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A R T I C L E I N F O

Keywords:
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A B S T R A C T

The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven
National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number
of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal
development period, the ECCE consortium began identifying and addressing these challenges in the process
of producing a complete detector proposal based upon detailed detector and physics simulations. In this
document, the software and computing efforts to produce this proposal are discussed; furthermore, the
computing and software model and resources required for the future of ECCE are described.
1. Introduction

The Electron Ion Collider (EIC) is the next generation precision
nuclear physics accelerator complex that is being constructed in the
United States. The EIC is expected to start producing data in the early
2030’s, and is unique as it will collide high energy polarized electrons
with polarized protons and a wide range of nuclei. As such, it will
introduce new paradigms in large scale nuclear physics experiments.
Expected luminosities at the EIC will reach upwards of 1034 cm−2 s−1;
consequently, there will be an extremely large data sample to process.
Recent efforts from modern collider physics experiments have shown
the benefits of near real-time analysis [1,2]. Therefore, there is a strong
desire to develop software and computing infrastructure that reliably
and quickly processes data for analysis.

As the EIC will start taking data in nearly a decade, there are a
number of new paradigms that have the opportunity to be explored in
this software R&D phase. An example of such a new paradigm is the
use of Artificial Intelligence (AI) and machine learning (ML). The EIC
has the unique opportunity to be one of the first large-scale facilities to
systematically incorporate and employ AI, starting from the detector
design and R&D phases. The relevance of AI for the EIC has been
highlighted among the Opportunities for Computing of the EIC Yellow
Report [3]. AI potentially permeates all aspects of this Computing Plan;
in fact, it already plays a significant role in the design and R&D phases
of the EIC [4,5].

This document presents a proposed computing plan for the EIC
Comprehensive Chromodynamics Experiment (ECCE) detector at the
EIC [3]. This includes estimates of the rates from the detector, the
pipeline for processing and storing the data, and how the collabora-
tion members will access the data. Software systems for monitoring,
calibration, reconstruction, and analysis are discussed. Estimates of
the computing and storage requirements are included. AI detector
optimization techniques are also discussed as this is expected to be
a large part of the computing effort over the next few years. While
we attempt to include some forward thinking plans in this regard,
we necessarily do need to rely on past experience with other large

experiments such as sPHENIX [6] and LHCb [7] to serve as guides. b

3

2. Online

2.1. Data acquisition

We envision a DAQ system following a streaming readout paradigm,
where all data is collected in an unbiased hardware trigger-less system.
In the following, we will describe the individual components as well as
the overall data flow and bandwidth model. An overview of the system
is shown in Fig. 1.

2.2. DAQ components

Front-end electronics (FEE) modules sit inside or on the detector.
In most cases, detector-specific ASICs provide the data conversion
from the analog to digital domain, do zero-suppression and provide an
interface to fiber transceivers for data transport to the counting room.
For this, we envision Front-End Link eXchange (FELIX)-type PCIe-based
receiver cards1 which support a large number of high speed fiber links
per card [8]. FELIX is designed for new or upgraded detectors and
trigger systems in the ATLAS Phase-I upgrade and High-Luminosity
LHC, and is implemented by server PCs with commodity network
interfaces and PCIe cards with large field-programmable gate arrays
(FPGAs) and many high speed serial fiber transceivers.

Since some FEE may not utilize the full bandwidth of a fiber link,
cost-effective stream aggregator boards (SABs), based either on small
FPGAs or COTS multiplexer ICs, can bundle multiple fiber links coming
from FEE to a single fiber connected to the FELIX cards.

Because of space and services constraints, or because no suitable
ASIC is available, some FEEs will connect to Front end processor (FEP)
modules via digital (LVDS) or analog links. The FPGA and possibly
analog to digital converter logic on the FEP will then generate a data
stream suitable for fiber transport to the FELIX cards.

In the counting room, we expect a number of special servers which
house the FELIX cards. Each FELIX/CPU combination sees data from a
certain subset of detector channels and can do additional data reduction
before sending out the data to the counting room CPU farm. This CPU

1 In the following, we will use ‘‘FELIX card’’ as a stand-in for a successor
oard of similar architecture.



J.C. Bernauer, C.T. Dean, C. Fanelli et al. Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167859

a

2

a
s
e
c
s
l
a
m
e
n
s
t
f
d
d

m

Fig. 1. The DAQ electronics deployment can be roughly divided by their location, with Front End Electronics (FEE) modules on/near the detector; Front End Processor boards
(FEP) which digitize or reformat detector information and Stream Aggregator Boards (SAB), which bundle streams, in the hall; and online filtering and monitoring in the counting
room. Long term storage and analysis processing is performed in a federated model on multiple sites.
farm (with possibly GPU accelerators) will do further data reduction,
for example via high level data selection algorithms.

The data streams are buffered on local hard disks, with enough
capacity to store the data for several days. This local buffer has multiple
functions:

• It averages out the changes in data rate from luminosity changes
so that the upstream link only need to provide average, not peak,
bandwidth.

• It allows stand-alone operation for a limited time when the data
transport out of the counting house is not available or runs at
reduced capacity.

• It allows for near-online monitoring and replay of recent data for
quality control, especially for those quantities which depend on
on-going calibrations.

The data are then pushed downstream to on-site or federated stor-
ge as part of the overall EIC project.

.3. Online monitoring

Online monitoring is divided into a fast path with bound latency and
slow path. The fast path provides low-latency feedback for accelerator

teering and equipment protection. The data for this path are generated
arly in the DAQ chain, either on the FELIX host CPUs or on the FELIX
ard themselves. Necessarily, they are limited in scope to counting,
umming or similar type of information. The slow path provides higher-
evel information for quality control. Here, it is possible to reconstruct
nd analyze full events on-the-fly, by copying pre-selected time seg-
ents from the data stream to a dedicated server that performs full

vent reconstruction. Note here that such a monitoring system does
ot require the guaranteed reconstruction of all data, just of a suitable
ubset. That subset can either be selected unbiased by selecting periodic
ime segments, or biased by selecting time-segments tagged by data
ilters in the main data stream. Similar monitoring can be performed on
ata on the local buffer for those quantities which require calibration
ata or two-pass analysis.

For both types of data a system will be needed to evaluate the
onitoring data and inform the experiment operators of potential
4

issues. This will largely include the creation of histograms which may
be monitored either graphically or by some automated means. The
prevalence of AI will certainly play a large role in that it will be able to
evaluate a wider variation of monitoring data and at a much higher rate
than could be expected of humans. Such systems are already deployed
and under development [9].

2.4. Risk mitigation

We expect that during initial commissioning noise rates will be
significantly higher than during established operation, as accelerator
and detector parameters will not yet be tuned optimally. Such high
noise rates might overwhelm processing and upstream write capability.
To allow progress in this initial phase, the DAQ system will accept as
input a bounded-latency signal on the FELIX card or host CPU level to
suppress uninteresting time segments.

Such a system also allows us to simply incorporate a dedicated
collision detector for rate reduction: only time segments which are
flagged to have a collision are kept, others are dropped early in the
processing chain.

This bounded-latency system could either be realized as a classic
hardware filtering signal, or via software messages sent to the FELIX
hosts with a clear advantage with regard to flexibility and ease of
implementation, but with possibly a larger latency. The optimal im-
plementation depends on the capabilities of the future FELIX successor
and bandwidth availability on the FELIX host servers.

2.5. AI-based data selection

Traditionally, online data selection is performed using fixed topo-
logical cuts such as an energy deposit threshold in a calorimeter or
the minimum transverse momentum of a track. Online data selection
can benefit from the introduction of ML techniques typically used in
offline data selection. It is advantageous to introduce these techniques
at this stage to keep events that would be rejected by conventional
methods and thereby increase the overall physics output of a detector.
This approach can also simultaneously reject events that have a level
of noise that would render a physics analysis of this event impractical.
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The consortium is constructing a system where these selection
techniques can be realized directly in hardware and will initially be
deployed at sPHENIX which will double as a test system for an EIC
detector. This project involves two symbiotic AI systems; one to identify
collisions containing heavy flavor decays through their unique topology
and another to determine the beamspot for the detector during opera-
tion. The latter system then feeds back to the data selection system to
improve the physics efficiency.

In the system, the accept decisions would be handled by a separate
FELIX system which aggregates information from several subdetectors
but it should be noted that the choice of technology could evolve along
with general hardware developments in the next decade. The FELIX has
48 bi-directional links allowing for data from multiple systems to be
passed to a single FELIX board. The machine learning algorithm will
then be loaded onto the FPGA which will be capable of basic tracking
(using tracklets from the vertex, sagitta, and forward silicon tracking
detectors) to make decisions that can be fed back to the initial DAQ or
global data selection system to signal processing should continue. This
should be achieved within 6 μs.2

Studies are ongoing, comparing the outputs of algorithms trained
using Convolution Neural Networks (CNNs) and Graph Neural Net-
works (GNN). For many applications, GNNs often represent a more
robust ML algorithm than CNN due to using additional information
from the edges of the graph as well as the node information used by
a traditional CNN. This makes them more applicable to sparse data
such as tracking and data selection where the overall occupancy of the
detector system is low.

It is important to note that the beam conditions can change with
time, this can be both during a run and on a longer scale. Thus it is
imperative that, as well as developing a selection algorithm, we develop
a feedback system that is capable of monitoring the beam conditions
in real time and adapting the input parameters to this. For example,
the position of the collision point directly impacts the measurement
of the track displacement. If this moves, it will alter the signal and
background efficiencies in opposite directions. This monitoring will
be achieved using GPUs which will feedback to the selection system.
GPUs typically perform well using CNNs which motivates the study of
various machine learning methods to find the optimal set of algorithms
to use for each stage of the selection and monitoring. Other important
features that can appear in a detector, impacting this system and hence
must be monitored are the appearance of noisy channels (or pixels)
and displacement of parts of the detector, such as through thermal
expansion or vibrations. It has been demonstrated that algorithms can
run fast enough on GPUs to achieve this form of monitoring [10].

2.6. Expected data rates and reduction steps

Since connections between detector and FEPs might not be zero-
suppressed digital or even analog data, it makes no sense to specify
a data rate at the detector-to-hall border. Instead, the following sec-
tion describes the expected data rate on the Fiber/FELIX level and
downstream from there.

At nominal luminosity, we expect that true signals and beam-gas
interactions produce a total rate of (100 Gbps) of zero-suppressed data
at the FELIX card level. However, detector noise and additional back-
grounds, especially during early operation, can completely dominate
this rate. We assume therefore a total rate of (10 Tbps) bandwidth on
the fiber level. Next-gen FELIX cards will have 25 Gbps receivers; for
headroom for burst rates, non-ideal allocation of detector channels to
fibers etc., we assume 12.5 Gbps as the average rate per fiber, and as a
consequence, about 800 fibers.

A current generation FELIX card has ports that support 48 fibers.
Assuming the same number of ports, this leads to O(20) next generation

2 This requirement is determined by the shaping time of sPHENIX’s vertex
etector and could differ for ECCE.
5

FELIX cards. Non-optimal distribution of FEE bandwidth across the
fibers, the uncertainty in achievable reduction rate in the FELIX and
achievable out-bound bandwidth may grow the number of required
FELIX cards up to 3 fold for a total of 60. Each card would then receive
600 Gbps. We assume that at the time of procurement for EIC, cards
based on at least PCIe Gen5 are available, providing 500 Gbps to the
host server, requiring a modest reduction of the data rate in FELIX card
itself, for example via cross-channel noise reduction. In combination
with the host CPU, we expect a total reduction by a factor of 5 to (2)
Tbps total, 100 Gbps per server. We note that a typical server with
128 GB of memory can buffer the full stream for about 2 s, ample time
for region-of-interest/time-slice-of-interest communication between the
FELIX hosts, making higher reduction factors comparatively easy to
achieve. The data can then be streamed out via a dual 100 Gbps link
to the second layer in the compute farm.

In the compute farm, the data is further analyzed and filtered. We
expect that with inter-detector noise suppression and high-level data
selection the required effective bandwidth to long-term storage can be
reduced to (100) Gbps.

3. Offline

Offline software encompasses many aspects of any experiment. This
includes a number of systems, each of which requires either new
development or implementation of existing systems using dedicated
experts(s). These include:

• Calibration system and database
• Reconstruction framework
• Reconstruction algorithms
• Simulation
• Offline Monitoring system
• Reconstruction workflow (HPC/HTC job management)

We intend to develop an offline computing model that aims for ‘‘real
time analysis’’ that performs a single reconstruction pass on the data,
producing reduced DSTs that are available for physics analysis on the
time scale of a few weeks. In this description, the single reconstruc-
tion pass includes any relevant calibrations that are determined from
specific calibration data sets.

In the following sections we describe some of the above systems
that will constitute larger efforts in terms of person-hours. It should
be noted that at this time certain technology choices seem likely
(e.g. GEANT4 [11]). However, others such as the choice of database
systems, file formats, and software frameworks are purposefully left
unspecified at this point in time. It is a primary goal post proposal
period to define requirements and resource needs for these tasks.

3.1. Reconstruction

In the past several decades, many reconstruction frameworks have
been developed by different experiments within both HEP and NP.
Several features stand out as common to all of these, which the ECCE
software framework must utilize. The most important of these are
modularity and user friendliness, as any large HEP/NP collaboration
will necessarily comprise many hundreds of scientists with varying
levels of software expertise. Therefore, these, and other generic features
of excellent software, will be essential. It will additionally be imperative
to recognize that software technologies change rapidly, and the ability
for the software ecosystem to pivot with ease will be essential. As an
example, while git is the de facto modern standard for code versioning
and storage, it is impossible to say what versioning technologies will
exist ten or more years from now when the EIC will be taking data.
ECCE has not committed itself to a particular software ecosystem yet;
however, these decisions will need to be made soon in preparation for
development of a TDR.
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One of the requirements of reconstruction software is reproducibil-
ity. ECCE will archive several daily builds that will provide users with
the latest snapshot of the software; additionally, weekly builds that
persist for longer periods of time will allow tracking of code evolu-
tion. In conjunction, special tagged production builds will be archived
for large centrally produced data samples, such as those that were
produced in preparation for the ECCE proposal. Currently the tagged
releases are performed based only on time (e.g. weekly builds). Future
software versions will consider implementing modern versioning prac-
tices such as semantic versioning [12]. In addition to archived builds,
continuous integration is another tool ensuring reproducibility. ECCE
has deployed continuous integration in certain repositories; however,
automated tools enabled by services such as Jenkins or GitLab Runners
will be deployed utilizing code checking tools and benchmark physics
analyses.

Making software user friendly requires that it is distributed in a
convenient way. Currently the ECCE framework is distributed with
cvmfs, a package managing software developed at CERN [13], while
he software environment is containerized and deployed with Singu-
arity [14]. Any software system that ECCE decides on will necessitate
hese tools for distribution, to ensure that all users can easily access
he software and that a reproducible environment is available when
eploying offline analysis and simulation in a federated computing
rchitecture.

The role of hybrid architectures should also be considered in the
CCE reconstruction framework. Specifically, the use of GPU archi-
ectures will be important both for integrating machine learning into
econstruction workflows as well as generically taking advantage of the
ignificant computational speed improvements that GPUs can provide,
or example in charged particle reconstruction [15]. This integration
as the added benefit of potentially utilizing the various leadership
omputing facilities that are available at national laboratories around
he country, for more see Section 4.

Based on the experience of other experiments, reconstruction soft-
are should also take advantage of common software projects that are
eployed across the world. For example, the A Common Tracking Soft-
are (ACTS) package, initially designed for use at the HL-LHC, has been

mplemented into the sPHENIX track reconstruction framework [16].
everal collider-physics-based open source projects exist within the
roader HEP community and have recently grown in their user base,
xamples include ACTS [17], Rucio [18], PanDA [19], Fun4All [20],
ANA [21], Gaudi [22], and others. These should be evaluated for use
ithin the ECCE software stack in 2022 as a part of the decision making
rocess for the future of the offline software framework.

.2. Calibration

Timely delivery of high-quality calibrations are one of the main
hallenges for EIC experiments, in particular given that many EIC
easurements will be systematic uncertainty driven [3]. ECCE adopts
fixed-latency production model, which requires the final calibra-

ion within 2–3 weeks of data taking. This leads to the design of a
emi-automatic calibration workflow with minimal human interven-
ion. There is already ongoing work to improve calibration workflows
y integrating AI [23].

Similar to the architecture of the sPHENIX computing model, we
nvision an offline computing center will provide a large incoming
ata buffer (e.g. 20PB as in the sPHENIX) that allows raw data to be
sed for reconstruction within 2–3 weeks of data taking, during which
alibration will take place. The calibration tasks and time scale are
ependent on the detector subsystems.

.2.1. Track reconstruction
For hits in the tracking detectors, the amplitude and time offset of

ach tracker channel will be aligned to a uniform response using an
nsemble of collisions. We expect the initial calibration to be delivered
ithin two weeks of data taking with frequent checks and updates when
eeded.
6

3.2.2. Particle identification
Particle ID requires gain and time calibration. The single-photon

and multi-photon per pixel hit from signal hit and noise will be used
to set the gain. We expect a rapid turnaround for calibration and
monitoring of the gain of approximately one day. The time offset cali-
bration will be initially set by calibration-specific pulse lasers, which
are applied before physics data taking. The final alignment requires
events with a high multiplicity of tracks and aligning their projected
collision time by adjusting timing shifts for each sensor, which will be
part of the 4D alignment to be discussed at the end of this section.

3.2.3. Calorimetry
Calorimetric calibration focuses on the gain calibration. The first

order of calorimetric energy scale calibration will be performed during
production stage using the calorimeter blocks and SiPM QA database,
e.g. light yield and gain measurements. The first iteration for the
calorimetric energy scale will be based on cosmic data during the
construction phase (e.g. sector testing) and pre-collision cosmic runs.
This is expected to be completed before physics data taking. The second
iteration of tower-by-tower energy scale variation calibration will be
matching the energy slope of the calorimeter tower energy spectrum for
the same eta slice. This is expected to be completed within one week
of physics data taking. The final energy scale iteration will utilize real
collision data in several channels. The first is using scattered electrons,
𝜋◦ → 𝛾𝛾 and 𝜂 → 𝛾𝛾 decays to set the energy scale for the EMCal. The
econd is using isolated hadronic shower to calibrate the e/h in EMCal
nd hadronic energy scale in the HCal. The third is using semi-inclusive
eep-inelastic scattering single high momentum jet production to set
he calorimetric jet energy scale. This is expected to take one week
f data (𝑂(100) Billion events) and one week of calibration. During
teady-state running, the tower-by-tower gain drift will be monitored
nd calibrated using LED flashes and SiPM temperature monitoring,
hich can be calibrated in about one hour.

.2.4. Alignment
To fully align the entire detector, each subdetector will be surveyed

efore and after installation which provides the starting point of the
lignment. The first iteration of alignment will use field-off data and
osmic data to adjust major pieces of the detector component to the
inal installed location. The time latency needed for this task is limited
y the availability of such specialized data, but we expect this step is
ompleted before the physics quality data taken at ECCE. The second
teration requires field-on physics quality collision data to provide the
inal high precision adjustment for the sensor locations and time offset
for TOF) to a small fraction of the resolution. The first period of
agnetic-field-on collision data will be used for this alignment. Generic
urpose global alignment package such as Millepede II will be used.
ther packages, such as alignment software available in ACTS [17],
an be considered as well. It is expected to take two weeks to complete
he iteration of alignment and checks. Steady-state updates: the vertex
racker requires O(1) μm alignment precision, which could change
ver long periods. Therefore, during steady-state running, we expect
lignment to be checked every few days and possibly updated every
eek, depending on the final mechanical stability. We expect steady-

tate alignment updates can be achieved within one hour (e.g. the LHCb
ertex tracker is aligned in about 7 min [24]).

.2.5. Calibration database
For the ECCE streaming DAQ, we expect the calibration record to

e time-stamped with a 64-bit beam crossing counter with the start and
nd time corresponding to the interval of validity. The validity window
ength will be detector and calibration dependent, but we expect they
lign with the luminosity block of ECCE streaming data that is (1)

second, at each of the electron ring bunch refills.
The size of the calibration data is much smaller than the raw data

but still sizable. For the highest channel count in the silicon vertex
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tracker (O(1)B channels), we do not expect to have frequent calibra-
tion as it presents boolean (hit/no-hit) pixel data. As a conservative
estimate, consider 300 thousand of the calorimeter, tracker, and PID
channels that require a frequent (1 per minute) update of a relative
gain and time shift, each represented by a 4-byte float. This gives an
overall calibration dataset size of 𝑂(1) TB per run year (8B*(300e3
chan)*60(minute)*24(hour)*7(day)*20(cryo week)).

The calibration data will be indexed in a relational database. The
actual calibration data files can exist in a distributed file server (e.g.
S3 or XROOTD [25]) or in a separated database table, depending on
the size per entry and frequency of calibration updates. The separation
of index database and calibration data payload allows for efficient
database implementation management that is capable of accommodat-
ing a possible large size of the calibration data. This approach is being
deployed in the sPHENIX fixed latency calibration and reconstruction.

At the start of a production job, the job manager will pull the
calibration data relevant for the job into the local disk buffer according
to the index table. Then the database is disconnected and job processing
starts to efficiently utilize the connection limit to the database. This
also allows flexibility to pre-assemble the calibration file package to
be sent with raw data to remote computing centers that are otherwise
disconnected from the ECCE database and file servers.

3.3. Simulation

All modern high energy physics experiments require highly detailed
detector simulations, both in the design and operational phases. The
volume of simulations required depends on their specific uses, from
small scale simulations with hundreds of events to study new sub-
detector systems to large scale simulations with over 100 million
events to understand physics capabilities. With this in mind, the ECCE
philosophy towards simulations is user-friendliness, modularity, and
no distinction between large and small scale simulations to avoid
disparities.

The current framework is capable of performing simulations from
the generator stage right up to final physics analysis, with intermediate
stages for detector simulation, responses, and track, PID and calorime-
ter reconstruction. This benefits users by allowing them to run a full
analysis chain in one step if desired and large scale productions by
breaking simulations down into a series of stages. The latter approach
improves throughput and reproducibility as the same generator-level
simulation can be run over different detector configurations or more
physics objects can be added later in time when for example the
simulation and reconstruction are run separately. It is expected that
any new framework used will try to retain as much of these features as
possible.

The framework has several inbuilt event generators (a particle gun,
Pythia6 [26], Pythia8 [27] and Sartre [28]) and can also read in pre-
generated events either via the EIC-smear program [29] or a file in
HepMC2 format [30]. The framework is also capable of reading in any
previously produced DST, assuming the material hits were saved. If any
generated particle has not been decayed by the input generator and is
required to decay in the detector volume, this is handled by the built-in
Pythia6 decayer.

The detector simulation will likely be handled by Geant4 [31]. The
components of the detector can either be rendered in what is called
‘‘fast’’ or ‘‘full’’ simulation. Fast simulation is useful for producing
passive volumes such as support or service structures, or testing ideas
quickly. Full simulation will involve complete physics responses and
digitization, including but not limited to Cherenkov photon production
and electron cascades.

Efforts are on-going to improve both our simulations, through work
conducted with AI-assisted detector designs [32], and the infrastruc-
ture needed to produce large simulations on short time scales such
as with distributed computing and GPU implementations of Geant4.
Each individually simulated subsystem is bundled with the software
7

Fig. 2. The per-event run time (top) and per-job memory usage (bottom) for two
different productions. 𝑒𝑝 collisions with a 10 GeV electron beam and 100 GeV proton
eam using an internal Pythia8 generator are shown with red triangles while 𝑒𝑝
ollisions with a 18 GeV electron beam and 275 GeV proton beam using an external
ythia6 generator are shown with blue diamonds. As each entry in the run time is the
verage time to produce 2000 events the multiple peaks for each production is due to
ifferent hardware used to process the jobs on the batch farm.

tack which means it is also saved weekly and with every production
uild. This allows any simulation to be reproduced at a future date,
f necessary, and this ability should be maintained throughout the
xperiment lifetime and beyond.

The AI-assisted design optimization of the ECCE inner tracker [32]
as been based on evolutionary algorithms; during the detector pro-
osal multiple optimization pipelines have been run each with a popu-
ation size of 100, representing different detector design configurations.
t each iteration, AI updates the population. The total computing
udget for an individual pipeline amounted to approximately 10k CPU-
ore hours. Activities are planned to continue the detector optimization:
ew optimization pipelines can deal with larger parameter space to
nclude a system of sub-detectors like in the case of the whole ECCE
racker [32]; we also plan to optimize other sub-detectors like, e.g.,

the d-RICH, leveraging on the expertise internal to the ECCE collab-
oration regarding specifically the design of the dRICH with AI-based
techniques [4]. Larger populations may need to be simulated to cope
with the increased complexity in order to improve the accuracy of
the approximated Pareto front. Different AI-based strategies will be
compared. We anticipate roughly 1M CPU-core hours per year for these
AI based studies.

The ECCE consortium conducted two large scale production cam-
paigns in 2021; the first campaign consisted of over 120M events while
the second campaign consisted of over 600M events. The campaigns
were distributed over 3 distinct production sites; SDCC at Brookhaven
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National Laboratory, the SciComp at Thomas Jefferson National Accel-
erator Facility and MIT Bates Research and Engineering Center. The
production sites used a common top-level program which is able to
communicate with site-specific lower level programs. With this and the
common simulation framework, production tasks can be assigned to
any site and down-time at one site can be recovered with a different
site. As the only difference between the sites is in the batch systems,
each production site is capable of creating output files and directories
in identical formats and hence the production location is transparent
to end users. Finally, the simulation seeds are uniquely defined by
the input options (input file name, number of events to generate and
starting event number of the input file) so any site can precisely
reproduce any file from the other sites which aids in both debugging
and general event production. As well as the large scale production
at these three sites, another large production of almost 50M events
was generated using computing resources at Oak Ridge National Lab-
oratory for calorimetry development. This simulation used a different
production mechanism from that discussed previously, demonstrating
the flexibility and advantage of using this modular system.

The second simulation campaign featured a far more mature de-
tector design with full PID, calorimeter responses, optimal detector
placements and support structures. Thus, this campaign is useful for
bench-marking the simulation memory usage and processing times. By
comparing several large productions, it was found that the average
time to produce a single 𝑒𝑝 event with a 10 GeV electron beam and
100 GeV proton beam using the in-built Pythia8 generator is 7.8 s with
a standard deviation of 2.2 s.3 This value was obtained by studying
approximately 20 million events, grouped into production jobs of 2000
events each and taking the average run time of each job. Thus, this
number also includes the start up of the framework but this impact
should be minimized by using the average of 2000 events. Similarly, the
average memory usage of a job was found to be stable regardless of the
number of events that were produced in each job. A small variation in
run time is seen with respect to the collision energies which is expected;
when the beam energies increase, the event multiplicity increases and
hence there are more objects to simulate and reconstruct. This can
be seen by simulating 𝑒𝑝 collisions with a 18 GeV electron beam and
275 GeV proton beam using an external Pythia6 generator and the
internal EIC-smear reader which found an average event production
time of 9.7 s with a standard deviation of 3.3 s. This is also reflected
in the simulation memory usage where the collisions with a 10 GeV
electron beam and 100 GeV proton beam had an average memory usage
of 2138 MB with a standard deviation of 16 MB while a 18 GeV electron
beam and 275 GeV proton beam had an average memory usage of
2275 MB with a standard deviation of 32 MB. It is also expected that the
overall memory footprint will be reduced through code optimization
and new hardware. For example, it has already been demonstrated in
sPHENIX (which shares the same framework) that the mean memory
usage for 𝑝𝑝 simulations can be reduced from 4 GB to 1.7 GB by selec-
tive loading of simulated materials. Currently, ECCE simulations load
every material described in Geant4 into memory. The distributions for
event run time and memory use are given in Fig. 2.

The campaigns performed in 2021 can be used to estimate the
simulation requirements for the forthcoming years. These estimates are
given in Tables 1 and 2 for the R&D and data taking periods respec-
tively. The first table assumes that a large production will occur in 2022
based on reviewers suggestions which will steadily decrease as detector
R&D progresses for several years before increasing significantly in the
years leading to data taking as the collaboration performs as realistic
simulations as possible to exercise the reconstruction, calibration and
alignment software. The simulation requirements for the data-taking
period assume that the collaboration will need 𝑂(10) times the amount

3 These events involved generator level production, detector simulation,
igitization, reconstruction (track, PID and calorimeter) and physics analysis
utput.
8

Table 1
Estimated simulation requirements for the years 2022–2030. The esti-
mates are based on the observed performance in 2021, only include
large scale productions and hence do not include any productions for
AI-assisted detector design. The numbers assume that a large scale
campaign will take place in 2022, based on feedback from the proposal.
The productions will then decrease as focus moves into hardware de-
velopment before increasing significantly in the years before initial data
taking as ‘‘Mock Data Challenges’’ are pursued to test the reconstruction,
calibration and alignment software.
Year Number of

events [×106]
Storage
[TB]

CPU-core hours
[Mcore-h]

2022 200 50 45
2023–2024 100 25 22.5
2025–2028 50 12.5 11
2029–2030 500 125 110

Total 1600 400 354

Table 2
Estimated simulation requirements during operational years. The storage
and CPU time estimates are based on the observed performance in 2021
while the number of events assume we will need (10) times the amount
of simulated data for (10)% of the streaming recorded minimum bias
cross section in the real data for each running year that is most relevant
for the core physics program at ECCE.
Year Number of

events [×109]
Storage
[PB]

CPU-core hours
[Mcore-h]

Year-1 120 30 11000
Year-2 600 150 55000
Year-3 5400 1300 490000

of simulated data for 𝑂(10)% of the streaming recorded minimum bias
ross section in the real data for each running year that is most relevant
or the core physics program at ECCE. The number of expected real
vents recorded are listed in Table 6, which is comparable to the
omputing need in the offline reconstruction as discussed in Section 5.

. Offsite processing

The EIC will be a large international project with many researchers
nd stakeholders spread throughout the globe. While the accelerator
nd detectors are necessarily placed at a single locale, the computing
eed not be and can better reflect the geographic diversity of the
ollaborations involved in EIC research. In the modern age, high speed
etwork connectivity has become very robust. In the time frame of
he EIC (∼ 2030) we can expect even more reliable and even faster
etworks. This will make transporting data on the scale the EIC is
xpected to produce fairly routine. To give specific numbers, BNL
as a 400Gbps connection to the ESnet backbone in 2021. ECCE is
urrently estimated to produce 100Gbps of raw data once it is in full
roduction sometime around 2030. Network bandwidths have shown
teady growth of about 50% per year over the past few decades [33].
hus, over the next 8 years we can expect existing bandwidths to grow
y roughly a factor of 25. Even a conservative estimate that the BNL
xternal connection bandwidth grows by only a factor of 10 means the
ntire ECCE raw data volume can be streamed out using only a few
ercent of the total available bandwidth.

This section will briefly describe how a federated computing model
or the EIC might look, how it will be used to process the raw data,
nd how it will also be used to process the large amounts of simulation
eeded for the program.

.1. Federated computing

EIC data processing will employ a federated computing model
here multiple facilities will be used. A similar strategy has been suc-

essfully deployed by the LHC in the form of the Worldwide LHC Com-
uting Grid (WLCG) or simply the Grid[34]. The benefits of distributing
he computing across multiple sites include:
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Table 3
Data rates and reduction factors for proposed near real time data flow. Estimated data rate from ECCE detector
is  (100 Tbps). Raw storage will be  (100 Gbps). Reconstructed object storage will be  (10 Gbps). Parentheses
indicate technologies that could be used, but seem less likely choices.
Stage Input/Output Reduction factor Technology options

Compute Interface (e.g. FELIX) 100 Tbps/10 Tbps ×10−1 FPGA
Online event filter 10 Tbps/1 Tbps ×10−1 FPGA, (GPU), CPU
Online buffer 1 Tbps/0.5 Tbps ×5 × 10−1 < 𝑑𝑖𝑠𝑘 >
Offline event filter 0.5 Tbps/100 Gbps ×2 × 10−1 FPGA, GPU, CPU
Reconstruction 100 Gbps/10 Gbps ×10−1 (FPGA), GPU,CPU
Total 100 Tbps/10 Gbps ×10−4
Table 4
Estimate of raw data tape storage needed for first 3 years of EIC running (ECCE only). Values are estimates
assuming ramp up to full luminosity by year 3. Numbers for the first two years are estimated for the
purposes of this exercise and do not come from an external source. n.b. each value represents only the
needs for data produced in that year and not a cumulative total.
New storage Year-1 Year-2 Year-3

Luminosity 1033 cm−2 s−1 2 × 1033 cm−2 s−1 1034 cm−2 s−1

Weeks of physics running 10 20 30
Operational efficiency 40% 50% 60%
Data rate to storage 6.7 Gbps 16.7 Gbps 100 Gbps
Raw data storage (no duplicates) 4PB 20PB 181PB
Recon storage 0.4PB 2PB 18PB
Total Storage (no duplicates) 7PB 35PB 317PB
Fig. 3. Butterfly model of federated offsite computing. In this model, nearly all storage
is contained in echelon 1 while large portions of the raw data processing is delegated to
multiple HTC/HPC facilities. The named facilities in this graphic are merely examples
and do not represent commitments or final plans.

Fig. 4. Data flow from detector to reconstructed object files (left to right). This diagram
illustrates how raw data may be distributed to multiple sites in near-real time. On the
left side of the plot, multiple filter and buffering stages are used to reduce the data
rate. On the right, the data is distributed to multiple facilities. Each facility would store
a portion of the raw data. It would also need to keep the data live (e.g. on disk) long
enough for it to be calibrated and then processed by the reconstruction software.

• Each site only needs to handle a fraction of data
• EIC computing becomes a smaller fraction of each compute farm
• One site having diminished capacity temporarily can easily be

absorbed by others without reconfiguration

Generally speaking, diversifying helps to mitigate certain risks.
9

Table 5
Estimate of disk storage needed for first 3 years of EIC running (ECCE
only). The temporary disk is used to hold raw data for a 3 week period
while calibrations are derived and reconstruction is done. The permanent
disk is for holding the reconstructed data. This will be cumulative so
collaborators will have access to recon data from all years.
Total disk Year-1 Year-2 Year-3

Disk (temporary) 1.2PB 3.0PB 18.1PB
Disk (permanent) 0.4PB 2.4PB 20.6PB
TOTAL 1.6PB 5.4PB 38.7PB

The WLCG model of the LHC is based on multiple Tiers, structured
in a pyramid type fashion. The topmost tier (Tier 0)represents the
LHC/CERN where the data is produced and all data is stored. It also
supplies around 20% of the total computing resource and does the
initial reconstruction of the data before distributing it to the Tier 1
sites [35]. The Tier 1 sites perform large scale reprocessing of the data
and distribution to the Tier 2 sites. The Tier 2 sites do more specialized
analysis and simulations while the Tier 3 sites are end users. Each tier
in the system only communicates with tiers directly above or below it
in the hierarchy.

For the EIC one may consider an alternative model in which the
data producer (the experiments of the EIC) and the BNL compute
facility (e.g. SDCC) are independent. This allows computing at BNL
to become part of a pool of facilities that handle the computing as
a federated resource. Fig. 3 illustrates such a model referred to here
as a ‘‘Butterfly ’’ model due to the rough shape of the figure. In this
model, both compute and storage are distributed with the storage being
focused in the Echelon 1 sites. This means access to the data by the end
users will be done by connecting Echelon 3 sites directly to Echelon 1
sites. The Echelon 1 sites will themselves provide significant compute
capability, but may also farm out large campaigns to Echelon 2 sites.
In the simulation campaigns performed for the ECCE proposal, the
model shown in Fig. 3 was successfully implemented for simulated data
production.

4.2. Raw data compute

Processing of EIC data will occur over multiple sites which will
include HTC facilities at both BNL and JLab and possibly others. The
plan calls for processing the raw data into reconstructed objects such as
tracks, jets, and calorimeter clusters within 2–3 weeks of acquisition.
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Table 6
Estimates of CPU needed for reconstruction of raw data. The number of seconds per event is highly dependent
on the type of processor being used. Number of events comes from total raw data storage estimate in Table 4.
Calibration is assumed to be 5% of reconstruction time.
CPU compute Year-1 Year-2 Year-3

Recon process time/core 5.4 s/ev 5.4 s/ev 5.4 s/ev
Streaming-unpacked event size 33 kB 33 kB 33 kB
Number of events produced 121 billion 605 billion 5443 billion
CPU-core hours (recon-only, 1 pass) 181 Mcore-h 907 Mcore-h 8165 Mcore-h
CPU-core hours (calib-only) 9 Mcore-h 45 Mcore-h 408 Mcore-h
2020-cores needed to process in 30 weeks 38k 189k 1701k
The bulk of the few week latency will be due to the time it takes to cal-
ibrate the data so that reconstruction may occur. Fig. 4 illustrates how
such a scheme could work. The raw data read from the streaming DAQ
system will need to be reduced over multiple filtering and compression
stages to a rate that is reasonable to transport offsite from BNL using its
external network connection. Table 3 lists the stages and with in-going
and out-going rates and their respective reduction factors. Potential
technologies that could be applied at each stage are also listed.

The DOE lab systems are connected via the ESNet unclassified
network for scientific research [36]. As of 2021, BNL has a 400Gbps
connection to ESNet and JLab has dual 10Gbps connections. In 2022 or
2023, JLab is anticipated to increase its bandwidth to at least 100Gbps.
When the EIC begins collecting data around 2030, one may expect a
1Tbps bandwidth between the two labs. This is an order of magnitude
higher than the anticipated raw data rate after filtering from the ECCE
detector. Thus, transfer of the entire raw data set offsite from BNL in
2030 seems reasonable.

5. Resource requirements summary

The EIC luminosity is projected to be between 1033 cm−2 s−1 and
034 cm−2 s−1 (see sec. 2.10 of the Yellow Report [3]). Assume 30 weeks
f operation per year and 60% accelerator operation efficiency once it
s in full production mode. In the first years, however, we may expect
ewer weeks of running and lower luminosity. Table 4 lists a possible
cenario used for the purposes of estimation in this section. We assume
00Gbps data rate to storage for 1034 cm−2 s−1 and 60% operational
fficiency of the facility. All other rates are derived by scaling this value
y the luminosity and efficiency values indicated in the table.

Temporary disk storage will be needed for raw data during the 3
eek time span during which calibrations are derived and the raw data
rocessed. In addition, disk storage will be needed for the reconstructed
ata that collaborators will be accessing for analysis. Table 5 gives
stimates of the disk resources needed for the first 3 years of running.
ote that the values in the table are cumulative and so represent the

otal amount of disk needed for each year which include reconstructed
ata from previous years.

The CPU required for processing the data is very difficult to estimate
ith any accuracy better than the order of magnitude. Nonetheless, an
ttempt is made here to provide such an estimate. Table 6 summarizes
he important values. The 5.4 s/ev comes from estimating an average of
h for reconstruction of 2k events of ECCE data. The numbers for ECCE
PU mainly come from the simulation campaigns run for proposal
evelopment which include combined simulation and reconstruction.
he times to process 2k events ranged from 2 to 9 h depending on the
ollision type and the CPU type that the job was processed on. This
orresponds to a range of roughly 4 s/ev to 16 s/ev. The reconstruction
nly part is considered to be half of the roughly 6 h average time to
imulate 2k events. By way of comparison, sPHENIX estimates 15 s/ev
or Au+Au scattering and 10.4 s/ev for p+p scattering (see Section 5.2
f [6]). Thus, 5.4 s/ev is assumed to be at least the right order of
agnitude. The event size of 250 kB is also a rough average based on

he ECCE DST files for several configurations simulated in the major
roposal campaigns. Note the DST event size is larger than the average
10
raw data rate divided by the event rate, as the streaming readout
raw data is more tightly packed in time-frames which also avoids
duplication of information between the neighboring events. The event
size is used, along with the numbers for the Raw Data Storage from
Table 4, to calculate the number of events produced in each year. The
CPU needed for calibration is estimated to be roughly 5% of that needed
for full reconstruction. It is noted that the sPHENIX Computing Plan
estimates this to be 25%. The final line in Table 6 estimates the number
of CPU cores needed to process the data for each year assuming it
can be done over a 30 week period. This would mean in year-3 there
would be enough CPU to keep up with the raw data production rate.
In earlier years, this would not be needed as the production times are
much shorter.

6. Summary

The ECCE consortium plans to deploy a federated computing model
for the EIC where multiple facilities are used. ECCE recognizes the
need for a global EIC model and intends to fully participate in the
design and implementation of such a system. A similar strategy has
been successfully deployed by the LHC in the form of the Worldwide
LHC Computing Grid (WLCG) [34]. ECCE has developed and, during
the EIC detector proposal period, deployed a tiered ‘‘Butterfly’’ model
for EIC computing that was inspired by the WLCG model, but updated
to better reflect the computing landscape anticipated for the EIC. In
this model, the EIC detector supplies the data, but the SDCC at BNL
is treated as one of a pool of sites used for long term storage and
compute resources. Both BNL and JLab would be considered as Echelon
1 sites with the ability to add others as appropriate. Raw data would
be distributed amongst multiple Echelon 2 sites for processing with the
processed data being returned to Echelon 1. Researchers would directly
access the processed data at the Echelon 1 sites.

We have adopted a fixed-latency offline computing model where
both the final calibration and reconstruction of raw data occur within
2–3 weeks of acquisition. During this period, raw data will be buffered
on disk at all of the Echelon 1 sites, along with permanent archival
copies on tapes. Final calibration will be performed semi-automatically
including accumulating sufficient data for tracker alignment and energy
scale calibration of the calorimeters. Artificial intelligence and machine
learning will be integrated throughout this model. After calibration,
data processing will be released to multiple sites including HTC fa-
cilities at both Echelon 1 and 2 sites. The EIC will also require large
simulation samples to aid in understanding the detector response and
physics and background processes being measured. We expect that the
produced simulation sample will focus on 10% of the EIC collision
cross-section that is directly relevant for the signal and background of
the core ECCE physics program. These physics processes will be simu-
lated to 𝑂(10) times the statistics in real data to constrain systematic
uncertainty from the simulated sample to be much smaller than the
data statistical uncertainty.

A summary of the anticipated resource requirements can be seen in
Table 7.
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Table 7
Estimate of raw data storage and compute needs for first 3 years of ECCE, assuming ramp up to full luminosity by year 3.
ECCE runs Year-1 Year-2 Year-3

Luminosity 1033 cm−2 s−1 2 × 1033 cm−2 s−1 1034 cm−2 s−1

Weeks of running 10 20 30
Operational efficiency 40% 50% 60%
Disk (temporary) 1.2PB 3.0PB 18.1PB
Disk (permanent) 0.4PB 2.4PB 20.6PB
Data rate to storage 6.7 Gbps 16.7 Gbps 100 Gbps
Raw data storage (no duplicates) 4PB 20PB 181PB

Recon process time/core 5.4 s/ev 5.4 s/ev 5.4 s/ev
Streaming-unpacked event size 33 kB 33 kB 33 kB
Number of events produced 121 billion 605 billion 5443 billion
Recon storage 0.4PB 2PB 18PB
CPU-core hours (recon+calib) 191 Mcore-h 953 Mcore-h 8573 Mcore-h
2020-cores needed to process in 30 weeks 38 k 189 k 1701 k
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the EIC Silicon Consortium for cost estimate method-
ologies concerning silicon tracking systems, technical discussions, and
comments. We acknowledge the important prior work of projects
eRD16, eRD18, and eRD25 concerning research and development of
MAPS silicon tracking technologies.

We thank the EIC LGAD Consortium for technical discussions and
acknowledge the prior work of project eRD112.

We acknowledge support from the Office of Nuclear Physics in
the Office of Science in the Department of Energy, USA, the Na-
tional Science Foundation, USA, and the Los Alamos National Labo-
ratory Laboratory Directed Research and Development (LDRD), USA
20200022DR.

References

[1] S. Benson, V. Gligorov, M.A. Vesterinen, J.M. Williams, The LHCb turbo stream,
J. Phys. Conf. Ser. 664 (8) (2015) 082004, http://dx.doi.org/10.1088/1742-
6596/664/8/082004.

[2] R. Aaij, S. Benson, M.D. Cian, A. Dziurda, C. Fitzpatrick, E. Govorkova, O.
Lupton, R. Matev, S. Neubert, A. Pearce, H. Schreiner, S. Stahl, M. Vesterinen,
A comprehensive real-time analysis model at the LHCb experiment, J. Instrum.
14 (04) (2019) P04006, http://dx.doi.org/10.1088/1748-0221/14/04/p04006.

[3] R.A. Khalek, et al., Science requirements and detector concepts for the
electron-ion collider: EIC yellow report, 2021, arXiv:2103.05419.

[4] E. Cisbani, et al., AI-optimized detector design for the future electron-ion collider:
the dual-radiator RICH case, J. Instrum. 15 (05) (2020) P05009, http://dx.doi.
org/10.1088/1748-0221/15/05/P05009.

[5] AI4eic workshop, sep. 7-10, 2021, URL https://indico.bnl.gov/event/10699.
[6] sPHENIX Collaboration, sPHENIX computing plan, 2019, https://indico.bnl.gov/

event/6659/attachments/package.
[7] D. Campora Perez, et al., The 40MHz trigger-less DAQ for the LHCb upgrade,

Nucl. Instrum. Methods Phys. Res. A 824 (2016) 280–283, http://dx.doi.org/10.
1016/j.nima.2015.10.047.

[8] K. Chen, H. Chen, J. Huang, F. Lanni, S. Tang, W. Wu, A generic high bandwidth
data acquisition card for physics experiments, IEEE Trans. Instrum. Measur. 69
(7) (2019) 4569–4577, http://dx.doi.org/10.1109/TIM.2019.2947972.

[9] T. Britton, D. Lawrence, K. Rajput, AI enabled data quality monitoring with
hydra, EPJ Web Conf. 251 (2021) 04010, http://dx.doi.org/10.1051/epjconf/
202125104010.

[10] J. Krupa, et al., GPU co-processors as a service for deep learning inference in
high energy physics, Mach. Learn.: Sci. Technol. 2 (3) (2021) 035005, http:
//dx.doi.org/10.1088/2632-2153/abec21.

[11] J. Allison, et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys.
Res. A 835 (2016) 186–225, http://dx.doi.org/10.1016/j.nima.2016.06.125.

[12] T. Preston-Werner, Semantic versioning 2.0.0, 2021, URL https://semver.org/.
11
[13] CERNVM-FS, 2021, URL https://cernvm.cern.ch/fs/.
[14] Singularity, 2021, URL https://sylabs.io/singularity/.
[15] X. Ai, G. Mania, H.M. Gray, M. Kuhn, N. Styles, A GPU-based Kalman filter

for track fitting, Comput. Softw. Big Sci. 5 (1) (2021) 20, http://dx.doi.org/10.
1007/s41781-021-00065-z.

[16] J.D. Osborn, et al., Implementation of ACTS into sPHENIX track reconstruction,
Comput. Softw. Big Sci. 5 (1) (2021) 23, http://dx.doi.org/10.1007/s41781-021-
00068-w.

[17] X. Ai, et al., A common tracking software project, 2021, arXiv:2106.13593.
[18] M. Barisits, et al., Rucio - scientific data management, Comput. Softw. Big Sci.

3 (1) (2019) 11, http://dx.doi.org/10.1007/s41781-019-0026-3.
[19] PanDA Developers, Panda job submission, 2021, URL https://panda-wms.

readthedocs.io/en/latest/.
[20] EIC Software Community, Fun4All_coresoftware, 2021, URL https://github.com/

eic/fun4all_coresoftware.
[21] D. Lawrence, A. Boehnlein, N. Brei, JANA2 framework for event based and

triggerless data processing, EPJ Web Conf. 245 (2020) 01022, http://dx.doi.org/
10.1051/epjconf/202024501022.

[22] G. Corti, et al., Software for the LHCb experiment, in: IEEE Symposium
Conference Record Nuclear Science 2004, Vol. 4, 2004, pp. 2048–2052, http:
//dx.doi.org/10.1109/NSSMIC.2004.1462666.

[23] T. Jeske, D. McSpadden, N. Kalra, T. Britton, N. Jarvis, D. Lawrence, AI for
experimental controls at jefferson lab, 2022, arXiv:2203.05999.

[24] S. Borghi, Novel real-time alignment and calibration of the LHCb detector and
its performance, Nucl. Instrum. Methods Phys. Res. A 845 (2017) 560–564,
http://dx.doi.org/10.1016/j.nima.2016.06.050.

[25] XROOTD Developers, XROOTD software repository, 2022, https://github.com/
xrootd/xrootd.

[26] T. Sjostrand, et al., High-energy physics event generation with PYTHIA 6.1,
Comput. Phys. Commun. 135 (2001) 238–259, http://dx.doi.org/10.1016/S0010-
4655(00)00236-8.

[27] T. Sjostrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1,
Comput. Phys. Comm. 178 (2008) 852–867, http://dx.doi.org/10.1016/j.cpc.
2008.01.036.

[28] T. Toll, T. Ullrich, The dipole model Monte Carlo generator sar𝑡re 1, Comput.
Phys. Comm. 185 (2014) 1835–1853, http://dx.doi.org/10.1016/j.cpc.2014.03.
010.

[29] K. Kauder, T. Burton, et al., EIC-smear, 2021, URL https://eic.github.io/software/
eicsmear.html.

[30] M. Dobbs, J.B. Hansen, The HepMC C++ Monte Carlo event record for high
energy physics, Comput. Phys. Comm. 134 (2001) 41–46, http://dx.doi.org/10.
1016/S0010-4655(00)00189-2.

[31] S. Agostinelli, et al., GEANT4 Collaboration Collaboration, GEANT4: A simulation
toolkit, Nucl. Instrum. Meth. A506 (2003) 250–303, http://dx.doi.org/10.1016/
S0168-9002(03)01368-8.

[32] ECCE Consortium, AI-assisted design of the ECCE detector: the ECCE
tracker example, 2021, URL https://www.ecce-eic.org/ecce-internal-notes,
ecce-note-comp-2021-03.

[33] J. Nielsen, Nielsen’s law of internet bandwidth, 2019, URL https://www.nngroup.
com/articles/law-of-bandwidth/.

[34] J. Shiers, The worldwide LHC computing grid (worldwide LCG), Comput. Phys.
Comm. 177 (1) (2007) 219–223, http://dx.doi.org/10.1016/j.cpc.2007.02.021.

[35] The Grid: A system of tiers, URL https://home.cern/science/computing/grid-
system-tiers.

[36] ESNet, 2021, URL https://www.es.net/, Accessed: 10-8-2021.

http://dx.doi.org/10.1088/1742-6596/664/8/082004
http://dx.doi.org/10.1088/1742-6596/664/8/082004
http://dx.doi.org/10.1088/1742-6596/664/8/082004
http://dx.doi.org/10.1088/1748-0221/14/04/p04006
http://arxiv.org/abs/2103.05419
http://dx.doi.org/10.1088/1748-0221/15/05/P05009
http://dx.doi.org/10.1088/1748-0221/15/05/P05009
http://dx.doi.org/10.1088/1748-0221/15/05/P05009
https://indico.bnl.gov/event/10699
https://indico.bnl.gov/event/6659/attachments/package
https://indico.bnl.gov/event/6659/attachments/package
https://indico.bnl.gov/event/6659/attachments/package
http://dx.doi.org/10.1016/j.nima.2015.10.047
http://dx.doi.org/10.1016/j.nima.2015.10.047
http://dx.doi.org/10.1016/j.nima.2015.10.047
http://dx.doi.org/10.1109/TIM.2019.2947972
http://dx.doi.org/10.1051/epjconf/202125104010
http://dx.doi.org/10.1051/epjconf/202125104010
http://dx.doi.org/10.1051/epjconf/202125104010
http://dx.doi.org/10.1088/2632-2153/abec21
http://dx.doi.org/10.1088/2632-2153/abec21
http://dx.doi.org/10.1088/2632-2153/abec21
http://dx.doi.org/10.1016/j.nima.2016.06.125
https://semver.org/
https://cernvm.cern.ch/fs/
https://sylabs.io/singularity/
http://dx.doi.org/10.1007/s41781-021-00065-z
http://dx.doi.org/10.1007/s41781-021-00065-z
http://dx.doi.org/10.1007/s41781-021-00065-z
http://dx.doi.org/10.1007/s41781-021-00068-w
http://dx.doi.org/10.1007/s41781-021-00068-w
http://dx.doi.org/10.1007/s41781-021-00068-w
http://arxiv.org/abs/2106.13593
http://dx.doi.org/10.1007/s41781-019-0026-3
https://panda-wms.readthedocs.io/en/latest/
https://panda-wms.readthedocs.io/en/latest/
https://panda-wms.readthedocs.io/en/latest/
https://github.com/eic/fun4all_coresoftware
https://github.com/eic/fun4all_coresoftware
https://github.com/eic/fun4all_coresoftware
http://dx.doi.org/10.1051/epjconf/202024501022
http://dx.doi.org/10.1051/epjconf/202024501022
http://dx.doi.org/10.1051/epjconf/202024501022
http://dx.doi.org/10.1109/NSSMIC.2004.1462666
http://dx.doi.org/10.1109/NSSMIC.2004.1462666
http://dx.doi.org/10.1109/NSSMIC.2004.1462666
http://arxiv.org/abs/2203.05999
http://dx.doi.org/10.1016/j.nima.2016.06.050
https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd
https://github.com/xrootd/xrootd
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1016/j.cpc.2014.03.010
http://dx.doi.org/10.1016/j.cpc.2014.03.010
http://dx.doi.org/10.1016/j.cpc.2014.03.010
https://eic.github.io/software/eicsmear.html
https://eic.github.io/software/eicsmear.html
https://eic.github.io/software/eicsmear.html
http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
https://www.ecce-eic.org/ecce-internal-notes
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
http://dx.doi.org/10.1016/j.cpc.2007.02.021
https://home.cern/science/computing/grid-system-tiers
https://home.cern/science/computing/grid-system-tiers
https://home.cern/science/computing/grid-system-tiers
https://www.es.net/

	Scientific computing plan for the ECCE detector at the Electron Ion Collider
	Introduction
	Online
	Data acquisition
	DAQ components
	Online monitoring
	Risk mitigation
	AI-based data selection
	Expected data rates and reduction steps

	Offline
	Reconstruction
	Calibration
	Track Reconstruction
	Particle Identification
	Calorimetry
	Alignment
	Calibration database

	Simulation

	Offsite Processing
	Federated computing
	Raw data compute

	Resource Requirements Summary
	Summary
	Declaration of Competing Interest
	Acknowledgments
	References


