Introduction

Bjorken Sum Rule and Strong Coupling

Experimental Extraction of Bjorken Sum at Low-q
and (Effective) Strong Coupling

Summary

Acknowledgment: Thanks to Alexandre Deur and collaborators for the work in this talk and for providing slides
Introduction

Nucleon Spin Structure and Strong Interaction,
Nucleon Structure and Strong Interaction/QCD

- Nucleon Structure: discoveries
 - anomalous magnetic moment (1943 Nobel)
 - elastic: form factors (1961 Nobel)
 - DIS: parton distributions (1990 Nobel)

- Strong interaction, running coupling ~ 1
 - asymptotic freedom (2004 Nobel)
 - perturbation calculation works at high energy
 - interaction significant at intermediate energy, quark-gluon correlations
 - interaction strong at low energy confinement

- A major challenge in fundamental physics:
 - Understand QCD in all regions, including strong (confinement) region

- Nucleon: most convenient lab to study QCD

- Theoretical Tools:
 - pQCD, Lattice QCD, ChEFT, Sum Rules, …
UNPOLARIZED STRUCTURE FUNCTIONS

Q2 evolution: the best test of QCD
Experiment – Theory Dialogue

• Theorist to experimentalist: (some time ago)
 give us spin structure functions in full phase space
 full range of x [0-1], full range of Q^2: [0, ∞],
 we will take care of the rest (comparisons, understanding physics, …)
• Experimentalist: hmm…, we can only measure at limited region with some precision,
 and BTW, we also like to work with you to understand physics
• T: how about moments? we have some predictions at high Q^2 (PQCD) and low Q^2 (ChEFT)
• E: yes, we can measure moments in certain region
• T: we can make predictions on moments with LQCD and
 we are developing a method and might be able to predict x dependence (recently)
• E: great, we are continuing to produce data, let’s find out how well data comparison with
 (PQCD, ChEFT, LQCD, …) predictions
 and how they can help us to understand QCD
POLARIZED STRUCTURE FUNCTIONS

Proton
- HERMES
- SMC
- E155
- E143

Deuteron
- COMPASS

Neutron (^3He)
- E142
- E154
- JLAB

\[g_1(x, Q^2) + c_1 \]

Graphs:
- PDG (online 2023)
- Q^2 (GeV^2/c^2)

Equation:
- \(x = 0.0036 \) (i = 0)
- \(x = 0.0045 \)
- \(x = 0.0055 \)
- \(x = 0.007 \)
- \(x = 0.009 \)
- \(x = 0.012 \)
- \(x = 0.017 \)
- \(x = 0.024 \)
- \(x = 0.035 \)
- \(x = 0.049 \)
- \(x = 0.077 \) (i = 10)
- \(x = 0.12 \)
- \(x = 0.17 \)
- \(x = 0.22 \)
- \(x = 0.29 \)
- \(x = 0.41 \)
- \(x = 0.57 \)
- \(x = 0.74 \)
Experiment Summary \((Q^2 > 0)\)

Observable	H target	D target	\(^3\text{He} \text{ target}
\(g_1, g_2, \Gamma_1 \& \Gamma_2\) at high \(Q^2\)	SLAC	SLAC	SLAC
\(\)	JLAB SANE	JLAB SANE	JLAB E97-117, JLAB E01-012, JLAB E06-014
\(g_1 \& \Gamma_1\) at high \(Q^2\)	SMC	SMC	HERMES
\(\)	HERMES JLAB EG1	HERMES JLAB EG1	HERMES
\(\Gamma_1 \& \Gamma_2\) at low \(Q^2\)	JLab RSS	JLab RSS	JLab E94-010, JLab E97-103
\(\Gamma_1\) at low \(Q^2\)	SLAC	SLAC	HERMES
\(\)	HERMES JLAB EG1	HERMES JLAB EG1	HERMES
\(\Gamma_1, Q^2 << 1 \text{ GeV}^2\)	JLab EG4	JLab EG4	JLab E97-110
\(\Gamma_2, Q^2 << 1 \text{ GeV}^2\)	JLab E08-027	JLab E08-027	JLab E97-110
Bjorken Sum Rule and Q^2 dependence
Bjørken Sum Rule

\[\Gamma_1^p(Q^2) - \Gamma_1^n(Q^2) = \int \{g_1^p(x,Q^2) - g_1^n(x,Q^2)\} \, dx = \frac{1}{6} g_A C_{NS} \]

- \(g_A \): axial charge (from neutron \(\beta \)-decay)
- \(C_{NS} \): \(Q^2 \)-dependent QCD corrections (for flavor non-singlet)

- A fundamental relation relating an integration of spin structure functions to axial–vector coupling constant (axial charge)
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large \(Q^2 \) (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5–10 % level
(Generalized) Bjørken Sum Rule

\[
\Gamma_{I}^{p-n} = \frac{g_{A}}{6} \left[1 - \frac{\alpha_{s}}{\pi} - 3.58 \left(\frac{\alpha_{s}}{\pi} \right)^{2} - 20.21 \left(\frac{\alpha_{s}}{\pi} \right)^{3} + \cdots \right] + \sum_{i=2,3\ldots}^{\infty} \frac{\mu_{2i}^{p-n}(Q^{2})}{Q^{2i-2}},
\]

- A fundamental relation relating an integration of spin structure functions to axial-vector coupling constant (axial charge)
- Based on Operator Product Expansion within QCD or Current Algebra
- Valid at large \(Q^{2} \) (higher-twist effects negligible)
- Data are consistent with the Bjørken Sum Rule at 5–10 % level
Gerasimov-Drell-Hearn Sum Rule

Circularly polarized photon on longitudinally polarized nucleon

\[\int_{\nu_{in}}^{\infty} \left(\sigma_{12}(\nu) - \sigma_{32}(\nu) \right) \frac{d\nu}{\nu} = -\frac{2\pi^2 \alpha_{EM}}{M^2} \kappa^2 \]

- A fundamental relation between the nucleon spin structure and its anomalous magnetic moment
- Based on general physics principles
 - Lorentz invariance, gauge invariance \(\rightarrow\) low energy theorem
 - unitarity \(\rightarrow\) optical theorem
 - causality \(\rightarrow\) unsubtracted dispersion relation
 applied to forward Compton amplitude
- Measurements on proton up to 800 MeV (Mainz) and up to 3 GeV (Bonn) agree with GDH with assumptions for contributions from un-measured regions
 New measurements on p, d and \(^3\)He from LEGS, MAMI(2), …
Generalized GDH Sum Rule

- Many approaches: Anselmino, Ioffe, Burkert, Drechsel, ...

 Forward Virtual-Virtual Compton Scattering Amplitudes: $S_1(Q^2,v), S_2(Q^2, v)$

 Same assumptions: no-subtraction dispersion relation
 optical theorem
 (low energy theorem)

- Generalized GDH Sum Rule

$$S_1(Q^2) = 4 \int_{el}^{\infty} G_1(Q^2, v) dv$$
Connecting GDH with Bjorken Sum Rules

- Q^2-evolution of GDH Sum Rule provides a bridge linking strong QCD to pQCD
 - Bjorken and GDH sum rules are two limiting cases
 - High Q^2, Operator Product Expansion: $S_1(p-n) \sim g_A$ \rightarrow Bjorken
 - $Q^2 \rightarrow 0$, Low Energy Theorem: $S_1 \sim \kappa^2$ \rightarrow GDH
 - High Q^2 ($> \sim 1$ GeV2): Operator Product Expansion
 - Intermediate Q^2 region: Lattice QCD calculations?
 - Low Q^2 region ($< \sim 0.1$ GeV2): Chiral Perturbation Theory

Calculations: χPT: Ji, Kao, ..., Vanderhaeghen, ...
- Lensky, Alarcon & Pascalutsa
- Bernard, Hemmert, Meissner
World data on Γ_1 for proton and neutron

Previous Publications and
New Low-Q data: talks on EG4 (A. Deur for M. Ripani on Tuesday
and E97-110 (A. Deur, next)
Bjorken Sum: Γ_1 of $p-n$ \textit{(before new low-Q data)}

A. Deur, \textit{et al.}

EG1b, PRD 78, 032001 (2008)
E94-010 + EG1a: PRL 93 (2004) 212001
Bjorken Sum \((p-n)\) (before new low-\(Q\))

- Low \(Q^2\): test of \(\chi pt\) calculations

Bernard et al., PRD 87 (2013)

Lensky, Alarcon & Pascalutsa
PRC 90 055202 (2014)
Effective α_s Extracted from Bjorken Sum (before new low-Q)

A. Deur, V. Burkert, J. P. Chen and W. Korsch
PLB 650, 244 (2007) and PLB 665, 349 (2008)
The strong coupling α_s at short distances (large Q^2)

α_s is not constant due to loops in gluon propagator, fermion self-energy, and vertex corrections:

α_s becomes small at short distances (large Q^2)

\Rightarrow Asymptotic freedom:

perturbative treatment of QCD (pQCD). $\alpha_s(Q^2)$ is well defined within pQCD.

Figure adapted from Particle Data Group, 2020.
The strong coupling α_s at short distances (large Q^2)

$\alpha_s(Q^2) \Rightarrow$ needs data or non-perturbative methods to get $\alpha_s(Q^2)$.

Lattice calculations: currently most accurate determination of $\alpha_s(M_Z^2)$.

Otherwise, $\alpha_s(Q^2)$ is extracted from data, e.g. Bjorken sum rule:

$$\int (g_p^1 - g_n^1) dx = \frac{1}{6} g_A (1 - \frac{\alpha_s}{\pi} - 3.58(\frac{\alpha_s}{\pi})^2 - ...)$$

Figure adapted from Particle Data Group, 2020.
Projection of JLab22 (+ EIC) on Extraction of α_s

JLab22 + EIC can make a significant improvement in the extraction of α_s.

A. Deur, contribution to the JLab22 Whitepaper (to be published)

\[\Gamma_{1}^{p-n} = \frac{1}{6} g_A \left[1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 - 20.21 \left(\frac{\alpha_s}{\pi} \right)^3 - 175.7 \left(\frac{\alpha_s}{\pi} \right)^4 - \sim 893 \left(\frac{\alpha_s}{\pi} \right)^5 \right] + \frac{a}{Q^2}. \]
At $Q^2 \lesssim 1\text{GeV}^2$, pQCD cannot be used to define α_s: if pQCD is trusted, $\alpha_s \to \infty$ when $Q \to \Lambda_{\text{QCD}}$.

- Contradict the perturbative hypothesis;
- The divergence (Landau pôle) is unphysical.

Definition and computation of α_s at long distance?
Bjorken Sum at Low-Q and Effective α_s
Bjorken Sum: Γ_1 of $p-n$ (EG4 and E97-110)

A. Deur, et al.

Proton-neutron = Bjorken sum

Δ-resonance contribution suppressed for the Bjorken sum

Fit $\Gamma_1 = bQ^2 + cQ^4$:

<table>
<thead>
<tr>
<th>Data set</th>
<th>$(b \pm \text{uncor} \pm \text{cor}) \ [\text{GeV}^{-2}]$</th>
<th>$c \pm \text{uncor} \pm \text{cor} \ [\text{GeV}^{-4}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>World data</td>
<td>0.182 \pm 0.016 \pm 0.034</td>
<td>$-0.117 \pm 0.091 \pm 0.095$</td>
</tr>
<tr>
<td>GDH Sum Rule</td>
<td>0.0618</td>
<td></td>
</tr>
<tr>
<td>χEFT Bernard et al.</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>χEFT Alarcón et al.</td>
<td>0.066(4)</td>
<td>0.3</td>
</tr>
<tr>
<td>Burkert-Ioffe</td>
<td>0.09</td>
<td>0.25(12)</td>
</tr>
<tr>
<td>Pasechnik et al.</td>
<td>0.09</td>
<td>0.4</td>
</tr>
<tr>
<td>LFHQCD</td>
<td>0.177</td>
<td>-0.067</td>
</tr>
</tbody>
</table>
\(\alpha_s \) at long distance (low Q)

Prescription: Define effective couplings from an observable’s perturbative series truncated to first order in \(\alpha_s \).

Ex: Bjorken sum rule:

\[
\int (g_p^p - g_n^p) \, dx \equiv \Gamma_{f_p-n} = \frac{1}{6} g_A \left(1 - \frac{\alpha_s}{\pi} - 3.58 \left(\frac{\alpha_s}{\pi} \right)^2 \right) + \frac{M^2}{9Q^2} [a_2(\alpha_s) + 4d_2(\alpha_s) + 4f_2(\alpha_s)] + \ldots
\]

\(\int (g_p^p - g_n^p) \, dx \equiv \Gamma_{f_p-n} = \frac{1}{6} g_A \left(1 - \frac{\alpha_s}{\pi} \right) \)

Nucleon axial charge.

pQCD corrections (gluon bremsstrahlung)

\[
\Rightarrow \quad \Gamma_{f_p-n} \equiv \frac{1}{6} g_A \left(1 - \frac{\alpha_s}{\pi} \right)
\]

This means that additional short distance effects, and long distance confinement force and parton distribution correlations are now folded into the definition of \(\alpha_s \).

Analogy with the original coupling constant becoming an effective coupling when short distance quantum loops are folded into its definition.
\(\alpha_{g1} \) Extracted from the Bjorken Sum data

Bjorken sum \(\Gamma_1^{p-n} \) measurements

\[\Gamma_1^{p-n} \propto \frac{g_A}{6} g_A (1 - \frac{\alpha_{g1}}{\pi}) \]
At $Q^2 = 0$, a sum rule related to the Bjorken sum rule exists: the Gerasimov-Drell-Hearn (GDH) sum rule:

At $Q^2 = 0$, GDH sum rule:

$$\Gamma_1 = \frac{-\kappa^2 Q^2}{8M^2}$$

⇒ $Q^2 = 0$ constraints:

$$\alpha_{g1} = \pi$$

⇒

$$\frac{da_{g1}}{dQ^2} = \frac{3\pi}{4g_A} \left(\frac{\kappa_n^2}{M_n^2} - \frac{\kappa_p^2}{M_p^2} \right)$$

First experimental evidence of nearly *conformal behavior* (i.e. no Q^2-dependence) of QCD at low Q^2.

Low Q limit

α_{g1}/π DESY HERMES
α_{g1}/π CERN COMPASS
α_{g1}/π SLAC E142/E143
α_{g1}/π SLAC E154/E155
α_{g1}/π JLab RSS
α_{g1}/π CERN SMC
$\alpha_{g1(\tau)}/\pi$ OPAL
α_{F3}/π
Comparisons with SDE and LFHQCD Calculations

Binosi et al. PRD 96, 054026 (2017)
Brodsky, de Téramond, Dosch, Lorcé. PLB 759, 171 (2016)

⇒ SDE, LFHQCD and data agree very well.
Effective Coupling and Impact

Featured as Cover
Featured in JLab News
Featured in YouTube
https://www.youtube.com/watch?v=8BTZOz850GI&t=497s
hailed as
“accidental discovery”
“pretty major breakthrough”

Base for understanding of emergence of hadron properties, can have impact on:

- hadron spectroscopy
- PDFs and GPDs
- quark mass functions
- pion decay constant
- scale of QCD, \(\Lambda_{\text{QCD}} \)
- QCD Phase/Hot QCD

\[
\alpha_{g1}(Q) \pi
\]

A. Deur, V. Burkert, J. P. Chen and W. Korsch
Particles, 5-171 (2022)
Summary

• Bjorken Sum Rule: Link flavor non-singleton (isovector) part of the nucleon spin structure moment with the axial charge

• Generalized Bjorken/GDH Sum Rules provide a tool to study QCD in full Q^2 range
 • Extractions of (effective) strong coupling $\alpha_s (\alpha_{g1})$

• Experimental Data on Bjorken Sum Over a Wide Q^2 range
 • High Q^2: PQCD, extraction of strong coupling α_s, potential of JLab22 + EIC
 • Intermediate Q^2: Transition from PQCD to Strong QCD region
 • Low Q^2: Strong QCD region, 1st extraction of effective strong coupling α_{g1}

 Extracted effective strong coupling from the new JLab low-Q data
 → conformal behavior,
 providing a potential base for understanding strong QCD
 significant impact
Proton-neutron = Bjorken sum

\[\Delta \text{-resonance contribution} \text{ suppressed for the Bjorken sum} \]

\[\Gamma_1 = bQ^2 + cQ^4 : \]

<table>
<thead>
<tr>
<th>Data set</th>
<th>((a \pm \text{uncor} \pm \text{cor})) [GeV(^{-2})]</th>
<th>((b \pm \text{uncor} \pm \text{cor})) [GeV(^{-2})]</th>
<th>(c \pm \text{uncor} \pm \text{cor}) [GeV(^{-4})]</th>
<th>(d \pm \text{uncor} \pm \text{cor}) [GeV(^{-6})]</th>
<th>(\chi^2/n.d.f.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG4, no low-x</td>
<td>NA</td>
<td>0.093 ± 0.032 ± 0.000</td>
<td>(-0.137 \pm 0.191 \pm 0.000)</td>
<td>NA</td>
<td>1.24</td>
</tr>
<tr>
<td>EG4/E97110, no low-x</td>
<td>NA</td>
<td>0.112 ± 0.022 ± 0.028</td>
<td>(-0.123 \pm 0.118 \pm 0.078)</td>
<td>NA</td>
<td>1.00</td>
</tr>
<tr>
<td>EG4</td>
<td>NA</td>
<td>0.170 ± 0.032 ± 0.000</td>
<td>(-0.046 \pm 0.191 \pm 0.000)</td>
<td>NA</td>
<td>1.04</td>
</tr>
<tr>
<td>EG4/E97110</td>
<td>NA</td>
<td>0.185 ± 0.023 ± 0.027</td>
<td>(-0.144 \pm 0.123 \pm 0.075)</td>
<td>NA</td>
<td>1.00</td>
</tr>
<tr>
<td>World data</td>
<td>NA</td>
<td>(b^{\text{GDH}} \equiv 0.0618)</td>
<td>(1.41 \pm 0.17 \pm 0.39)</td>
<td>(-4.30 \pm 0.80 \pm 1.48)</td>
<td>1.97</td>
</tr>
<tr>
<td>World data</td>
<td>((4.3 \pm 1.8 \pm 0.1) \times 10^{-3})</td>
<td>0.092 ± 0.042 ± 0.031</td>
<td>(0.213 \pm 0.167 \pm 0.086)</td>
<td>NA</td>
<td>0.82</td>
</tr>
</tbody>
</table>

\[\chi_{EFT} \text{ prediction} \]

\[\Gamma_1 = bQ^2 \]

\[\chi_{EFT} \text{ prediction} \]

Fit \(\Gamma_1 = a + bQ^2 + cQ^4 + dQ^6 : \)
When charges are quantized: \((\text{coupling constant})^{1/2} \) normalizes the unit charge to 1 (e.g. \(\alpha \))
\[\Rightarrow \text{set the magnitude of the force (classical domain) or the probability amplitude to emit a quantum force vector (QFT).} \]

Force = \(\text{coupling constant} \times \text{charge}_1 \times \text{charge}_2 \times f(r) \)

(static case)

\(\alpha (\text{QED}), \alpha_s (\text{QCD}), G_F (\text{Weak Force}), G_N (\text{gravity}). \)

Quantum effects induce an energy dependence.

(effective couplings: the couplings are “running”)
The effective coupling is then:
 • Extractable at any Q^2;
 • Free of divergence;
 • Renormalization scheme independent.
But it is:
 • Process dependent.

⇒ There is *a priori* a different α_s for each different process.

However these α_s can be related (Commensurate Scale Relations).

⇒ pQCD retains it predictive power.

Such definition of α_s using a particular process is equivalent to a particular choice of renormalization scheme.

$$\alpha_{g_1} = \alpha_s$$ in the “g_1 scheme”.

Relations between g_1 scheme and other schemes are known in pQCD domain, e.g.

$$\Lambda_{g_1} = 2.70 \Lambda_{\overline{\text{MS}}} = 1.48 \Lambda_{\text{MOM}} = 1.92 \Lambda_V = 0.84 \Lambda_\tau.$$