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ABSTRACT2

Mesons with heavy flavor content are an exceptional probe of the hot QCD medium produced in3
heavy-ion collisions. In the past few years, significant progress has been made toward describing4
the modification of the properties of heavy mesons in the hadronic phase at finite temperature.5
Ground-state and excited-state thermal spectral properties can be computed within a self-6
consistent many-body approach that employs appropriate hadron-hadron effective interactions,7
providing a unique opportunity to confront hadronic Effective Field Theory predictions with recent8
and forthcoming lattice QCD simulations and experimental data. In this article, we revisit the9
application of the imaginary-time formalism to extend the calculation of unitarized scattering10
amplitudes from the vacuum to finite temperature. These methods allow us to obtain the ground-11
state thermal spectral functions. The thermal properties of the excited states that are dynamically12
generated within the molecular picture are also directly accessible. We present here the results of13
this approach for the open-charm and open-bottom sectors. We also analyze how the heavy-flavor14
transport properties, which are strongly correlated to experimental observables in heavy-ion15
collisions, are modified in hot matter. In particular, transport coefficients can be computed using16
an off-shell kinetic theory that is fully consistent with the effective theory describing the scattering17
processes. The results of this procedure for both charm and bottom transport coefficients are18
briefly discussed.19

Keywords: effective hadron theories, chiral symmetry, heavy-quark spin-flavor symmetry, D mesons, B mesons, finite temperature,20
transport coefficients21

1 INTRODUCTION

The discovery in 2003 of the charm-strange mesons D∗
s0(2317) [1] and Ds1(2460)[2], with masses22

significantly lower than the quark-model predictions for the lowest lying scalar and axial-vector cs̄ mesons,23
has generated intensive discussions on their internal structure for the past twenty years. Together with the24
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X(3872) charmonium-like state, which was first observed also in 2003 [3], they are the first candidates25
of exotic mesons with multiquark content in the heavy meson sector. Despite the enormous efforts, there26
exists still a lack of consensus on whether the D∗

s0(2317) and Ds1(2460) are meson molecules, compact27
tetraquarks or an admixture with cs̄ components. Yet there are compelling arguments in favor of the28
molecular interpretation: their masses lie very close to the DK and D∗K thresholds, respectively, and the29
mass difference between these two excited states is very similar to that between the D and D∗ ground states30
(∼ 140 MeV). Therefore the prevailing picture is that they have a large component of molecular DK or31
D∗K and coupled channels [4, 5, 6, 7, 8, 9, 10, 11], which is supported by lattice QCD data [12, 13, 14, 15].32

Closely related is the case of the broad structures observed in the Dπ and D∗π invariant mass33
distributions [16, 17, 18, 19] and reported as the D∗

0(2300) and D1(2430) states by the Particle Data34
Group (PDG) [20]. The value reported for the mass of the D∗

0(2300) strongly depends on the production35
mechanism, ranging from ∼ 2400 MeV with γ A reactions to ∼ 2300 MeV from B-meson decays, and36
the values reported by the LHCb collaboration for the charged partner lie in the middle. The fact that37
these values are close to the mass of the D∗

s0(2317), or are even larger, is in contradiction with constituent38
quark model predictions. An answer to this puzzle is naturally provided by the use of unitarized effective39
models in coupled channels, which give rise to two D∗

0 poles in the energy-region of the D∗
0(2300), and two40

D1 poles in that of the D1(2430) [6, 8, 21, 22, 23, 24]. Strong evidence that the D∗
0(2300) and D1(2430)41

states could be interpreted as meson molecules with a two-pole structure comes from the remarkably good42
agreement that the authors of Ref. [22] found with the lattice QCD results of the lowest-lying energy levels43
of Ref. [25]. More recently the authors of Ref. [24] showed that, in addition to the pole reported in [25], a44
second pole on an unphysical Riemann sheet is needed in the analysis of the lattice data.45

While heavy-quark spin symmetry (HQSS) is responsible for the near degenerate patterns between the46
open-charm scalars, D∗

s0(2317) and D∗
0(2300), and between the axial vectors, Ds1(2460) and D1(2430),47

from heavy-quark flavor symmetry (HQFS) one expects to find a similar degeneracy in the bottom sector.48
For instance, unitarized effective field theory (EFT) models that find the D∗

s0(2317) as a DK bound state49
predict a bottom partner, a B̄K bound state, with a similar binding energy [6, 26, 27], in agreement with50
lattice QCD results [28]. The bottomed analogues of the scalar D∗

s0(2317) and D∗
0(2300) are still to be51

found experimentally, but the axial-vector B1(5721) and Bs1(5830) could presumably be the bottom-flavor52
partners of the D1(2430) and Ds1(2460).53

A new venue to study the nature of heavy-flavor exotica has recently emerged with relativistic heavy-54
ion collisions (HICs), where an extremely hot quark-gluon plasma (QGP) is created. At high collision55
energies, such as those at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider56
(LHC), abundant heavy quark-antiquark pairs are produced in the initial hard scattering between partons.57
These pairs then propagate through the rapidly expanding and cooling QGP. At a temperature of about58
Tc = 156 MeV the hadronic medium is eventually formed, and the interactions between the heavy hadrons59
and the surrounding light mesons occur until the so-called kinetic freeze-out at lower temperatures. This60
offers an excellent opportunity to test the in-medium properties of the heavy mesons produced, including61
those of heavy exotica. Furthermore, the novel employment of femtoscopy techniques in pp, pA and AA62
collisions at the LHC and RHIC to determine the scattering parameters of D mesons with light-flavor63
hadrons will certainly help probe the hadronic interactions, as well as the effects of the hadronic medium64
[29, 30, 31, 32, 33, 34, 35, 36].65

The non-perturbative regime of hot hadronic matter can be consistently treated using effective Lagrangians66
combined with quantum field theory techniques at finite temperature, often denominated as thermal EFTs.67
While finite-temperature lattice QCD has been for many years a powerful theoretical source of information68
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on hot QCD matter, thermal EFTs are a complementary tool that enable us to approach the QCD phase69
transition from the chirally-broken phase of hadrons.70

In this work we use thermal EFTs to access the finite-temperature properties of charm and bottom mesons71
in a hot medium. To this end, we will revisit the calculations that we presented in a series of works on72
charmed mesons [37, 38, 39, 40] and, in addition, we will present extensions of the calculations to the heavy73
mesons with bottom flavor [40]. We note that, although it will not be discussed here, our findings in the74
charm sector have been checked against lattice QCD calculations at the level of Euclidean correlators [41]75
and that we have also studied the thermal modification of the X(3872) exotic state and its spin-flavor76
partners when these are assumed to be of molecular nature [42].77

The rest of the article is organized as follows. In Section 2 we discuss the main ingredients of our78
thermal EFT approach to address the in-medium properties of open heavy-flavor mesons: The effective79
hadron-hadron interactions, the use of the imaginary-time formalism to evaluate properties of a system in80
thermal equilibrium (e.g. thermal corrections to the mass and decay width), and the evolution in real-time81
to tackle the description of a system out of equilibrium and compute transport coefficients. We will review82
the key ideas and refer to our previous works for technical details [37, 38, 39]. Section 3 presents novel83
results for bottomed mesons. These include self-energies, spectral functions and transport coefficients,84
alongside a comparison with selected results from our previous works in the charm sector. We end with a85
final discussion and conclusions in Section 4.86

2 FORMALISM

In this work we use a thermal effective field theory approach that was developed in a series of works [37, 38]87
for charmed hadrons. It is based on unitarized heavy-meson chiral perturbation theory (HMChPT) combined88
with thermal field theory techniques using the imaginary-time formalism to address the thermal effects on89
the properties of heavy mesons in a mesonic medium at finite temperature. The kinetic theory describing the90
heavy-meson dynamics in the hot medium can be derived using the real-time formalism [39]. The resulting91
kinetic equation depends on thermal scattering amplitudes and spectral functions. For the calculation of92
transport coefficients it is sufficient to assume a system near equilibrium and employ equilibrium quantities.93
In the following we summarize the main steps to compute some relevant quantities at finite temperature.94

2.1 Interactions between open heavy-flavor mesons and light mesons95

We start by outlining the main features of the interactions between open-heavy flavor mesons, i.e. mesons96
with one charm or bottom quark H ∋ {D,Ds, D

∗, D∗
s , B̄, B̄s, B̄

∗, B̄∗
s}, and the light Goldstone bosons97

Φ ∋ {π,K, K̄, η} within the framework of HMChPT, an effective field theory that has been widely98
used in the last years to describe the interactions between open-heavy flavor mesons and light mesons99
[43, 44, 45, 6, 46], with chiral symmetry and heavy-quark spin-flavor symmetry (HQSFS) as its guiding100
principles. When combined with a unitarization technique such as the solution of the Bethe-Salpeter101
equation in the on-shell factorization scheme [47, 48], the potentials of the HMChPT lead to the dynamical102
generation of quasi-bound states from the s-wave scattering of heavy flavored mesons off Goldstone103
bosons. In particular, it provides a description of the lightest scalar and axial vector open-charm states (i.e.104
D∗

0(2300), Ds0(2317), D1(2430) and Ds1(2460)) as hadronic molecules, as well as predictions for their105
counterparts in the open-bottom sector.106
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The Lagrangian of HMChPT expanded at next-to-leading order (NLO) in the chiral expansion and at107
leading order (LO) in the inverse of the mass of the heavy meson mH reads [21, 49, 50, 51, 52],108

L = LLO + LNLO , (1)

with the subscripts LO and NLO referring to the chiral power counting, and

LLO = LChPT
LO + ⟨∇µH∇µH

†⟩ −m2
H⟨HH†⟩ − ⟨∇µH∗ν∇µH

∗†
ν ⟩+m2

H⟨H∗νH∗†
ν ⟩

+ ig⟨H∗µuµH
† −HuµH∗†

µ ⟩+ g

2mD
⟨V ∗

µ uα∇βH
∗†
ν −∇βV

∗
µ uαH

∗†
ν ⟩ϵµναβ , (2a)

LNLO = LChPT
NLO − h0⟨HH†⟩⟨χ+⟩+ h1⟨Hχ+H†⟩+ h2⟨HH†⟩⟨uµuµ⟩+ h3⟨HuµuµH†⟩

+ h4⟨∇µH∇νH
†⟩⟨uµuν⟩+ h5⟨∇µH{uµ, uν}∇νH

†⟩
+ h̃0⟨H∗µH∗†

µ ⟩⟨χ+⟩ − h̃1⟨H∗µχ+H
∗†
µ ⟩ − h̃2⟨H∗µH∗†

µ ⟩⟨uνuν⟩ − h̃3⟨H∗µuνuνH
∗†
µ ⟩

− h̃4⟨∇µH
∗α∇νH

∗†
α ⟩⟨uµuν⟩ − h̃5⟨∇µH

∗α{uµ, uν}∇νH
∗†
α ⟩, (2b)

where LChPT
LO and LChPT

NLO encode the chiral Lagrangians of the pure light-meson sector. In the charm109
sector, H and H∗

µ denote the antitriplets of pseudoscalar D-mesons,
(
D0 D+ D+

s

)
, and vector D∗-mesons,110 (

D∗0
µ D∗+

µ D∗+
s,µ

)
, respectively, while in the bottom sector they correspond to the pseudoscalar B̄-mesons,111 (

B̄− B̄0 B̄0
s

)
, and vector B̄∗-mesons,

(
B̄∗−
µ B̄∗0

µ B̄∗0
s,µ

)
. The octet of Goldstone bosons are contained in the112

unitary matrix u = exp(iΦ/
√
2fπ) in the building blocks uµ = i(u†∂µu−u∂µu†) and χ+ = u†χu†+uχu,113

with the quark mass matrix χ = diag(m2
π,m

2
π, 2m

2
K −m2

π). For our calculations, we rely on the values114
from the Fit-2B in Ref. [53]. We employ the relation {hi} = {h̃i} that is applicable at LO in the115
heavy-quark mass expansion For the specific values, please refer to our previous works [37, 38]. In the116
bottom sector we take advantage of the heavy-quark mass scaling of the low energy constants (LECs),117
{hBi }M̂−1

B = {hDi }M̂−1
D , for hHi ∈ {hH0 , hH2 , hH3 , hH4 M̂2

H , h
H
5 M̂

2
H}.118

The tree-level potential for the process H(∗)Φ → H(∗)Φ reads

V ij(s, t) =
1

f2π

[Cij
LO
4

(s− u)− 4Cij
0 h0 + 2Cij

1 h1

− 2Cij
24

(
2h2(p2 · p4) + h4

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))
+ 2Cij

35

(
h3(p2 · p4) + h5

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))]
, (3)

where s = (p1 + p2)
2, t = (p1 − p3)

2, and u = (p1 − p4)
2 are the standard Mandelstam variables, and the119

superindices i, j denote the incoming and outgoing channels from the coupled-channel basis. For instance,120
in the sector with strangeness S = 0 and isospin I = 1/2, which are the quantum numbers of theD∗

0(2300),121
we have {Dπ,Dη,DsK̄}, and for S = 1 and I = 0, as for the Ds0(2317), we have {DK,Dsη}. We refer122
the reader to Ref. [38] for the values of the coefficients Cij

k in the isospin basis.123

The partial-wave projection with angular momentum ℓ is then obtained through the relation124

V ij
ℓ (s) =

1

2

∫ +1

−1
d(cos θ) Pℓ(cos θ)V ij(s, t(s, cos θ)) , (4)
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where θ is the scattering angle between the initial and final particles in the center of mass, and Pℓ(cos θ)125
the Legendre polynomial of order ℓ.126

2.2 Thermal equilibrium properties127

A hadron gas forms once the temperature is turned on. The relative abundance of each hadron species128
in thermal equilibrium is determined by the corresponding thermal distribution functions, i.e. the Bose-129
Einstein distribution for mesons and the Fermi-Dirac distribution for baryons. At temperatures T ∼130
100− 150 MeV light mesons become the primary components of the medium and heavy mesons behave131
as Brownian particles scattering of the light mesons. We exploit this scenario and employ the HMChPT132
potential presented above to describe the dynamics of the heavy mesons with the light mesons in the bath.133

In order to incorporate the effects of the hot medium, it is necessary to follow the techniques of thermal134
field theory. There exist two complementary formulations of thermal field theory that can be used to describe135
a system in thermal equilibrium, the “imaginary-time” and the “real-time” formalisms. In the imaginary-136
time formalism (ITF), also called Matsubara formalism owing to the pioneering work by Matsubara [54],137
time is treated as a purely imaginary quantity and then one performs an analytical continuation from138
Euclidean to Minkowski spacetime at the end of the calculation. In the real-time formalism, in contrast,139
the calculation is done in Minkowski spacetime, considering explicitly the evolution in real time [55, 56].140
While the latter is capable of describing systems even outside thermal equilibrium, and thus appropriate to141
address out-of-equilibrium properties and transport coefficients, as we will discuss in the next section, the142
ITF has the advantage of resembling in a more intuitive way the zero temperature field theory. For instance,143
the main difference in the form of the propagators and the diagrammatic structure of the perturbative144
expansion, in the ITF, is the acquisition of thermal weights in the phase-space integrals compared with145
those at T = 0, as we will show below. An approach based on the ITF has been developed in the recent146
years to study the properties of open heavy-flavor mesons in hot hadronic matter at vanishing baryonic147
density [37, 38, 57].148

To compute the thermal corrections to a given quantity, such as the two-meson propagator or the self-149
energy, the ITF provides some simple rules that basically consist in replacing the zeroth component of150
the four-momenta of the particles by discrete Matsubara frequencies iωn, with ωn = 2nπ/β for bosons151
and β = 1/T , and transforming the integration over internal energies into a summation over Matsubara152
frequencies. Then, by using some established computational techniques based on contour integrals and153
analytic continuation, the calculations can be done similarly as in the vacuum field theory. For details, we154
encourage the reader to consult the classical Refs. [58, 59, 60, 61, 62].155

Using the rules above, the thermal two-meson propagator takes the form156

G(E,p ;T ) =

∫
d3q

(2π)3

∫
dω

∫
dω′ SH(ω, q ;T )SΦ(ω

′,p− q ;T )

E − ω − ω′ + iε

[
1 + f(ω, T ) + f(ω′, T )

]
, (5)

with pµ = (E,p) the momentum in the center of mass of the two-meson system. In the above equation, in157
addition to the medium corrections arising from the ITF, i.e. the additional weighting factors containing158
appropriate combinations of Bose-Einstein distribution functions f(ω, T ) = (eβω − 1)−1, the meson159
masses are dressed by the spectral functions SH and SΦ. Note that this is a compact expression with the160
integrals over energy extending from −∞ to +∞.161

In the case of zero temperature, it is customary to regularize the vacuum contribution to the two-162
meson propagator, for example, by introducing a hard cutoff in the three-momentum integration. We use163
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Λ = 800 MeV, a value that corresponds to the scale of the degrees of freedom that were integrated out when164
constructing the meson-meson interaction amplitude from the effective Lagrangian, and that is consistent165
with the regularization scheme used in Ref. [53], from where we adopted the values for the LECs of the166
NLO potential. This regularization scheme is straightforward to extend to finite temperature. The tree-level167
potential in Eq. (3) does not change at finite temperature because in the ITF thermal corrections enter in168
loop diagrams [60, 61].169

The thermal effects on the unitarized scattering amplitude T ij(s) from an incoming channel i to an170
outgoing channel j are then obtained by solving the on-shell Bethe-Salpeter equation in a full coupled-171
channel basis, with the s-wave interaction kernel of Eq. (3) and the thermal two-meson propagator of172
Eq. (5) (see Figure 1a):173

T ij(E,p;T ) = V ij(s) + V ik(s)Gk(E,p;T )T kj(E,p;T ) . (6)

The spectral functions dressing the meson propagators in Eq. (5) take into account the modifications due174
to the presence of interactions with the medium. At finite temperature the heavy meson retarded propagator175
is defined by176

DH(ω, q ;T ) =
1

ω2 − q2 −m2
H − ΠH(ω, q ;T )

, (7)

where mH is the mass of the heavy meson in the vacuum, renormalized by the vacuum contribution of the177
retarded self-energy ΠH (see Figure 1b). For the purpose of our calculations, using the vacuum propagator178
for the light meson and thus a δ-type spectral function is a good approximation, as we discussed in our179
previous works [37, 38].180

The light-meson contribution to the self-energy of the heavy meson can be obtained by closing the light-181
meson line in the corresponding T -matrix element (see Figure 1c), i.e. by integrating over the light-meson182
four-momenta q′µ = (E′, q′). In the ITF it is defined as183

ΠH(iωn, q ;T ) = − 1

β

∫
d3q′

(2π)3

∑
m

DΦ(iωm − iωn, q
′)THΦ(iωm,p ) . (8)

Using the spectral Lehmann representation for the light meson propagator and the T matrix, and performing
the summation over the Matsubara frequencies ωm of the internal HΦ, it reads

ΠH(iωn, q ;T ) =
1

π

∫
d3q′

(2π)3

∫
dE

∫
dω

SΦ(ω,p− q ) [f(E, T )− f(ω, T )]

E − iωn − ω
Im THΦ(E,p ;T ) . (9)

We note that the self-energy entering in Eq. (7) can only contain thermal corrections after mass184
renormalization. However, the self-energy computed with Eq. (9) contains both vacuum and thermal185
corrections. We regularize it by dropping the vacuum contribution, which is identified with the expression186
obtained when taking the limit T → 0 of Eq. (9). See [38] for details.187

Finally, the spectral function necessary to dress the heavy meson in the two-meson propagator is computed188
from the imaginary part of the retarded meson propagator,189

SH(ω, q ;T ) = − 1

π
ImDH(ω, q ;T ) . (10)
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Equations (5) to (10) are interrelated to each other. As a result, solving this set of coupled equations190
requires an iterative approach until self-consistency is achieved. This process is outlined in Figures 1a, 1b,191
and 1c, where the T -matrix amplitude is depicted as a hatched blob, the perturbative amplitude V(s) is192
represented by a small dot, and the propagator of the heavy meson dressed by the medium is shown with193
double red lines.194

2.3 Non-equilibrium properties195

Since heavy mesons have large masses compared to the surrounding light mesons, they are unlikely to196
achieve thermalization in heavy-ion collisions. Therefore, their time evolution is typically described by a197
Fokker-Planck (or Langevin) or a Boltzmann approach. The essential components of these approaches are198
transport coefficients, which can be calculated from the scattering amplitudes of heavy-flavor mesons with199
light mesons in the hadronic gas. These transport coefficients are typically derived assuming that the light200
scattering partners are in thermal equilibrium, and they are often calculated as functions of temperature and201
momentum.202

In Ref. [39] we calculated the transport coefficients of D mesons in the hadronic phase incorporating203
medium corrections to the scattering amplitudes. To do so, we extended the kinetic theory of D mesons204
using the more general Kadanoff-Baym equations, so as to account for thermal and off-shell effects. This205
off-shell kinetic theory also applies to describe the propagation of B̄ mesons, as it is valid for any heavy206
species that can be treated as Brownian particles propagating in a medium of light mesons. In fact, the207
separation of scales between the heavy-meson mass and the other scales in the system that is exploited to208
convert the off-shell kinetic equation into a Fokker-Planck equation is larger for the B̄ meson than for the209
D meson. In addition, the quasiparticle approximation that we showed to be sound for the D mesons is210
even better for B̄, since their thermal width is of the same order as that of the D mesons, but their mass is211
considerably larger, as we will see in Sec. 3.212

Let us summarize our main results. For a detailed derivation, we recommend to consult our previous213
work [39] and references therein. Starting from the Kadanoff-Baym equations and performing a Wigner214
transform along with a gradient expansion [55], we arrive to the following form of the off-shell transport215
equation for the time ordered Green’s function of the heavy meson G<

H(X, k),216 (
kµ − 1

2

∂Re ΠR(X, k)

∂kµ

)
∂

∂Xµ
iG<

H(X, k) =
1

2
iΠ<(X, k)iG>

H(X, k)− 1

2
iΠ>(X, k)iG<

H(X, k) . (11)

The lesser and greater Green’s functions and the self-energies in Eq. (11) are functions of the center-of-
mass coordinate X = (t,X) and the four-momentum k = (k0,k) of the external heavy meson. Note
that k0 and k are independent variables, although related through the non-equilibrium spectral function
SH(X, k). Hence the reason we denote this kinetic equation to be “off-shell”, as the heavy meson is not
on its mass shell. The self-energy ΠR

H(X, k) is the extension of the retarded self-energy of Eq. (8) to
the non-equilibrium case, and the lesser Π<(X, k) and greater Π>(X, k) self-energies can be written in
terms of the (retarded) T matrix of Eq. (6) in the so-called T -matrix approximation [55, 63, 64]. Inserting
appropriate definitions of these quantities, Eq. (11) can be written in the following form:(

kµ − 1

2

∂Re ΠR(X, k)

∂kµ

)
∂

∂Xµ
iG<

H(X, k) =
1

2

∫
dk01
2π

d3q

(2π)3
[
W (k0,k + q, k01, q )iG<

H(X, k0,k + q )

−W (k0,k, k01, q )iG<
H(X, k0,k )

]
. (12)
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The off-shell collision rate of a heavy meson with energy k0 and momentum k to a final heavy meson with
energy k01 and momentum k − q, with momentum loss q ≡ k − k1, is defined as

W (k0,k, k01, q ) ≡
∫

d4k3
(2π)4

d4k2
(2π)4

(2π)4δ(k01 + k02 − k03 − k0)δ(3)(k2 − k3 − q )

×
∣∣T (k01 + k02 + iε,k − q + k2)

∣∣2 iG>
Φ (X, k2)iG<

Φ (X, k3)iG>
H(X, k01,k − q ) . (13)

The labels of the momenta correspond to the choice of a generic scattering process H(k) + Φ(k3) →217
H(k1) + Φ(k2). Each of the two terms of the right-hand side of Eq. (12) can be identified as the collision218
gain and loss terms respectively. It is important to note that in Eq. (13) there is an implicit sum over the219
different species Φ and H that can interact with the external off-shell heavy meson.220

Next, one may exploit the separation of scales between the meson masses to arrive to an off-shell Fokker-221
Planck equation for iG<

H(t, k). While the derivation of a transport equation for heavy mesons required222
the use of real-time techniques, the actual calculation of the heavy-flavor transport coefficients can be223
addressed in a near-equilibrium regime, in which the temperature is at least locally well defined. While224
thermal local equilibrium can be safely considered for the light mesons, it is also reasonable to assume that225
the heavy mesons are not far from equilibrium. Then Eq. (12) can be written as follows:226

∂

∂t
iG<

H(t, k) =
∂

∂ki

{
Â(k;T )ki iG<

H(t, k) +
∂

∂kj

[
B̂0(k;T )∆

ij + B̂1(k;T )
kikj

k 2

]
iG<

H(t, k)

}
, (14)

with ∆ij = δij − kikj/k2, and the transport coefficients Â(k0,k;T ), B̂0(k
0,k;T ), and B̂1(k

0,k;T )227
defined off shell and at temperature T . The drag force coefficient is given by228

Â(k0,k ;T ) ≡
〈
1− k · k1

k 2

〉
, (15)

and the transverse and longitudinal momentum diffusion coefficients read

B̂0(k
0,k ;T ) ≡ 1

4

〈
k1

2 − (k · k1)
2

k 2

〉
, (16a)

B̂1(k
0,k ;T ) ≡ 1

2

〈
[k · (k − k1)]

2

k 2

〉
. (16b)

The angle brackets ⟨F(k,k1)⟩ denote the average of the generic quantity F(k,k1), which is defined as

⟨F(k,k1)⟩ =
1

2k0

∑
λ,λ′=±

λλ′
∫ ∞

−∞
dk01

∫ 3∏
i=1

d3ki
(2π)3

1

2E22E3
SH(k01,k1;T )

× (2π)4δ(3)(k + k3 − k1 − k2)δ(k
0 + λ′E3 − λE2 − k01)

∣∣T (k0 + λ′E3,k + k3;T )
∣∣2

× fΦ(λ
′E3;T )f̃Φ(λE2;T )f̃H(k01;T ) F(k,k1) , (17)

where f(Ei;T ) is the equilibrium occupation number, i.e. the Bose-Einstein distribution function, and229
f̃(Ei;T ) = 1 + f(Ei;T ) = −f(−Ei;T ) is the Bose enhancement factor. Equation (17) incorporates the230
equilibrium quantities presented in the previous section, i.e. the equilibrium thermal scattering amplitudes231
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and spectral functions. In particular, it is a sum of four terms (λ, λ′ = ±) that evaluate the T matrix232
in different energy regions. The relevance of the contribution of each of these terms to the transport233
coefficients is discussed in the next section.234

3 RESULTS

The formalism described in the previous section provides a framework to compute the in-medium properties235
of heavy mesons. Here we present our results forD and B̄ mesons for temperatures below the deconfinement236
transition temperature Tc ∼ 155 MeV in HICs [65, 66]. This applicability limit of our approach is inherent237
to the effective theory with hadronic degrees of freedom and massive Goldstone bosons upon which it238
is built. Therefore it is important to be careful when interpreting the results at our highest temperatures239
T ∼ 150 MeV, as the system will begin to transition into the deconfined phase. Additionally, while240
the unitarized version of HMChPT extends the validity of the low-energy theory to higher energies, for241
temperatures exceeding T ∼ 150 MeV, the thermal energies of the mesons may fall outside the energy242
region of applicability of the theory, as we noted in Ref. [37].243

For temperatures T ≲ 150 MeV, pions give the largest contribution to the medium corrections, as being244
the lightest mesons they are the most abundant species in the thermal bath. Unless otherwise stated, in245
the calculations presented in this work we only consider the thermal effects due to pions and neglect the246
contribution of the heavier kaons and eta mesons. We note that the results in the charm sector were already247
published in our previous works [37, 38, 39] and are reproduced here for the sake of comparison between248
the bottom and charm sectors.249

3.1 Self-energies250

We start with the discussion of the self-consistent results of the self-energy of the ground-state heavy251
mesons in a pionic medium at finite temperature, displayed as a function of the energy in Fig. 2, for zero252
three-momentum and scaled by the mass of the heavy meson in vacuum. We show the results for three253
different values of the temperature of the medium, T = 80, 120 and 150 MeV, in different line styles.254

The real part of the self-energy is related to the thermal correction to the mass. This is evident255
from the expression of the heavy-meson retarded propagator at finite temperature in Eq. (7). In the256
quasiparticle approximation, which we will see is well-grounded for both D and B̄ mesons, and257
if the thermal propagator’s pole is close to the vacuum pole, the mass shift is roughly given by258
∆mH ≈ ReΠH(mH ,0;T )/(2mH). Therefore, as shown in the first row panels of Fig. 2 for charmed259
mesons and in the third row for bottomed mesons, the negative character of the real part of the self-energy260
indicates that the masses of the heavy mesons will decrease as temperature rises. The fact that the real part261
of the self-energy is more negative for the nonstrange mesons than for the strange mesons is explained by262
the large attractive interaction in the D(∗)π and B̄(∗)π channels after unitarization. Furthermore, one can263
see that the values of the real part of self-energy over the heavy meson mass at a particular temperature are264
similar for D(s) and D∗

(s), as well as for B̄(s) and B̄∗
(s). Although it appears to be less negative for bottom265

than for charm, it is of comparable size in both sectors. These findings are closely connected to the HQSFS266
intrinsic of the interaction. It is also important to note that the quantitative comparison of the results in267
the two flavor sectors may be impacted by the details of the numerical calculations, e.g. by the choice of268
the infinite integration limits, or the limitations of the effective theory at high energies. The authors of269
Ref. [57] neglected the shift of the in-medium mass of the heavy mesons by setting to zero the real part of270
the respective self-energies. Although small compared to the vacuum mass, |∆mH |/mH ∼ 1− 2%, we271
consider that it is important and keep the full self-energy for the calculation of the spectral function.272
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The imaginary part of the self-energy relates to the thermal width acquired by the heavy meson due to273
interactions with pions within the medium. The panels in the second and fourth rows of Fig. 2 show the274
imaginary part of the self-energy of the charmed and bottomed mesons, respectively, over their respective275
mass in vacuum. The insets provide a zoom in the region E ≈ [mH − 2mπ, mH + 2mπ]. Similar features276
are observed in all the panels. The imaginary part of the self-energy is essentially zero for energies below277
mH − 2mπ, above which it starts decreasing mildly. This initial drop at around mH is exclusively caused278
by the presence of the thermal medium, which allows for the absorption of two thermal pions. These279
absorption processes make it possible for the scattering amplitude to be non-zero even below the two-meson280
threshold due to the so-called Landau cut [58, 67] of the two-meson propagator (see also our discussion281
in Refs. [38, 39, 40]). Our calculations show that also the self-energy of the heavy meson can reveal the282
effects of the Landau cut, thanks to the self-consistency of our approach. This effect becomes more relevant283
at higher temperatures, i.e. T ≳ 100 MeV, where the pion density is larger. A substantially larger drop284
takes place at mH + 2mπ, which is the energy where the heavy meson at rest can emit two pions. This285
later growth of the magnitude of the imaginary part of the self-energy takes place at similar rates for all286
temperatures, since the emission of two pions is also possible in vacuum for a large enough energy of an287
off-shell heavy meson, and it is related to the unitary cut of the propagator. As a result of the combination288
of the Landau and unitary cut effects, and by virtue of the relation between ImΠH and the thermal decay289
width, we expect the ground-state spectral functions to broaden as the temperature of the thermal medium290
increases. Similarly as it happened for the real parts, the magnitude of ImΠH/mH at a given temperature291
is similar in size when comparing results for pseudoscalar and vector mesons, and it is somewhat larger in292
the bottom sector than in the charm sector.293

3.2 Spectral functions294

The spectral function for the ground-state heavy mesons follows the standard definition in terms of the295
retarded propagator—see Eqs. (7) and (10)—, in which the self-energy is responsible for the thermal296
corrections with respect to the vacuum propagator. In Fig. 3 we show the energy dependence of the spectral297
function of the charmed mesons (top panels) and the bottomed mesons (bottom panels) at rest, at the same298
temperatures as for the self-energy described above. The vertical solid lines depict the corresponding value299
of the mass in vacuum. From these plots, the drop of the mass and the increase of the width anticipated300
from analyzing the self-energies become manifest. This is evident as the maximum of the spectral function301
shifts towards lower energies and it becomes wider with increasing temperature.302

In the quasiparticle approximation, the spectral function admits a Lorentzian shape peaked at the303
quasiparticle energy Ek(T ) (with M(T ) ≡ Ek at rest) and a spectral width γk(T ) ≪ Ek(T ). For the304
spectral functions in Fig. 3, which are narrow, the quasiparticle approximation is indeed justified. Figure 4305
shows the values of the mass (left panels) and the decay width (right panels) as a function of the temperature306
determined by analyzing the position and the width of the peak of the spectral functions. For the charmed307
mesons, we find a reduction in mass ≈ 45 MeV and ≈ 25 MeV for the non-strange and the strange states,308
respectively, at the highest temperature T = 150 MeV, and corresponding thermal widths of ≈ 70 MeV309
and ≈ 20 MeV. For the respective bottomed mesons, the reduction in mass is ≈ 30 MeV and ≈ 20 MeV,310

and the acquired width is ≈ 90 MeV and ≈ 30 MeV. The thermal masses of the D(∗) and D(∗)
s mesons311

were calculated using lattice QCD simulations in Ref. [68]. We show their results in the top left panel312
of Fig. 4, although for the comparison with our calculations one has to keep in mind that a systematic313
shift is to be expected due to the use of heavier than physical pions in the lattice. Indeed, smaller thermal314
modifications at a given temperature are consistent with the lower abundances of heavier pions.315
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We remind that in the self-consistent calculations of the self-energies and the spectral functions, only316
the impact of the thermal pions is taken into account, arguing the contribution of other light mesons to be317
presumably suppressed. The contribution of each of the light mesons in the medium to the thermal width318
of the heavy meson can be easy analyzed from its definition in terms of the retarded self-energy in the319
quasiparticle approximation,320

Γk = − zk
Ek

ImΠ(Ek,k;T ), (18)

with zk ≈ 1. Since ImΠ(Ek,k;T ) is given by the integration over the imaginary part of the unitarized321
scattering amplitude, Im T , and we have access to all the matrix elements Tij , we can readily assess322
the effect of the four elastic channels for the interactions of a heavy meson with the light pseudoscalars323
(π, K, K̄, η). We showed in Ref. [39] that the effect of the inelastic channels is negligible. In Fig. 5 we324
show, in logarithmic scale, the contribution to the width of the D meson (left) and the B̄ meson (right)325
coming from the different light mesons, averaged over momenta [39]. At low temperatures, the kaons326
and the η mesons have a negligible contribution because of their small abundances, as expected. The only327
relevant contribution is that of the pions. Close to T = 150 MeV, the more massive mesons contribute328
several MeV to the heavy-meson decay width, but are still subdominant compared to the pion.329

The process of unitarization of the scattering amplitude of Eq. (6) leads to the emergence of two poles330
in the sectors with strangeness S = 0 and isospin I = 1/2 that correspond to the two-pole structure331
of the D∗

0(2300), in the case of total angular momentum J = 0, and of the D1(2430), in the case of332
J = 1. The same applies for the counterparts in the bottom sector. In the sectors with (S, I) = (1, 0),333
the poles of the D∗

s0(2317) and the Ds1(2460) emerge for J = 0 and J = 1, respectively, as well of334
their bottomed analogues. The characterization of these states requires the analytical continuation of T to335
complex energies. The pole position in the complex-energy plane provides the mass and the half-width336
of these states. While this is a well-established procedure at T = 0, the poles search at finite temperature337
is a complex task for two reasons. Firstly, one has to deal with the analytic continuation of imaginary338
frequencies, and secondly, a numerical search of a singularity in the complex plane within self-consistency339
is computationally challenging. Alternatively, to determine the spectral properties of the dynamically340
generated states at finite temperature, we use the imaginary part of T on the real axis, shown in Fig. 6, as341
a proxy for their spectral shape. From the several coupled channels in each sector, we choose to plot the342
diagonal element Tii for the channel i to which the state couples more strongly in vacuum. The numerical343
values of the vacuum properties and effective couplings are given in our previous works [38, 40].344

In the cases with zero strangeness, the proximity of the position of the resonances to channel thresholds345
gives rise to complicated structures. However, one can still clearly recognize a gradual evolution of the346
peaks and widths as T increases. The strange sectors are more straightforward. The T = 0 delta-type347
spectral function (i.e. bound state) acquires a non-zero width, and the shift and widening of the peak is348
comparable to that of the ground states. Nevertheless, an increase in strength is visible on the right-hand349
side of the distributions. This asymmetry can be explained by the fact that the channel threshold is not sharp350
anymore due to the widening of the D(∗) or B̄(∗) meson, and it is lowered in energy due to the decrease of351
the heavy-meson mass with temperature. Both of these effects open the phase space for decay into this352
channel at lower energies.353

3.3 Transport coefficients354

Now, we discuss the results of the transport coefficients for a heavy meson propagating through the355
hadronic medium. We will specifically focus on the comparison between D and B̄ mesons. We start356
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with two of the transport coefficients defined in momentum space, the drag force in Eq. (15) and the357
transverse diffusion coefficient of Eq. (16a). To reduce the number of variables we will present the results358
in the so-called static limit k → 0, i.e. for a low-momentum heavy meson. In the off-shell version of359
the Fokker-Planck equation (14), these transport coefficients also depend on the value of k0. Since the360
quasiparticle approximation is excellent for the temperatures considered, we will set k0 to the quasiparticle361
mass, that is k0 = Ek→0 = M(T ). Then, the only remaining dependence is on the temperature. In the362
left panel of Fig. 7 we present the comparison of the drag force coefficient for the two heavy flavors as363
functions of temperature, while the right panel displays the transverse diffusion coefficients. In the static364
limit, we have checked that the longitudinal diffusion coefficient B1(k

0,k → 0;T ) is degenerate with365
B0(k

0,k → 0;T ). As explained in Ref. [39], these coefficients can be computed with different degrees366
of approximation, but in this work we only present the complete off-shell computation. This calculation367
incorporates: 1) the exact thermal spectral function of the heavy meson as required in the average of368
Eq. (17); 2) the full thermal T -matrix appearing in the same equation; 3) quantum effects encoded in the369
Bose enhancement factors; and 4) all kinematic processes allowed by energy-momentum conservation,370
including number-conserving (2 ↔ 2) and number-violating processes (1 ↔ 3).371

The 2 ↔ 2 scatterings are described by the λ = λ′ terms in Eq. (17), while the 1 ↔ 3 processes take372
λ = −λ′ This fact can easily be grasped by looking at the signs of the energy conservation delta. In373
Ref. [39] we reported that the number-violating processes contribute very little to the transport coefficients,374
while the 2 ↔ 2 collisions make the leading contributions. Among the latter, the case λ = λ′ = +375
corresponds to the standard term in which the binary collision is taking place at an energy corresponding to376
the sum of the incoming energies k0 + E3 [cf. Eq. (17)]. However the case λ = λ′ = −, corresponds to a377
binary collision in which the scattering matrix is evaluated at the energy difference k0 − E3. For typical378
energies around the quasiparticle masses, this difference probes the kinematic region below the two-particle379
threshold. For interactions computed in vacuum, this region has a vanishing T -matrix amplitude, and this380
entire process can be safely neglected. However, for interactions self-consistently calculated at T ̸= 0 the381
T -matrix has a nonvanishing support in this region, due to the Landau cuts (see Sec. 3.1). We have proven382
in Ref. [39] that the contribution of these processes cannot be neglected and it becomes comparable to the383
contribution stemming from the unitary cut. Eventually, we have obtained transport coefficients that are up384
to a factor of three larger with respect to previous results at the highest temperatures. We nonetheless agree385
at low temperatures, where the Landau cut disappears.386

To compare the results between D and B̄ mesons in Fig. 7 we recall that a simple nonrelativistic387
approximation for the momentum-space diffusion coefficient B0 has no leading-order dependence on the388
heavy mass [69], but a dependence proportional to the total cross section, B0 ∝ σ. From Fig. 6 we have389
learnt that the cross sections (proportional to Im T ) of B̄ mesons are a factor 2-3 larger than the those of390
D mesons. This explains why the B0 coefficient is 2-3 times larger for bottom than for charm. On the391
other hand, the drag force coefficient does have a leading dependence on the heavy mass MH . Again from392
Ref. [69] the nonrelativistic expression goes like A ∝ σ/MH . Therefore, going from charm to bottom,393
the gain factor from the cross section is approximately compensated by the reducing factor due to the394
increasing mass, as MD/MB̄ ≃ 1/3. Therefore we expect that AB̄ meson ≲ AD meson, which is what we395
observe in the left panel of Fig. 7.396

Finally we plot in Fig. 8 the so-called spatial diffusion coefficient,397

Ds(T ) = lim
k→0

T 2

B0(Ek,k;T )
= lim

k→0

T

A(Ek,k;T )MH
, (19)
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where we express it with calligraphic font not to confuse it with Ds mesons.398

In the left panel of this figure we show our result for this coefficient at low temperatures for D mesons399
(solid red line) and for B̄ mesons (dotted-dashed blue line). As expected, Ds is lower for B̄ mesons than400
for D mesons, while the general trend is a monotonically decreasing function of temperature. As for the401
high temperature side, we plot two extractions from relativistic heavy-ion collisions at high energies using402
Bayesian analyses to estimate the temperature-behavior of this coefficient for the two flavors separately [70].403
While a clear ordering cannot be settled in this extraction, a likely continuous matching can be observed404
around Tc ≃ 155 MeV. According to these results, the absolute minimum of the spatial diffusion coefficient405
might happen at the transition temperature Tc. On the right panel of Fig. 8 we plot our results at low406
temperatures together with results of a quasiparticle model for the quark-gluon plasma at high temperature,407
which can distinguish charm and bottom quarks [71]. An approximate matching is also seen in Tc and the408
flavor-mass ordering of Ds is consistent in both sides of the transition. Close to Tc a more refined model409
including a mixed phase with hadronization processes should be able to fill the gap.410

4 CONCLUSIONS

In this paper we have obtained the properties of mesons with open heavy-flavor at finite temperature using411
an effective field theory based on chiral and HQSF symmetries within the imaginary-time formalism. The412
interaction of these pseudoscalar and vector open heavy-flavor ground-state mesons with light mesons (π,413
K, K̄, η) is unitarized via a self-consistent coupled-channel Bethe-Salpeter approach at finite temperature.414

With this methodology, we have obtained the self-energies and, hence, the corresponding spectral415

functions of open-charm (D(∗), D(∗)
s ) and open-bottom (B̄(∗), B̄(∗)

s ) ground states. On the one hand, we416
have determined that the values of the real part of self-energy over the heavy meson mass at a particular417
temperature are similar for D(s) and D∗

(s), as well as for B̄(s) and B̄∗
(s), as expected by HQSFS. On the418

other hand, the imaginary parts of the self-energies for the open heavy-flavor ground-state mesons becomes419
sizable with temperature due to the combination of the Landau and unitary cut effects at finite temperature.420
Therefore, the corresponding spectral functions shift towards lower energies and become wider with421
increasing temperature.422

From the behavior of the spectral functions, we have quantified the thermal dependence of the masses423
and the decay widths of the open heavy-flavor ground states. We have observed a generic downshift of the424
thermal masses with temperature, as large as of a few tens of MeV at T = 150 MeV in a pionic bath, while425
the decay widths increase with temperature up to values of some tens of MeV at T = 150 MeV. Compared426
to recent lattice QCD simulations for open-charm ground states [68], a similar trend can be determined427
although a systematic shift is seen as a heavy non-physical pion mass is used in the lattice.428

As a byproduct of the unitarization, we have also obtained the two-pole D∗
0(2300) and D1(2430) as well429

as the D∗
s0(2317) and Ds1(2460) bound states (and the corresponding counterparts in the bottom sector) as430

dynamically generated by heavy-light meson scattering, and analyzed their behavior with temperature. The431
two-pole structures in the non-strange charm and bottom sectors gradually dilute with temperature with a432
smooth shift of their maxima, in spite of the difficulty to assess their evolution with temperature due to433
the closeness of the two-meson thresholds. As for the bound states, the T = 0 delta-type states acquire434
non-zero width, and the shift and widening of the peak is comparable to that of the ground states.435

And, finally, we have computed the transport coefficients for D and B̄ mesons propagating through436
an hadronic medium by means of an off-shell kinetic theory that is consistent with the effective field437
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theory that describes the scattering processes of heavy mesons with light mesons at finite temperature. In438
particular, we have obtained the drag force and the diffusion coefficients in momentum space, as well as439
the spatial diffusion one for both mesons.440

The diffusion coefficient of B̄ turns out to be 2-3 times larger than that for the D meson, whereas the441
drag coefficient for B̄ becomes smaller (or comparable) to the D meson one. This can be understood as the442
diffusion coefficient is proportional to the cross section (or imaginary part of the scattering amplitude) and443
this is larger for B̄, whereas the drag force scales with the cross section but is also inversely proportional444
to the mass of the heavy meson. As for the spatial diffusion coefficients, the D one is lower than that of445
the B̄ meson as it is inversely proportional to the diffusion one in momentum space. Moreover, the spatial446
diffusion coefficients for D and B̄ mesons are monotonically decreasing functions of the temperature up to447
Tc, where a mininum might be present in order to match with the expected high-temperature behavior of448
the coefficients in the QGP phase.449
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Figure 1. 1a. Diagrammatic representation of the Bethe-Salpeter equation in coupled channels in Eq. (6).
At finite temperature, the T matrix (hatched blob) is obtained from the unitarization of the interaction
kernel (small dot) with dressed internal heavy-meson propagators (double red lines). 1b. Dyson equation
for the dressed heavy-meson propagator in Eq. (7). 1c. Heavy-meson self-energy in Eq. (8). The heavy
meson is dressed by the unitarized interaction with pions.
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Figure 2. Real and imaginary parts of the pion contribution to the self-energy of the ground-state heavy
mesons at several temperatures (see legend). Panels in the two top rows correspond to charmed mesons, and
panels in the two bottom rows to bottomed mesons. Different columns correspond to states with angular
momentum and strangeness (J, S) = (0, 0), (0, 1), (1, 0), (1, 1), in this order.
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Figure 3. Spectral function of the ground-state charmed mesons (top panels) and bottomed mesons (bottom
panels) at several temperatures (see legend). The column description is the same as in Fig. 2. Vertical lines
depict the values in vacuum (T = 0).
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Figure 6. Imaginary part of the diagonal elements of the scattering amplitudes in the charm
sector (top panels) and in the bottom sector (bottom panels) at several temperatures. Different
columns correspond to states with angular momentum, strangeness, and isospin (J, S, I) =
(0, 0, 1/2), (0, 1, 0), (1, 0, 1/2), (1, 1, 0), in this order. Vertical lines in the sectors with strangeness depict
the energy location of the bound states in vacuum.
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Figure 7. Transport coefficients of the B̄ meson in the static limit k → 0 (where B1 = B0), compared to
the results for the D meson.

D meson

B meson

Ke et al.

(Bayesian)

charm

Ke et al.

(Bayesian)

bottom

100 200 300 400 500
0

10

20

30

40

50

60

T (MeV)

2
π

T


s

D meson

B meson
charm

(quasipart.)

bottom

(quasipart.)

100 200 300 400 500
0

10

20

30

40

50

60

T (MeV)

2
π

T


s

Figure 8. Off-shell spatial diffusion coefficient of the B̄ meson (normalized by the thermal wavelength)
around Tc, together with the results for the D meson, and compared to the calculations above Tc from the
Bayesian calculation of Ref. [70] (left panel), and from the quasiparticle model of Ref. [71] (right panel).
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