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The x-dependence of hadrons’ generalized parton distributions (GPDs) F(x, ξ, t) is the most
difficult to extract from the existing known processes, while the ξ and t dependence are uniquely
determined by the kinematics of the scattered hadron. We study the single diffractive hard exclusive
processes for extracting GPDs in the photoproduction. We demonstrate quantitatively the enhanced
sensitivity on extracting the x-dependence of various GPDs from the photoproduction cross sections,
as well as the asymmetries constructed from photon polarization and hadron spin that could be
measured at JLab Hall D by GlueX Collaboration and future facilities.

Introduction.—The generalized parton distributions
(GPDs), F(x, ξ, t), provide rich information on the con-
fined spatial distributions of quarks and gluons inside a
bound hadron (for reviews, see [1–4]). The Fourier trans-
form of their t-dependence at the forward limit ξ → 0
provides tomographic quark/gluon images of the hadron
in its transverse plane as functions of the active parton
momentum fraction x [5, 6]. The x-moments of GPDs
are responsible for many emergent hadronic properties
such as the hadron’s mass [7–10] and spin [11], as well as
its internal pressure and shear force [12, 13].
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Fig. 1. (a) Sketch of 2 → 3 SDHEP needed for extracting
GPDs. (b) Sample diagram for the SDHEP in Eq. (1).

Experimental measurement of GPDs requires a 2 → 3
exclusive process at a minimum, as sketched in Fig. 1(a),
in which a hadron N of momentum p is scattered (or
diffracted) to a hadron N ′ of momentum p′ by exchang-
ing a virtual two-parton stateA∗ of momentum∆ ≡ p−p′

and invariant mass t = ∆2, which undergoes a hard ex-
clusive scattering with the colliding particle B =(lepton,
photon, pion) of momentum p2 to produce two back-
to-back particles C(q1) and D(q2). To ensure the sep-
aration between the hard scattering H and the probed
GPD F , it is necessary to require the transverse mo-
mentum of the produced particles C and D to be much
larger than the invariant mass of the exchange state A∗,
|q1T | = |q2T | ≡ qT ≫

√
|t| (or equivalently, the hard col-

lision time to be much shorter than the lifetime of the A∗)
to suppress the quantum interference between the H and
F [14, 15]. We referred to such an exclusive process for
extracting GPDs as single diffractive hard exclusive pro-
cess (SDHEP). A number of 2 → 3 SDHEPs have been
proposed for extracting GPDs [16–25], among which is
the deeply virtual Compton scattering (DVCS) [16, 17],
corresponding to B = C = electron and D = γ. In addi-
tion, a few 2 → 4 SDHEPs have also been proposed for
extracting GPDs [26–29]. However, most of the processes
proposed, including DVCS, do not give strong constraints
on the x-dependence of GPDs [30].

Once the scattered hadron momentum p′ is measured,
the t, ξ ≡ [∆ · n/2P · n] with P = (p + p′)/2 and
n = (0+, 1−,0T ) defining the leading momentum com-
ponent, and the collision energy of the hard exclusive
subprocess (p − p′ + p2)

2 are fully determined. For an
SDHEP to be sensitive to the x-dependence of GPDs,
the remaining freedom of the hard subprocess H, such as
the qT (or the angle) of the produced particle C or D,
needs to be entangled with x, which is proportional to the
relative momentum of the two exchanged partons [15].
For the DVCS, the exchange state A∗(p − p′) in Fig. 1
can be a virtual photon for the Bethe-Heitler process, a
qq̄ pair for quark GPDs and a pair of gluons for gluon
GPDs if we neglect terms further suppressed by powers
of Q2 = −(p2 − q1)

2. Since the relative momentum of
the two exchanged partons is decoupled from external
variation of Q2 at leading order, the measured DVCS
cross sections probe GPDs through their “moment”, like∫
dxF(x, ξ, t)/(x− ξ) [15], which makes very difficult to

extract the full x-dependence of GPDs [30]. Although
QCD evolution of GPDs could introduce some sensitiv-
ity to the x-dependence [31], the event rate drops very
quickly when Q2 increases.

In this Letter, we study the sensitivity in extracting
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GPDs from exclusive photoproduction [15, 32, 33],

N(p) + γ(p2) → N ′(p′) + π(q1) + γ(q2). (1)

The corresponding QCD factorization was justified in
Ref. [15] by treating this process as a crossing process
of the exclusive diphoton production in diffractive pion-
nucleon collisions [14]. We calculate the leading-order
(LO) short-distance hard parts and find that the trans-
verse momentum (or the polar angle θ) of the final-
state pion (or photon) is clearly entangled with the rel-
ative momentum of the two exchanged partons. Varia-
tion of observed qT can provide enhanced sensitivity to
the x-dependence of GPDs. With the crossing kinemat-
ics, this process provides more enhanced x-sensitivity in
the ERBL region of GPDs (with |x| ≤ |ξ|), while the
diphoton production in pion-nucleon scattering is more
sensitive to the GPDs’ DGLAP region (|x| > |ξ|) [14].
In addition, with the well-controlled polarization of the
initial-state photon beam at JLab Hall D [34] and polar-
ized hadron targets, we introduce asymmetries of cross
sections constructed from the photon beam polarization
and target spin and demonstrate quantitatively the en-
hanced capability of extracting various GPDs and their
x-dependence from measurements at JLab Hall D and
future facilities.

Kinematics and observables.—In Fig. 2, we de-
scribe the kinematics of the SDHEP in Eq. (1) in terms
of two frames and two planes. The Lab frame is chosen
to be the center-of-mass (c.m.) frame of the colliding
hadron N(p) and photon γ(p2) with the ẑlab along the
momentum p, and x̂lab in the N → N ′ diffractive plane
defined by the momentum p and p′. The SDHEP frame
is the c.m. frame of the final-state π-γ pair, which is the
same as the c.m. of the hard scattering subprocess, with
ẑ along the momentum ∆ of A∗, while the initial-state
photon along the −ẑ direction and x̂ lying on the diffrac-
tive plane as shown in Fig. 2. The ẑ and the observed
π momentum q1 define the scattering plane, and the an-
gles (θ, ϕ) define the direction of the observed π in the
SDHEP frame. Choosing the (x̂lab, ẑlab) and (x̂, ẑ) of
these two frames on the same diffractive plane makes the
Lorentz transformation between them simpler.

The SDHEP frame in Fig. 2 is very similar to the Breit
frame for describing the lepton-hadron semi-inclusive
deep inelastic scattering (SIDIS) in the Trento conven-
tion [35] if one corresponds the hadron N and N ′ to the
colliding electron and scattered electron in SIDIS, respec-
tively, and the diffractive plane and scattering plane to
the leptonic plane and hadronic plane in SIDIS, respec-
tively. But, unlike the virtual photon exchanged between
the colliding lepton and hadron in SIDIS, the A∗(∆) is a
“long-lived” state with a low enough virtuality.

Both the colliding photon and hadron target at JLab
Hall D can be polarized longitudinally. In addition, the
photon can have linear polarization ζ and the hadron
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Fig. 2. Frames for the process in Eq. (1). The vectors of sT

and ζ refer to the transverse spin and linear polarization of
the colliding nucleon N and photon γ, respectively.

can have a transverse spin sT , defined by the azimuthal
angles, ϕγ and ϕs in the Lab frame, respectively.
Having a pion in the final state eliminates the contribu-

tion from A∗ being a virtual photon due to charge parity,
so that the leading contribution to the SDHEP in Eq. (1)
is from channels with A∗ being a collinear parton pair.
The corresponding scattering amplitude can be factor-
ized into GPDs for the hadron transition N → N ′, a dis-
tribution amplitude (DA) for the formation of the final-
state pion, and perturbatively calculable coefficients [15]

M[F,F̃ ]
Nγλ→N ′πγλ′ =

∑
f,f ′

∫ 1

−1

dx

∫ 1

0

dz D̄f ′/π(z) (2)

×
[
Ff

NN ′(x, ξ, t) C̃
ff ′

λλ′ (x, z) + F̃f
NN ′(x, ξ, t)C

ff ′

λλ′ (x, z)
]
,

where f = [qq̄] and [gg] for quark and gluon GPDs, re-
spectively, if N ′ = N , or f = [qq̄′] for transition GPDs
with N ̸= N ′, and correspondingly, f ′ = [qq̄] or [qq̄′]
with D̄f ′/π being the DA for the produced pion. The

hard coefficients Cff ′

λλ′ and C̃ff ′

λλ′ are helicity amplitudes
for the photon scattering off a collinear on-shell parton
pair f with λ and λ′ denoting the photon helicities in
the SDHEP frame. Under the parity invariance, they can
be reduced to four independent amplitudes, two helicity-
conserving ones (C+, C̃+) and two helicity-flipping ones

(C−, C̃−). Their explicit forms are collected in the Sup-
plemental Material. The correction to the factorization
in Eq. (2) is suppressed by powers of |t|/q2T ≪ 1.
The differential cross section for the SDHEP in Eq. (1)

is

dσ

d|t| dξ d cos θ dϕ =
1

2π

dσ

d|t| dξ d cos θ ·
[
1 + λNλγ ALL

+ ζ AUT cos 2(ϕ− ϕγ) + λN ζALT sin 2(ϕ− ϕγ)
]
, (3)

where λN and λγ are the net helicities of the initial-state
nucleon and photon, respectively. In Eq. (3), we intro-
duced the unpolarized differential cross section,

dσ

d|t| dξ d cos θ =
N 2 (1− ξ)

32 s (2π)3 (1 + ξ)
ΣUU , (4)
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whereN is a normalization factor defined below Eq. (S1),
and polarization asymmetries,

ΣUU = |M[H̃]
+ |2 + |M[H̃]

− |2 + |M̃[H]
+ |2 + |M̃[H]

− |2,

ALL = 2Σ−1
UU Re

[
M[H̃]

+ M̃[H]∗
+ +M[H̃]

− M̃[H]∗
−

]
,

AUT = 2Σ−1
UU Re

[
M̃[H]

+ M̃[H]∗
− −M[H̃]

+ M[H̃]∗
−

]
,

ALT = 2Σ−1
UU Im

[
M[H̃]

+ M̃[H]∗
− +M[H̃]

− M̃[H]∗
+

]
, (5)

whose two subscripts are for hadron spin and photon po-
larization, respectively, with U for “unpolarized”, L for
“longitudinal polarized”, and T for “linearly polarized
photon”, leaving the situation of transversely polarized
hadron to a future publication. The helicity amplitudes

M[H̃]
± and M̃[H]

± in Eq. (5) are given in Eqs. (S8)-(S11)

in terms of convolutions of GPD H̃ and H, respectively,
with corresponding hard coefficients. In this Letter, we
focus on contributions from quark GPDs and leave the
contribution of gluon GPDs to a future publication.

Enhanced x-sensitivity.—While GPDs’ t and ξ de-
pendence can be directly measured, their x dependence
(as well as the z dependence of DA) is only probed via
convolutions as in Eq. (2). As explained in Ref. [15], the
LO hard coefficient C for almost all known processes for
extracting GPDs has its x dependence decoupled from
the measured hard scale(s), e.g., for DVCS [16, 17],

CLO
DVCS(x, ξ;xB , Q

2) =
1

x± ξ ∓ iε
C(xB , Q

2) . (6)

Consequently, experimental variation of the probing scale
of these processes has little influence on the x convolu-
tion of GPDs. Since the unpinched x poles in Eq. (6)
are only localized at ±ξ, experimental measurements of
DVCS may only constrain the diagonal values of GPDs
F(ξ, ξ, t) through the imaginary parts and the limited
“moments”,

F0(ξ, t) = P
∫ 1

−1

dx
F(x, ξ, t)

x− ξ
, (7)

with P indicating principle-value integration. Such lack
of sensitivity to the full x dependence of GPDs is also true
for other known processes, including the deeply virtual
meson production (DVMP) [18, 19], photoproduction of
lepton [20] or photon pair [24, 36, 37], and the exclusive
Drell-Yan process [21].

Having only the moment sensitivity is far from enough
to map out the x distribution of GPDs. One can easily
construct null solutions to Eq. (7) that give zero to the
moments, diagonal values and forward limits [30]. Such
solutions are termed shadow GPDs, which are invisible
to processes that only possess moment-type sensitivity.
Although QCD evolution of GPDs in response to the

variation of the probing scale might help with this sit-
uation [38], the nature of logarithmic high-order contri-
butions makes the improvement numerically not appre-
ciable [30] unless one goes to a sufficiently high scale [31]
where the cross section itself diminishes, which makes it
difficult to reach the desired precision.
However, the hard coefficients for the SDHEP in

Eq. (1), as shown in Eqs. (S2)-(S5), have not only terms
in which the x dependence is decoupled from the external
hard scale qT (or equivalently, the polar angle θ) of the
observed pion in the SDHEP frame, like that in Eq. (6),
but also terms in which the x dependence cannot be fac-
torized as in Eq. (6) and is entangled with the observed
qT (or θ). More precisely, the helicity-conserving hard

coefficients C+ in Eq. (S2) and C̃+ in Eq. (S4) contain
terms proportional to e1e2, in which the external observ-
able θ is entangled with the partons’ momentum fractions
x and z. Their convolutions with GPD H and H̃ lead to
the following type of integrals,∫ 1

−1

dx
(H+, H̃+)(x, ξ, t)

x− xp(ξ, z, θ) + iϵ
, (8)

with the x pole away from ±ξ and entangled with the
externally measured θ in the form,

xp(ξ, z, θ) = ξ ·
[
cos2(θ/2)(1− z)− z

cos2(θ/2)(1− z) + z

]
. (9)

Such contribution arises from Feynman diagrams with
the two photons attached to two different fermion lines,
like the one in Fig. 1(b), so that the momentum flow
through the short-distance gluon contains both x depen-
dence from the GPD (and z dependence from DA) and
qT (or θ) dependence. This special gluon propagator is
responsible for the xp form in Eq. (9). Such entangle-
ment provides enhanced sensitivity to the x dependence
of GPDs from the experimentally measured qT or θ dis-
tribution. With z going from 0 to 1, xp in Eq. (9) goes
from ξ to−ξ, scanning through the whole ERBL region of
GPDs. This is complementary to the high-qT diphoton
production in single diffractive pion-nucleon scattering,
which is capable of scanning through the whole DGLAP
region of GPDs [14].

The four helicity amplitudes M[H̃]
± and M̃[H]

± cannot
be distinguished by considering only the unpolarized dif-
ferential cross section in Eq. (4), from which the two

amplitudes M[H̃]
+ and M̃[H]

+ with enhanced x-sensitivity
cannot be distinguished. Fortunately, with the capability
of polarizing both the photon beam and hadron target
at JLab, various polarization asymmetries can be con-
structed as shown in Eq. (5). The single spin asymme-
try, AUT , mixes the helicity-conserving and flipping am-
plitudes, and then depends more on the amplitudes with
enhanced x-sensitivity, especially on their absolute signs.
The double spin asymmetries, ALL and ALT , provide dif-
ferent combinations of the GPD H and H̃. In particular,
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ALT is given by the imaginary parts of the amplitudes,
which probe the GPD values in the ERBL region due to
the special x pole at xp(ξ, z, θ) in Eq. (9).

The unpolarized cross section plus three asymmetries
in Eq. (5) can provide good information to disentangle

the four GPDs H± and H̃±. If the hadron can also
be transversely polarized, the associated asymmetry can
provide new information to add constraints on the GPD
E and Ẽ, which is beyond the scope of this Letter.
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Fig. 3. Choices of the u-quark GPD models at t = −0.2 GeV2

and ξ = 0.2, by adding shadow GPDs to the GK model.

Numerical results.—The CEBAF at JLab is capable
of delivering intense polarized photon beam to its Hall D
to study the SDHEP in Eq. (1) on various hadron targets,
which can also be polarized. We evaluate the production
rate and various asymmetries in Eq. (5) to demonstrate
the enhanced x-sensitivity on extracting GPDs. We take
the GK model [39–42] as the reference GPD forH and H̃,

referred as H0 and H̃0, respectively. As shown in Fig. 3,
we construct additional GPDs Hi and H̃i with different
x-dependence from modifying the reference u-quark GPD
by adding various shadow GPDs, Si(x, ξ) or S̃i(x, ξ), or
a shadow D-term Ds(x/ξ), which are constructed (in the
Supplemental Material) to give zero contribution to the
GPD’s forward limit and its moment in Eq. (7). We fix
the pion DA to be its asymptotic form [43]. In order
to focus on the x-sensitivity from the qT (or θ) distribu-
tion of this particular process, we neglect evolution effects
of GPDs and fix both renormalization and factorization
scales at 2 GeV.

In Fig. 4, we show the unpolarized differential cross
section in Eq. (4) together with the various asymmetries
in Eq. (5) for π0 production as a function of its polar
angle θ in the SDHEP frame at Eγ = 9 GeV. Since the
cos θ-dependence is multiplicative to the x/z-dependence

of hard coefficients C− and C̃−, the shadow GPDs are not
visible to them. On the other hand, the cos θ-dependence
of C+ and C̃+ is entangled with their x/z-dependence,
and therefore, GPDs with different x-dependence lead to
the different rate and asymmetries. In particular, the
ALT is sensitive to the imaginary parts of the ampli-
tudes, which are generated in the ERBL region, and has
a better sensitivity to the shadow D-term than the other
three observables as shown in Fig. 4. In general, the os-
cillation of shadow GPDs in the DGLAP region causes a
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Fig. 4. Unpolarized rate (a) and polarization asymmetries
(b)-(d) as functions of cos θ at (t, ξ) = (−0.2 GeV2, 0.2), using
different GPD sets as given in Fig. 3.

big cancellation in their contribution to the amplitudes,
while the sensitivity is more positively correlated with the
GPD magnitude in the ERBL region. The shadow S̃i, as-
sociated with the x-dependence of the polarized GPD H̃

gives bigger contribution to the amplitude M[S̃]
+ than Si

to M̃[S]
+ due to charge symmetry property, so that they

can be better probed.
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Fig. 5. Same as Fig. 4, but for the pγ → nπ+γ process.

For the neutral pion production, we can eliminate
terms proportional to (e1 − e2)

2 or (e21 − e22) in the hard
coefficients in Eqs. (S2)-(S5) since e1 = e2, which effec-
tively removes a good number of moment-type terms, giv-
ing the maximum amount of entanglement and the most
sensitivity to GPDs’ x-dependence. In Fig. 5, we present
the same study for the pγ → nπ+γ process. With differ-
ent flavor combination, it provides different x-sensitivity.
The nγ → pπ−γ process gives a similar result, but with a
smaller production rate. As demonstrated in Figs. 4 and
5, both the production rate and asymmetries are sizable
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and measurable, making the SDHEP in Eq. (1) uniquely
different from DVCS and others in terms of its enhanced
sensitivity for extracting the x-dependence of GPDs.

Summary and outlook.—Extracting the full x de-
pendence of GPDs is very important not only for probing
the tomographic partonic images of hadrons, but also for
predicting and understanding the emergent hadron prop-
erties in terms of various moments of GPDs. However,
the fact that the most known processes for extracting
GPDs, including DVCS and DVMP, have only moment-
type sensitivity makes it very difficult, if not impossible,
to pin down the x-dependence of GPDs and their flavor
dependence due to the possibility of having an infinite
number of shadow GPDs which are hardly visible to these
processes.

In this Letter, we demonstrated quantitatively that the
SDHEP in Eq. (1) is not only accessible by JLab Hall D
but also capable of providing much enhanced sensitivity
to the x-dependence of GPDs, as well as the potential
to probe the flavor dependence of GPDs from the pro-
duction rates and various asymmetries. This is possible
because this process has the entanglement of the x flow
of GPDs with the externally observed hard scale [14, 15],
which is a critical criterion for searching for good physi-
cal processes to help extract the x dependence of GPDs.
Since multiple GPDs could contribute to the same ob-
servables through convolutions of their x-dependence, ex-
tracting GPDs from data is a challenging inverse prob-
lem. A global analysis of multiple processes is necessary
for extracting these nonperturbative and universal GPDs
from which we can picture the spatial distribution of the
probability densities to find quarks and gluons inside a
bound hadron. With the full knowledge of the x depen-
dence of GPDs, we would be able to not only address how
partonic dynamics impacts the emergent hadronic prop-
erties, but also provide quantitative answers to profound
questions, including what the proton radius is in terms
of its transverse spatial distribution of quarks, rq(x), or
gluons, rg(x), how such radii compare with its electro-
magnetic charge radius, and how far from the center of
the proton the quarks and gluons could still be found.
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SUPPLEMENTAL MATERIAL

Hard coefficients for the photon-proton scattering process

z1p̂1

z̄1p̂1

z2q̂1

z̄2q̂1

q2

q

p2

(A1) (A2) (A3) (A4)

z1p̂1

z̄1p̂1

p2 q2 z2q̂1

z̄2q̂1

q

z1p̂1

z̄1p̂1

z2q̂1

z̄2q̂1p2 q2

q

(B1) (B2) (B3) (B4) (B5) (B6)

Fig. S1. Hard scattering diagrams for the photon-proton scattering into a photon-pion pair. They can be calculated by following
the two-stage paradigm described in Fig. 1(a). The two incoming fermion lines on the left are from the diffracted nucleon,
carrying momenta z1p̂1 and z̄1p̂1 ≡ (1 − z1)p̂1, respectively, where p̂1 = (∆ · n)n̄ with n = (0+, 1−,0T ) and n̄ = (1−, 0+,0T ).
The two outgoing fermion lines on the right are to form the produced pion, carrying momenta z2q̂1 and z̄2q̂1 ≡ (1 − z2)q̂1,
respectively, where q̂1 = (q1 ·w)w̄ with w and w̄ like n and n̄, respectively, but with ẑ-axis along q⃗1. The variables z1 and z2 are
related to x and z by z1 = (x+ ξ)/2ξ and z2 = z (see the text). Another set of diagrams are also to be included by switching
the two photon lines, giving 20 diagrams in total.

The hard coefficients C̃λλ′ (Cλλ′) for the photon-proton scattering process are obtained from the diagrams in Fig. S1
by amputating the parton lines associated with the diffracted proton and produced pion, and contracting them with
γ · p̂1/2 (γ5γ · p̂1/2) and γ5γ · q̂1/2, respectively, for the unpolarized (longitudinally polarized) GPD. The helicity
amplitudes are parametrized in terms of the center-of-mass energy squared ŝ = s(1 + ξ)/(2ξ), the angles (θ, ϕ) of the
pion in the SDHEP frame, and the parton momentum fractions x and z,

C±±(x, z; ŝ, θ, ϕ) =
N
ŝ
e∓iϕC+(x, z; θ), C±∓(x, z; ŝ, θ, ϕ) =

N
ŝ
e∓iϕC−(x, z; θ),

C̃±±(x, z; ŝ, θ, ϕ) = ±N
ŝ
e∓iϕC̃+(x, z; θ), C̃±∓(x, z; ŝ, θ, ϕ) = ±N

ŝ
e∓iϕC̃−(x, z; θ), (S1)

where N = 2ie2g2CF /Nc is a normalization factor, we have used parity symmetry to reduce the eight helicity

amplitudes into four independent ones, the two helicity-conserving ones, C+ and C̃+, and two helicity-flipping ones,

C− and C̃−. To present these amplitudes with the charge-conjugation symmetry manifestly exhibited, we introduce
the variables z1 = (x + ξ)/(2ξ) and z2 = z, such that when we picture the parton pair state A∗ = [qq̄′] as the two
valence partons from a meson, z1 and (1−z1) are the light-cone momentum fractions of the two collinear partons. This
variable choice makes full advantage of the two-stage paradigm depicted in Fig. 2 [15]. Then the four independent
helicity amplitudes are,

2ξC+(θ;x, z) = −(e1 − e2)
2

[
1− cos θ

1 + cos θ
· P z1 + z2 − 2z1z2

2z1z2(1− z1)(1− z2)

]
+ (e21 − e22)

[
2

1− cos θ
· P z1 − z2

z1z2(1− z1)(1− z2)

]
+ e1e2 P

[
1− cos θ

z1z2(1− z1)(1− z2)
· (z1z2 + (1− z1)(1− z2)) (z1(1− z1) + z2(1− z2))

(2(1− z1)(1− z2)− (1 + cos θ)z1z2) (2z1z2 − (1 + cos θ)(1− z1)(1− z2))

]
+ iπ

{
(e1 − e2)

2 2 cos θ

sin2 θ

(
δ(1− z1)

z2
+

δ(z1)

1− z2

)
+

(e21 − e22)

2
· 3− cos θ

1− cos θ

(
δ(1− z1)

z2
− δ(z1)

1− z2

)
− e1e2

2

(
1− cos θ

1 + cos θ
− 4

1− cos θ

)(
δ(1− z1)

z2
+

δ(z1)

1− z2

)
− e1e2

(1 + cos θ) z2 (1− z2)
×

×
[(

z1
1− z2

+
1 + cos θ

2

1− z2
z1

)
δ (z1 − ρ(z2)) +

(
1 + cos θ

2

z1
1− z2

+
1− z2
z1

)
δ (z1 − ρ̃(z2))

]}
, (S2)
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2ξC−(θ;x, z) = −(e1 − e2)
2

[
1− cos θ

1 + cos θ
· P z1z2 + (1− z1)(1− z2)

2z1z2(1− z1)(1− z2)

]
(S3)

− iπ

{
(e1 − e2)

2

1 + cos θ

(
δ(1− z1)

1− z2
+

δ(z1)

z2

)
+

e21 − e22
2

(
δ(z1)

z2
− δ(1− z1)

1− z2

)
+

2e1e2
1 + cos θ

(
δ(1− z1)

1− z2
+

δ(z1)

z2

)}
,

2ξC̃+(θ;x, z) = −(e1 − e2)
2

[
3 + cos θ

2 (1 + cos θ)
· P z1 − z2

z1z2(1− z1)(1− z2)

]
(S4)

+ e1e2P
[

(3 + cos θ)

z1z2(1− z1)(1− z2)
· (z1 − z2)(1− z1 − z2)

2

(2(1− z1)(1− z2)− (1 + cos θ)z1z2) (2z1z2 − (1 + cos θ)(1− z1)(1− z2))

]
+ iπ

{
2(e1 − e2)

2

sin2 θ

(
δ(z1)

1− z2
− δ(1− z1)

z2

)
+

e21 − e22
2

1 + cos θ

1− cos θ

(
δ(1− z1)

z2
+

δ(z1)

1− z2

)
+

e1e2
2

×

×
[(

8

sin2 θ
− 1− cos θ

1 + cos θ

)(
δ(z1)

1− z2
− δ(1− z1)

z2

)
− 1− cos θ

1 + cos θ

z1 − z2
z2 (1− z2)

[δ (z1 − ρ(z2)) + δ (z1 − ρ̃(z2))]

]}
,

2ξC̃−(θ;x, z) = −(e1 − e2)
2

[
1− cos θ

1 + cos θ
· P (1− z1 − z2)

2z1z2(1− z1)(1− z2)

]
(S5)

− iπ

{
(e1 − e2)

2

1 + cos θ

(
δ(z1)

z2
− δ(1− z1)

1− z2

)
+

e21 − e22
2

(
δ(z1)

z2
+

δ(1− z1)

1− z2

)
+

2 e1e2
1 + cos θ

(
δ(z1)

z2
− δ(1− z1)

1− z2

)}
,

where P indicates that the hard coefficients should be understood in the sense of principle-value integration for z1 (or
x), when convoluted with the GPD and DA. We have expressed the amplitudes in the general flavor case with the two
parton lines carrying electric charge e1 and e2, with eu = 2/3 and ed = −1/3 for u and d quarks. For charged pion
π± productions, we have (e1, e2) = (eu, ed) or (ed, eu), and all terms in Eqs. (S2)-(S5) contribute. For neutral pion
production, however, we have e1 = e2 = eu or ed, which cancels the terms proportional to (e1 − e2)

2 and (e21 − e22).
The special gluon propagators in the type-A diagrams in Fig. S1 introduce new poles of z1 in addition to 0 and 1,

ρ(z2) =
(1 + cos θ)(1− z2)

1 + cos θ + (1− cos θ)z2
=

1− z2
1 + z2 tan

2(θ/2)
, ρ̃(z2) = 1− ρ(1− z2), (S6)

both of which lie between 0 and 1 for z2 ∈ [0, 1] and θ ∈ (0, π). They translate to poles of x at

xp(ξ, z, θ) = ξ (2ρ(z)− 1) = ξ ·
[
cos2(θ/2)(1− z)− z

cos2(θ/2)(1− z) + z

]
, x̃p(ξ, z, θ) = ξ (2ρ̃(z)− 1) = −xp(ξ, 1− z, θ), (S7)

which lie between −ξ and ξ.
The convolution of the hard coefficients with the GPD H or H̃ and D̄(z) can be simplified by using D̄(z) = D̄(1−z).

Specifically, using the notations in Eq. (2), we have

M[H̃]
+ =(e1 − e2)

2 · D̄0 ·
[

1− cos θ

2(1 + cos θ)
· H̃+

0 (ξ, t) +
2iπ cos θ

sin2 θ
· H̃+(ξ, ξ, t)

]
+
(
e21 − e22

)
· D̄0 ·

[
− 2

1− cos θ
· H̃−

0 (ξ, t) +
iπ

2
· 3− cos θ

1− cos θ
· H̃−(ξ, ξ, t)

]
+ e1e2 ·

{∫ 1

0

dz D̄(z)

z(1− z)

[
1

2z + (1 + cos θ)(1− z)
+

2z + (1 + cos θ)(1− z)

2(1 + cos θ)

]
·
∫ 1

−1

dx
H̃+(x, ξ, t)

x− xp(ξ, z, θ) + iϵ

+D̄0 ·
[

1− cos θ

2(1 + cos θ)
· H̃+

0 (ξ, t)− iπ

(
1− cos θ

2(1 + cos θ)
− 2

1− cos θ

)
· H̃+(ξ, ξ, t)

]}
, (S8)

M[H̃]
− =(e1 − e2)

2 · D̄0 ·
[

1− cos θ

2(1 + cos θ)
· H̃+

0 (ξ, t)− iπ

1 + cos θ
· H̃+(ξ, ξ, t)

]
+
(
e21 − e22

)
· iπ
2

· D̄0 · H̃−(ξ, ξ, t)− e1e2 ·
2iπ

1 + cos θ
· D̄0 · H̃+(ξ, ξ, t), (S9)

M̃[H]
+ =(e1 − e2)

2 · D̄0 ·
[

3 + cos θ

2 (1 + cos θ)
·H+

0 (ξ, t)− 2iπ

sin2 θ
·H+(ξ, ξ, t)

]
+
(
e21 − e22

)
· iπ
2

· 1 + cos θ

1− cos θ
· D̄0 ·H−(ξ, ξ, t)
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+ e1e2 ·
{∫ 1

0

dz D̄(z)

z(1− z)

[
1

2z + (1 + cos θ)(1− z)
− 2z + (1 + cos θ)(1− z)

2(1 + cos θ)

]
·
∫ 1

−1

dx
H+(x, ξ, t)

x− xp(ξ, z, θ) + iϵ

+D̄0 ·
[

3 + cos θ

2(1 + cos θ)
·H+

0 (ξ, t)− iπ

2

(
8

sin2 θ
− 1− cos θ

1 + cos θ

)
H+(ξ, ξ, t)

]}
, (S10)

M̃[H]
− =− (e1 − e2)

2 · D̄0 ·
[

1− cos θ

2 (1 + cos θ)
H+

0 (ξ, t)− iπ

1 + cos θ
H+(ξ, ξ, t)

]
−
(
e21 − e22

)
· iπ
2

· D̄0 ·H−(ξ, ξ, t) + e1e2 ·
2iπ

1 + cos θ
· D̄0 ·H+(ξ, ξ, t), (S11)

where we have defined the charge-conjugation-even (C-even) and charge-conjugation-odd (C-odd) GPD combinations

H±(x, ξ, t) ≡ H(x, ξ, t)∓H(−x, ξ, t), H̃±(x, ξ, t) ≡ H̃(x, ξ, t)± H̃(−x, ξ, t), (S12)

and the “zeroth moments” of the DA and GPDs,

D̄0 ≡
∫ 1

0

dz D̄(z)

z
, F0(ξ, t) ≡ P

∫ 1

−1

dxF (x, ξ, t)

x− ξ
, (S13)

for F being H± or H̃±. We note that charge conjugation symmetry on the hard coefficients are reflected as the
symmetry under (z1, z2) ↔ (1 − z1, 1 − z2) and e1 ↔ e2 [14] in Eqs. (S2)-(S5). As a result, the (e1 − e2)

2
and

e1e2 terms are probing the C-even GPD components, whereas the
(
e21 − e22

)
terms the C-odd GPD components.

Furthermore, the (e1 − e2)
2
and

(
e21 − e22

)
terms are only related to the moments and diagonal values of GPDs, which

vanish for shadow GPDs. In contrast, the e1e2 terms contain special GPD integrals [Eq. (8)] that provide enhanced
sensitivity to the x dependence of GPDs, which are capable of distinguishing shadow GPDs.

Construction of shadow GPDs

Following the spirit of Ref. [30], we define the (leading-order) shadow GPDs S(x, ξ) as having null forward limits
and moment integrals in Eq. (7), while having the same polynomiality and time reversal properties as normal GPDs.
That is, we require

S(x,−ξ) = S(x, ξ), S(±1, ξ) = 0, S(x, 0) = 0, S(±ξ, ξ) = 0,

∫ 1

−1

dx
S(x, ξ)

x− ξ
= 0, (S14)

and the (n+ 1)-th moment of S(x, ξ) be an even polynomial of ξ of at most n-th order,∫ 1

−1

dxxn S(x, ξ) =

n∑
i=0,2,···

(2ξ)i Sn+1,i . (S15)

Note that we have dropped the t dependence in S, which may be introduced [31] to relax the small ξ suppression (due
to S(x, 0) = 0) in Eq. (S14), and the possible ξn+1 term in Eq. (S15) which is associated with the D-term. We will
construct a shadow D-term separately below. Since it is either the C-even or C-odd GPD combination [Eq. (S12)]
that enters the scattering amplitude, we require S(x, ξ) to be either odd or even in x, when it is to be added to H

or H̃. This has allowed us to leave out the condition
∫ 1

−1
dxS(x, ξ)/(x + ξ) = 0 in Eq. (S14) from which it can be

inferred. Besides, we also require the first moment of the shadow GPD to vanish since that can be constrained by the
electromagnetic form factor measurements, i.e.,∫ 1

−1

dxS(x, ξ) = S1,0 = 0. (S16)

The conditions in Eq. (S14) lead to some general constraints on the shadow GPDs. In low energy scattering such
as at JLab Hall-D, the accessible ξ values are small, ξ ≪ 1. The zeros at x = ±ξ then severely constrain the shadow
GPD values in the ERBL region, which can only grow up to a certain power of ξ. In this case, the integrals in
Eq. (S16) and the last equation in Eq. (S14) mainly receive contributions from the DGLAP region, which must be
highly suppressed. As a result, the shadow GPDs must have extra zeros in the DGLAP region, but not necessarily
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in the ERBL region. Such oscillation strongly suppresses the contributions to the special integrals in Eq. (8) from
shadow GPDs in the DGLAP region. This agrees with our observation in Figs. 4 and 5. In contrast, at a larger ξ,
the ERBL region can become stronger, and such constraints no longer exist.

To construct specific models for shadow GPDs, we choose the following ansatz,

S(x, ξ) = K0 ξ
2 xa (x2 − ξ2) (1− x2)b ·Q2n(x, c), (S17)

where a ≥ 0, and b, n > 0 are integers, and Q2n(x) = 1 + c x2 + · · ·+ q2n(c)x
2n is an even 2n-th order polynomial of

x. This parametrization automatically satisfies the first four conditions in Eq. (S14). Since it is only a fourth order
polynomial of ξ, the polynomiality condition can be readily satisfied. We have fixed the power of (x2−ξ2) to be unity;
a higher power further suppresses the ERBL region and leads to little impact to the integrals in Eq. (8). For given
a and b, we choose n to be the minimum integer such that Eq. (S17) satisfies all the conditions in Eqs. (S14)(S15)
and (S16). The single parameter c is allowed to tune the shape of shadow GPD. For any given choice, we choose the

normalization K0 (independent of ξ) such that
∫ 1

−1
dxS2(x, ξ) = 22 when ξ = 0.1.

We choose the GK model as the standard GPDs, H0(x, ξ, t) and H̃0(x, ξ, t), and vary them by adding shadow GPDs
to the u quark GPD. For the unpolarized GPD, since the H+ entering I[H] in Eq. (8) is an odd function of x, we
choose a = 1, b = 2 or 6, and n = 3. We choose c to make the integral |I[S]| maximize, which gives c = −11 or
−17. These two shadow GPDs, S1(x, ξ) and S2(x, ξ), make up two other models, H1,2 = H0 +S1,2. Similarly, for the

polarized GPD, we choose a = 0, b = 2 or 6, n = 3, and c = −24 or −40. This gives two shadow GPDs, S̃1(x, ξ) and

S̃2(x, ξ), and two GPD models, H̃1,2 = H̃0 + S̃1,2.
For the unpolarized GPD, an additional term proportional to mod(n, 2)(2ξ)n+1 can exist on the right hand side of

Eq. (S15), which comes from the D-term in the double distribution representation,

Hq(x, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dα δ(x− β − ξα) fq(β, α, t) + sgn(ξ)Dq(x/ξ, t) θ

(
ξ2 − x2

)
, (S18)

where Dq(x, t) is an odd function of x. Also, to retain the conditions in Eq. (S14), we drop the t dependence and
choose the D-term Ds(x) such that

Ds(−x) = −Ds(x), Ds(1) = 0,

∫ 1

−1

dx
Ds(x)

x− 1
= 0, (S19)

where the subscript ‘s’ is to remind that this D term is to be part of the shadow GPD, but not to be the requirement
for the D-terms in the normal GPDs. Note that since the D-term automatically disappears in the forward limit,
its magnitude does not necessarily suffer from the any suppression when ξ is small. Because of the last condition in
Eq. (S19), the shadow D-term cannot be probed by the dispersion relation in the DVCS data [44, 45], but it can
modify the D-term in the gravitational form factor. We choose the ansatz for the shadow D-term

Ds(x) = J0 x (1− x2) ·
(
1 + c x2 − 7

15
(3c+ 5)x4

)
θ(1− x2) , (S20)

with c = 50 and the normalization factor J0 chosen to make
∫ 1

−1
dxD2

s(x) = 22. Adding this to the u quark GPD H0

gives another GPD model, H3 = H0 +Ds.
These GPD models have been shown for the u quark in Fig. 3 at t = −0.2 GeV2, ξ = 0.2, with a fixed evolution

scale µ = 2 GeV for the GK model. As expected, at a small ξ, the shadow GPDs are small in the ERBL region, being
dominated by the DGLAP region. In Fig. S2, we show the same set of GPD models but with a larger ξ at 0.4. One
can immediately notice that the shadow GPDs (not the shadow D-term) scale up with ξ very rapidly and the ERBL
region becomes dominant.
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H0 = HGK
H1 = H0 + S1
H2 = H0 + S2
H3 = H0 + Ds
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Fig. S2. Choices of the u-quark GPD models, same as Fig. 3 but at ξ = 0.4. The GK model (solid black line) lies very close to
the horizontal axis in such a vertical scale.
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