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The MUSE experiment at Paul Scherrer Institute will perform the first measurement of low-energy
muon-proton elastic scattering (muon lab momenta 115–210 MeV) with the aim of determining the
proton charge radius. We study the prospects for the proton radius extraction using the theoretical
framework of Dispersively Improved Chiral Effective Field Theory (DIχEFT). It connects the proton
radii with the finite-Q2 behavior of the form factors through complex analyticity and enables the use
of data up to Q2 ∼ 0.1 GeV2 for radius extraction. We quantify the sensitivity of the µp cross section
to the proton charge radius, the theoretical uncertainty of the cross section predictions, and the size
of two-photon exchange corrections. We find that the optimal kinematics for radius extraction at
MUSE is at momenta 210 MeV and Q2 ∼ 0.05–0.08 GeV2. We compare the performance of electron
and muon scattering in the same kinematics. As a byproduct, we obtain explicit predictions for the
µp and ep cross sections at MUSE as functions of the assumed value of the proton radius.

I. INTRODUCTION

The electromagnetic size is a fundamental characteris-
tic of the proton observed in nuclear and atomic physics.
It is quantified by the root-mean-squared radii rE ≡√
〈r2〉E and rM ≡

√
〈r2〉M , defined by the derivatives

of the electric and magnetic form factors (FFs), GE and
GM , at momentum transfer Q2 = 0, see Ref. [1] for a re-
view. The radii can be determined experimentally either
from elastic electron-proton (ep) or muon-proton (µp)
scattering or from the nuclear corrections to the energy
levels of electronic or muonic hydrogen atoms.

The proton charge radius has been the object of
extensive studies in the last decade. The extraction
from muonic hydrogen measurements in 2010, rE =
0.84184(67) fm [2], differed by 5σ from the CODATA
value accepted at the time, rE = 0.8768(69) fm [3], ob-
tained from electronic hydrogen and electron scattering
data (“proton radius puzzle”). The discrepancy moti-
vated experimental and theoretical efforts aiming to im-
prove the extraction methods, quantify the uncertainties,
and reconcile the results; see Refs. [4, 5] for reviews. The
questions raised include the performance of various meth-
ods for extraction of the radius from scattering data, the
comparison of scattering and atomic results, and poten-
tial differences between electron and muon interactions.
The cumulative results from these studies tend to favor
the “smaller” charge radius. However, one essential piece
is still missing – the extraction of the radius from low-
energy µp elastic scattering.

The MUSE experiment at Paul Scherrer Institute aims
to perform the first precise determination of the proton
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charge radius from µp elastic scattering at muon lab mo-
menta 115–210 MeV [6]. Good understanding of the
theoretical uncertainties is needed in order to optimize
the extraction procedure and assess the final error in the
radius. Important questions are the sensitivity of the
experimental observables to the proton radius, the the-
oretical uncertainty in the relation between the proton
radius and the finite-Q2 FFs, the size and uncertainty of
two-photon exchange (TPE) corrections, and the optimal
muon energy and Q2 range for constraining the radius.

The analytic properties of the proton FF play an es-
sential role in the radius extraction from scattering data.
As a function of complex Q2, the form factor has singu-
larities at Q2 < 0, resulting from the t-channel exchange
of hadronic states (pions, resonances) between the elec-
tromagnetic current and the proton. These singularities
govern the behavior of the FF at Q2 > 0, where it is
measured in scattering experiments. This structure im-
plies a correlation between the derivative of the FF at
Q2 = 0 and its values at finite Q2, which is essential for
the radius extraction and must be implemented in the
theoretical analysis.

The recently developed method of Dispersively Im-
proved Chiral Effective Field Theory (DIχEFT) [7, 8]
combines dispersion relations with dynamical input from
chiral EFT to describe the nucleon FFs at low Q2 from
first principles. It generates FFs with correct analytic
properties (position of singularities) and realistic quanti-
tative behavior (strength of singularities), which provide
an excellent description of scattering data up to Q2 ∼
1 GeV2 [9]. It also quantifies the theoretical uncertainty
of the FF calculations. A special feature of this method
is that it generates FF predictions that depend on the as-
sumed proton radius as a parameter. As such it explic-
itly realizes the correlations between the proton radius
and the finite-Q2 behavior of the FF. It permits the use
of finite-Q2 data for the radius extraction with controlled
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uncertainties, which has many experimental and theoret-
ical advantages. The method has been used successfully
for the extraction of the proton electric and magntic radii
from electron scattering data [9, 10].

In this work we use DIχEFT to study the prospects for
proton radius determination in µp elastic scattering at
MUSE and optimize the extraction procedure. We com-
pute the µp cross section with the DIχEFT FFs, quan-
tify the theoretical uncertainties and TPE corrections,
and evaluate the sensitivity to the proton radius. Specif-
ically, we attempt to answer the following questions:

1. What is the theoretical sensitivity of the µp cross
section in MUSE kinematics to the proton radius?

2. What are the theoretical uncertainties in the µp
cross section resulting from the DIχEFT FF pre-
dictions and from TPE corrections?

3. What kinematic range in beam energy and Q2 has
the most impact on the radius extraction?

4. What are the differences between ep and µp scat-
tering in radius extraction in MUSE kinematics?

We demonstrate that the radius extraction is character-
ized by a trade-off between several effects – the sensitivity
of the cross section to the radius, the theoretical uncer-
tainty in the FF predictions for a given radius, and the
size and kinematic dependence of TPE corrections [9, 10].
We determine the optimal kinematics for radius extrac-
tion at MUSE based on these considerations. In addition,
we provide predictions of the expected µp and ep cross
sections for the nominal value of the proton radius.

II. METHODS

A. Lepton-proton elastic scattering

The elastic lepton-proton scattering process l(k) +
p(p)→ l(k′) + p(p′), where l = µ∓ or e∓, is described by
the invariant variables

s ≡ (k + p)2, Q2 = −t ≡ −(k − k′)2. (1)

In the initial proton rest frame (lab frame), the initial and
final muon momenta are k and k′, the energies are ω ≡√
|k|2 +m2 and ω′ ≡

√
|k′|2 +m2, and the invariants

are given by

s = M2 + 2Mω +m2, Q2 = 2M(ω − ω′), (2)

where m is the lepton mass and M the proton mass. The
scattering angle θlab = angle(k′,k) is related to the final
lepton energy and momentum by

cos θlab =
ωω′ −m2 −M(ω − ω′)

|k||k′| . (3)

The kinematic range of the momentum transfer accessible
at a given initial lepton momentum is

0 ≤ Q2 ≤ 4M2|k|2
s

≡ Q2
max. (4)

In the one-photon-exchange approximation, the differ-
ential cross section for unpolarized scattering is given by
(see e.g. Ref. [11])

dσ1γ

dQ2
=

πα2

2M2|k|2
(ε/τP )G2

E +G2
M

1− εT
. (5)

Here α is the fine structure constant, and GE,M ≡
GE,M (Q2) are the electric and magnetic Sachs FFs of
the proton. ε is the virtual photon polarization parame-
ter and given by

ε =
Q2

max −Q2 +
m2

s
(4M2 +Q2)

Q2
max −Q2 +

Q2

2s
(4M2 +Q2)

, (6)

and τP ≡ Q2/(4M2). ε/τP is the ratio of the fluxes
of longitudinal and transverse polarized photons in the
one-photon-exchange approximation. εT is the degree of
linear polarization of the transverse photons,

εT =
Q2

max −Q2

Q2
max −Q2 +

Q2

2s
(4M2 +Q2)

, (7)

and is bounded by 0 ≤ εT < 1. In the case of zero lepton
mass (as usually assumed in electron scattering) ε = εT ,
but for non-zero lepton mass (muon scattering) there are
important differences. ε attains values > 1 at Q2 = 0,
and remains nonzero at Q2 = Q2

max,

ε(Q2 = 0) =
ω2

|k|2 > 1, (8)

ε(Q2 = Q2
max) =

m2s

2M2|k|2 > 0. (9)

Two-photon exchange (TPE) corrections play an im-
portant role in the analysis of low-energy lepton-proton
elastic scattering, see Refs. [12, 13] for a review. At order
α3, the correction arises from the interference between
the two-photon and one-photon exchange amplitudes and
is usually included through a multiplicative factor mod-
ifying the one-photon exchange cross section,

dσ

dQ2
≈ dσ1γ

dQ2
(1 + δ2γ) . (10)

The correction δ2γ for µp scattering has been computed
in several theoretical approaches, such as dispersion the-
ory [11, 14] and chiral effective field theory [15–17]. In
this work we use the results of Ref. [14], which give cor-
rections δ2γ . 0.5% in the kinematic range of the MUSE
experiment. While in Ref. [14] the inelastic contribution
to the dispersion integral for δ2γ was computed in for-
ward kinematics, the analysis of Ref. [11] showed that
this approximation is accurate within 10%.
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B. DIχEFT representation of form factors

The foundations of the DIχEFT method and its appli-
cations are described in detail in Refs. [7, 8, 18]. Here we
provide a brief summary, emphasizing the information
flow (parameters) and other features relevant to proton
radius extraction.

DIχEFT is based on dispersion theory, in which the
FFs GE,M (t) at spacelike momentum transfer t < 0
are represented as integrals over their imaginary parts
ImGE,M (t) on the cut at timelike t > 0, the so-called
spectral functions. The main steps in the DIχEFT con-
struction of the spectral functions and the FFs are sum-
marized in Fig. 1. In the following we describe the steps
for GE ; the ones for GM are similar.

In the first step, one constructs the spectral function.
The proton FF has an isovector and isoscalar component,
GE ≡ GVE +GSE . The isovector FF GVE has the two-pion
cut at t > tthr = 4M2

π . The isovector spectral function is
represented as the sum of two parts,

ImGVE(t) = ImGVE(t)[ππ] + ImGVE(t)[high-mass]. (11)

The ππ part covers the region 4M2
π ≤ t < tmax ≈ 1 GeV2

and is computed theoretically, using the elastic unitarity
relation in the ππ channel and relativistic chiral EFT for
the πN amplitudes. This approach includes the ρ reso-
nance in the ππ channel and delivers realistic ππ spectral
functions, which is essential for proton radius extraction
(see below). The free parameters entering in this part are
the low-energy constants of the chiral EFT calculation;
in the present partial N2LO implementation this is one
parameter, λ [8]. The high-mass part of the spectral func-
tion covers the region t > 1 GeV2 and is parametrized
by a single effective pole πa1δ(t− t1); this form has been
shown to be sufficient for the dispersive analysis of low-t
FFs, which see only the overall spectral strength in the
high-mass region [8]. The free parameters entering in this
part are the pole strength a1 and pole position t1. The
isoscalar FF GSE has a three-pion cut, and the spectral
function is represented as

ImGSE(t) = ImGSE(t)[πππ] + ImGSE(t)[high-mass]. (12)

The πππ part is overwhelmingly concentrated in the ω
resonance and parametrized by a pole πaωδ(t − M2

ω).
The high-mass part is parametrized by an effective pole,
whose position can be taken as the φ mass, πaφδ(t−M2

φ).
The free parameters entering in the isoscalar spectral
function are the pole strengths aω and aφ. Altogether,
this step results in a theoretical parametrization of the
spectral function

ImGE(t|Λ) = ImGVE(t) + ImGSE(t), (13)

where {Λ} collectively denotes the free parameters; in
the present analysis {Λ} = {λ, a1, t1; aω, aφ}.

In the second step, one imposes the dispersive sum

rules for the proton charge and radius

1

π

∫ ∞

tthr

dt
ImGE(t|Λ)

t
= QE , (14)

1

π

∫ ∞

tthr

dt
ImGE(t|Λ)

t2
=
r2
E

6
, (15)

where QE = 1 is the proton charge and r2
E > 0 the proton

charge radius squared. (The same relations are imposed
for the neutron electric FF, in which case QE = 0 and
r2
E < 0 is the negative neutron charge radius squared.)

These relations express the FF at t = 0 and its derivative
as integrals over the spectral function. One uses them
to constrain the parameters in the spectral function. In
particular, Eq. (15) is valid for any assumed value of the
proton charge radius rE , and one can use it to express one
of (or a combination of) the original parameters in terms
of the radius, i.e., to introduce the radius as a parameter:

{Λ} → {rE ,Λ′}. (16)

In this way one obtains a set of spectral functions that
depend explicitly on the assumed radius, as well as on
the remaining parameters Λ′

ImGE(t|rE ,Λ′). (17)

In the present analysis we use Eqs. (14) and (15) for the
proton spectral function (and the same relations for the
neutron) to fix the chiral low-energy constant λ and the
effective pole strengths a1, aω, aφ, retaining the isovec-
tor effective pole position t1 as the only undetermined
parameter.

In the third step, one computes the spacelike FFs (t <
0, or Q2 > 0) as the dispersion integral with the spectral
function,

GE(t|rE ,Λ′) =
1

π

∫ ∞

tthr

dt′
ImGE(t′|rE ,Λ′)

t′ − t . (18)

The FF thus obtained depends on the assumed radius
rE and the undetermined parameters Λ′. The nominal
prediction for the FF with assumed radius rE is obtained
with the nominal values of Λ′,

GE(t|rE) = GE(t|rE ,Λ′nom). (19)

In the last step, the theoretical uncertainty of the FF
with assumed radius rE is estimated by varying Λ′ over
a plausible range,

δGE(t|rE) = varΛ′ GE(t|rE ,Λ′). (20)

In this way one obtains a nominal prediction and a theo-
retical uncertainty estimate for the form factor with any
given assumed radius. In the present analysis, the unde-
termined parameter is the position of the isovector high-
mass pole; its nominal value is t1 = 2.1 GeV2, and the
plausible range of variation for the uncertainty estimate
is t1 = 1.4–2.8 GeV2 [10].
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ImGE(t|Λ)

t > tthr > 0

Spectral function

Isovector ππ calculated from ChEFT + unitarity
Isovector high-mass and isoscalar parametrized

Contain unknown parameters {Λ}

∫ ∞

tthr

dt

π

ImGE(t|Λ)

t
= QE

∫ ∞

tthr

dt

π

ImGE(t|Λ)

t2
=
r2
E

6

Dispersive sum rules

Constrain integrals of spectral function

Introduce radius rE as parameter {Λ} → {rE ,Λ′}

GE(t|rE ,Λ′)

=

∫ ∞

tthr

dt′

π

ImGE(t′|rE ,Λ′)
t′ − t

Form factor

Calculated as integral over spectral function

Depends explicitly on rE as parameter

Contains undetermined parameters Λ′

GE(t|rE) = GE(t|rE ,Λ′
nom)

δGE(t|rE) = varΛ′ GE(t|rE ,Λ′)

Prediction and uncertainty

Prediction obtained from nominal values of Λ′

Uncertainty estimated from variation of Λ′

over plausible range

1FIG. 1. Flowchart of the DIχEFT description of the nucleon FFs. Shown is the case of the proton electric FF GE ; the same
flow applies to the neutron electric FF. In the case of the magnetic FF GM , the right-hand side of the dispersive sum rules is
given by the magnetic moment µ and the magnetic radius r2M .

The magnetic FF GVM and its uncertainty are con-
structed by an analogous procedure. The dispersive
sum rules for GM now involve the magnetic moment µ
and the magnetic radius r2

M see Ref. [8] for details. A
computer code generating the radius-dependent DIχEFT
FFs GE,M used in the present analysis is available in the
supplemental materials of Ref. [9].

C. Proton radius extraction

The DIχEFT representation of the FFs enables a new
theory-guided method of proton radius extraction (see
Fig. 2) [9, 10]. For each assumed value of the proton ra-
dius, the theory generates a spectral function whose fea-
tures (height of the ρ resonance peak, strength of effective
poles) quantitatively depend on the value of the radius.
The dispersion integral projects these features into the
spacelike region, up to spacelike momentum transfers of
the order Q2 ∼ M2

ρ and beyond. This effectively corre-
lates the assumed value of the radius with the behavior

of the spacelike FF at finite Q2 of this order. The corre-
lation described here is based on complex analyticity and
the particular information flow in the DIχEFT calcula-
tion and extends far beyond what one could infer from
the series expansion in Q2 with a given first derivative.
Altogether, this allows one to recruit FF data of the or-
der Q2 ∼ M2

ρ and beyond for constraining the proton
radii.

Radius extraction using DIχEFT proceeds as follows.
For a range of assumed radii, one generates the DIχEFT
FFs as functions of Q2, including their theoretical un-
certainties resulting from the undetermined parameters,
Eqs. (19) and (20). From these FFs one predicts the
cross section for the given assumed radius, including its
theoretical uncertainty from the FFs and two-photon ex-
change corrections. For a given experimental setup (kine-
matic coverage, statistical and systematic errors) one can
then assess how data in a given range of energies and Q2

can constrain the radii. The optimal range is determined
by a trade-off between the sensitivity of the DIχEFT FFs
to the value of the radius, the theoretical uncertainty of
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dispersion integral

E

0 Q2
= t−

GIm GE

data

radius

t

FIG. 2. Illustration of the correlation between the proton
radius and the spacelike FF, resulting from analyticity and
the information flow in DIχEFT. The assumed value of the
radius constrains the spectral function through the sum rule
Eq. (15). The corresponding FF at Q2 > 0 is produced by
the dispersion integral Eq. (18). Variation of the radius causes
variation of the spectral function and the corresponding FF.
(The graph shows only the isovector part of the spectral func-
tion at t > 0.)

the DIχEFT FFs, the two-photon exchange effects, and
the precision of the data [9, 10]. The actual radius can
then be determined by a fit in this optimal range, taking
into account all the uncertainties. In the following we
apply this method to µp scattering at MUSE and discuss
the prospects for proton radius extraction.

The DIχEFT method offers several advantages com-
pared to other methods of proton radius extraction.
Compared to empirical fits (polynomials, splines), the
DIχEFT method incorporates the analytic structure of
the FFs, which includes both the position of the singular-
ities at t > 0 and the quantitative distribution of strength
in the spectral function. The analytic structure governs
the global behavior of the FF, which is difficult to im-
plement in approaches based on polynomial expansions
because of strong correlations between higher-order co-
efficients (analyticity effectively controls the “collective
behavior” of higher derivatives of the FF at Q2 = 0
[7]). Compared to traditional dispersion analysis [19–22],
the DIχEFT method allows the strength of the isovector
spectral function in the ρ resonance region to vary with
the proton radius in a theoretically controlled manner,
providing critical flexibility for fitting the spacelike FF
data and recruiting them for radius determination. In
traditional dispersive fits the ππ part of the isovector
spectral function is completely fixed by theory, and the
spacelike FF data only constrain the high-mass part of
the spectral function, which restricts the interplay of the
FF data with the proton radius (the ρ resonance region
of the spectral function accounts for about half the value
of the proton radius in Eq. (15) [7]).

III. ANALYSIS

A. Sensitivity of µp cross section to proton radius

We now apply the DIχEFT framework to study the
prospects for proton radius extraction at MUSE. In the
first step, we study the sensitivity of the µp elastic scat-
tering cross section to the proton electric radius and com-
pare it with the theoretical uncertainties resulting from
the DIχEFT FF predictions, from two-photon exchange
corrections, and from the magnetic FF contributions.

To exhibit the various effects, we generate a set of
DIχEFT FF predictions by varying the proton electric
radius over the range rE = 0.83–0.88 fm in steps ∆rE =
0.01 fm, and evaluate the µp elastic scattering cross sec-
tion with each of these FFs (the magnetic radius is kept
at its nominal value; the role of the magnetic FF in the
cross section is discussed below). We include in the cross
section the TPE correction of Ref. [14]. Figure 3 shows
the predicted cross sections for various incident muon
momenta k ≡ |k|, as functions of Q2. The lines show
the cross section obtained with the nominal DIχEFT FF
predictions for each value of the radius, Eq. (19); the
associated bands show the variation due to the theoret-
ical uncertainty of the DIχEFT FF predictions for the
given radius, Eq. (20). The bands at the bottom of the
plots show the absolute size of the TPE correction in
the cross section predictions (note that this is the over-
all size of the TPE correction, not its theoretical uncer-
tainty). The standard dipole cross section (σSD) used for
normalization is the one-photon exchange cross section
evaluated assuming the standard dipole Q2-dependence
∝ (1 +Q2/0.71 GeV2)−2 for both FFs GE,M .

One observes: (a) The sensitivity of the cross section
to the proton radius increases with Q2 and with the beam
momentum k, because the separation of the FF predic-
tions with different radii increases with Q2 [9, 10]. At
the highest beam momentum, k = 210 MeV, the relative
variation of the cross section reaches ∆σ/σ ∼ 1% for Q2

at the upper end of the range shown here. (b) The the-
oretical uncertainty of the cross section predictions for
given radius also increases with Q2 [9, 10]. Overall, the
theoretical uncertainty is substantially smaller than the
relative variation of the cross section for ∆rE = 0.01 fm
over the kinematic range shown here. (c) The magnitude
of the TPE correction does not vary strongly with Q2

and k over the range covered here. At the upper end of
the Q2 range, the magnitude of the TPE correction is
comparable to the relative variation of the cross section
with ∆rE = 0.01 fm. This clearly shows the importance
of the TPE correction for radius extraction.

We also need to consider the uncertainties resulting
from the contribution of the magnetic FF to the µp elas-
tic scattering cross section. This is particularly impor-
tant, as with the DIχEFT framework we can recruit data
at higher Q2 for radius extraction, comparable to Q2

max

at the given k. Figure 4 shows the ratio of magnetic and
electric contributions to the one-photon exchange cross
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FIG. 3. DIχEFT predictions for the µ−p differential cross
section at MUSE for several assumed values of the proton
radius. The cross section predictions include the TPE cor-
rection, Eq. (10), and are normalized to the standard dipole
cross section without TPE effects. Lines (solid, dashed, dot-
ted, dahed-dotted): Nominal DIχEFT predictions for the as-
sumed value of the proton radius (see legend). Shaded bands
around lines: Intrinsic theoretical uncertainty of DIχEFT pre-
dictions, unrelated to assumed proton radius. Shaded band at
bottom: TPE contribution to cross section [14].

section, (τP /ε)G
2
M/G

2
E , in MUSE kinematics. One sees

that the ratio depends mainly on Q2, having values ∼0.1
at Q2 = 0.04 GeV2 and reaching ∼0.4 at Q2 = 0.08
GeV2. Overall, the magnetic contributions to the cross
section are limited in all kinematic settings. Using the
DIχEFT framework and the results of the analysis of ep
scattering data of Ref. [9], we have computed the effect

FIG. 4. Ratio of magnetic and electric contributions to the
µp elastic scattering cross section, (τP /ε)G

2
M/G

2
E , in MUSE

kinematics. The vertical dotted lines represent the kinematic
upper limits of Q2 at the given beam momentum k, Eq. (4).

of the experimental uncertainties of GM on the µp cross
section predictions in MUSE kinematics. We observe a
maximum variation in the cross sections of the order of
0.04% at the highest Q2, which is small compared to the
variation of ∼1% resulting from a change of the electric
radius ∆rE/rE = 1%. We conclude then that the current
experimental uncertainties in GM do not limit the extrac-
tion of the proton electric radius from the µp scattering
data at the accuracy considered here.

B. Optimal kinematics for proton radius extraction

In the second step, we discuss the optimal kinematic
range for the radius extraction at MUSE. It is determined
by the trade-off between the sensitivity of the cross sec-
tion to the radius, the theoretical uncertainties of the
DIχEFT FF predictions and the TPE corrections, and
the experimental errors of the cross section measurement.
While the experimental errors can only be estimated at
present, some interesting conclusions can already be ob-
tained at this stage.

To make this assessment, we use the difference between
the cross section predictions for different radii in Fig. 3
as an estimate of the experimental accuracy required to
discriminate between these values of the radii. At each
value of Q2 in Fig. 3, we compute the minimal difference
between the cross section predictions for radii differing by
a given ∆rE , taking the minimum over all pairs of radii
with the given ∆rE , and taking into account their the-
oretical uncertainties (i.e., computing the minimal gap
between the theoretical uncertainty bands of the cross
section predictions for a given ∆rE). The minimal cross
section difference computed in this way is independent
of the nominal value of rE . Figure 5 shows the min-
imal cross section differences obtained in this way, for
radius differences ∆rE = 0.01, 0.02, 0.03 and 0.04 fm,
as functions of Q2. One observes: (a) The cross section
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FIG. 5. Estimated accuracy of µ−p cross section measure-
ment required to discriminate between different values of the
proton radius. Lines: Differences between DIχEFT cross sec-
tion predictions for proton radii differing by ∆rE (values see
legend). Shaded band at bottom: Size of the TPE contribution
[14].

differences depend strongly on Q2 for fixed k. They de-
pend relatively weakly on k for fixed Q2 (when compar-
ing them at a fixed Q2 that is kinematically accessible at
multiple values of k). The main role of k is to define the
kinematically accessible range of Q2. (b) At low values
of Q2, high experimental precision is needed for radius
determination. At Q2 . 0.015 GeV2, a relative accuracy
≤ 0.2% is needed for ∆rE = 0.01 fm, independently of k.
(c) The demands on the experimental accuracy decrease

at higher Q2. At Q2 ∼ 0.05 GeV2, a relative accuracy
∼ 0.5% is needed for ∆rE = 0.01 fm.

Another factor to consider is the uncertainty in the
theoretical calculation of the TPE correction [14]. De-
pending on the kinematics, this contribution to the cross
section can be crucial for determining the radius with the
necessary precision. Figure 5 compares the value of the
TPE correction with the predicted cross section differ-
ences for a given radius difference (note that the plots
show the estimated total value of the TPE correction,
not its uncertainty). The theoretical uncertainty of the
TPE correction is not well known; however, we can as-
sess how an assumed theoretical uncertainty of the TPE
correction would impact on the overall uncertainty of the
radius extraction. For the lowest beam momentum, k =
115 MeV, the size of the TPE correction is larger than the
variation of the cross section prediction for ∆rE = 0.01
fm. The TPE correction thus has a decisive influence on
the radius extraction in this kinematics. The situation
becomes more favorable at higher beam momenta, where
the TPE correction is comparable or smaller than the
cross section variation for ∆rE = 0.01 fm.

Overall, our analysis suggests that the optimal kine-
matics for proton radius determination at MUSE with
the DIχEFT method is at the highest beam momentum,
k = 210 MeV, using momentum transfers Q2 ∼ 0.05–
0.08 GeV2, at the upper end of the experimentally acces-
sible range. In this setting, the experimental precision
required for radius determination with ∆rE = 0.01 fm
is estimated at ≈ 0.8%. The final uncertainty of the ra-
dius extraction depends on the theoretical uncertainty of
the TPE correction, which is not known at present. An
alternative method for proton radius extraction with µp
scattering uses the average of µ+ and µ− cross sections,

σ̄ ≡ [σ(µ+p) + σ(µ−p)]/2, (21)

in which the TPE correction cancels due to its charge
dependence. The same DIχEFT analysis of radius sensi-
tivity and optimal kinematics as above can be performed
in this case. The cross section prediction is now given by
the one-photon exchange cross section Eq. (5). Figure 6
shows the predicted cross section and its theoretical un-
certainty. The assessment of the optimal Q2 values is the
same as for µ+p above.

C. Cross section prediction for nominal radius

The present study focuses on the prospects for extract-
ing the proton radius from µp scattering experiments at
MUSE. The proton radius can also be extracted from
atomic spectroscopy and ep scattering experiments. In
this context we can use DIχEFT to predict the µp cross
section expected for a given value of the radius and its
theoretical uncertainty. For reference, we give here the
prediction for the µp cross section with the proton charge
radius obtained in the previous DIχEFT analysis of ep
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FIG. 6. DIχEFT predictions for the average of µ+ and µ−

elastic scattering cross sections Eq. (21) in MUSE kinemat-
ics, normalized to the standard dipole. Lines, shaded bands:
Same notation as in Fig. 3.

scattering results [9, 10]

rE = 0.842(2) fm. (22)

Figure 7 shows the predicted µ−p cross section in MUSE
kinematics, Eq. (10), which includes the TPE correction;
and the charge-averaged cross section, Eq. (21) in which
the TPE correction cancels.

FIG. 7. DIχEFT predictions for µp elastic scattering cross at
MUSE for the nominal proton charge radius rE = 0.842(2) fm.
Dashed line and shaded band (blue): µ−p cross section, in-
cluding one- and two-photon exchange contributions. Solid
line and shaded band (red): Average of µ+p and µ−p cross
sections, given by the one-photon exchange contribution.

D. Comparison of ep and µp scattering

It is interesting to compare the prospects for proton
radius extraction in ep and µp scattering in the same
kinematics. The MUSE experiment will measure both
ep and µp scattering, and methods for proton radius ex-
traction were studied intensively in earlier ep scattering
experiments. Characteristic differences between ep and
µp occur in the TPE effects [14, 23] and in the role of the
magnetic FF. We exhibit them by repeating the DIχEFT
analysis for ep scattering and comparing with the µp re-
sults.

Figure 8 shows the DIχEFT predictions for the ep cross
section for a range of assumed values of the proton radius,
in the same style as Fig. 3 for µp. One observes: (a) The
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FIG. 8. DIχEFT predictions for the differential cross section
of ep scattering for several assumed value of the proton ra-
dius (compare with Fig. 3 for µp scattering). The cross section
predictions include the TPE correction and are normalized by
the standard dipole cross section without TPE effects. Solid
lines: Nominal DIχEFT predictions for the assumed value of
the proton radius. Bands around solid lines: Intrinsic theoret-
ical uncertainty of DIχEFT prediction (unrelated to assumed
proton radius). Blue band at bottom: TPE contribution to
cross section [23].

TPE corrections have different kinematic dependence in
ep than in µp scattering [14, 23]. In ep they increase
strongly with Q2 at fixed k, and decrease with k at fixed
Q2 In µp the dependencies are much weaker. (b) The
size of the TPE corrections relative to the variation of
the cross section with the radius is much larger in ep
than in µp, especially at low beam momenta. At k = 115
MeV and Q2 = 0.02 GeV2, the size of TPE correction

FIG. 9. Estimated accuracy of e−p cross section measure-
ments required to discriminate between different values of the
proton radius (compare with Fig. 5 for µp scattering). Lines:
Differences between DIχEFT cross section predictions for pro-
ton radii differing by ∆rE (values see legend). Shaded band
at bottom: Size of the TPE contribution [23].

amounts to a change of the radius ∆rE ≈ 0.03 fm in ep
scattering, compared to ∆rE ≈ 0.015 fm in µp scattering
in the same kinematics. (c) Overall, the different size
and kinematic dependence of the TPE corrections causes
a different Q2-dependence of the cross section for ep and
µp scattering at low Q2.

Figure 9 shows the estimated accuracy of the e−p cross
section measurement required for discriminating between
different values of the radius, in the same style as Fig. 5
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FIG. 10. DIχEFT predictions of the ratio of µp to ep elas-
tic scattering cross sections σ, Eq. (10), including the TPE
corrections, for several assumed values of the proton radius.

for µ−p. The optimal kinematics for radius extraction in
ep scattering at MUSE can be determined in the same
way as for µp. The results of Figure 9 show that the ex-
perimental accuracy required for radius extraction from
ep scattering is least at the highest beam momentum
k = 210 MeV. The optimal Q2 value determined by the
trade-off between radius sensitivity and theoretical un-
certainty is at Q2 ∼ 0.065 GeV2, slightly below the kine-
matic limit.

Figure 10 shows the ratio of the µp to ep cross sec-
tions (including the TPE corrections) for the same set of
assumed proton radii. The ratio directly expresses the
different Q2-dependence of the ep and µp cross sections.
Its magnitude and Q2-dependence are determined by the

FIG. 11. Ratio of magnetic and electric contributions to the
ep elastic scattering cross section, (τP /ε)G

2
M/G

2
E , in MUSE

kinematics (compare with Fig. 4 for µp scattering). The ver-
tical dotted lines represent the kinematic upper limits of Q2

at the given beam momentum k, Eq. (4).

kinematic factors in the one-photon-exchange cross sec-
tion Eq. (5) et seq. One observes that the ratio is remark-
ably insensitive to the proton charge radius in this kine-
matic regime, especially at the lower values of k. Only at
k = 210 MeV the differences between the radii become
visible at the largest Q2 values.

The results of Fig. 8 show that the TPE corrections
play a much larger role in proton radius extraction from
ep scattering than µp scattering, and that they limit the
theoretical uncertainty of the extracted radius. With the
DIχEFT method, the influence of TPE corrections in ep
can be minimized by using the data at the highest beam
momentum k = 210 MeV and momentum transfers in the
range Q2 ∼ 0.03–0.08 GeV2 for radius extraction. In this
kinematics the cross section shows good sensitivity to the
proton charge radius, the theoretical uncertainty of the
DIχEFT predictions is small, and the size of the TPE
corrections amounts to a shift of the radius ∆rE ∼ 0.01
fm (see Fig. 8). The ability to recruit higher-Q2 data
for radius extraction with DIχEFT is thus even more
advantageous in ep than in µp scattering.

An important difference between ep and µp scattering
appears in the contribution of the magnetic FF at large
momentum transfers, at the upper end of the allowed
kinematic range. In ep scattering ε = 0 at Q2 ∼ Q2

max

(if one neglects the electron mass), while in µp scatter-
ing ε attains a finite value, see Eq. (9). In ep scattering
the one-photon exchange cross section for Q2 → Q2

max is
therefore dominated by GM . Figure 11 shows the ratio
of magnetic and electric contributions to the one-photon-
exchange cross section for ep scattering, in the same way
as Fig. 4 for µp. One sees that the magnetic contribution
to the cross section is substantially larger in ep than µp
already for Q2 in the middle of the kinematic range. This
circumstance must be taken into account when assessing
the sensitivity of the cross section to rE in DIχEFT, and
one should remain in the region where the cross section
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FIG. 12. DIχEFT predictions for the average of e+ and e−

elastic scattering cross sections, as in Eq. (21) for µ+p and
µ−p, in MUSE kinematics (compare with Fig. 6 for µp scat-
tering).

is not dominated by GM . We have quantified the impact
of the uncertainty in GM on the proton radius extrac-
tion from ep scattering in the same way as for µp (see
Sec. III A), using the DIχEFT framework and the exper-
imental uncertainty of GM obtained in an earlier analysis
[9]. We find that the current experimental uncertainty of
GM produces a relative variation of the cross section of
at most ∼ 0.05% in the range covered by Fig. 8. The
uncertainty from GM is thus not a limiting factor of the
DIχEFT-based radius extraction from ep scattering data
in MUSE kinematics.

Because of the large TPE corrections in ep scatter-
ing, it would be an attractive option to perform the

proton radius extraction with the average of e−p and
e+p cross sections [see Eq. (21) for µ±p], in which the
TPE effects cancel. In this case the cross section is ac-
curately described by the one-photon-exchange formula,
and the analysis greatly simplifies. Figure 12 shows the
DIχEFT predictions for the charge radius dependence of
the charge-averages cross section σ̄ in e±p scattering in
MUSE kinematics.

IV. CONCLUSIONS

In this work we have used the DIχEFT framework to
study the prospects for the proton radius extraction from
µp scattering at MUSE. The principal conclusions are:

(i) When extracting the radius from fits to cross sec-
tion data at low momentum transfers Q2 < 0.01 GeV2,
the TPE corrections need to be included with high pre-
cision. At Q2 < 0.01 GeV2, the estimated absolute size
of TPE correction amounts to a shift of the extracted
radius by 0.03–0.04 fm. Any theoretical uncertainty of
the TPE correction will influence the extracted radius
proportionally.

(ii) The DIχEFT method allows one to extract the
radius from fits to cross section data at higher momen-
tum transfers Q2 ∼ few times 0.01 GeV2 in the MUSE
kinematic range. This is advantageous experimentally,
because the higher sensitivity of the cross section to the
radius lowers the demands on the experimental precision
of the cross section measurement. It is also advantageous
theoretically, as it reduces the influence of the TPE cor-
rection on the radius extraction.

(iii) The optimal kinematics for the DIχEFT-based ra-
dius extraction at MUSE is k = 210 MeV and Q2 ∼ 0.05–
0.08 GeV2, at the upper end of the kinematic coverage.
It is determined by the trade-off between theoretical ef-
fects – the sensitivity of the cross section to the radius,
the uncertainty of the DIχEFT FF predictions, and the
TPE correction. In this kinematics, even a 100% uncer-
tainty of the TPE correction would shift the extracted
radius only by 0.01 fm. An experimental precision of ≤
0.5% is required for determining the radius with 0.01 fm
accuracy. Such accuracy would be sufficient for solving
the proton radius puzzle.

(iv) In ep scattering in MUSE kinematics, the TPE
corrections are generally larger that in µp, and the advan-
tages of using the DIχEFT method with higher-Q2 data
for radius extraction are even more compelling. The ra-
tio of same-charge ep and µp cross sections is predicted
to be practically independent of the proton radius and
can be used for validation of the analysis.

Our findings affirm the need for accurate theoretical
estimates of the TPE corrections in elastic µp and ep
scattering. If the radius extraction is performed using
the DIχEFT framework and data at finite momentum
transfers Q2 ∼ 0.05–0.08 GeV2, as recommended here, ef-
forts should focus on improving the TPE estimates in this
kinematic region. At these finite values of Q2 the con-
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straints on the TPE amplitude from the limit of forward
scattering (Q2 = 0) are less restrictive, and the calcula-
tions become more dependent on dynamical assumptions
[14, 23]. Methods based on the 1/Nc expansion of QCD
could enable systematic calculations of TPE effects with
controlled theoretical uncertainties; see Refs. [24, 25] for
recent developments.

The DIχEFT framework used in the present study is
a general method that could be improved through fur-
ther development. In particular, the theoretical uncer-
tainties of the FF predictions could be reduced by using
a more flexible parametrization of the high-mass states
in the spectral function, Eq. (11), and constraining it
with spacelike nucleon FF data. In the analysis here we
have used the version of Ref. [8], where the high-mass
states are described by a single effective pole, which per-
mits simple uncertainty estimates and is sufficient for the
MUSE Q2-range. A version with a more elaborate de-

scription of the high-mass states, using multiple poles
with randomized parameters for the uncertainty esti-
mates, was described in Ref. [26] and could be employed
for elastic scattering analysis and radius extraction at
higher Q2 . 1 GeV2.
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