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Abstract

We calculate the beam (Bn) and target (An) normal single-spin asymmetries in electron–proton

elastic scattering from two-photon exchange amplitudes with resonance intermediate states of spin-

parity 1/2± and 3/2± and mass W ≲ 1.8 GeV. The latest CLAS exclusive meson electroproduction

data are used as input for the transition amplitudes from the proton to the excited resonance states.

For Bn, the spin 3/2 resonances dominate by an order of magnitude over the spin 1/2 states. In

general we observe cancellations between the negative contributions of the ∆(1232) and N(1520)

across both beam energy and scattering angle, and the positive contributions of the ∆(1700) and

N(1720), leading to a rather large overall uncertainty band in the total Bn. At forward angles and

beam energies Elab < 1 GeV, where the ∆(1232) dominates, the calculated Bn tend to overshoot

the A4 and SAMPLE data. The calculated Bn compare well with the measured values from the

A4 and Qweak experiments with Elab > 1 GeV.
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I. INTRODUCTION

Over the last two decades the role of two-photon exchange (TPE) in electron–proton

elastic scattering has received considerable attention in both the theoretical and experimental

nuclear physics communities, in an effort to understand its impact on hadron structure

dependent observables [1–3]. Analysis of the proton’s electric (GE) to magnetic (GM) form

factor ratio, µpGE/GM , where µp is the proton’s magnetic moment, extracted from both

the Rosenbluth separation [4] and polarization transfer methods [5, 6], suggests a consistent

description is possible with the inclusion of TPE effects, which have been found to make

large contributions to the former [7, 8]. Subsequently, there has been a greater appreciation

of the potential effects on other hadronic observables in electromagnetic reactions that may

be affected by TPE, and particularly the careful propagation of its uncertainty [1–3].

While the real part of the TPE amplitude can be accessed directly from the measurement

of the ratio of the unpolarized e+p to e−p scattering cross sections, the imaginary part

of TPE generates a single-spin asymmetry (SSA) at leading order in the electromagnetic

coupling α, with either the beam or target polarized normal (or transverse) to the scattering

plane. Explicitly, the experimentally measured asymmetry is defined by

SSA =
σ↑ − σ↓

σ↑ + σ↓ , (1)

were σ↑ (σ↓) is the cross section for ep elastic scattering with either beam or target spin

polarized parallel (antiparallel) to the scattering plane. The normal vector N is defined as

N =
k × k′

|k × k′| , (2)

where k and k′ are the three-momenta of the incident and scattered electrons, respectively.

The leading term of the SSA comes from the imaginary part of the TPE amplitude. It was

first shown by de Rújula et al. [9] that time-reversal invariance implies no contribution to

SSA from the single-photon exchange transition amplitude, Mγ. The leading term of the

beam or target normal SSA arises from the absorptive part of the TPE transition amplitude

Mγγ, denoted Abs [Mγγ], according to the relation

SSA =

Im
( ∑

spins

M∗
γ Abs [Mγγ]

)
∑
spins

|Mγ|2
. (3)
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While there is some inconsistency with the notation used for this observable in the literature,

in this work the convention An for target normal SSA and Bn for beam normal SSA will be

used.

As defined in Eq. (3), the SSA is of order α. The beam normal asymmetry Bn is further

suppressed by the small factor me/Elab, where me is the electron mass and Elab is the

beam energy in the laboratory frame, so that Bn is expected to be of order 10−6 – 10−5

for beam energies in the GeV range. For the target normal SSA An, on the other hand,

there is no additional suppression, and hence it is anticipated to be of order 10−3 – 10−2

for the same beam energy. In addition to providing an avenue to the exploration of TPE

effects, the beam normal SSA Bn plays a particularly important role in parity-violating

electron scattering experiments that use longitudinally polarized lepton beams to measure

the asymmetry due to the spin flip. A nonzero Bn, even if small numerically, could contribute

to a false asymmetry due to a slow drift in the rapid flip of the beam polarization. As

a requirement to control possible systematic errors, parity-violating experiments typically

determine the beam normal SSA as a by-product. For example, the highly precise Qweak

experiment [10] at Jefferson Lab recently determined the weak charge of the proton in a

search for physics beyond the standard model, which required knowledge of the systematic

error from Bn at forward scattering angles. Several earlier parity-violating experiments [11–

13], as well as the more recent intermediate and backward angle measurements from the A4

collaboration at Mainz [14–16], have also determined the beam normal SSA over a range of

scattering angles and energies.

Following the initial measurement by the SAMPLE collaboration [17] at a beam energy

Elab = 0.2 GeV and backward laboratory scattering angle, several subsequent experiments

from the G0 [11, 12], HAPPEX [13] and Qweak [10] collaborations at Jefferson Lab and A4

at Mainz [14–16] measured Bn over a wide range of scattering angles. A trend observed in

the data is the suppression of Bn with increasing energy, although the correlation between

energy and scattering angle is less clear. For backward scattering at relatively low energies,

Refs. [11, 15] find Bn to be of order ∼ 10−5, whereas the more recent measurement [16] at

intermediate scattering angles finds Bn of order 10−6 over a similar range of beam energies.

Note that the SAMPLE [17] result is in relative tension with the two other lower energy and

backward angle measurements from G0 [11] and A4 [15], which may be related to the more

restricted mass range of resonance states that can contribute at the lower SAMPLE energy.
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In contrast, the relatively higher energy (1 ≲ Elab ≲ 3 GeV) experiments [10, 12, 13, 16]

correspond to small scattering angles (with the exception of the single datum of Ref. [16]),

and are consistently in the range of ≈ −7 to −4 ppm.

In theoretical developments, following de Rújula et al. [9] several model estimates of

Bn have been made in the literature [18–21]. The hadronic approximation with a doubly-

virtual Compton scattering analogy of the imaginary part of the TPE correction was used

by Pasquini and Vanderhaeghen [18, 19], in which the πN intermediate state was consid-

ered along with the elastic nucleon, with input taken from the MAID electroproduction

amplitudes [22]. However, the model is believed to be appropriate only for forward angles.

Using a generalized parton distribution approach that is more applicable at high Q2, with

a real Compton scattering (RCS) analogy suitable for forward angles, Gorchtein [20] found

rather different results, with even an opposite sign, compared to Refs. [18, 19]. Subsequently,

Gorchtein [20] used a quasi-real Compton scattering (QRCS) formalism, which is more ap-

propriate for backward angles, to estimate both Bn and An, although the results are still not

in agreement with that of Refs. [18, 19]. The significant disagreement between the measured

value of beam normal SSA by the PREX collaboration [13] and the corresponding theoreti-

cal estimate [23] for heavier target nucleus 208Pb raised questions about the calculations in

general. More recently, Koshchii et al. [24] calculated Bn for electron scattering from several

spin 0 nuclei, accounting for inelastic intermediate state contributions, in addition to several

other improvements on the uncertainty calculation. However, the result does not resolve the

discrepancy between the theoretical estimates and the PREX [13] data for a 208Pb target

nucleus.

In contrast to the beam normal asymmetry, for the target normal SSA, An, there are

currently no available data for a proton target. An experiment to measureAn in both e−p and

e+p scattering has been proposed at Jefferson Lab Hall A for beam energies Elab = 2.2, 4.4

and 6.6 GeV using the Super Big-Bite Spectrometer [25]. Earlier, a nonzero value of An

was found for the neutron, extracted from quasielastic electron scattering from 3He [26],

assuming the proton An is given by the TPE contribution with a nucleon intermediate

state [27].

To better understand both the beam and target normal SSAs originating from the spin-

parity 1/2± and 3/2± resonance intermediate states associated with πN and ππN channels,

we revisit the imaginary part of the TPE amplitude in ep elastic scattering using the latest
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results for the electrocouplings extracted from recent CLAS data [28–30]. We begin in

Sec. II by reviewing the kinematics of electron-proton scattering at the one- and two-photon

exchange level. In Sec. III we introduce the single-spin asymmetries for both beam and target

polarization normal to the electron-proton scattering plane and discuss the calculation of

spin 1/2 and spin 3/2 intermediate state contributions. Numerical results for the beam SSAs

Bn and the target SSAs An are presented in Sec. IV, including a discussion of uncertainties

and comparisons with available data. Finally, in Sec. V we conclude with a summary of the

main results of this analysis, and some discussion about future extensions of this work.

II. ELASTIC ELECTRON-PROTON SCATTERING

In this section, we define the general kinematic quantities needed for describing elastic

electron-proton scattering. For convenience, the calculation of SSA quantities is performed

in the center-of-mass (CM) frame, although the experimental kinematics are typically given

in the laboratory (or target rest) frame. Where appropriate, we give the relevant expressions

in both frames.

A. Kinematics and definitions

For the elastic scattering process e(k) + N(p) → e(k′) + N(p′) (see Fig. 1), the four-

momenta of the initial and final electrons (with mass me) are labelled by k and k′, with

corresponding lab frame energies Elab and E ′
lab. The initial and final nucleons (mass M)

have four-momenta p and p′, respectively. The four-momentum transfer from the electron

to the nucleon is given by q = p′− p = k−k′, with the photon virtuality Q2 ≡ −q2 > 0. For

the TPE process, the two virtual photons transfer four-momenta q1 and q2 to the proton, so

that q = q1 + q2.

One can express the elastic scattering cross section in terms of any two of the Mandelstam

invariants s (total electron–nucleon invariant mass squared), t, and u, where

s = (k + p)2 = (k′ + p′)2 , t = (k − k′)2 = q2 , u = (p− k′)2 = (p′ − k)2 , (4)

with the constraint s+ t+u = 2M2+2m2
e. For the OPE amplitude, and for the An SSA, the

electron mass can be neglected at the kinematics of interest. However, for the Bn SSA the
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FIG. 1. Contributions to elastic electron–nucleon scattering from (a) one-photon exchange (OPE),

and (b) two-photon exchange amplitudes, with particle momenta as indicated. The intermediate

hadronic state is taken to be a resonance of invariant mass W . Only the s-channel box diagram is

shown for the TPE process, since the imaginary part relevant for SSA originates solely from the

box diagram, with the intermediate electron and hadronic states on-shell. The two virtual photons

carry momenta q1 and q2, giving the total momentum transfer q = q1 + q2.

electron mass must be retained for two reasons. First, Bn has an overall factor of me, and

second, Bn has a mass-dependent quasi-singularity when the intermediate electron three-

momentum |k1| → 0.

For the imaginary part of the scattering amplitude, the intermediate states are on-shell.

In the CM frame we have for the energies and three-momenta of the particles,

Ek =
s−M2 +m2

e

2
√
s

, |p| = |k| =
√
E2

k −m2
e, (5a)

Ek1 =
s−W 2 +m2

e

2
√
s

, |k1| =
√

E2
k1
−m2

e, (5b)

Ep =
√
E2

k −m2
e +M2, (5c)

where W 2 = (p + q1)
2 = (p′ − q2)

2 is the invariant squared mass of the intermediate state

resonance. For the four-momentum transfer squared between the electron and nucleon, Q2,

and the virtualities of the two exchanged photons, Q2
1 = −q21 and Q2

2 = −q22, we have

Q2 = 2|k|2 (1− cos θcm) , (6a)

Q2
1 = 2

(
EkEk1 −m2

e − |k||k1| cos θ1
)
, (6b)

Q2
2 = 2

(
EkEk1 −m2

e − |k||k1| cos θ2
)
, (6c)

where θcm is the CM scattering angle, and cos θ2 = cos θcm cos θ1 + sin θcm sin θ1 cosϕ1. The

Mandelstam variable s is given in the lab frame as s = M2 +m2
e + 2MElab, with Elab the
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electron beam energy in the lab frame. In the lab frame we also have

Q2 = 2ElabE
′
lab(1− cos θlab), E ′

lab = Elab −
Q2

2M
, (7)

where E ′
lab is the energy of the electron scattered by angle θlab.

For inelastic excitations the minimum value of W is taken to be the pion production

threshold, Wth = M + mπ. For a given s, the maximum value of W corresponds to an

intermediate electron at rest, |k1| = 0, so that

Wmax =
√
s−me, Ek1 = me. (8)

At W = Wmax the four-momentum transfers of the two virtual photons become

Q2
1 = Q2

2 = me
(W 2

max −M2)√
s

, (9)

so that the two photons are almost on-shell (i.e. real). This has been dubbed the quasi-

real Compton scattering (QRCS) region [18–20], and requires special attention to reliably

compute the SSA numerically. We discuss this further in Sec. III C and in the Appendix.

B. One- and two-photon exchange amplitudes

The explicit expression for the one-photon exchange (OPE) or Born amplitude, Mγ, of

Fig. 1 can be written as [2]

Mγ = e2 ūe(k
′) γµ ue(k)

1

Q2
ūN(p

′) Γµ(q)uN(p), (10)

where e is the charge of the proton, and the hadronic current operator Γµ is parameterized

in terms of the Dirac F1 and Pauli F2 form factors for on-shell particles,

Γµ(q) = F1(Q
2)γµ + F2(Q

2)
iσµνqν
2M

. (11)

The two-photon exchange amplitude, Mγγ, contains contributions from the box diagram

of Fig. 1 and the corresponding crossed-box diagram (not shown). However, since the

crossed-box amplitude is purely real, we will focus only on the box diagram contribution,

Mbox
γγ . The loop integral of the box diagram amplitude can be written as [2],

Mbox
γγ = −ie4

∫
d4q1
(2π)4

LµνH
µν

(q21 − λ2)(q22 − λ2)
, (12)
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where λ is an infinitesimal photon mass introduced to regulate infrared divergences. Such

divergences are absent for normal single-spin asymmetries, but λ can be kept as an infinites-

imal parameter to improve numerical stability. The leptonic and hadronic tensors, Lµν and

Hµν , respectively, are given by

Lµν = ūe(k
′) γµ

(/k1 +me)

k2
1 −m2

e + i0+
γν ue(k), (13a)

Hµν = ūN(p
′) Γµα

R→γN(pR,−q2)Sαβ(pR,W ) Γβν
γN→R(pR, q1)uN(p), (13b)

where the intermediate lepton four-momentum is k1 = k − q1, and the four-momentum

of the resonance R (with mass W ) is pR = p + q1 = p′ − q2. The transition operators,

Γβν
γN→R(pR, q1) and Γµα

R→γN(pR,−q2), between the nucleon and intermediate state resonance R

can be expressed in terms of the three transition form factors G1, G2, and G3. These form

factors can also be written in terms of the corresponding helicity amplitudes A1/2, A3/2, and

S1/2 (see Ref. [5]).

For spin 1/2 baryon intermediate states, the propagator Sαβ(pR,W ) is simply the spin

1/2 Feynman propagator,

Sαβ(pR,W ) = δαβ
(/pR +W )

p2R −W 2 + i0+
= δαβ SF (pR,W ). (14)

For spin 3/2 intermediate states, on the other hand, the hadronic propagator has the more

complicated form

Sαβ(pR,W ) = −P3/2
αβ (pR)

(/pR +W )

p2R −W 2 + i0+
, (15)

where

P3/2
αβ (pR) = gαβ −

1

3
γαγβ −

1

3p2R

(
/pRγα(pR)β + (pR)αγβ/pR

)
(16)

is the spin 3/2 projection operator for momentum pR.

III. SINGLE-SPIN ASYMMETRIES IN ELECTRON-PROTON SCATTERING

In this section we discuss several technical aspects of the TPE amplitude, including the

generalization of the calculation from point particles to the case of finite resonance widths

(Sec. III B), and the quasi-singular behavior of the asymmetry Bn (Sec. III C). We begin,

however, with some general considerations about TPE amplitudes and their contributions

to SSAs.
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A. General features

In the definition of the beam or target normal SSA in Eq. (3), the denominator is identical

to the Born cross section for unpolarized elastic ep scattering, since the spin components

(beam or target) have no impact at the Born level. Summing over final state spins and

averaging over initial state spins, one can write the squared Born amplitude in terms of the

invariant Mandelstam variables s and Q2 = −t,∑
spins

∣∣Mγ

∣∣2 = ∑
spins

M†
γMγ =

Q4

e4
D(s,Q2), (17)

where we define the factor

D(s,Q2) =
2

4M2 +Q2

[
G2

E(Q
2) 8M2

(
(s−M2)2 −Q2s

)
+G2

M(Q2)Q2
(
2M4 +Q4 + 2(s− 2M2)(s−Q2)

)]
, (18)

with terms of order of m2
e neglected.

To derive the absorptive part of the TPE amplitude, one can exploit the Cutkosky cutting

rules [31], which involve the replacements

1

p2R −W 2 + i0+
→ −2πi θ(p0R) δ(p

2
R −W 2), (19a)

1

k2
1 −m2

e + i0+
→ −2πi θ(k0

1) δ(k
2
1 −m2

e), (19b)

which place the intermediate state lepton and hadron on their mass-shells. This substitution

provides the discontinuity, Disc(iMγγ) = −2 ImMγγ, of the TPE box diagram of Fig. 1,

and hence the absorptive part of TPE amplitude −AbsMγγ. After applying the Cutkosky

cutting rules, the absorptive part of the TPE amplitude in Eq. (3) can be written as

AbsMγγ = e4
∫

d3k1

(2π)32Ek1

ūe(k
′)γµ(/k1 +me)γνue(k)

Q2
1Q

2
2

Wµν . (20)

The hadronic tensor Wµν in Eq. (20) contains all the information about the transition

from the proton initial state to all possible intermediate hadronic states, including the elas-

tic nucleon state and the inelastic transitions to the nucleon excited state resonances. In

practice, the SSAs are calculated including contributions from each of the three-star and

four-star, spin 1/2 and 3/2 resonance intermediate states from the PDG [32] below mass

MR = 1.8 GeV, which are then added together with the elastic nucleon contribution to

obtain the complete result.
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In the zero width approximation, for the elastic nucleon and inelastic spin 1/2 resonances

of mass MR the hadronic tensor Wµν takes the simplified form,

Wµν = 2πδ(W 2 −M2
R) ūN(p

′) Γµ
R→γN(pR,−q2) (/pR +W ) Γν

γN→R(pR, q1)uN(p). (21)

To assess the validity of this approximation, we will also examine the effect of replacing the

zero width result by a finite width distribution in W 2, centred around W = MR. For spin

3/2 resonances, the hadronic tensor uses the Rarita-Schwinger spinors for each intermediate

state, and can be written as

Wµν = −2πδ(W 2 −M2
R)

× ūN(p
′) Γµα

R→γN(pR,−q2)P3/2
αβ (pR) (/pR +W ) Γβν

γN→R(pR, q1)uN(p). (22)

Using Eqs. (10), (17), and (20) one can write the SSA as

SSA =
αQ2

2π2D(s,Q2)

×
∑
spins

∫
d3k1

2Ek1

ūe(k) γρ ue(k
′) ūe(k

′) γµ(/k1 +me)γν ue(k) ūN(p) Γ
ρ(−q)uN(p

′)

Q2
1Q

2
2

Wµν .

(23)

For the two different cases of beam and target normal SSA, the spin sum will lead to different

expressions for the SSAs. Taking the spin sum, one can express Eq. (23) in a concise form

in terms of the leptonic and hadronic tensors, Lρµν and Hρµν , respectively, as

SSA =
αQ2

πD(s,Q2)

∫
d3k1

2Ek1

ImLρµνH
ρµν

Q2
1Q

2
2

. (24)

For the beam polarized parallel or antiparallel to the normal sn to the scattering plane

defined in Eq. (2), the leptonic tensor Lρµν contains the lepton polarization vector sµn ≡
(0; sn), and takes the form

LB
ρµν =

1

2
Tr

[
(1 + γ5/sn)(/k +me)γρ(/k

′
+me)γµ(/k1 +me)γν

]
, (25)

where the superscript “B” denotes the fact that the lepton tensor corresponds to the beam

normal case. Note that the imaginary part in Eq. (3) for Bn comes solely from this spin

polarization-dependent term. However, the corresponding hadronic tensor for the beam

normal case, Hρµν
B , remains independent of the polarization of the target hadron, and is

equivalent to the hadronic tensor for the case of unpolarized ep scattering.
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For spin 1/2 intermediate states, the hadronic tensor becomes

Hρµν
B =

1

2
Tr

[
(/p+M) Γρ(−q) (/p

′ +M) Γµ
R→γN(pR,−q2)

×(/pR +W ) Γν
γN→R(pR, q1)

]
δ(W 2 −M2

R). (26)

For spin 3/2 resonances, on the other hand, the hadronic tensor is given by

Hρµν
B = −1

2
Tr

[
(/p+M) Γρ(−q) (/p

′ +M) Γµα
R→γN(pR,−q2)P3/2

αβ (pR)

×(/pR +W ) Γβν
γN→R(pR, q1)

]
δ(W 2 −M2

R). (27)

For the target normal SSA, An, the corresponding leptonic tensor, LA
ρµν , is identical to

that for unpolarized ep scattering, and can be written as

LA
ρµν =

1

2
Tr

[
(/k +me) γρ (/k

′
+me) γµ (/k1 +me) γν

]
. (28)

Unlike for Bn, the hadronic tensor H
ρµν
A for the target normal SSA An depends on the target

polarization vector, Sµ
n . For spin 1/2 resonances, Hρµν

A becomes

Hρµν
A =

1

2
Tr

[
(1 + γ5/Sn)(/p+M) Γρ(−q) (/p

′ +M) Γµ
R→γN(pR,−q2)

×(/pR +W ) Γν
γN→R(pR, q1)

]
δ(W 2 −M2

R), (29)

while for spin 3/2 resonances it is given by

Hρµν
A = −1

2
Tr

[
(1 + γ5/Sn)(/p+M) Γρ(−q) (/p

′ +M) Γµα
R→γN(pR,−q2)P3/2

αβ (pR)

×(/pR +W ) Γβν
γN→R(pR, q1)

]
δ(W 2 −M2

R). (30)

For the numerical calculation, it will be convenient to transform the phase space integral

over the intermediate electron momentum k1 of Eq. (24) in terms of the Lorentz-invariant

Mandelstam variable s. Defining the kinematics in the CM frame, the integration over

d3k1 → k2
1 d|k1| d(cos θk1) dϕk1 can be written as∫

d3k1

2Ek1

→ −
∫ W 2

max

M2

dW 2 |k1|
4
√
s

∫ 1

−1

d cos θk1

∫ 2π

0

dϕk1 , (31)

with Wmax =
√
s −me. Here we have utilized the CM frame relation for the intermediate

electron three-momentum given in Eq. (5b). Using Eq. (31) for the SSA in Eq. (24) then

gives

SSA = − αQ2

πD(s,Q2)

∫ W 2
max

M2

dW 2 |k1|
4
√
s

∫ 1

−1

d cos θk1

∫ 2π

0

dϕk1

ImLρµνH
ρµν

Q2
1Q

2
2

. (32)
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The tensor product LρµνH
ρµν in Eq. (32) depends on the totally antisymmetric Levi-Civita

tensor, ϵαβγδ, which is defined following the FeynCalc [33] convention ϵ0123 = −1 = −ϵ0123.

In the following we will use the shorthand notation ϵ(abcd) ≡ ϵαβγδa
αbβcγdδ. For the beam

normal spin asymmetry Bn there are four independent antisymmetric tensors that be con-

structed from the beam normal spin four-vector sn and three of the four-momenta k, p, q,

and q1. For the target normal spin asymmetry An there is one antisymmetric tensor needed.

In the CM frame these can be written as

ϵ(kpqsn) = −(Ek + Ep)|k|2 sin θcm, (33a)

ϵ(kpq1sn) = −(Ek + Ep)|k||k1| sin θk1 cosϕk1 , (33b)

ϵ(kqq1sn) = |k|
( [

Ek|k1| cos θk1 − Ek1 |k|
]
sin θcm

+Ek|k1|(1− cos θcm) sin θk1 cosϕk1

)
, (33c)

ϵ(pqq1sn) = |k|
([
Ep|k1| cos θk1 − (Ek − Ek1 + Ep)|k|

]
sin θcm

+Ep|k1|(1− cos θcm) sin θk1 cosϕk1

)
, (33d)

ϵ(kpqq1) = (Ek + Ep)|k||k|2 sin θcm sin θk1 sinϕk1 . (33e)

B. Finite width effect

A finite resonance width is usually accommodated by using the well-known relativis-

tic Breit-Wigner distribution in W 2. In this analysis we use a closely related alternative

distribution, denoted as a Sill distribution by Giacosa et al. [34], that avoids the problem

of normalization inherent in the Breit-Wigner expression. In this approach the δ-function

distribution δ(W 2 −M2
R) that appears in Eqs. (29) and (30) is replaced by the function

δSill(W
2) =

θ(W 2 −W 2
th)

π

√
W 2 −W 2

th Γ̃

(W 2 −M2
R)

2 + (W 2 −W 2
th) Γ̃

2
, (34)

where

Γ̃ = Γ
MR√

M2
R −W 2

th

(35)

and Γ is the usual resonance width. The Sill distribution has the desirable property that∫ ∞

W 2
th

dW 2 δSill(W
2) = 1 (36)

for any threshold W 2
th < M2

R. It vanishes as W → Wth, but is otherwise very similar to the

conventional Breit-Wigner distribution.
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C. Quasi-singular behavior in Bn

As discussed at the end of Sec. IIA, the beam normal SSA Bn is sensitive to the quasi-

singular behavior of the integrand in Eq. (32) when the intermediate state electron three-

momentum |k1| → 0. This is the QRCS region, where W → Wmax and the two virtual

photons have four-momenta Q2
1 and Q2

2 of order me (see Eq. (9)). In this region of W , the

integrand of Eq. (32) is characterized by a slowly varying numerator and a rapidly varying

denominator. This behaviour does not affect the target normal SSA An because for this

asymmetry the numerator in Eq. (32) vanishes as W → Wmax.

To address this behavior in the numerical calculations in a practical way, we have devised

the following strategy in the QRCS region with W just below Wmax. The slowly varying

numerator of the integrand in Eq. (32) is evaluated at Q2
1 = Q2

2 = 0, which is then a

constant independent of θk1 and ϕk1 . We keep the mild W dependence, but make no further

approximation and leave the denominator intact. Thus we are left with an integral over W

in this region that is proportional to the angular integral

J(W ) =
|k1|
4
√
s

∫
dΩk1

1

Q2
1Q

2
2

. (37)

This integral can be done analytically, as discussed in Refs. [3, 21, 35]. Unlike Refs. [21, 35]

however, we only apply the analytic expression using J(W ) to the tail region, Wmax−5me ≤
W ≤ Wmax, and use the full three-dimensional numerical quadrature of Eq. (32) elsewhere.

Details of the matching procedure at W = Wmax−5me and the analytic expression for J(W )

are given in the Appendix.

IV. NUMERICAL SINGLE-SPIN ASYMMETRY RESULTS

In this section we present the results of our calculation of single-spin asymmetries for

both beam (Sec. IVC) and target (Sec. IVD) spin normal to the scattering plane, at the

kinematics of several previous experiments. Before discussing the results for Bn and An, we

will illustrate the input parameters used in the evaluation of the integral in Eq. (32).

13



A. Resonance parameters

In our numerical calculations, for the proton elastic electric (GE) and magnetic (GM)

form factors we use the parametrization from Ref. [36]. For the hadronic transition currents

ΓR→γN and ΓγN→R in Eq. (32), we use the CLAS parametrization [28] of the input resonance

electrocouplings Ah(Q
2) at the resonance points, where Ah represents the longitudinal elec-

trocoupling, S1/2, and the two transverse electrocouplings, A1/2 and A3/2. The dependence

of the electrocouplings Ah on the invariant mass W is given in Ref. [5].

For the inelastic intermediate states in Fig. 1(b), in this work we include the con-

tributions of four spin-parity 3/2± nucleon (isospin 1/2) and ∆ (isospin 3/2) resonances

{∆(1232) 3/2+, N(1520) 3/2−, ∆(1700) 3/2−, and N(1720) 3/2+}, and five spin-parity 1/2±

resonances {N(1440) 1/2+, N(1535) 1/2−, ∆(1620) 1/2−, N(1650) 1/2−, andN(1710) 1/2+}.
(In the following, for ease of notation we will drop the spin-parity suffix from the resonance

state labels.) The Breit-Wigner mass MR and the constant decay width Γ of the nine excited

state resonances are set to those used in the CLAS parametrization [28] of the resonance

electrocouplings Ah, and their numerical values are listed in the second and third columns

of Table I.

Laboratory threshold energies Eth
lab = (M2

R −M2)/2M for the excitation of resonances R

in the zero width limit are shown in Table I. Values range between 0.34 GeV for the first

excited state ∆(1232) to 1.11 GeV for the highest-mass state N(1720). It is evident from

the threshold energy values that in the zero width approximation the states beyond the

N(1650) do not contribute to the total SSA for beam energies below 1 GeV, where most of

the experiments to measure Bn have taken data. In practice, the unstable resonances have

a finite decay width with a distribution in the squared invariant mass W 2, starting from the

threshold, W 2
th, of the prominent nπ+ decay channel of most resonances. Accounting for the

finite width effect for each resonance, using the Sill distribution of Eq. (34), gives a nonzero

contribution from the higher-mass resonances even at beam energies Elab ≲ 1.0 GeV. The

effect of such a nonzero width on the beam and target SSAs Bn and An will be discussed in

more detail below.
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B. Uncertainty estimation

Apart from the dependence on the width, we also propagate the uncertainty on the

input resonance electrocouplings, ∆Ah, into the estimation of the uncertainties on the beam

normal SSA Bn, using

∆Bn =

√( ∂Bn

∂A1/2

)2

(∆A1/2)2 +
( ∂Bn

∂A3/2

)2

(∆A3/2)2 +
( ∂Bn

∂S1/2

)2

(∆S1/2)2 , (38)

and similarly for the uncertainty, ∆An, on the target normal asymmetry, An. A constant,

Q2-independent uncertainty on the electrocouplings was assumed for each of the resonances

in the range of 0 ≤ Q2 ≤ 5 GeV2, with the exception of the ∆(1232), for which there is more

empirical information. The uncertainties on the transverse A1/2 and A3/2 electrocouplings

of the ∆(1232) transition display some Q2 dependence, and decrease with Q2, following the

magnitudes of the respective electrocouplings [28]. As shown in Table I, the uncertainties

∆A1/2 and ∆A3/2 on the two transverse electrocuplings are assumed to be ≈ 3% and 4.5% of

TABLE I. Mass (MR), width (Γ), and threshold energy (Eth
lab) of each N or ∆ resonance of spin-

parity J±. The uncertainty bands ∆A1/2, ∆A3/2 and ∆S1/2 on the respective electrocouplings

A1/2, A3/2 and S1/2, used in estimating the uncertainty in Bn and An, are given in the last three

columns. The uncertainties ∆Ah are given as a percentage of the maximum absolute value of the

corresponding electrocouplings, except for the ∆(1232), where ∆A1/2 and ∆A3/2 are given as a

percentage of A1/2 and A3/2, respectively.

Resonance MR (GeV) Γ (GeV) Eth
lab (GeV) ∆A1/2(%) ∆A3/2(%) ∆S1/2(%)

∆(1232) 3/2+ 1.232 0.117 0.34 3.0 4.5 3.6

N(1440) 1/2+ 1.430 0.350 0.64 10.0 — 15.9

N(1520) 3/2− 1.515 0.115 0.75 6.1 5.3 8.9

N(1535) 1/2− 1.535 0.150 0.78 5.0 — 22.1

∆(1620) 1/2− 1.630 0.140 0.91 21.2 — 12.1

N(1650) 1/2− 1.655 0.140 0.98 15.8 — 23.6

∆(1700) 3/2− 1.700 0.293 1.09 5.0 9.1 12.9

N(1710) 1/2+ 1.710 0.100 1.09 15.0 — 49.2

N(1720) 3/2+ 1.748 0.114 1.11 4.5 10.7 13.8
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the corresponding electrocouplings, respectively. For the longitudinal electrocoupling S1/2,

the uncertainty ∆S1/2 for the ∆(1232) transition (similar to all other resonances) can be

approximated by a constant ∼ 3.6% of the maximum value of S1/2 [28], which occurs at

Q2 = 0.127 GeV2. The constant uncertainties ∆Ah for the remaining states are given in

Table I as a percentage of the maximum value of the corresponding electrocouplings Ah over

the range 0 ≤ Q2 ≤ 5 GeV2.

C. Beam normal SSA Bn

In this section we present the results for the beam normal SSA Bn, computed at beam

energies relevant for existing experiments. To analyze the role of the resonances on the total

SSA, in Fig. 2 we illustrate the contributions to Bn from the individual resonances at beam

energies between ≈ 0.5 GeV and ≈ 3 GeV as function of the lab scattering angle θlab.

Among the resonances considered, the four spin-3/2 states ∆(1232), N(1520), ∆(1700),

and N(1720) have sizeable effects, with some partial cancellation observed between them.

Contributions from resonances with spin 1/2 are smaller by at least an order of magnitude.

However, both the lower-mass spin-3/2 resonances ∆(1232) and N(1520) give negative con-

tributions to Bn, even though these states have different isospin and parity. On the other

hand, the two higher-mass spin-3/2 states ∆(1700) and N(1720), with opposite parity and

different isospin, make positive contributions to the total Bn. No definite correlation between

the isospin and parity is therefore observed in the imaginary part of the TPE amplitude for

the case of normally polarized electrons elastically scattering from unpolarized protons.

At low beam energies, Elab ≲ 0.5 GeV, the ∆(1232) state gives the dominant contribution

to Bn [Fig. 2(a)]. As the energy increases, the higher-mass resonances start playing a more

significant role. At Elab = 0.855 GeV, for example [Fig. 2(b)], the effect from the N(1520),

which has threshold energy Eth
lab = 0.75 GeV, becomes comparable to that of the ∆(1232).

It is interesting to note that the higher-mass resonance states ∆(1700) and N(1720) show

non-negligible effects even at beam energies below their excitation threshold (see Fig. 2(b)).

Such contributions, originating from the tail of the W 2 distribution for the nonzero width

case, are not accounted for in the more approximate zero width calculations. However, at

energies above the threshold, the ∆(1700) and N(1720) begin to dominate, as Figs. 2(c)-(e)

demonstrate. The dependence of these major resonances on the energy for fixed scattering
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FIG. 2. Resonance contributions to the beam normal SSA Bn (in parts per million) as a func-

tion of scattering angle θlab at five representative beam energies Elab equal to (a) 0.5102 GeV,

(b) 0.855 GeV, (c) 1.149 GeV, (d) 1.508 GeV, and (e) 3.031 GeV. Only the four largest contribu-

tors are shown (from the ∆(1232), N(1520), ∆(1700), and N(1720)), with the bands representing

the uncertainty in the electrocouplings Ah.

angles will be further discussed below. The overall magnitudes of the peak points of Bn

decrease with increasing beam energies for each of the resonances above their threshold, as

evident from the scale of the panels in Fig. 2.
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It is also important to note that at forward laboratory scattering angles θlab, where most

of the experimental data exist, the ∆(1232) contribution alone is a good approximation

to the total, with the small effects from other resonances largely canceling in this region.

Furthermore, the elastic nucleon intermediate state gives a negligibly small effect in Bn,

unlike the real part of the TPE amplitude in unpolarized ep elastic scattering [5].

The combined effect of all nine resonances listed in Table I, along with the nucleon elastic

contribution, on the total Bn is illustrated in Fig. 3, at the same kinematics as in Fig. 2.

The full results with the finite resonance decay widths are contrasted with the approximate

results computed in the zero width approximation over the entire range of scattering angles

θlab. Overall, the finite width effect is small in the forward limit for all the considered beam

energies, but the results of the two width approximations deviate in the far forward and

backward angles. We believe this may be attributable to a non-negligible contribution from

the QRCS region with W above or below the threshold value W = MR, which is the only

value of W in the zero width case.

At the lower beam energies, Elab = 0.5102 GeV and 0.855 GeV, the overall Bn, including

the effects of all elastic and resonance intermediate states, can be approximated by the

∆(1232) state alone. Over the entire range of scattering angles θlab studied, the total Bn

remains negative, with peak magnitude of ∼ 160 ppm and ∼ 70 ppm for Elab = 0.5102 GeV

and 0.855 GeV, respectively. Compared with the experimental values, the calculated Bn

overshoots the asymmetries measured by the A4 Collaboration at MAMI at θlab ≈ 35◦ [14,

16] [Fig. 3(a), (b)]. On the other hand, the calculated Bn is in good agreement with the high-

precision Qweak measurement [10] at Elab = 1.149 GeV and θlab = 7.9◦, within uncertainties

[Fig. 3(c), (d)]. The effect of the finite width at the Qweak energy is relatively small at forward

angles [zoomed-in plot in Fig. 3(c)], but results in a significantly reduced asymmetry at less

forward angles, θlab ≫ 20◦ − 30◦, compared with the zero width approximation.

Interestingly, the recent measurement of the asymmetry by the A4 Collaboration [16] at

the larger beam energy Elab = 1.508 GeV and angle θlab = 34.1◦ shows excellent agreement

with the calculation, especially for the finite width model. As seen in Fig. 3(d) and 3(e),

the asymmetry changes sign to become positive at intermediate and backward scattering

angles, θlab ≳ 40◦ in the Elab ≈ 1 − 1.5 GeV range (see also Fig. 4 below). At beam

energy Elab ≈ 3 GeV, three data points are available from the G0 [12] and HAPPEX [13]

Collaborations in the forward angle region, 6◦ ≤ θlab ≲ 10◦. The calculated value of Bn
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FIG. 3. The total contribution (red solid lines) from the nucleon elastic and all nine resonance states

in Table I to the beam normal SSA Bn as a function of θlab for fixed beam energies corresponding

to the A4 [14, 16], Qweak [10], G0 [12], and HAPPEX [13] experiments (black symbols). The results

in the zero width approximation are shown for comparison (blue dashed lines).
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TABLE II. Experimental and calculated beam normal SSA Bn from various experiments, along

with the corresponding kinematics in the lab frame. The calculated results include uncertainty

estimates from the input helicity amplitudes, while the experimental results give both statistical

and systematic uncertainties.

Experiment Elab θlab Q2 Calculated Bn Experimental Bn

(GeV) (◦) (GeV2) (ppm) (ppm)

SAMPLE (2001) [17] 0.2 146.1 0.1 −40.5± 4.5 −15.4± 5.4

A4 (2005) [14] 0.855 35.0 0.230 −25.1± 10.1 −8.52± 2.31± 0.87

0.569 35.0 0.106 −29.9± 6.8 −8.59± 0.89± 0.75

G0 (2007) [12] 3.031 7.5 0.15 −2.36± 0.31 −4.06± 0.99± 0.63

3.031 9.6 0.25 −2.73± 0.35 −4.28± 1.87± 0.98

G0 (2011) [11] 0.362 108.0 0.22 −320± 80 −176.5± 9.4

0.687 108.0 0.63 −87± 60 −21± 24

HAPPEX (2012) [13] 3.026 6.0 0.099 −2.01± 0.27 −6.80± 1.54

A4 (2017) [15] 0.315 145.0 0.22 −201± 88 −94.83± 6.02± 4.07

0.420 145.0 0.350 −176± 44 −99.55± 6.73± 4.63

A4 (2020) [16] 0.315 34.1 0.032 −21± 11 −2.22± 0.40± 0.43

0.42 34.1 0.057 −34.5± 9.4 −6.88± 0.53± 0.42

0.510 34.1 0.082 −31.0± 7.3 −9.32± 0.63± 0.62

0.855 34.1 0.218 −24± 10 −7.46± 1.22± 1.55

1.508 34.1 0.613 1.7± 8.2 −0.06± 2.89± 1.90

Qweak (2020) [10] 1.149 7.9 0.0248 −4.34± 0.54 −5.194± 0.067± 0.082

agrees with the sign of the measured asymmetry within the uncertainty range, but has

slightly smaller magnitude for the HAPPEX data point in particular. A complete list of

experimental and calculated Bn values is presented in Table II, including also the early

SAMPLE Collaboration result [17] at Elab = 0.2 GeV.

To further illustrate the energy dependence of the total Bn and its individual resonance

contributions, we show in Fig. 4 the asymmetry as a function of Elab up to 1.5 GeV at the two

representative scattering angles θlab = 35◦ and 145◦ that are close to the experimental values.

The results illustrate again the dominance at low energies of the total asymmetry by the

∆(1232) state. As expected, the higher mass resonances grow with increasing Elab, reaching

their peak values at the threshold energies of the corresponding excited states, shown in

Table I. After reaching the threshold limit, the positive contributions from the two heavier
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FIG. 4. Beam normal SSA Bn as a function of beam energy Elab in the lab frame at representative

scattering angles θlab = 35◦ and 145◦. Contributions from the four largest contributors are shown in

the top row while the bottom row represents the total Bn from the nucleon plus all nine resonances.

The experimental data points in the forward angle region are from A4 experiments [14, 16], and in

the backward angle region from the SAMPLE [17] and A4 [15] experiments.

states ∆(1700) and N(1720) outweigh the combined negative effects of the lower-mass states

∆(1232) and N(1520), yielding a net positive value of Bn at larger Elab. Compared with

the experimental data from the SAMPLE experiment [17] and the series of measurements

by the A4 Collaboration [14–16], the calculations give the same sign as the data in Fig. 4 in

the measured region. At the smaller scattering angle the calculation generally gives a larger

magnitude for Bn than that observed, while at the larger scattering angles the agreement

between experiment and theory is reasonable, within uncertainties. The results suggest that,

while the spin 1/2 and spin 3/2 resonances give contributions to Bn that have the correct

sign and order of magnitude, there may still be room for higher spin states, such as spin 5/2

resonances, as well as nonresonant contributions to play some role.
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FIG. 5. The five largest resonance contributions to the target normal SSA An (in percent) as a func-

tion of the scattering angle θlab at four representative beam energies Elab given by (a) 1.245 GeV,

(b) 2.2 GeV, (c) 3.605 GeV, and (d) 6.6 GeV.

D. Target normal SSA An

For the target normal SSA An, we consider four different beam energies, Elab = 1.245,

2.2, 3.605, and 6.6 GeV, corresponding to selected kinematics from the electron-3He scat-

tering experiment in Jefferson Lab Hall A [26, 37], and the proposed determination of the

asymmetry in Ref. [25]. The contributions from the five major excited state resonances,

{∆(1232), N(1520), N(1535), ∆(1700) and N(1720)}, to the total An are shown in Fig. 5

as function of the scattering angle θlab at the chosen beam energies. For the highest energy

Elab = 6.6 GeV, the asymmetry is shown up to a scattering angle θlab ≈ 25◦, corresponding

to Q2 = 5 GeV2, beyond which the hadronic approximation and the input electrocouplings

parametrization used in the calculation are not expected to be reliable.

As anticipated, An is in the sub-percent to percent range, and keeps increasing with
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beam energy in the far forward to backward directions, in contrast to the beam normal SSA

Bn. To further compare with Bn, we observe that the nucleon intermediate state alone has

significant impact on the total An for any value of Elab. Among the resonances, the ∆(1232)

is again the dominant contributor over the entire range of θlab and for all beam energies

considered. Particularly at forward angles, θlab ≲ 20◦, the only sizeable contribution is

that from the ∆(1232) state. The effect of other resonances becomes comparable with the

∆(1232) at relatively larger scattering angles.

Interestingly, unlike for Bn and the real part of the TPE correction [5], the contribution

to the target normal SSA An from the spin 3/2 nucleon state N(1520) is relatively less

significant for all beam energies Elab considered over the entire range of θlab. The two

other spin 3/2 resonances, the ∆(1700) and N(1720), have noticeable contributions at the

lower beam energies, Elab = 1.245 and 2.2 GeV, but are of opposite sign, as shown in

Fig. 5. At higher beam energies, the contribution to An from these two states becomes

negligible [Fig. 5(c), (d)]. On the other hand, the only spin 1/2 state, the N(1535), is

found to be a significant contributor to the total An. As shown in Fig. 5(a), for Elab =

1.245 GeV the An from the N(1535) outweighs the contribution from all other states, with

the exception of the ∆(1232). With increasing Elab, the contribution from the N(1535) rises

even faster, almost negating the ∆(1232) contribution alone at the highest beam energy in

Fig. 5(d). Considering all such partial cancellations, however, the sum of the elastic nucleon

and ∆(1232) resonance contributions appears to be a good approximation to the total An.

The total target normal SSA An, including contributions from the nucleon elastic and the

nine spin 1/2 and 3/2 resonances, is illustrated in Fig. 6 as a function of the scattering angle

θlab at the same four fixed beam energies. The results of the finite width calculation, using a

Sill distribution as in Eq. (34), are compared with the zero width approximation. The finite

width results are qualitatively similar to the approximated ones, but quantitatively there

are clear differences in some kinematic regions.

In general, the zero width results have a smaller magnitude for the total An than the

finite width case. However, as observed above, the net An from the elastic nucleon and the

resonances resembles the trend of the ∆(1232) state alone. The overall magnitude of the

asymmetry can also be well approximated by the sum of the elastic nucleon and ∆(1232)

contributions. As for the beam normal SSA Bn, contribution from higher spin states, with

spin ≥ 5/2, as well as nonresonant backgrounds may need to be considered in future.
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FIG. 6. Total target normal SSA An, with the nucleon plus all nine resonance contributions, as

a function of the scattering angle θlab at fixed beam energies Elab of (a) 1.245 GeV, (b) 2.2 GeV,

(c) 3.605 GeV, and (d) 6.6 GeV. The zero width results (blue dashed curves) are also shown for

comparison.

Unfortunately, to date there have not been any direct measurements of An in electron-

proton scattering. However, there has been a measurement of An for electron scattering

from polarized 3He in the quasi-elastic region at Jefferson Lab Hall A [26], from which the

electron-neutron asymmetry was extracted assuming an input ep asymmetry. The experi-

ment scattered unpolarized electrons with energies Elab = 1.245, 2.425 and 3.605 GeV from

a 3He target polarized normal to the scattering plane, with the scattered electrons detected

at angle θlab = 17◦, corresponding to three different CM angles θcm ≃ 32◦, 41◦, and 48◦

for the three respective beam energies. For the input proton SSA An, the elastic proton

intermediate state contribution to the TPE amplitude from Ref. [27], giving (0.01± 0.22)%,

(0.24 ± 2.96)%, and (0.62 ± 1.09)% at the three beam energies, respectively, was used to
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TABLE III. Comparison of the target normal SSA An calculated in this work with that used as

input in the data analysis of electron–3He scattering, at the beam energies Elab = 1.245, 2.425 and

3.605 GeV, and scattering angle θlab = 17◦ [26].

Elab (GeV) An (this work) input An in Ref. [26]

N N + resonances N only

1.245 0.008 −0.381± 0.018 0.01± 0.22

2.425 0.173 −0.173± 0.049 0.24± 2.96

3.605 0.400 0.414± 0.145 0.62± 1.09

extract the neutron asymmetry from the measured 3He SSA.

In contrast, in this work we find a total contribution to An from the nucleon elastic state

and nine resonances of (−0.381±0.018)%, (−0.173±0.049)%, and (0.414±0.145)%, at θlab =

17◦ and beam energies Elab = 1.245, 2.425 and 3.605 GeV, respectively. Overall, the input

proton An from Ref. [27] is larger than our calculated result for the nucleon elastic state only,

although consistent within the uncertainty. The nucleon resonant contribution is sizeable at

smaller beam energies, but is negligible at the highest energy, for Elab = 3.605 GeV.

V. CONCLUSIONS

In this study we have calculated beam and target normal single-spin asymmetries in elastic

electron-proton scattering using the imaginary part of two-photon exchange amplitudes,

including contributions from JP = 1/2± and 3/2± excited state resonances with mass below

1.8 GeV. For the resonance electrocouplings at the hadronic vertices we employed helicity

amplitudes from the latest analysis of CLAS meson electroproduction data at Q2 ≲ 5 GeV2.

The effect of finite resonance widths on the beam normal SSA Bn has been investigated

and found to be negligible in the forward angle region, while it becomes more noticeable at

larger scattering angles. We believe this may be attributable to a non-negligible contribution

from the QRCS region above the nominal threshold excitation energy.

Among the various intermediate state contributions to Bn, the elastic nucleon and spin

1/2 resonances are suppressed by an order of magnitude or more compared to the spin 3/2

resonances. The ∆(1232) resonance alone is a good approximation at forward angles for all
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beam energies. The N(1520) contribution is noticeably smaller than the ∆(1232), but both

contributions are negative across both energy and angle. The ∆(1700) and N(1720) are

major contributors in the far forward and backward angles above their threshold excitation

energies, both having positive contributions across energy and angle. As a result, the total

Bn is somewhat sensitive to cancellations between these resonance contributions, changing

from negative to positive with increasing energy and angle. Uncertainties in the input

electrocouplings are also significant for the N(1520), ∆(1700) and N(1720) states, leading

to a rather large overall uncertainty band in the total Bn.

The results given in this work tend to overshoot the experimental Bn data at lower beam

energies Elab < 1 GeV for both the forward and backward angles. This is the region in

which the ∆(1232) dominates, with relatively small uncertainties in its input parameters.

There is good agreement between theory and the high-precision Qweak measurement at

Elab = 1.149 GeV, and modest agreement at the highest available energy Elab ∼ 3 GeV and

very forward angles, where the experimental uncertainties from the G0 and HAPPEX data

are rather large.

For the target normal SSA An, the higher resonances beyond the ∆(1232) have almost no

net effect. Unlike Bn, the elastic nucleon intermediate state makes a significant contribution

over the entire range of energy, Elab ≃ 0.5 to 6.6 GeV, considered in this work. The sum

of nucleon and ∆(1232) contributions account for most of the total An. The spin 3/2 state

N(1520) is less significant for An than it is for Bn, but the spin 1/2 state N(1535) becomes

a major contributor. Also, unlike Bn, the peak magnitude of An versus θlab increases with

energy in the range from Elab = 0.5 to 6.6 GeV.

For future work, given the significant uncertainties in the parameters of the higher mass

resonances, better data to constrain electrocouplings for the higher mass excitations, such

as the ∆(1700), would be helpful. Effects of higher spin states, with spin ≥ 5/2, can

also be investigated, although again uncertainties in the electrocouplings would limit the

predictive power of such calculations. Carlson et al. [38] also extended the calculation

of beam SSAs from excited state resonance contributions to inelastic channels, such as

the ep → e∆(1232) production. process. Finally, we note that an interesting quark level

study [20] of beam normal SSAs, applicable at high-Q2 ≫ M2 region, was performed in terms

of a convolution of quark amplitudes and generalized parton distributions, which could be

viewed as complementary to the resonance dominated region discussed in our analysis.
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Appendix A: Numerical evaluation of Bn in the QRCS region

We elaborate here on our semi-analytic method of evaluating the integral of Eq. (32) in

the QRCS region W ∼ Wmax =
√
s−me. We define Bn(W ) via

Bn =

∫ Wmax

Wth

dW Bn(W ), (A1)

so that Bn(W ) includes the angular integrals of Eq. (32). As discussed in Sec. III C, in the

QRCS region the slowly varying tensor product LρµνH
ρµν for Bn in Eq. (32) is evaluated at

Q2
1 = Q2

2 = 0, leaving a numerator independent of θk1 and ϕk1 . The resulting expression is

proportional to J(W ) as defined in Eq. (37), which can be evaluated analytically. Applying

Eqs. (36-37) of Ref. [3] to the present case, we find in agreement with Ref. [20], that

J(W ) =
π

2
√
sQ2Ekx1

log

(
x1 + x2

x1 − x2

)
, x1 =

√
x2
2 +

4m2
e

Q2
(1− z)2, x2 =

|k1|
Ek

, (A2)

where z = Ek1/Ek.

Figure 7 shows Bn(W ) for the N(1520) resonance at the sample kinematics of
√
s =

1.7 GeV (Elab = 1.071 GeV) and Q2 = 1 GeV2. This is above the nominal threshold energy

of Eth
lab = 0.75 GeV for excitation of a zero width resonance (see Table I). As shown in

the left panel of Fig. 7, due to the behaviour of J(W ), Bn(W ) increases in magnitude with

W above threshold, and has an extremum near W = Wmax − me before falling sharply

to 0 at W = Wmax. The right panel is magnified to show the matching between the full

numerical and semi-analytical regions. The dot indicates our chosen matching point at

W = Wmax − 5me.
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FIG. 7. The integrand Bn(W ) of Eq. (A1) as a function of W for the N(1520) resonance at the

sample kinematics
√
s = 1.7 GeV and Q2 = 1 GeV2. The right panel is magnified to show the

quasi-singular behaviour of Bn(W ) as W → Wmax =
√
s −me. The dashed red line makes use of

the analytic result of Eq. (A2), while the solid blue line is the fully numerical evaluation. The dot

indicates our chosen matching point at W = Wmax − 5me.
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