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Transition generalized parton distributions have emerged as a novel tool for studying the quan-
tum chromodynamics (QCD) structure of resonances. They provide an integrated picture of the
transition form factors and the transition parton distribution functions. In this study, we delve into
the angular momentum (AM) properties for the N → ∆ transition and its decomposition into the
orbital angular momentum and the intrinsic spin in the context of the quark distribution functions.
First, we explore the spin-flavor structures within the framework of both the overlap representations
of the three-quark light-cone wave functions and the large Nc limit of QCD. We then estimate the
AM quark distribution functions for the N → ∆ transition. Our analysis reveals a substantial flavor
asymmetry present in both the orbital angular momentum and intrinsic spin components.

I. INTRODUCTION

The study of nucleon tomography through generalized parton distributions (GPDs) has been a prominent topic in
hadron physics for several decades, offering valuable insights into the internal structure of hadrons; see Refs. [1–3]
for a review. The GPDs are defined as functions of the skewness ξ, the longitudinal momentum fraction of the
nucleon carried by the partons x, and the squared momentum transfer t between initial and final states. The GPDs
parametrize the matrix element of the non-local quark and gluon operators on the light cone and provide an integrated
picture of the parton distribution functions (PDFs) and the elastic form factors. In the forward limit, at zero ξ and t,
the GPDs are reduced to the nucleon PDFs. Furthermore, the Mellin moments of the GPDs are related to the elastic
form factors.

Similar to nucleon GPDs, transition GPDs can be introduced as the non-diagonal matrix elements of non-local QCD
operators. These transition matrix elements can involve the nucleon and excited states, such as N → N∗ or even
N∗ → N∗. The study of transition GPDs offers a new avenue to explore the QCD structure and the dynamic properties
of resonances. Recently, the analysis of the polarized cross section from the hard exclusive π−∆++ electroproduction
off an unpolarized hydrogen target has been performed by the CLAS collaboration [4] and will reveal the N → ∆
transition GPDs. Theoretical studies have also been performed on the exclusive electroproduction of the π −∆ final
states [5] and the deeply virtual Compton process e−N → e−γπN [6].

The first Mellin moments of the transition vector and axial vector GPDs at zero momentum transfer t = 0 correspond
to the isovector components of the anomalous magnetic moments κu−dp→∆+ and axial charge gu−dA,p→∆+ , respectively.

In addition, the second Mellin moments, known as the “transition angular momentum (AM)” Ju−dp→∆+ in N → ∆

transitions, have recently been studied and related to the transition vector GPDs in the large Nc limit of QCD in
Ref. [7]. In addition, the relation between the quadrupole GPDs HE and HC and the isovector quadrupole EMT
form factors has been established, together with mechanical interpretations of the transition energy-momentum tensor
(EMT) form factors [8]. The Lorentz structure of the transition matrix element of the EMT current has been studied
in Ref. [9], and the corresponding Lorentz invariant functions have been estimated using the light-cone QCD sum
rule [10]. However, the forward limits of the GPDs are still unknown. The study of the transition PDFs is a crucial
aspect of the understanding of the N → ∆ transitions by nucleon tomography.

Reference [7] discusses the definition of the transition AM on the light cone, which provides a clear and unam-
biguous two-dimensional mechanical interpretation as opposed to a three-dimensional distribution. This approach
was exemplified by the interpretation of the non-diagonal matrix element of the +-component of the electromagnetic
current as a light-cone charge distribution [11, 12]. However, the price to pay is that the longitudinal information
of the distribution is lost and taken over by the quark distribution functions. Numerous studies have addressed this
problem for the nucleon [2, 13–18]. Therefore, the tomography of the N → ∆ transition must include the study of its
quark distribution function.

In this study, we aim to investigate the quark distribution functions using the three-quark (3Q) light-cone wave
function (LCWF). The unique properties of the relativistic 3Q LCWF for the nucleon and its partial wave structure
have been extensively studied [19–21]. Building on this uniqueness, we explore the spin-flavor structure of the AM
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in terms of the overlap representation of the 3Q LCWFs. Furthermore, we address a dynamic aspect concerning
the decomposition of the total AM into the intrinsic spin and the orbital angular momentum (OAM). The specific
dynamical properties of the LCWFs are derived from the light-cone chiral quark-soliton model (LCχQSM). In this
model, the baryon is viewed as Nc valence quarks bound by the pion mean field, and the corresponding system is
boosted to the infinite momentum frame and described by the LCWFs. It was first developed by Diakonov, Petrov
and Polyakov [22, 23] and then elaborated by Lorcé [24–27]. More recently, the normalization fN of the LCWF was
determined in Ref. [28].

An alternative method to study the quark distribution functions in the N → ∆ transition is to use the traditional
formulation of the chiral quark soliton model (χQSM) for slowly moving baryons [29, 30]. This model embodies the
spin-flavor symmetry in the large Nc limit of QCD [31–35]. Using this spin-flavor symmetry and having the quark
distribution functions for the nucleon as input, one can estimate the corresponding distributions for the N → ∆
transition and the ∆ baryon. Moreover, a notable advantage of this approach is its explicit inclusion of all contributions
from quark-antiquark pairs to the quark distribution functions, which are neglected in the overlap representation of
the 3Q LCWFs; see Ref. [36] for more details. This model has been successful in describing the light quark flavor
asymmetry [37, 38], the Gottfried sum rule [39, 40], the transversity distributions [41, 42], and the strangeness in
scalar [43] and vector [44] and axial-vector [45, 46] charges. More recently, the quasi-parton distributions [47, 48] have
been studied. Therefore, to obtain more realistic results for the quark distribution functions in the N → ∆ transition,
we take data from the χQSM on the nucleon quark distribution functions [37, 38].

The structure of this paper is as follows. In Section II, we begin by introducing the formal definitions of the
longitudinally polarized and OAM quark distribution functions for a non-diagonal matrix element, starting from the
EMT current. In section III, we study the spin-flavor structures of these quark distribution functions in the context
of the overlap of the 3Q LCWFs. We evaluate the contributions of the OAM and the intrinsic spin to the total AM
in the N → ∆ transition. In section IV we establish the relations between the quark distribution functions for the
nucleon, the ∆ baryon, and the N → ∆ transition in the context of the large Nc limit. We also establish a connection
between the transition quark distribution functions and the axial vector GPDs. In order to obtain more realistic
results for the quark distribution functions, we have taken data from the χQSM on the quark distribution functions
of the nucleon. From this we derive the corresponding distributions for the ∆ baryon and the N → ∆ transition.
Finally, we summarize our results in the concluding section.

II. QUARK DISTRIBUTION FUNCTIONS

In Ref. [7], the QCD AM and its form factor in the N → ∆ transition were newly introduced. In this work, we
provide the separation of the AM into the OAM and the intrinsic spin, and the x-dependent distributions (quark
distribution functions).

Before discussing the definition of the quark distribution functions, we start with the QCD EMT current. The +i-
components of the energy-momentum tensor are related to the normalizations of the longitudinally polarized ∆q and
OAM lqkin quark distribution functions [49], where q denotes the quark flavor. According to Ji’s decomposition [50],
the quark part of the EMT current is expressed as

T̂µνkin,q =
i

2
ψ̄q

(
γµ
←→
D ν
)
ψq, (1)

where
←→
D µ =

←→
∂ µ−2igAµ with

←→
∂ µ =

−→
∂ µ−

←−
∂ µ. The symmetric and antisymmetric parts of the kinetic EMT current

can be represented by the divergence of the spin density and the Belinfante-Rosenfeld EMT current, respectively. These
expressions are described in the Refs. [49, 51]:

T̂
[µν]
kin,q = −∂αŜαµνq , T̂

{µν}
kin,q = 2T̂µνq , (2)

where T̂µνq is the Belinfante-Rosenfeld EMT current, and {ab} = ab + ba, [ab] = ab − ba. It is important to note
that while the isoscalar EMT current is conserved, the isovector component of the EMT current is not conserved. In
the symmetric frame on the light cone, known as the generalized Drell-Yan-West (DYW) frame [7] with P⊥ = 0 and
∆+ = 0, the EMT distributions are defined by the Fourier transform of the baryonic matrix element of the EMT
current [7]

T+i
q (b|B′B) =

∫
d2∆

(2π)2
e−i∆·b〈B′(P+,∆/2, S′3)|T̂+i

q |B(P+,−∆/2, S3)〉, (3)

where the initial and final baryons are denoted by B and B′, respectively. The light-cone vectors are defined by
v± = (v0 ± v3)

√
2. The average and the difference between the incoming (p) and outgoing (p′) baryon momenta are
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given by P = (p′ + p)/2 and ∆ = p′ − p, respectively. The impact parameter and the momentum transfer lie in the
transverse plane, i.e., b = {bx, by} and ∆ = {∆x,∆y}. While S3 and S′3 denote the spin projections of the initial and
final baryons, respectively, the baryon spin states in Eq. (3) are chosen as light-front helicity states.

The QCD AM can be separated into two components: the OAM denoted by lqkin, which is associated with the

kinetic EMT current T+i
kin,q, and the intrinsic spin represented by ∆q, which corresponds to the antisymmetric part

of the kinetic EMT current T
[+i]
kin,q. The QCD AM is then defined by

2Sz(S′3, S3)JqB′→B = 2Sz(S′3, S3)[lqkin + ∆q]B′→B =
1

2P+

∫
d2b [b× T+T

q (b|B′B)]z, (4)

with the matrix element of the generalized spin vector

Sz(S′3, S3) =
√
S(S + 1)

√
2S + 1

2S′ + 1
C
S′S′3
SS310, (5)

where S and S′ represent the spins of the initial and final states, respectively, and C
S′S′3
SS310 corresponds to the SU(2)

Clebsch-Gordan coefficient. The equation (5) holds not only for the diagonal matrix element |S′ − S| = 0, but also
for the non-diagonal transition |S′ − S| = 1. The standard spin vector is recovered by setting S′ = S. By inserting
the different initial and final spin quantum numbers, one can define the transition angular momentum [7].

Similarly, we can introduce and interpret the longitudinally polarized and OAM quark distribution functions for
the N → ∆ transition as the forward limits of the transition GPDs. While the forward limit of the twist-2 nucleon
axial-vector GPDs [1–3] is related to the longitudinally polarized quark distribution, the OAM quark distribution is
related to the twist-3 nucleon GPDs [52–54]. Similar relations can be found for the N → ∆ transition, which will be
discussed in section IV.

Equation (3) defines the total AM. Regarding its separation into OAM and spin, different versions have been
proposed and discussed in the literature [49]. In this work, we will adopt the quark canonical (or Jaffe-Manohar) OAM
lqB′→B(x), where the quark OAM operator can be unambiguously defined. The longitudinally polarized ∆qB→B′(x)
and OAM lqB′→B(x) quark distributions are formally given by (see Refs. [1–3, 49] for a review)

2Sz(S′3, S3)∆qB→B′(x) =
1

2

∫
dz−

2π
eixP

+z−〈B′(P+,0, S′3)|ψ̄q
(
−z

2

)
γ+γ5ψq

(z
2

)
|B(P+,0, S3)〉

∣∣∣∣
z+=z⊥=0

,

2Sz(S′3, S3)lqB′→B(x) =

∫
d2k⊥i(k⊥ ×∇∆)z

1

2

∫
dz−d2z⊥

(2π)3
ei(xP

+z−−k⊥·z⊥)

× 〈B′(P+,∆/2, S′3)|ψ̄q
(
−z

2

)
γ+ψq

(z
2

)
|B(P+,−∆/2, S3)〉

∣∣∣∣
z+=0,∆=0

, (6)

where the light-front gauge is taken so that the Wilson line can be taken to be unity, and where x is the longitudinal
momentum fraction of a baryon carried by quarks. Thus, the total AM quark distribution function is given by

JqB→B′(x) := lqB→B′(x) + ∆qB→B′(x). (7)

III. LIGHT-CONE CHIRAL QUARK-SOLITON MODEL

The chiral quark-soliton model (χQSM) is a pion mean-field theory, motivated by the large Nc limit of QCD [55].
The pion field is created by the presence of valence quarks, and the valence quarks are in turn influenced by the pion
field. This self-consistent interaction leads to the formation of a baryon; see Refs. [29, 30] for s review. The light-cone
chiral quark soliton model (LCχQSM) is a version of the χQSM that is formulated on the light cone [22, 23]. This
allows for a simpler treatment of the relativistic dynamics of the model; see also Ref. [36] for a study of the LCWFs
at large Nc.

A. Light-cone wave functions

In this model, the baryon wave function appears as the sum of the discrete-level wave function1 F jσ and the infinite
tower of quark-antiquark pair wave functions. While higher Fock states, such as 5Q and 7Q, can be generated by the

1 In fact, the configuration of the discrete-level wave function is slightly distorted by the vacuum polarization effects. Since these
contributions are negligible, we omit them in this work. Detailed estimates of such contributions can be found in Ref. [27].
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effective quark-pion dynamics, we limit our investigation to the 3Q configuration. This choice is motivated by the
observation that the inclusion of higher Fock states would introduce corrections to the observables that are typically
no larger than 20% in many theoretical approaches. Therefore, we will consider only the discrete-level wave function

F jσ(x,k⊥) =

(
kLf⊥(x, |k⊥|) f‖(x, |k⊥|)
−f‖(x, |k⊥|) kRf⊥(x, |k⊥|)

)jσ ∣∣∣∣
kz=xMN−Elev

, (8)

where j is the quark isospin and σ is the light-cone helicity with kR,L = kx± iky and the nucleon mass MN . Here, the
longitudinal momentum fraction of the baryon carried by the quark is denoted by x, and the transverse momentum
of the quark is given by k⊥. The two independent functions f‖(x, |k⊥|) and f⊥(x, |k⊥|) are written as

f‖(x, |k⊥|) =

√
MN

2π

(
h(k) +

kzj(k)

|k|

)
, f⊥(x, |k⊥|) =

√
MN

2π

j(k)

|k|
. (9)

h and j are the upper and lower components of the Dirac spinor in the presence of the chiral fields. Elev is the
discrete-level quark eigenenergy bounded by the pion mean field. Note that in the nonrelativistic (NR) limit the
diagonal part of F jσ is dropped, i.e,

fNR
‖ (x, |k⊥|) =

√
MN

2π
h(k), fNR

⊥ (x, |k⊥|) = 0. (10)

After summing over the discrete-level energy Elev ∼ 0.2 GeV and the Dirac continuum spectra, one finds the classical
nucleon mass MN ∼ 1.207 GeV.

In the limit of large Nc, the baryon wave function can be completely factorized in color space, so that the LCWFs
are given by the product of the Nc discrete-level wave functions (see Refs. [22, 23, 56] for the details):

|B(P, S3)〉 = T (B)f1f2f3j1j2j3,k

c0√
Pz

∫
[dk]

∫
[dx]F j1σ1(k1)F j2σ2(k2)F j3σ3(k3)

× εα1α2α3

√
Nc!

a†α1f1σ1
(p1)a†α2f2σ2

(p2)a†α3f3σ3
(p3)|0〉, (11)

with the longitudinal and transverse relative momenta of the quarks ki = (xi,ki⊥) and the physical transverse
momenta pi = (xi,ki⊥ + xiP⊥). The index αi denotes the color index, and the light-cone wave function is antisym-
metric in the color space. The indices fi and σi stand for the quark flavors and the light-cone helicity, respectively.
P = (P⊥, Pz) and c0 designate the baryon momentum and the normalization constant of the light-cone wave function,
respectively. The quark creation operator, denoted as a†, follows the anticommutation relations

{a†a(p⊥), aa′(p
′)} = δa′aδ(x− x′)(2π)2δ(2)(p′⊥ − p⊥). (12)

with a = {α, f, σ} and a′ = {α′, f ′, σ′}. In order to ensure a well-defined momentum for the baryon state, we take into
account the translational zero mode. This leads to the conservation of momentum in the baryon state. Consequently,
the integration measure for the 3Q state can be expressed as follows:∫

[dx] =

∫
dx1dx2dx3 δ

(
3∑
l=1

xl − 1

)
,

∫
[dk] =

∫ ( 3∏
i=1

d2ki⊥
(2π)2

)
(2π)2δ(2)

(
3∑
l=1

kl⊥

)
. (13)

To include the spin and isospin quantum numbers of the baryon, we also consider the rotational zero mode. Each of

the discrete-level quarks undergoes a rotation given by the matrix Rfj and is projected onto the spin-flavor baryon

state B∗(R) by integrating over R. We denote this group integral by the following shorthand:

T (B)f1f2f3j1j2j3,k
:=

∫
dRB∗k(R)Rf1j1R

f2
j2
Rf3j3 , (14)

where the spin-flavor baryon states are given by

p∗↑ =
√

8R†21 R
3
3, ∆+∗

↑ =
√

10(R†21 R
†2
1 R
†1
2 +R†22 R

†2
1 R
†1
1 ). (15)

The spin polarization of the baryon is denoted by k =↑, ↓= 1, 2. The prefactors of the spin-flavor baryon states are
determined through the following normalization:∫

dRB∗k(R)Bk(R) = 1. (16)
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We refer to Refs. [24, 26, 56, 57] for the details of the group integrals.

Note that in the large Nc limit we set the masses of the nucleon and the ∆ baryon to be equal, i.e., MN = M∆ ∼
O(Nc). To include higher-order corrections beyond the leading Nc approximation, the integration measure must be
adjusted. This modification accounts for the kinematical subleading corrections in Nc and has been discussed in
Ref. [58].

B. Normalization of the LCWFs

In this section, we focus on the parameterization of the overlap integrals of the LCWFs. This parameterization

allows us to determine the normalization of the LCWFs. Specifically, the normalization factor c0 =
√

(2π)/N (3) of
the baryon LCWF can be obtained by evaluating the contraction of the creation and annihilation operators, which is
written as

N (3)(B) = 6T (B)f1f2f3j1j2j3,k
T (B)

j′1j
′
2j
′
3,k

f1f2f3

∫
[dk]F j1σ1(k1)F j2σ2(k2)F j3σ3(k3)F †j′1σ1

(k1)F †j′2σ2
(k2)F †j′3σ3

(k3). (17)

By performing the group integrals for both the proton and the ∆ baryon, we determine their respective normalizations

N (3)(p↑) =
3

2
αV , N (3)(∆+

↑ ) =
3

5
αV , (18)

where it is convenient to define the αV in terms of the quark distributions ΦV (x)

αI=V :=

∫
dxΦI=V (x) =

∫
[dx]

∫
[dk]DI=V (x,k1,k2,k3), (19)

with

DI=V = δ(x− x1)

[
f2
‖ (k1) + k1Rk1Lf

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
. (20)

Note that the normalizations of the discrete-level wave functions f⊥ and f‖ are arbitrary. For convenience, we choose

them to have a normalization parameter αV equal to 1.

C. Overlap integrals

We are now in a position to evaluate the quark distribution functions of the AM using the LCWFs. The overlap
representations for the AM operators are parameterized by the five quark distributions, and they are labeled by
I = A,L,L1, L2, L3. DI=A,L,L1,L2,L3(x,k1,k2,k3) is then defined as

DA = δ(x− x1)

[
f2
‖ (k1)− k1Rk1Lf

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
,

DL = δ(x− x1)

[
x1k1Rk1Lf

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
,

DL1 = δ(x− x1)

[
(1− x1)k1Rk1Lf

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
,

DL2 = δ(x− x2)

[
1

2
(k1Rk2L + k1Lk2R)x1f

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
,

DL3 = δ(x− x3)

[
1

2
(k1Rk3L + k1Lk3R)x1f

2
⊥(k1)

][
f2
‖ (k2) + k2Rk2Lf

2
⊥(k2)

][
f2
‖ (k3) + k3Rk3Lf

2
⊥(k3)

]
. (21)

Using the quark distributions given in Eq. (21), we obtained the AM quark distribution functions:
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• for the proton (for the neutron (u↔ d))

lup (x) =
4

3
ΦL1(x)− 1

3
ΦL2(x)− 1

3
ΦL3(x), ldp(x) = −1

3
ΦL1(x)− 2

3
ΦL2(x)− 2

3
ΦL3(x),

lu+d
p (x) = ΦL1(x)− ΦL2(x)− ΦL3(x), lu−dp (x) =

5

3
ΦL1(x) +

1

3
ΦL2(x) +

1

3
ΦL3(x),

∆up(x) =
2

3
ΦA(x), ∆dp(x) = −1

6
ΦA(x),

[∆u(x) + ∆d(x)]p =
1

2
ΦA(x), [∆u(x)−∆d(x)]p =

5

6
ΦA(x). (22)

• for the ∆+ baryon

lu∆+(x) =
2

3

(
ΦL1(x)− ΦL2(x)− ΦL3(x)

)
, ld∆+(x) =

1

3

(
ΦL1(x)− ΦL2(x)− ΦL3(x)

)
,

lu+d
∆+ (x) = ΦL1(x)− ΦL2(x)− ΦL3(x), lu−d∆+ (x) =

1

3

(
ΦL1(x)− ΦL2(x)− ΦL3(x)

)
,

∆u∆+(x) =
1

3
ΦA(x), ∆d∆+(x) =

1

6
ΦA(x),

[∆u(x) + ∆d(x)]∆+ =
1

2
ΦA(x), [∆u(x)−∆d(x)]∆+ =

1

6
ΦA(x). (23)

• for the p→ ∆+ transition

lup→∆+(x) = −
√

2

3

(
2ΦL1(x)− ΦL2(x)− ΦL3(x)

)
, ldp→∆+(x) =

√
2

3

(
2ΦL1(x)− ΦL2(x)− ΦL3(x)

)
,

lu+d
p→∆+(x) = 0, lu−dp→∆+(x) = −2

√
2

3

(
2ΦL1(x)− ΦL2(x)− ΦL3(x)

)
,

∆up→∆+(x) = −
√

2

3
ΦA(x), ∆dp→∆+(x) =

√
2

3
ΦA(x),

[∆u(x) + ∆d(x)]p→∆+ = 0, [∆u(x)−∆d(x)]p→∆+ = −2
√

2

3
ΦA(x). (24)

Based on the spin-flavor structures of the proton (p), the neutron (n), the ∆+ baryon and the p→ ∆+ transition, we
obtain intriguing relations for the OAM quark distribution functions

lup→∆+(x) = −
√

2

3

(
lu∆+(x) + lup (x)

)
= −
√

2

9

(
2lun(x) + 5lup (x)

)
,

ldp→∆+(x) =

√
2

3

(
5ld∆+(x)− ldp(x)

)
=

√
2

9

(
5ldn(x) + 2ldp(x)

)
, (25)

and for the longitudinally polarized quark distribution functions

∆up→∆+(x) = − 1√
2

∆up(x) = −
√

2∆u∆+(x),

∆dp→∆+(x) = −2
√

2∆dp(x) = 2
√

2∆d∆+(x). (26)

By integrating the quark distribution functions over the variable x, we have obtained the values for the intrinsic
spin (also known as the axial charge ∆qB′→B = gqA,B′→B/2) and the OAM∫

dx∆qB→B′(x) = ∆qB→B′ ,

∫
dx lqB→B′(x) = lqB→B′ . (27)

From Eq. (21), one can easily see that the integral of the total AM quark distribution functions Ju+d
p,∆+(x) for both the

nucleon and the ∆ baryon over x is properly normalized to the baryon spin∫
dx Ju+d

p,∆+(x) =

∫
dx

[
1

2
ΦA(x) + ΦL1(x)− ΦL2(x)− ΦL3(x)

]
=

1

2
. (28)
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Here we used the relation k1⊥ + k2⊥ + k3⊥ = 0. It is obvious that the isoscalar transition AM Ju+d
p→∆+(x) is equal to

zero. It is worth noting that in the nonrelativistic limit, all OAM quark distribution functions become zero, while the
longitudinally polarized quark distribution functions become equivalent to the total AM quark distribution functions:

∆qB→B′,NR(x) = JqB→B′,NR(x), lqB→B′,NR(x) = 0. (29)

D. Numerical results

To estimate the AM quark distribution functions and their normalizations, we use the explicit quark wave functions
f⊥ and f‖, where the values of the dynamical parameters are taken from Refs. [22–24, 56]. We will provide not only
the quark distribution functions for the N → ∆ transition, but also what fractions of the intrinsic spin and the OAM
contribute to the N → ∆ transition AM.
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FIG. 1. Longitudinally polarized quark distribution functions for the proton (upper left panel), ∆ baryon (upper right panel),
and p → ∆+ transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent
the ∆u+ ∆d, ∆u−∆d, ∆u, and ∆d contributions, respectively.

In Fig. 1 we first examined the longitudinally polarized quark distribution functions for the proton, the ∆ baryon,
and theN → ∆ transition. These distribution functions are parameterized with respect to the single quark distribution
ΦA, which is normalized as follows:∫

dxΦA(x) = αA = 0.861,

∫
dxΦANR(x) = αANR = 1, (30)

where we have reproduced the numerical values given in Ref. [26]. It is observed that the ∆u and ∆d values for the
proton have opposite signs, with ∆u being positive and ∆d being negative. However, for the ∆+ baryon, both ∆u
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and ∆d have positive signs. Interestingly, in the case of the proton, the isovector component of the axial charge is
significantly larger than the isoscalar component. Conversely, for the ∆ baryon, this relation is reversed. Turning to the
quark distribution functions for the p→ ∆+ transition, they are naturally induced by the spin-flavor relation. While
the isoscalar quark distribution functions in the p→ ∆+ transition are zero, a substantial asymmetry between the light
valence quarks is obtained. The normalizations of these distribution functions are summarized in Table I. Consistent
with the large Nc analysis [7], it is noteworthy that the flavor asymmetries in the intrinsic spin [∆u − ∆d]p→∆+ =

−0.812 and in the total AM Ju−dp→∆+ = −0.887 are estimated to be substantial. Note that the sign difference for Ju−dp→∆+

compared to Ref. [7] might depend on the choice of the phases of the baryon states.
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FIG. 2. OAM quark distribution functions for the proton (upper left panel), ∆+ baryon (upper right panel), and p → ∆+

transition (lower panel). The solid (black), dashed (red), dot-dashed (blue), and dotted (green) lines represent the lu+d, lu−d,
lu, and ld contributions, respectively.

Figure 2 illustrates the OAM quark distribution functions. We observe that the OAM contribution lq to the
baryon spin is relatively small compared to ∆q. This suggests that the nonrelativistic approximation is a reasonable
approximation for describing the total AM. The OAM is parameterized in terms of the three quark distributions
ΦL1,L2,L3(x), and their normalizations αL1,L2,L3 are estimated as follows:∫

dxΦL1(x) = αL1 = 0.050,

∫
dxΦL2,L3(x) = αL2,L3 = −0.010, with ΦL2(x) = ΦL3(x). (31)

We then arrive at the value of the isoscalar OAM for both the nucleon and the ∆ baryon

lu+d
p,∆+ =

∫
dx
[
ΦL1(x)− ΦL2(x)− ΦL3(x)

]
=

∫
dxΦL(x) = αL = 0.070. (32)

This result is in agreement with the numerical estimate made in Ref. [21]. In the nonrelativistic limit, the OAM quark
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distributions apparently become null

ΦL1,L2,L3

NR (x) = 0. (33)

Since the quark has no relativistic motion in this limit, all observables relevant to the OAM should be zero.
In the case of the proton, the OAM lu+d is similar in magnitude to lu−d, indicating that ld is close to zero. This

smallness of the d-quark contribution arises from the fully dynamical reason, which is the cancellation between the two
dynamical parameters − 1

3α
L1 ∼ −0.017 and − 4

3α
L2 ∼ 0.013. However, in the ∆+ baryon, lu∆+ is twice as large as ld∆+ .

This relation holds exactly for the intrinsic spin ∆q, specifically ∆u∆+ = 2∆d∆+ . In addition, it is noteworthy that
there is a significant flavor asymmetry of the OAM in the p → ∆ transition. The normalizations of these quantities
can be found in Table I. The equal but opposite contributions of the u and d quarks to the OAM result in lu+d

p→∆+ = 0.

When the OAM and the intrinsic spin are combined, they give the total AM. As shown in Eq. (28), numerically the
total AM is indeed normalized to the baryon spin.

TABLE I. Intrinsic spin, OAM, and total angular momentum of the nucleon, the ∆+ baryon, and the p → ∆ transition are
listed for both the nonrelativistic (NR) and relativistic (Rel.) cases.

Contents lq ∆q Jq

q u d u− d u+ d u d u− d u+ d u d u− d u+ d

NR

p→ p 0 0 0 0 2/3 −1/6 5/6 1/2 2/3 −1/6 5/6 1/2

∆+ → ∆+ 0 0 0 0 1/3 1/6 1/6 1/2 1/3 1/6 1/6 1/2

p→ ∆+ 0 0 0 0 −
√

2/3
√

2/3 −2
√

2/3 0 −
√

2/3
√

2/3 −2
√

2/3 0

Rel.

p→ p 0.073 −0.003 0.076 0.070 0.574 −0.144 0.718 0.431 0.647 −0.147 0.794 0.5

∆+ → ∆+ 0.046 0.023 0.023 0.070 0.287 0.144 0.144 0.431 0.333 0.167 0.167 0.5

p→ ∆+ −0.037 0.037 −0.074 0 −0.406 0.406 −0.812 0 −0.443 0.443 −0.887 0

IV. LARGE Nc ANALYSIS OF THE QUARK DISTRIBUTION FUNCTIONS

Another way to estimate the value of the quark distribution function is to use the spin-flavor structure in the large Nc
limit of QCD. In practice, this structure can be obtained within the chiral soliton approach. One of the most realistic
and representative models of this approach is the χQSM. In this model the various quark distribution functions have
been evaluated [37, 38, 40, 42, 59]. From the given quark distribution functions of the nucleon, one can easily map
those of the N → ∆ transitions by using the spin-flavor symmetry. In fact, the results of this approach are more
reliable than those of the LCχQSM. While in the LCχQSM the infinite tower of higher-fock states is truncated, all
sea-quark contributions (quark-antiquark pairs) are explicitly taken into account in the estimation of the χQSM [36].

Thus, this section is devoted to the extraction of the quark distribution functions for the N → ∆ transitions from
those for the nucleon using the large Nc relations. While the numerical data for the longitudinally polarized quark
distribution functions for the nucleon in the χQSM are given in Ref. [37, 38], those for the OAM quark distribution
are missing. Thus, we will discuss only the longitudinally polarized quark distribution functions.

First we want to mention the Nc scalings of the kinematical variables. The baryon masses are of order MN ∼M∆ ∼
O(Nc) and their mass splitting is MN −M∆ ∼ O(N−1

c ). The 3-momenta are |p|, |p′| ∼ O(N0
c ) and the 3-momentum

transfer is |∆| ∼ O(N0
c ). In addition, the Nc scalings of the GPDs arguments are x, ξ ∼ O(N−1

c ) and t ∼ O(N0
c ).

In the large Nc limit, the longitudinally polarized quark distribution functions scale as follows [37, 38, 60, 61]:

2Sz(S′3, S3)[∆u(x) + ∆d(x)]B→B′ = 〈S3〉B′B [∆u(x) + ∆d(x)]sol ∼ Nc × function(Ncx),

2Sz(S′3, S3)[∆u(x)−∆d(x)]B→B′ = 〈D33〉B′B [∆u(x)−∆d(x)]sol ∼ N2
c × function(Ncx). (34)

where 〈...〉B′B stands for the matrix element of the spin-flavor operator between the initial (B = {S, S3, I, I3}) and
final (B′ = {S′, S′3, I ′, I ′3}) baryon states:

〈S3〉B′B =
√
S(S + 1)C

S′S′3
SS310δS′SδI′3I3δI′I , 〈D33〉B′B = −

√
2S + 1

2S′ + 1
C
S′S′3
SS310C

I′I′3
II310. (35)
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Note that S (S3) and I (I3) stand for the spin (spin projection) and isospin (isospin projection) quantum numbers,
respectively. The explicit expressions of the quark distributions [∆u + ∆d]sol and [∆u −∆d]sol in the chiral soliton
approach are given in Refs. [37, 38]. For the isoscalar, the proton and ∆+ baryon quark distribution functions are
equivalent to each other

[∆u(x) + ∆d(x)]N→N = [∆u(x) + ∆d(x)]∆→∆, [∆u(x) + ∆d(x)]N→∆ = 0, (36)

and the isoscalar transition is obviously not allowed because the isospins of the N and ∆ baryons differ by |I ′−I| = 1,
so the operator must be |I ′ − I| ≥ 1. As for the isovector component, the longitudinally polarized quark distribution
for p→ p is related to those for p→ ∆+ and ∆+ → ∆+

[∆u(x)−∆d(x)]p→p =
1√
2

[∆u(x)−∆d(x)]p→∆+ = 5[∆u(x)−∆d(x)]∆+→∆+ . (37)

Integrating these quark distribution functions over x, one obtains the axial-charge relations

gu−dA,p→p =
1√
2
gu−dA,p→∆+ = 5gu−dA,∆+→∆+ , (38)

which is exactly the same as the total AM [7]. In that paper [7] it was emphasized that the spin-flavor symmetry in
the large Nc limit is blind to the decomposition between the intrinsic spin and the OAM. This is the reason why the
spin-flavor relation for the total AM also holds for the isovector axial charge.

In addition, we want to mention the relation of the transition GPDs to the quark distribution functions. The
N → ∆ GPDs [60] are defined as∫

dλ

2π
eiλx〈∆+(p′, S′3)|ψ̄(−z/2)/nγ5τ3ψ(z/2)|p(p′, S′3)〉 = ūβ(p′, S′3)

[
C1(x, ξ, t)nβ + ...

]
u(p, S3), (39)

where ... denotes the GPDs suppressed in the large Nc limit and dropped in the forward limit ∆, ξ = 0, and ūβ and
u are Rarita–Schwinger and Dirac spinors, respectively. Here n denotes the light-cone vector, and the space-time
4-vector zµ in Eq. (6) is rewritten as zµ = nµλ. The first Mellin moment of the transition GPD is related to the
axial-vector form factor∫

dxC1(x, ξ, t) = 2C5(t), (40)

where the matrix element of the local axial vector current is parametrized in terms of the Adler-type form factors [62,
63] as

〈∆+(p′, S′3)|ψ̄(0)γµγ
5 τ

3

2
ψ(0)|p(p′, S′3)〉 = ūβ(p′, S′3)

[
C5(t)gµβ + ...

]
u(p, S3). (41)

In the forward limit ∆, ξ = 0, the transition GPDs are reduced to quark distribution functions in the N → ∆ transition

[∆u(x)−∆d(x)]p→∆+ =

√
2

3
C1(x, 0, 0). (42)

Integrating the quark distribution functions over x, one arrives at the axial charge

gu−dA,p→∆+ =
√

2gu−dA,p→p = 2

√
2

3
C5(0) ∼ O(Nc). (43)

They coincide with the large Nc relations between the nucleon and the N → ∆ transition GPDs and their Nc scalings

C1(x, ξ, t) =
√

3H̃u−d(x, ξ, t) ∼ N2
c × f(Ncx,Ncξ, t). (44)

It is easy to find these large Nc relations among the GPDs, the PDFs, and the charge for the ∆ baryon [64, 65].
Finally, it is worth noting that the same spin-flavor structure holds for the OAM quark distributions

lu−dp→p(x) =
1√
2
lu−dp→∆+(x) = 5lu−d∆+→∆+(x), (45)
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because the spin-flavor structures of the intrinsic spin, OAM, and total AM are shared.
Figure 3 shows the longitudinally polarized quark distributions for the p → ∆+ and ∆+ baryons, based on their

spin-flavor structures. The upper left panel shows that the quark and antiquark distribution functions for the N → ∆
transition are about 1.4 times larger than those of the nucleon. Note that in the large Nc limit, the scaling behavior of
∆u+∆d and ∆u−∆d is of the order of O(N0

c ) and O(N1
c ), respectively. Therefore, a mere consideration of the leading

contributions is not sufficient for the flavor decomposition, since the subleading contribution to the isovector quark
distribution functions [∆u−∆d] |sub ∼ O(N0

c ) must also be taken into account. In contrast, for the N → ∆ transition,
the isoscalar quark distribution functions must be zero, eliminating the Nc scaling admixture. Consequently, the flavor-
decomposed quark distributions are shown in the right panel of Fig. 3. Additionally, for completeness, we include
the quark distribution functions for the ∆ baryon. Similar to the LCχQSM, these distributions are relatively small
compared to the nucleon results due to the kinematical factors.
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FIG. 3. Longitudinally polarized quark distribution functions for the p→ ∆+ (upper panels), ∆+ baryon (lower panel).

Table II shows the separate contributions of the OAM and the intrinsic spin to the total AM, using data from
lattice QCD at µ2 = 4 GeV2 and the χQSM at µ2 ∼ 0.36 GeV2. Instead of relying on the normalization values of
the quark distribution functions in Fig. 3, we use values obtained from calculations of the EMT form factors [66, 67]
and the axial-vector form factors [29]. In particular, the lattice QCD predict a substantial flavor asymmetry in both
OAM and intrinsic spin. These contributions have opposite signs, leading to a partial cancellation and resulting in a
relatively small value of the total angular momentum Ju−d.

Here we do not present the isoscalar and isovector OAMs obtained in the χQSM. This is due to two ambiguities.
First, the effective action in the χQSM can be split into a real part and an imaginary part. The real part of the
effective action exhibits ultraviolet (UV) divergences, while the imaginary part is free of such divergences; see Ref. [29]
for details. In this context, the total isovector AM needs no regularization. This is easily demonstrated by the gradient
expansion (i.e., expansion of the quark propagator in terms of the derivatives of the pion field), where the leading order
is free of UV divergences. However, the individual contributions of the intrinsic spin and the OAM suffer from UV
divergences. Remarkably, the UV divergent parts of OAM and intrinsic spin exactly cancel each other out, resulting
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TABLE II. The intrinsic spin, OAM and total angular momentum of the nucleon, the ∆+ baryon and the p→ ∆ transition are
listed using the input data from the QCD lattice [68] and the χQSM [29, 66, 67]. Input values are marked with an asterisk ∗.

Contents lq ∆q Jq

q u− d u+ d u− d u+ d u− d u+ d

Lattice QCD [68] µ2 = 4 GeV2

p→ p −0.38∗ 0.03∗ 0.61∗ 0.21∗ 0.23∗ 0.24∗

∆+ → ∆+ −0.08 0.03 0.12 0.21 0.05 0.24

p→ ∆+ −0.54 0 0.86 0 0.33 0

χQSM [29, 66, 67] µ2 ∼ 0.36 GeV2

p→ p − − 0.61∗ 0.19∗ 0.56∗ 0.50∗

∆+ → ∆+ − − 0.12 0.19 0.11 0.50

p→ ∆+ − − 0.86 0 0.79 0

in a total AM that is free of UV divergences [69]. Consequently, the separation of OAM and intrinsic spin at the
level of the EMT would be inappropriate. Only the total AM Ju−d can be considered as a reliable observable when
starting from the EMT. On the other hand, since Ju+d requires regularization, it would be safer to study the separate
contributions of OAM and intrinsic spin. This can be easily demonstrated again using the gradient expansion. This
analysis states that at the leading order of the gradient expansion [69] all OAM carry the nucleon spin; see also
Ref. [70] in the context of chiral effective field theory. Second, in a chiral theory, the decomposition of the isovector
part of the Ji’s AM into the spin and OAM is spoiled due to a interacting term; see Refs. [71, 72]. In addition, the
QCD relation for the second moment of the chiral-odd twist-3 quark distribution is also violated [73, 74]. This may
be due to the ambiguity of the identification of the twist-3 QCD operator with the effective operators.

In our predictions in the large Nc limit, we determine the separate contributions of intrinsic spin and OAM for
both the ∆ baryon and the N → ∆ transition. Remarkably, the results show significant magnitudes for the isovector
components of both OAM and intrinsic spin. However, in the case of the ∆ baryon, the magnitudes of the isovector
components for OAM and intrinsic spin are comparatively smaller, in agreement with the expectations of the LCχQSM.

V. SUMMARY AND CONCLUSIONS

The purpose of this study is to investigate the quark distribution functions associated with the N → ∆ transition
and to address a dynamical aspect regarding the decomposition of the contributions from orbital angular momentum
and intrinsic spin.

Starting from the energy-momentum tensor current, we establish the definition of angular-momentum quark distri-
bution functions applicable to all initial and final baryon states, including the specific case of the N → ∆ transition.
These quark distribution functions include the longitudinally polarized quark distribution and the orbital angular-
momentum quark distribution. They can be related to the twist-2 and twist-3 generalized parton distributions,
respectively.

To estimate the angular-momentum quark distribution functions, we use two different approaches. The first ap-
proach involves the use of overlap representations of the 3Q light-cone wave function derived from the chiral quark-
soliton model. The second approach relies on the standard spin-flavor symmetry in the framework of the large Nc
limit of QCD.

First, the determination of the orbital angular momentum quark distribution function involves two independent
distributions, ΦL1(x) and ΦL2(x), derived from the overlap representation of the 3Q light cone wave function. It turns
out that a linear combination of the proton and neutron orbital angular momentum quark distributions allows the
extraction of those associated with the N → ∆ transition and the ∆ baryon. On the other hand, the longitudinally
polarized quark distribution relies solely on the single distribution ΦA(x). Thus, access to the quark distributions of
the proton allows the determination of those for the N → ∆ transition and the ∆ baryon.

We found that a significant fraction of the QCD angular momentum comes from the intrinsic spin, while the
remaining fraction is due to the relativistic motion of the quarks, known as orbital angular momentum. As a result,
the nonrelativistic approximation holds reasonably well for the 3Q light-cone wave function. Nevertheless, both the
intrinsic spin and the orbital angular momentum show a significant flavor asymmetry. This suggests that the isovector
component of the total angular momentum is substantial. The substantial flavor asymmetry in the angular momentum
holds for both the p→ p and p→ ∆+ processes. For the ∆+ baryon, however, the isovector component is suppressed
due to the associated kinematical factor.
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Second, we use the spin-flavor symmetry in the large Nc limit of QCD to derive the longitudinally polarized quark
distribution functions for the ∆+ baryon and the p→ ∆+ transition. Using the dynamical information obtained in the
nucleon sector, we can easily extend the quark distribution functions to different baryon quantum numbers. To achieve
this, we use data from the chiral quark-soliton model, which provides reliable quark distribution functions for the
nucleon. A notable advantage of this approach is that it explicitly includes an infinite number of quark-antiquark pair
contributions, in contrast to a truncated 3Q light-cone wave function. Furthermore, we establish the relation between
the generalized quark distributions and the quark distribution functions for the N → ∆ transition. It is important
to emphasize that the spin-flavor relation observed in the longitudinally polarized quark distribution functions is also
applicable to functions associated with orbital angular momentum and total angular momentum. This is because the
spin-flavor symmetry does not distinguish between spin, orbital angular momentum, and total spin.

Using data from lattice QCD and the chiral quark-soliton model for the nucleon, we make predictions about
the orbital angular momentum, intrinsic spin, and total angular momentum of the ∆+ baryon and the p → ∆+

transition. While the isoscalar orbital angular momentum, intrinsic spin, and total angular momentum for the p→ ∆+

transition become zero due to the isospin properties, substantial flavor asymmetries are observed. Interestingly, most
of these asymmetries cancel out due to the opposite signs of the orbital angular momentum and the intrinsic spin.
Consequently, the total angular momentum is relatively small compared to the individual contributions of orbital
and intrinsic spin. Nevertheless, we find a significant flavor asymmetry in the isovector component of the total
angular momentum, which is consistent with the expected size in the large Nc limit of QCD. Moreover, our results
for ∆+ baryon are consistent with those obtained from the overlap representation of the 3Q light-cone wave function,
indicating that the overall smallness of the intrinsic spin, orbital angular momentum, and total angular momentum
for the ∆ baryon can be attributed to the kinematical factor.

It would be interesting to study the orbital angular momentum quark distribution functions for the nucleon in the
framework of the chiral quark-soliton model. In addition, it would be interesting to study the parity-odd partner of
the energy-momentum tensor. It contains rich information about the partonic structure of the nucleon, such as the
spin-orbit correlation and the second moments of the quark helicity distribution [75].
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