ordinary 4-vector
components with the light-front components in the same frame
(see Fig. 1). The symmetric frame Eq. (15) is contained in the
class of ∆+ = 0 frames Eq. (4); namely, it is the frame with

p+ =
√

P2 =
√

(m2 + m′2)/2 − t/4. (17)

The light-front energy transfer in this frame is ∆− = O(N−1
c ),

see Eq. (4), and thus small and of the same order as the ordinary
energy transfer ∆0. The light-front components of the EMT are
then calculated as

T +i = T 0i + T 3i (i = 1, 2) etc. (18)
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The matching procedure performed here is unambiguous be-
cause one is dealing with on-shell matrix elements. It automati-
cally implements 3-dimensional rotational invariance, which is
not manifest in the light-front formulation and must be imple-
mented through conditions on light-front matrix elements (an-
gular conditions). It is analogous to the procedure used in nu-
clear physics for matching the light-front nuclear wave function
with the 3-dimensional nonrelativistic wave function [31, 32].

We have computed the 1/Nc expansion of the 3-dimensional
multipoles of the EMT in the symmetric frame Eq. (15) using a
method based on the soliton picture of large-Nc baryons [3, 33];
equivalently one can use methods based on the algebra of the
spin-flavor symmetry group [22, 23]. The full results will be
presented elsewhere [34]; in the following we quote only the
multipoles relevant to the AM. In leading order of 1/Nc, the
matrix elements of the isoscalar and isovector components [see
Eq.(2)] of T 0k are of the form

〈B′,∆/2|(T̂ S )0k |B,−∆/2〉 = 2m2〈S i〉B′B

[
iεkil ∆

l

m
JS

1 (t) + ...

]
,

(19)

〈B′,∆/2|(T̂ V )0k |B,−∆/2〉 = 2m2〈D3i〉B′B

[
iεkil ∆

l

m
JV

1 (t) + ...

]
,

(20)

where we have omitted spin-independent terms ∝ ∆k that do not
contribute to the AM. The spin/isospin dependence is contained
in the structures (here i = 0,±1 denote the spherical 3-vector
components)

〈S i〉B′B =
√

S (S + 1) 〈S S3, 1i|S ′S ′3〉 δS ′S δI′IδI′3I3 , (21)

〈D3i〉B′B = −

√
2S + 1
2S ′ + 1

〈S S3, 1i|S ′S ′3〉 〈II3, 10|I′I′3〉. (22)

S i has only matrix elements between same spin/isospin, while
D3i can connect states with spin/isospin differing by one.2 Thus
(T̂ )S in Eq. (19) contributes only to N → N and ∆ → ∆ transi-
tions, while N → ∆ transitions arise only from (T̂ )V in Eq. (20).
JS ,V

1 (t) in Eqs. (19) and (20) are the isoscalar and isovector
dipole form factors. They are found to be of the order [34]

JS
1 = O(N0

c ), JV
1 = O(Nc). (23)

The matrix elements of T 3k are suppressed by 1/Nc compared to
those of T 0k in both the isoscalar and isovector sector. The light-
front component T +i is therefore given by T 0k in leading order
of the 1/Nc expansion, and we can compute the AM Eq. (8)
from Eqs. (20)–(23). We find:

(i) The isovector AM in the nucleon is leading in 1/Nc; the
isoscalar is subleading.

JS
N→N = JS

1 (0) = O(N0
c ), JV

p→p = −
2
3
JV

1 (0) = O(Nc). (24)

2The matrix elements Eq. (21) and (22) appear from the collective quan-
tization of the soliton rotations [3, 33]. In the formulation of the 1/Nc ex-
pansion based on the SU(4) spin-flavor symmetry [21, 22, 23], 〈Dai〉B′B(i, a =

1, 2, 3) is related to the matrix element of the spin-flavor generator Gia, namely
〈Dai〉B′B = −4/(Nc + 2)〈Gia〉B′B + O(N−2

c ).

Lattice QCD JS
p→p JS

∆+→∆+ JV
p→p JV

p→∆+ JV
∆+→∆+

[9] µ2 = 4 GeV2 0.33∗ 0.33 0.41∗ 0.58 0.08
[10] µ2 = 4 GeV2 0.21∗ 0.21 0.22∗ 0.30 0.04
[11] µ2 = 4 GeV2 0.24∗ 0.24 0.23∗ 0.33 0.05
[12] µ2 = 1 GeV2 − − 0.23∗ 0.33 0.05
[13] µ2 = 4 GeV2 − − 0.17∗ 0.24 0.03

Table 1: Estimates of the isoscalar and the isovector AM for p → p, p → ∆+

and ∆+ → ∆+ obtained from lattice QCD data on JS
p→p and JV

p→p and the
relations provided by the leading-order 1/Nc expansion. Here S ,V ≡ u ± d,
and the nucleon matrix elements are normalized as in Eq. (14). Input values are
marked by an asterisk ∗.

This explains the observed large flavor asymmetry of the AM.
Note that this scaling is consistent with that of the quark spin
contribution to the nucleon spin as given by the axial coupling,
gS

A = O(N0
c ) and gV

A = O(N1
c ).

(ii) The isoscalar component of the AM in the nucleon and ∆

are related by

JS
N→N = JS

∆→∆ = JS
1 (0). (25)

This provides insight into the spin structure of ∆ resonance.
Note that this relation is consistent with the spin sum rule for
the ∆ state.

(iii) The isovector AM in the nucleon, the AM in the N → ∆

transitions, and the isovector AM in the ∆ are related by

JV
p→p =

1
√

2
JV

p→∆+ = 5JV
∆+→∆+ = −

2
3
JV

1 (0). (26)

This suggests that the N → ∆ transition AM is large and pro-
vides a way to probe the isovector nucleon AM with N → ∆

transition measurements.

4. N → ∆ transition angular momentum from lattice QCD

We now evaluate the transition AM using the leading-order
1/Nc expansion relations together with lattice QCD results for
the EMT matrix elements. This provides a numerical estimate
of the transition AM and illustrates the dominance of the isovec-
tor component of the nucleon AM. Lattice QCD calculations
of N → N matrix elements of the symmetric EMT Eq. (1)
have been performed in various setups (fermion implementa-
tion, normalization scale, pion mass) [9, 10, 11, 12, 13]. Using
these as input, we obtain the values listed in Table 1. One ob-
serves that a sizable isovector component of the nucleon AM
is obtained in all lattice calculations (similar large values are
obtained in the chiral quark-soliton model [35]). Note that the
lattice results for the isoscalar nucleon AM in Refs. [9, 10, 11]
are more uncertain than the isovector, as they involve discon-
nected diagrams and require careful treatment of the mixing of
quark and gluon operators. Furthermore, when comparing the
1/Nc expansion with numerical values of matrix elements, one
needs to keep in mind that it is a parametric expansion, and that
the numerical values are determined not only by the power of
1/Nc but also coefficients of order unity.
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5. N → ∆ transition angular momentum from GPDs

We now connect the N → ∆ transition AM with the transition
GPDs measured in hard exclusive electroproduction processes
such as DVCS eN → e′γ∆ [14]. This opens the prospect of
future experimental studies of the transition AM. QCD factor-
ization at leading-twist accuracy expresses the amplitudes of
hard exclusive processes in terms of matrix elements of quark
light-ray (or partonic) operators of the type [3, 4, 5]

Ô f (z) = ψ̄ f (−z/2)[−z/2, z/2]/zψ f (z/2), (27)

where z is a light-like 4-vector (z2 = 0) and [−z/2, z/2] denotes
the gauge link operator. The non-local operator Eq. (27) can be
represented as a power series in the distance z,

Ô f (z) = zαψ̄ f (0)γαψ f (0) + zαzβψ̄ f (0)γ{α
←→
∇ β}ψ f (0) + . . . , (28)

where the coefficients are local operators representing totally
symmetric traceless tensors of spin n ≥ 1 (twist-2 operators).
The spin-2 operator coincides with the symmetric EMT Eq. (1).
The light-like vector z is chosen such that it has light-front com-
ponents along the “minus” direction, z− , 0, z+ = zT = 0.
The expansion Eq. (28) thus involves the light-front component
T ++ of the EMT. In our approach based on the 1/Nc expansion,
this light-front component can be related to the 3D components
T 00,T 0i,T i j, and in this way be connected with the light-front
component T +i entering in the transition AM Eq. (7). This es-
tablishes a connection between the transition AM defined by
Eq. (7) and the leading-twist partonic operators Eq. (27).

The transition matrix element of the isovector light-ray op-
erator Eq. (27) between N and ∆ states (here, between p and
∆+ states) is parametrized covariantly through the spectral rep-
resentation

〈∆+, p′|ÔV (z)|p, p〉 =

√
2
3

∑
I=M,E,C

∫ 1

−1
dx e−ixP·z HI(x, ξ, t)

× uα(p′, S ′3) (KI)αβ zβ u(p, S 3). (29)

uα is the spin- 3
2 Rarita-Schwinger vector-bispinor of the ∆, and

u is the spin- 1
2 bispinor of the nucleon. For the invariant bilin-

ear forms in the decomposition in Eq. (29), various choices are
possible (see also discussion below). Here we use the tensors
as defined in Ref. [3]. The magnetic tensor (M) is

(KM)αβ =
3(m∆ + mN)

2mN[(m∆ + mN)2 − t]
iεαβγδPγ∆δ; (30)

the other structures are given in Ref. [3]. The GPDs HI(x, ξ, t)
in Eq. (29) depend on the spectral variable x, the light-cone mo-
mentum transfer ξ ≡ −∆·z/(2P·z), and the invariant momentum
transfer t. They are defined such that their first moments satisfy
the relations (sum rules)∫ 1

−1
dx HM,E,C(x, ξ, t) = 2G∗M,E,C(t), (31)

where G∗M,E,C(t) are the γN∆ transition form factors of
Ref. [25], defined by multipole expansion of the decay ∆→ γN

in the ∆ rest frame (magnetic dipole, electric quadrupole, and
Coloumb quadrupole form factors).

In the context of the 1/Nc expansion we can now relate the
N–∆ transition AM of Sec. 2 to the second moments of the
GPDs of Eq. (29). The 1/Nc expansion of the GPDs is per-
formed in the parametric regime where x, ξ = O(N−1

c ) and
t = O(N0

c ) [36, 37] and can be implemented using the tech-
niques described in Refs. [3, 33]. The dominant N → ∆ GPD
is the magnetic GPD HM . In the large-Nc limit it scales as [3]

HM(x, ξ, t) ∼ N3
c × function(Ncx,Ncξ, t). (32)

The power N3
c multiplying the scaling function can be inferred

from the known Nc scaling of the N–∆ transition magnetic
moment, which determines the first moment of HM through
Eq. (31),

µ∆N

m
≡

G∗M(0)
m

=
1

2m

∫ 1

−1
dx HM(x, ξ, 0) = O(Nc), (33)

where m = O(Nc) is the common baryon mass in the large-Nc

limit. In leading order of 1/Nc we obtain∫ 1

−1
dx xHM(x, ξ, 0) = 2JV

p→∆+ = −
4
√

2
3

JV
1 (0), (34)

which agrees with the Nc scaling established earlier, Eq. (24).3

The derivation uses the covariant decomposition of the transi-
tion matrix elements of the EMT of Ref. [39]. This provides the
desired connection between the N → ∆ transition AM as de-
fined in Eq. (7) and the second moment of the transition GPDs.

In this study we have defined the transition AM through
the T +i component of the EMT, which can be interpreted as
the cross product of momentum and distance in the transverse
plane. The AM can be defined alternatively through the T ++

component of the EMT, which can be understood as a dipole
distortion of the two-dimensional momentum distribution when
the baryon spins are polarized in the transverse direction. This
definition of the transition AM will be explored elsewhere [34].

6. Discussion

In this work we have introduced the concept of transition AM
and applied it to N → ∆ transitions in the context of the 1/Nc

expansion. We want to discuss the significance and limitations
of the present results and possible future extensions.

The present calculations are limited to the leading order of
the 1/Nc expansion. At this level the N–∆ mass difference can
be neglected, and the relation between the light-front compo-
nents and the 3-dimensional multipoles of the EMT involve
only a single structure. However, the method developed in
Sec. 3 is general and permits also the calculation of sublead-
ing terms. They include “dynamical” corrections due to 1/Nc

3The coefficient in Eq. (34) agrees with the one in the large-Nc relation
between the N → ∆ and N → N GPDs quoted in Ref. [38], but disagrees with
the one quoted in Ref. [3].
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suppressed structures, and “kinematic” corrections due to the
baryon motion and finite masses. Computing these corrections
will be the objective of future work.

The present study uses the symmetric version of the EMT,
which measures the total AM of field configurations in QCD
[2]. Separation of orbital and spin AM in B → B′ transitions
would be possible by extending the definitions Eq. (7) et seq. to
the non-symmetric EMT and the spin operator [2]. Our results
show that the total AM and the quark spin (represented by the
axial current) have the same 1/Nc scaling in the isoscalar and
isovector sector, see Eq. (24), which is natural and required for
consistent scaling of the isoscalar spin sum rule. The separation
of spin and orbital AM is a question of dynamics and can be
studied with dynamical models that are consistent with the 1/Nc

expansion, such as the chiral quark-soliton model.
The operators describing the quark contributions to the EMT

and the AM contributions derived from it are scale dependent;
only the sum of isoscalar quark and gluon AM is protected by
the spin sum rule and scale-independent; see e.g. Refs. [40, 41].
An advantage of the isovector component is that the scale de-
pendence is much weaker than that of the isoscalar (or of in-
dividual quark flavor components), as there is no mixing with
gluon operators. The scale dependence can be taken into ac-
count in a more quantitative analysis.

Some comments are in order regarding the conservation of
the EMT. Only the total EMT of QCD, given by the sum of the
isoscalar quark and gluon tensors, is a conserved current as ob-
tained from Noether’s theorem. The isovector quark part stud-
ied here is generally not conserved. This circumstance needs to
be taken into account when performing a covariant decomposi-
tion of the transition matrix elements of the EMT. In the present
study we work directly with the light-front components and 3D
multipoles, where this problem does not arise. But one should
be aware of it when comparing with the formulation in terms of
the covariant decomposition with invariant form factors.

The definition of the N → ∆ transition GPDs of Ref. [3]
and other works refers to the γN∆ transition form factors of
Ref. [25], which are defined through a multipole expansion of
the decay ∆ → γN in the ∆ rest frame. While this frame can
be used in the entire physical region of t < (m∆ − mN)2, it does
not appear natural for the definition of light-front transition ma-
trix elements. It would be worth to revisit the definition of the
transition GPDs using the class of frames introduced in Sec. 2.

In this work we have described a method for computing the
1/Nc expansion of light-front tensor operators by matching the
light-front components with 3D components in a special frame.
The procedure implements 3-dimensional rotational invariance
of the light-front components (which is encoded in the matrix
elements of the 3D components) order-by-order in 1/Nc. The
method is general and can be extended to other states and op-
erators than those considered here. It can be applied to matrix
elements of the EMT in hadronic states with higher spin. A par-
ticular advantage here is that it does not require the covariant
decomposition of the matrix element in terms of invariant form
factors, which becomes very cumbersome for higher spins. The
method can also be applied to other tensor operators, such as the
generalized form factors of twist-2 spin-n operators.
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