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We describe the formalism to analyze the mathematical ambiguities arising in partial-wave analysis
of two spinless mesons produced with a linearly polarized photon beam. We show that partial waves
are uniquely defined when all accessible observables are considered, for a wave set which includes
S and D waves. The inclusion of higher partial waves does not affect our results, and we conclude
that there are no mathematical ambiguities in partial-wave analysis of two mesons produced with a
linearly polarized photon beam. We present Monte Carlo simulations to illustrate our results.

I. INTRODUCTION

In hadron spectroscopy, the extraction and interpre-
tation of data from scattering experiments typically em-
ploy partial-wave analyses to isolate resonant contribu-
tions. However, these partial-wave expansions need not
be unique, and, depending on the reaction, one may find
multiple wave sets which produce mathematically equiv-
alent predictions for the observables. This causes signifi-
cant problems in the analysis and interpretation of data.
These mathematical ambiguities have been extensively
studied for various processes [1–4] and there is no generic
prescription to remedy them. Hence, the issue must be
addressed on a case-by-case basis (see Refs. [5–8] for some
recent examples). To remedy ambiguities, typically one
must generate all possible ambiguous wave sets and se-
lect one of them by enforcing additional constraints like
global continuity [9] or unitarity [10]. Most previous anal-
yses of mathematical ambiguities for partial-wave analy-
sis examine nucleon or pion-beam production processes.
In this work, we introduce the formalism for the exami-
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nation of mathematical ambiguities in two pseudoscalar
meson photoproduction processes with a linearly polar-
ized photon beam, such as those present in the GlueX
experiment at Jefferson Lab [11].

The physics program for the GlueX experiment focuses
on the search for light exotic mesons. Some of the final
states under consideration involve the two pseudoscalar
mesons η(′)π, for which odd waves have exotic quantum
numbers incompatible with a qq̄ assignment [12]. The
dominant non-exotic signal in these final states is the
a2(1320) resonance which populates the D waves [13]. It
is essential to first accurately identify all relevant D-wave
components before extracting the weaker exotic signal in
the P -waves [5, 14–16]. In this paper, we address the is-
sue of ambiguous solutions in partial wave analyses which
are relevant to the extraction of the D-wave components,
but our work is applicable to the general case of photo-
proproduction of any two spinless mesons. Our methods
are based on the concept of Barrelet zeros, which we re-
view in Appendix A for completeness. In Section II we
introduce our notation and formalism for the photopro-
duction of two spinless mesons with a linearly polarized
photon beam. We then demonstrate, using a wave set
with two or three D-wave components accompanied by
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FIG. 1: Definition of the angles in the Gottfried-
Jackson frame. In the two-meson rest frame, the z axis
is given by the photon beam (γ), and the xz reaction
plane contains also the nucleon target (p) and recoiling
nucleon (p′) momenta. θ and ϕ are the polar and az-
imuthal angles of the η. The polarization vector of the
photon (⃗ϵγ) forms an angle Φ with the reaction plane.

an S-wave, that there are no mathematical ambiguities.
We also provide arguments supporting the absence of am-
biguous solutions in more general cases. In Section IV we
present results of numerical simulations, which show that
there is indeed a unique solution with the highest like-
lihood. However, the likelihood function contains many
local maxima that may lead to false solutions if appropri-
ate care is not taken when performing fits. The summary
and conclusions are given in Section V.

II. FORMALISM

We consider the photoproduction on a nucleon target
of a meson resonance decaying into two spinless mesons,
e.g. γp → p η π0. We follow Ref. [11], writing

I(Ω,Φ) =
dσ

dtdmηπ0 dΩdΦ

= κ
∑
λγ ,λ

′
γ

λ1,λ2

Aλγ ;λ1λ2
(Ω)ργλγλ′

γ
(Φ)A∗

λ′
γ ;λ1λ2

(Ω), (1)

where Ω = (θ, ϕ) are the decay angles of the reso-
nance in the Gottfried-Jackson or helicity frame, and
Φ is the polarization angle with respect to the pro-
duction plane. The spin density matrix is given by
ργ(Φ) = (1− Pγ cos 2Φσx − Pγ sin 2Φσy · σ) /2, and Pγ

indicates the degree of polarization. Since the analysis
of ambiguities is performed independently in each bin of
t and ηπ0 invariant mass, these dependences are under-
stood. The dependence on the nucleon spin is neglected.
The phase space factor κ does not depend on angular
variables and will be absorbed into the amplitudes.

From the helicity amplitudes, one can construct partial
waves in the reflectivity basis as linear combinations of

the partial waves with different photon helicities in such
a way that in the high energy limit positive (negative)
reflectivity corresponds to natural (unnatural) parity ex-
changes [11]. The helicity amplitudes are given as:

Aλγ (Ω) =


∑
ℓmϵ

[ℓ](ϵ)m Y m
l (Ω) for λγ = + ,∑

ℓmϵ

−ϵ(−1)m [ℓ]
(ϵ)
−m Y m

l (Ω) for λγ = − .

(2)

Here, ϵ = ± is the reflectivity and [ℓ]
(ϵ)
m refers to the

partial wave with angular momentum ℓ, spin projection
m, and reflectivity ϵ. We write the intensity of the final
products as:

I(Ω,Φ) = I0(Ω)− PγI
1(Ω) cos(2Φ)

− PγI
2(Ω) sin(2Φ), (3)

where I0 is the unpolarized intensity, I1,2 are polarized
intensities.
The intensities are quadratic in the partial waves and,

using the same notation as in Ref. [11], can be written in

terms of the amplitudes U (ϵ) and Ũ (ϵ) in the reflectivity
basis:

U (ϵ)(Ω) =
∑
ℓ,m

[ℓ](ϵ)m Y m
ℓ (Ω), (4a)

Ũ (ϵ)(Ω) =
∑
ℓ,m

[ℓ](ϵ)m [Y m
ℓ (Ω)]

∗
. (4b)

Then, the intensities in Eq. (3) may be expressed:

I0(Ω) =
∑
ϵ

{
|U (ϵ)(Ω)|2 + |Ũ (ϵ)(Ω)|2

}
, (5a)

I1(Ω) = −2
∑
ϵ

ϵRe
{
U (ϵ)(Ω)

[
Ũ (ϵ)(Ω)

]∗}
, (5b)

I2(Ω) = −2
∑
ϵ

ϵ Im
{
U (ϵ)(Ω)

[
Ũ (ϵ)(Ω)

]∗}
. (5c)

The dependence on the polar angle θ can be written ex-
plicitly by expanding the intensities in a Fourier series in
the azimuthal decay angle ϕ:

I0(Ω) =
1

2π

[
h0
0(θ) + h0

1(θ) cos(ϕ) + ...
]
, (6a)

I1(Ω) = − 1

2π

[
h1
0(θ) + h1

1(θ) cos(ϕ) + ...
]
, (6b)

I2(Ω) = − 1

2π

[
0 + h2

1(θ) sin(ϕ) + ...
]
. (6c)

Here the ellipses denote terms of higher order harmonics
in ϕ.
The functions hα

M (θ), which we will refer to as
(un)polarized moments, are quadratic in the partial
waves and relate them to the measurable angular distri-
bution of the two mesons in their center of mass frame.
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We note that positive and negative reflectivity contri-
butions sum up incoherently, and one can decompose
hα
M (θ) into an explicit sum of reflectivity components ,

i.e. hα
M (θ) = (+)hα

M (θ) + (−)hα
M (θ). The two reflec-

tivities can be distinguished from each other due to the
dependence on the polarization angle Φ. From Eq. (5),
one notes that the unpolarized intensity I0 is a sum of
the two reflectivity components, whereas the polarized
intensities I1,2 are equal to differences of the two com-
ponents. We can therefore deal with each reflectivity
independently, noting that the mathematical treatment
of ambiguities is identical for each.

To pursue our analysis of Barrelet zeros, we need to
express the observables hα

M (θ) as polynomials of tan θ
2 ,

from which we can extract their roots. We first employ
Eqs. (4) and (5) and rewrite Eq. (6) as:

I0(Ω) =
1

2π

∑
ϵmm′

f (ϵ)
m (θ)f

(ϵ)∗
m′ (θ) cos[(m−m′)ϕ], (7a)

I1(Ω) =
−1

2π

∑
ϵmm′

ϵf (ϵ)
m (θ)f

(ϵ)∗
m′ (θ) cos[(m+m′)ϕ], (7b)

I2(Ω) =
−1

2π

∑
ϵmm′

ϵf (ϵ)
m (θ)f

(ϵ)∗
m′ (θ) sin[(m+m′)ϕ], (7c)

where,

f (ϵ)
m (θ) =

∑
ℓ

√
4π [ℓ](ϵ)m Y m

ℓ (θ, 0)

=
∑
ℓ

√
2ℓ+ 1 [ℓ](ϵ)m dℓm0(θ). (8)

The Wigner d-function, dℓm0(θ),
1 is a polynomial in cos θ

only for m = 0. For m ̸= 0 it is a polynomial of cos θ of
order l − |m| multiplied by a factor sin|m|(θ). We thus
represent the d-functions in terms of u = tan θ/2 by [2]:

dℓm0(θ) =

(
u

1 + u2

)ℓ

(−1)mεℓm(u) , (9)

with the polynomial εℓm(u) defined as:

εℓm(u) =
∑
k

(−1)k
u2k+m−ℓℓ![(ℓ−m)!(ℓ+m)!]1/2

(ℓ−m− k)!(ℓ− k)!(m+ k)!k!
.

(10)

The summation over k is restricted to the range k ∈
[max(0,−m),min(ℓ, ℓ−m)].

By matching Eqs. (6) and (7), we obtain a relation be-
tween the observable quantities and the reflectivity par-

1 We use the Wigner d-function with the convention dj
m′m(θ) =

⟨jm′| e−iθJy |jm⟩

tial waves:

(ϵ)h0
M =

∑
m,m′

f (ϵ)
m f

(ϵ)∗
m′ δM,|m−m′| , (11a)

(ϵ)h1
M = ϵ

∑
m,m′

f (ϵ)
m f

(ϵ)∗
m′ δM,|m+m′| , (11b)

(ϵ)h2
M = ϵ

∑
m,m′

f (ϵ)
m f

(ϵ)∗
m′ δM,|m+m′| sign(m+m′) . (11c)

Since each f
(ϵ)
m (θ) is a complex function, and each hα

M (θ)
is a real observable expressible as a sum of products of
f -functions, one may simplify the problem by expressing
hα
M (θ) as a sum of squares of complex functions,

hα
M (u) =

∑
i

|gi(u)|2. (12)

Here, each gi(u) is a linear combination of the f
(ϵ)
m (θ), and

therefore is also a rational function in u. Hence, conjuga-
tion of the roots of each gi(u) may generate ambiguities
of the partial waves. We note that it is most conve-
nient to express every moment in terms of a single basis
set of g’s. Eq. (11) represent bilinear matrix equations
which connect the coefficients of the intensity Eq. (6) to
the partial wave amplitudes, while Eq. (12) represents
a diagonalization of the same equations. Since the mo-
ments can be extracted directly from experimental data,
the problem of ambiguities is ultimately whether or not
replacing roots of the basis functions gi with their conju-
gates provide alternate solutions to this matrix equation.
To address this we will consider a few examples explic-

itly to show that given a set of partial waves {[ℓ](ϵ)m },
the relations Eq. (11) are uniquely determined and no
ambiguities exist. In other words there is no way to con-

struct a different set, {[ℓ̃](ϵ)m } which will yield the same
moments.

III. CASE STUDIES

Ambiguities in partial wave analysis with a high en-
ergy pion beam were studied in Ref. [2], where several
wave sets with different combinations of waves up to the
G wave were considered. In all cases the spin projec-
tions were limited to m = 0, 1.2 With this restriction,
the intensity only includes three terms in the azimuthal
expansion of Eq. (6). Since for a pion beam there is no
S wave with positive reflectivity, there is one relevant g-
function for the positive reflectivity components, and two
for the negative reflectivity components. The polynomi-
als which generate ambiguities in the negative reflectivity
components are not independent, so the ambiguities for

2 For pion beams, m ≥ 0 in the reflectivity basis. This does not
hold for photon beams.
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the waves in each reflectivity component are obtained us-
ing the roots of a single polynomial. That is, there are
ambiguous solutions in the partial wave extraction be-
cause the observable depends on only two independent
polynomials, one for each reflectivity component, and
transformations built from combinations of conjugations
of roots of each polynomial produce the same intensity
profile.

In this section, we will argue that there are no ambi-
guities in the extraction of partial waves from an exper-
iment using a linearly polarized photon beam. First, we
note that any possible ambiguities arising from switching
contributions between the two different reflectivity waves
may be resolved by making use of the Φ dependence of
the linearly polarized photon beam. We will thus only
consider one reflectivity component and suppress all re-
flectivity superscripts for convenience.

We will consider first the simplest non-trivial case by
including only the waves {S0, D0, D1}. This case is anal-
ogous to Ref. [2], however, as we will see, the polarized
intensity allows us to determine the partial waves without
ambiguity.

We then will consider the wave set {S0, D−1, D0, D1}.
These D waves dominate the production of the a2(1320)
resonance in the ηπ final state via pion exchange [17].
We will not find any ambiguous solution for the extrac-
tion of this wave set, once the polarized moments are
taken into account. The a2(1320) is also produced by
vector exchanges. In this case, the dominant D waves
are {D0, D1, D2} [17]. We have confirmed that this wave
set is also free of ambiguities, although we omit the cal-
culation for brevity.

Our key result is that there are at least two unique g’s
which appear in the Fourier series of the polar angle when
two or more spin projections are allowed. These polyno-
mials are independent and have distinct roots. Conse-
quently, these Fourier moments are enough to uniquely
determine the partial waves. No transformations on the
partial waves leave every observable invariant, and the
observables uniquely define the partial waves for linearly
polarized meson photoproduction. We illustrate this fact
only with S and D waves, but the addition of other waves
should not change our results. Adding more waves in-
creases the number of roots of each g-function, and hence
the number of possible ambiguities, but in general we
argue that there is no relation between the roots, and
therefore partial waves can be unambiguously extracted
from the polarized observables.

A. S and D waves with m = 0, 1

We start by analyzing the wave set with S andD waves
with m projections 0, 1 and positive reflectivities, as this
set has been analyzed explicitly for a pion-beam produc-
tion process [2]. Suppose that we have obtained one set
of partial waves, {S0, D0, D1}, from an experiment. We
can then attempt to generate an ambiguous set of partial

waves,
{
S̃0, D̃0, D̃1

}
, from the original set. We start by

writing the f ’s from Eq. (8):

f0(u) =

√
5
(
u4 − 4u2 + 1

)
D0

(u2 + 1)
2 + S0 , (13a)

f1(u) =

√
30u

(
u2 − 1

)
D1

(u2 + 1)
2 . (13b)

With this wave set, there are seven non-zero functions
hα
M (θ), though they are not all linearly independent.

When the wave set includes only positive m-projections,
there is a simple relation between the polarized moments
h2
M = h1

M for M > 0 [11]. (For M = 0, one has h2
0 = 0,

see Eq. (6c)). In addition, we find the relation h1
1 = h0

1

and h1
2 = h0

0 − h1
0 for this particular wave set. So we are

left with three linearly independent hα
M (θ). We rewrite

the conditions relating the h’s to the f ’s in matrix form:

h0
M (θ) = F †H0

MF, h1
M (θ) = F †H1

MF . (14)

Where F = (f0, f1)
T . The three matrices are:

H0
0 =

1 0

0 1

 , H0
1 =

0 1

1 0

 , H1
0 =

1 0

0 0

 . (15)

Since the matrices H0
0 and H0

1 commute, we can simul-
taneously diagonalize them and simplify the unpolarized
moments, obtaining:

g0(u) ≡
1√
2
[f1(u) + f0(u)] , (16a)

g1(u) ≡
1√
2
[f1(u)− f0(u)] . (16b)

Since f0(u) is even and f1(u) is odd, the new functions
fulfill g1(−u) = −g0(u). Thus, their roots and ambigui-
ties from complex conjugation of the roots are the same.
The three independent moments read:

h0
0 =|g0|2 + |g1|2, (17a)

h0
1 =|g0|2 − |g1|2, (17b)

h1
0 =

1

2
|g0 − g1|2. (17c)

We note that the moments hα
M will simply change by a

sign (−1)M under the substitution g0 → g1. It is neces-
sary and sufficient to require that any prospective ambi-
guity transformation leaves invariant |g0|2 and |g0 − g1|2
independently. In terms of the partial waves, these func-
tions can be written:

g0 =

√
5

2

1

(u2 + 1)2

[
D0(u

4 − 4u2 + 1)

+
√
6D1(u

3 − u)
]
+

1√
2
S0, (18a)

g0 − g1 =
√
10

(u4 − 4u2 + 1)D0

(u2 + 1)2
+

√
2S0. (18b)
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Which can be simplified defining v = u− 1/u = −2 cot θ:

g0 =

√
5

2

1

v2 + 4

[
Av2 +

√
6D1v − 2B

]
, (19a)

g0 − g1 =

√
10

v2 + 4

[
Av2 − 2B

]
, (19b)

where A = D0 + S0/
√
5 and B = D0 − 2S0/

√
5.

Recalling that the ambiguous waves should be gener-
ated by conjugating roots of these polynomials, we start
by considering the first polynomial in Eq. (19a), and fac-
torize it into its Barrelet zeros r1,2:

g0 ∝ (v − r1)(v − r2), (20)

where we have dropped the irrelevant factors. The roots
read:

r1,2 =
−
√
3D1 ±

√
4AB + 3D2

1√
2A

. (21)

In this case, there are only two Barrelet zeros and there
is thus only one non-trivial independent solution given
by the substitution of one root by its complex conjugate.
We invert Eq. (19a) and replace r1 with its conjugate to
obtain:

S̃0 =
√
5
A

6
(2 + r∗1r2), (22a)

D̃0 =
A

6
(4− r∗1r2), (22b)

D̃1 = − A√
6
(r∗1 + r2). (22c)

We note that the new waves obtained by the complex
conjugation of r1 and r2 simultaneously lead to the set
{S̃∗

0 , D̃
∗
0 , D̃

∗
1}, the complex conjugate of the original wave

set. For a given wave set {S0, D0, D1}, the set in Eq. (22)
produces the same unpolarized moments h0

0,1(θ). In the
absence of information on the polarized moments, the
above wave set would constitute an ambiguous solution.

In this example, the use of observables only accessi-
ble via a polarized beam are essential to ensure that no
mathematical ambiguities can occur. In particular, we
must consider the constraints implied by the polarized
moment h1

0 = 1
2 |g0 − g1|2. The combination g0 − g1 only

has one Barrelet zero, i.e. g0 − g1 ∝ (v − r3)(v − r∗3),
where r3 =

√
2B/A. This is independent of r1,2, and the

only transformation that leaves h1
0(θ) invariant is the one

that replaces each wave by its complex conjugate, since
all the waves are defined up to a global phase. Therefore,
there is no nontrivial transformation of the partial waves
which leaves both the unpolarized moments h0

0,1(θ) and

the polarized moment h1
0(θ) invariant, and thus there are

no ambiguous solutions for this wave set.
We illustrate this case for one single energy bin by

choosing three random complex numbers for the original

waves {S0, D0, D1},3 compute the associated ambiguous

solutions {S̃0, D̃0, D̃1} and display the three moments in
Fig. 2. The numerical values of the waves are specified
in Table I. Here again, we see the value of incorporating
polarized observables. While the two wave sets produce
degenerate solutions for the two unpolarized moments,
the incorporation of the polarized moment h1

0 breaks the
degeneracy.
The inclusion of more waves with only the projections

m = 0, 1 will not change our results. Adding more waves
with different m projections could potentially produce
ambiguous solutions, each of which leave invariant one
single moment hα

M (θ), but it would also generate addi-
tional nonzero hα

M (θ) which must remain invariant under
each of the ambiguity transformations. One can try to
generate other prospective ambiguities, but each poten-
tially ambiguous wave set will be subject to an increasing
number of constraints. Hence, we argue that, for most
sensible wave sets, the intersection between all these sets
of potentially ambiguous waves will be empty.

TABLE I: Numerical values of our example wave set
and the potentially ambiguous wave set generated by
the unpolarized moments.

[ℓ]m original potentially ambiguous

S0 0.229 0.630

D0 −0.217 + 0.310i 0.043 + 0.056i

D1 0.770 + 0.448i 0.280− 0.713i

B. S and D waves with m = −1, 0, 1

We now consider the previous example in Section IIIA
with the addition of the m = −1 projection. The pres-
ence of three different m projections raises the number
of independent cosMϕ moments to three (M = 0, 1, 2 in
this case), each of them being a function of the polar an-
gle. As we will see, it is impossible to find an ambiguous
set leaving all the polar angle distributions simultane-
ously invariant. We only consider here the m = −1, 0, 1
components for the D wave but our conclusions can be
generalized to any wave set with three (or more) spin
projections. It was already noticed by the COMPASS
collaboration that no ambiguities are found in the ηπ
system once the m = 2 component is included in the
partial wave analysis [18].
We again start with a set of partial waves,

{S0, D0, D1, D−1}, and attempt to generate an ambigu-

3 We choose S0 to be real positive without loss of generality and
rotate the ambiguous solution to bring S̃0 also to the positive
real axis, i.e. its phase is zero.
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FIG. 2: Solid blue lines, moments obtained from the original waves of Table I; dotted red lines, moments obtained
from the ambiguous solution of Table I. The polarized moment h1

0 breaks the ambiguity between the two solutions.

ous set {S̃0, D̃0, D̃1, D̃−1}. The f ’s are:

f0(u) =
√
5

(
u4 − 4u2 + 1

)
(u2 + 1)

2 D0 + S0 , (23a)

f±1(u) = ∓
√
30

u
(
1− u2

)
(u2 + 1)

2 D±1 . (23b)

Our wave set for this example contains all |m| ≤ 1 but
only positive reflectivity components. The structure of
the moments in Eq. (11) tells us that, when only one re-
flectivity component is included but all m projections are
allowed, the polarized moments h1

M are not independent
of the unpolarized moments h0

M . It suffices to study the
ambiguities which leave only h0

M and h2
M invariant.

Let us first investigate only the unpolarized moments.
We rewrite the conditions relating the h’s to the f ’s in
matrix form:

h0
M (θ) = F †H0

MF , (24)

where, F = (f−1, f0, f1)
T and

H0
0 =


1 0 0

0 1 0

0 0 1

 , H0
1 =


0 1 0

1 0 1

0 1 0

 , H0
2 =


0 0 1

0 0 0

1 0 0

 .

(25)

Notice here that H0
0 , H

0
1 and H0

2 are all not simultane-
ously diagonalizable. Nevertheless, as before, we diago-
nalize H0

1 , defining g0, g1, and g−1 as

g±1(u) ≡
1

2

[
f1(u)±

√
2f0(u) + f−1(u)

]
, (26a)

g0(u) ≡
−1√
2
[f1(u)− f−1(u)] . (26b)

Again, the parity of the f ’s functions indicates that
g±1(−u) = g∓1(u) and g0(−u) = −g0(u). The two func-
tions g1 and g−1 possess the same Barrelet zeros and
therefore the same potential ambiguities

As in the previous example, the moments are even
functions of the polar angles and read, in the g basis,

h0
0 =

(
|g−1|2 + |g0|2 + |g1|2

)
, (27a)

h0
1 =

√
2
(
|g1|2 − |g−1|2

)
, (27b)

h0
2 =

1

2
|g−1 + g1|2 − |g0|2 . (27c)

Again, any transformation on the partial waves which
leaves each term above independently unchanged will
produce a mathematically ambiguous set of waves. In-
troducing the change of variables v = u− 1/u as before,
the relevant rational fractions are

g±1 = ±
√

5

2

1

v2 + 4

[
Av2 ±

√
6vD− − 2B

]
, (28a)

g0 = −
√
30

v

v2 + 4
D+, (28b)

where A,B are defined as in the previous subsection and
D± = (D1 ±D−1)/

√
2. With these definitions, the roots

of g±1(v) are given by Eq. (21) with the substitution
D1 → ±D−.
As already noted, the same ambiguous solution will si-

multaneously leave invariant |g1|2 and |g−1|2. The new

wave set {S̃0, D̃0, D̃
−} is easily obtained from Eq. (22)

with the substitution D1 → D−. There is, in addition,
a continuous transformation D+ → exp(iα+)D+ leaving
|g0|2 invariant. Since this transformation is independent

from the set {S̃0, D̃0, D̃
−}, we have, so far, found an am-

biguous solution, parametrized with a continuous param-
eter, leaving the moments h0

0 and h0
1 invariant. However,

the invariance of h0
2 requires a continuous transforma-

tion of the type D− → exp(iα−)D−, which contradicts

the ambiguous solution {S̃0, D̃0, D̃
−}. Therefore the un-

polarized moments h0
0,1,2 are left invariant only by the

1-parameter continuous transformation

{S0, D0, D
−, D+} → {S0, D0, D

−, eiα
+

D+}. (29)
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Since the polarized moments h1
0,1,2 are related to the

unpolarized ones, we only need to consider the moments
h2
1,2. Their respective matrices, in the form analogous to

Eq. (24), are

H2
1 =


0 −1 0

−1 0 1

0 1 0

 , H2
2 =


−1 0 0

0 0 0

0 0 1

 . (30)

Their expressions in the g’s basis are

h2
1 = 2Re [(g1 − g−1)g

∗
0 ] , (31a)

h2
2 = −

√
2Re [(g1 + g−1)g

∗
0 ] . (31b)

The continuous transformation in Eq. (29) changes the
phase of g0 and does not leave the polarized moments
Eq. (31) invariant.

We thus conclude that there is no ambiguity associ-
ated with the extraction of partial waves with a linearly
polarized beam for this wave set, other than the trivial
ambiguities given by the rotation of all waves by a com-
mon phase, or by the complex conjugation of all waves.

IV. SIMULATIONS

While in the previous sections we have provided argu-
ments that no mathematical ambiguities exist in partial-
wave analysis of two mesons produced with a linearly po-
larized photon beam, the complicated multidimensional
shape of likelihood functions or other functions used for
fitting can present themselves as false solutions, which
one might naively label as mathematically ambiguous.
In this section, we present some Monte Carlo studies
showing this effect. We wish to emphasize that here we
only investigate the dependence on statistics of a per-
fect model. Other factors such as acceptance corrections,
resolutions, and other systematic effects are experiment-
dependent and may qualitatively alter the results. Stud-
ies based off pseudodata or studies involving full experi-
ment simulations will be an important part of subsequent
analyses, and might be employed to help discard false so-
lutions or assess the impact of limited statistics.

First, pseudodata was generated following the angular
intensity given by Eqs. (7) and (8). We used the wave set
from Section III B, and generated the pseudodata using
the fixed “true solution” wave set, with non-zero, positive
reflectivity partial waves shown in Table II and a mean
linear polarization degree of Pγ = 0.85.

We then performed event-by-event fits to extract these
four waves. We used MINUIT [19] with random initial
conditions to minimize the negative log likelihood. To
explore the effect of differing statistical information on fit
results, we examined three different cases with generated
data sets of 102, 104, and 106 events.
In Fig. 3 we show the resulting negative log likelihood

and amplitude components from 50 fits to the pseudodata

TABLE II: Numerical values of our “true” wave set for
the simulation studies.

[ℓ]m Magnitude Phase

S0 0.499 0◦

D−1 0.201 15.4◦

D0 0.567 174◦

D1 0.624 −81.6◦

with 100 events. Similar results are shown for 104 events
in Fig. 5 and 106 events in Fig. 7. For clarity, in these
plots we show only a single complex conjugate solution
set, though the fitting procedure did also identify trivial
ambiguities, i.e. the set with all phases simultaneously
flipped in sign.

In Figs. 4, 6 and 8 we show the projections of the
intensity onto the polarization angle Φ, and the decay
angles ϕ, θ for the best five solutions, compared to the
distributions generated from the true amplitudes.

We observe in the case of the second best solution for
each simulation (shown in red), the cos θ distribution is
almost identical to the best fit’s distribution (blue) How-
ever the second best ϕ distribution is flat (red), while
the true distribution has a cos(2ϕ) component. The rea-
son for the flat distribution is that the magnitude of the
D−1 amplitude is zero for this solution (first red triangle
in the plots of Figs. 3, 5 and 7). The h0

2 moment, which
contributes to the cos(2ϕ) amplitude, requires an interfer-
ence between D−1 and D1, which is obviously zero when
either of these waves has zero magnitude. Note that this
solution is found despite the fit magnitude range being
[−1, 1] and MINUIT finishing with successful status.

The other solutions do not agree well with the data
and therefore clearly do not represent real solutions, but
rather represent artifacts of local maxima in the likeli-
hood. We also note that, for each level of statistics, we
observe a similar behavior in the projection of the in-
tensity onto Φ for all solutions. The best (blue) and
second-best (red) solutions closely match the true solu-
tion (dashed black) for each case, while the less-favored
solutions cannot be immediately discarded from this pro-
jection even at high statistics

We should emphasize here that although we have
shown explicitly that there are no mathematical ambi-
guities present, the false solutions found in fits to data or
pseudodata must still be addressed. In fits to real data
one may not always be able to extract the most favored
solution from a fitting procedure and claim that it is the
true, mathematically unique, solution due to detector ef-
fects and other systematics. In practice, each solution
could be shifted up or down in likelihood, and the ‘true’
solution could correspond to a local minimum rather than
the global one. We do note that, in an environment with
no systematics or detector effects, higher statistics allows
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FIG. 3: Results of the 5 best (highest likelihood) fits
from 50, to 100 events generated with the partial waves
given in Table II showing the likelihood versus the
amplitude magnitude (upper) and phase (lower), the
dashed lines show the true values. The wave is indi-
cated by the marker shape (see legend) while the color
represents different solutions. The highest likelihood is
at the bottom of the plots. The phase for the D−1 (D1)
wave is not shown for the red and orange (purple) fits,
as associated magnitude is zero and, hence, the phase
is undetermined. Fits and uncertainties are computed
using the HESSE option of MINUIT [19].

one to make qualitative judgments about which solution
best fits the data by considering projections of the inten-
sity onto the scattering angles. We also note that in these
simulations we have relatively few waves. In larger wave
sets, the probability of finding the global minima from
fifty random starting points reduces drastically. These
issues are outside the scope of this paper, and we leave
methods to address them for future work.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented our formalism for
the analysis of mathematical ambiguities for linearly po-
larized photoproduction of two spinless particles. We
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FIG. 4: Projections of the angular distributions (up-
per: cos θ, center: ϕ, lower: Φ) as defined in Eqs. (3)
and (7). Shown are the data (black circles), the true
solution (dashed black), and the different solutions (col-
ored lines), with colors matching the plots in Fig. 3.
Bin widths are ∆ cos θ = 0.1 and ∆ϕ = ∆Φ = 18o.

demonstrated for two wave sets that, even with a small
number of constraints on the partial waves, the partial
waves are over-specified by experimental data. We il-
lustrated our results by generating pseudodata and ex-
tracting back the partial waves. We found that the best
solution matches the input waves. We do not expect
larger wave sets to exhibit root-conjugation ambiguities,
as the number of constraints increases rapidly with the
size of the fitted wave set. Rather, we expect that false
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FIG. 5: As Fig. 3 for fits to 104 events. The phase for
the D−1 wave is not shown for the red and orange fits,
as associated magnitude is zero and, hence, the phase is
undetermined.

solutions which appear in fits to real data come about as
artifacts of complicated multidimensional properties of
log-likelihood functions. These may be identified through
examination of the angular dependence of the polarized
observables.
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Appendix A: Barrelet zeros for spinless meson
scattering

We consider the elastic scattering of two spinless
mesons [1, 20]. Lorentz invariance allows us to choose
the scattering plane as the xz plane, and to write the in-
tensity as a real positive function of the scattering angle
z = cos θ. The differential cross section,

dσ

dΩ
= |f(s, z)|2, (A1)
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FIG. 8: As Fig. 4 for fits to 106 events with colors
matching the plots in Fig. 7.

is decomposed into partial waves of the decaying reso-
nance, with angular momentum ℓ as

f(s, z) =
∑
ℓ

(2ℓ+ 1)aℓ(s)Pℓ(z). (A2)

The center-of-mass energy s is a fixed variable in our
treatment. In practice, for each bin in s, the sum in
Eq. (A2) is truncated to ℓM and the differential cross
section is thus a polynomial of order 2ℓM in the cosine
of the scattering angle, z. The ℓM + 1 partial waves are
in general complex numbers, but since the intensity is
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positive, the cross section can be factorized into its roots,
also denoted Barrelet zeros [1, 20], in the following way

dσ

dΩ
= C

ℓM∏
i=0

(z − zi)(z − z∗i ), (A3)

where the s dependence of the normalization factor C
and the Barrelet zeros zi have been omitted.

Clearly, the knowledge of a set of partial waves {aℓ}
determines the Barrelet zeros {zi}, and vice versa. How-
ever, the differential cross section includes both the roots
zi and their conjugates z∗i while only one of {zi, z∗i } is
used to generate the partial waves; there is no physical
distinction between a zero and its complex conjugate,
which can lead to ambiguities in the values of the partial
waves in Eq. (A2). To see this, suppose we know ℓM + 1
Barrelet zeros {zi} from which we reconstruct the partial

waves:

aℓ = Fℓ(z0, z1, . . . , zℓM−1, zℓM ), (A4)

where the functions Fℓ are known for a given ℓM . Alter-
natively one could choose to use the complex conjugate
of any of the ℓM + 1 Barrelet zeros. For instance by
choosing

a′ℓ = Fℓ(z
∗
0 , z1, . . . , z

∗
ℓM−1, zℓM ). (A5)

There are 2ℓM+1 sets of potentially ambiguous partial
waves {a′ℓ} which lead to the same differential cross sec-
tion. One can always rotate all the waves with a constant
phase (in each bin of energy) such that the S-wave is real
and positive. We are nevertheless left with 2ℓM possibil-
ities for the partial waves in the case of spinless meson
scattering.

[1] E. Barrelet, Nuovo Cim. A 8, 331 (1972).
[2] S. U. Chung, Phys. Rev. D 56, 7299 (1997).
[3] S. A. Sadovsky, Phys. Atom. Nucl. 62, 519 (1999).
[4] A. Austregesilo, Central Production of Two-Pseudoscalar

Meson Systems at the COMPASS Experiment at CERN,
Ph.D. thesis, Munich, Tech. U. (2014).

[5] B. Ketzer, B. Grube, and D. Ryabchikov, Prog. Part.
Nucl. Phys. 113, 103755 (2020), arXiv:1909.06366 [hep-
ex].

[6] A. Rodas, A. Pilloni, M. Albaladejo, C. Fernández-
Ramı́rez, V. Mathieu, and A. P. Szczepaniak (JPAC),
Eur. Phys. J. C 82, 80 (2022), arXiv:2110.00027 [hep-
ph].

[7] Y. Gao, T. Rong, Z. Yang, C. Zhang, and Y. Zhang,
(2023), arXiv:2302.13862 [hep-ph].

[8] P. Kroenert, Y. Wunderlich, F. Afzal, and A. Thiel,
(2023), arXiv:2305.10367 [nucl-th].

[9] L. Kok and M. de Roo, Nucl. Phys. B 111, 39 (1976).
[10] M. Ablikim et al. (BESIII), Phys. Rev. D 92, 052003

(2015), [Erratum: Phys.Rev.D 93, 039906 (2016)],
arXiv:1506.00546 [hep-ex].

[11] V. Mathieu, M. Albaladejo, C. Fernández-Ramı́rez,
A. W. Jackura, M. Mikhasenko, A. Pilloni, and A. P.
Szczepaniak (JPAC), Phys. Rev. D 100, 054017 (2019),

arXiv:1906.04841 [hep-ph].
[12] C. A. Meyer and Y. Van Haarlem, Phys. Rev. C 82,

025208 (2010), arXiv:1004.5516 [nucl-ex].
[13] A. Celentano et al. (CLAS), Phys. Rev. C 102, 032201

(2020), arXiv:2004.05359 [nucl-ex].
[14] A. Rodas et al. (JPAC), Phys. Rev. Lett. 122, 042002

(2019), arXiv:1810.04171 [hep-ph].
[15] B. Kopf, M. Albrecht, H. Koch, M. Küßner, J. Pychy,
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