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Abstract The lowest order radiative corrections to the
cross section and asymmetries measured in experiments
on semi-inclusive deep inelastic scattering of polarized
particles were calculated. Both exact and leading log
expressions were presented and discussed for the total
correction that include the contributions from the pro-
cesses of 1) real photon emission with semi-inclusive pro-
cesses, ii) loop diagrams, and iii) real photon emission
with exclusive processes. Radiative corrections to the
Sivers and Collins asymmetries in 77 electroproduc-
tion were studied numerically within the kinematical
conditions of modern experimental environments at Jef-
ferson Laboratory (JLab). The Wandzura-Wilczek ap-
proximation for the semi-inclusive structure functions
and MAID2007 parameterization for the six amplitudes
of exclusive processes were used in numeric analyses.
The results show that i) radiative effects can generate
a correction comparable to the size of Sivers and Collins
asymmetries at the Born level, ii) there is good agree-
ment between the exact and leading-order corrections,
iii) external functions (that is, other than the Sivers
and Collins functions in the respective asymmetries)
can generate a contribution to the radiative correction
up to 20%, and iv) there exists a strong dependence of
the radiative correction on the models for semi-inclusive
and exclusive structure functions.

1 Introduction

Modern achievements in theoretical physics as well
as improvement of experimental techniques allow re-
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searchers to access the spin structure of the nucleon en-
coded in transverse momentum-dependent parton dis-
tribution functions by studying polarized semi-inclusive
deep-inelastic scattering (SIDIS). The usual interpreta-
tion of the nucleon dynamics in high-energy interactions
that is often limited to a simple one-dimensional picture
of a fast moving nucleon has to be replaced by a truly
3-dimensional study of the nucleon structure [1].

The main task of data analysis in lepton nucleon
scattering is to extract the basic contribution to the
cross section that contains only one photon exchange
process between lepton and hadron legs. However, this
process is accompanied by other processes known as ra-
diative corrections (RC) that cannot be distinguished
from the basic process by experimental methods. These
processes are related to the contributions of the addi-
tional virtual particles and real photon emission, and
therefore, they are of the next order with respect to the
QED fine structure constant « ~ 1/137 and expected to
be essentially suppressed due to its smallness. At Jeffer-
son Lab three halls are involved in studies of SIDIS [2]
including i) the HMS and Super HMS at Hall C, ii)
the BigBite and Super BigBite, as well as, the SoLID
detector at Hall A, and iii) CLAS12 at Hall-B with sev-
eral experiments already approved to study in details
the modulations of the cross section in SIDIS, involv-
ing azimuthal angles of hadrons (¢) and nucleon spin
(¢pn)! for different hadron types, targets, and polariza-
tions in a broad kinematic range. Measurements of all
kind of structure functions [3,4] defined by correspond-
ing azimuthal modulations containing cos ¢, terms, like
Sivers (F[s]i;(¢h7¢")) and Collins (Flsji;(d)h’+¢"))7 as well
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as Kotzinian-Multers (FSEM”), Cahn (Fyj; 1), and
Boer-Mulders (Fy732%") are expected to be most sensi-
tive to RC due to large cosines generated by the BH pro-
cess due to shift of the direction of the virtual photon
direction. The newly achieved accuracies in the JLab
experiments require renewed attention to RC calcula-
tions and their implementation in data analysis soft-
ware. In this approach, RC have to be calculated within
a theoretical model and extracted from the experimen-
tal data.

Usually with some exceptions (see, e.g. [5,6]) RC
to lepton-nucleon scattering is calculated in model-
independent way [7,8], when the calculation does not
require additional assumptions on hadronic interac-
tions. These RC include the radiation of an unobserved
real photon from the lepton line, vacuum polarization,
and lepton-photon vertex corrections. These effects can
be calculated without any assumptions on hadron inter-
actions and represent the so-called model-independent
RC. They give the largest contributions to the total
RC and can be calculated exactly or in the leading-log
approximation if the accuracy provided by this approx-
imation is sufficient. By “exactly” calculated RC we
understand the analytic expressions obtained without
any simplifying assumptions with opportunities for nu-
meric estimates with any predetermined accuracy. The
structure of dependence of the RC cross section on the
electron mass is opc = Alog f,?l—iJquLO(rnz/Q2)7 where
A and B do not depend on the electron mass m. If only
A is kept in the formulae for RC, this is the leading log
approximation. The leading log approximation can be
sufficient in certain cases because the factor log Q2 /m?
is of the order of 15 for JLab energies. The model inde-
pendent RC include the effects of emissions of real and
virtual photons from the lepton line only. Uncertain-
ties of the model independent RC can come only from
fits and data used for structure functions, whereas the
model dependent corrections (i. e. box-type diagrams,
emission by hadrons) require the additional information
about hadron interactions and therefore contain addi-
tional purely theoretical uncertainties, which are hard
to control.

Radiative corrections to the three-fold cross section
over the Bjorken variables z, y and the fraction of
the virtual photon energy transferred to the detected
hadron z were estimated in [9,10] and implemented in
the SIRAD patch of the FORTRAN code POLRAD
[11]. The RC to the five-fold differential cross section
for unpolarized particles with two additional variables
characterized by the detected hadron (that is, the trans-
verse momentum p; and the azimuthal angle between
the lepton scattering and hadron production planes,
¢n) was calculated in [12]. These calculations did not

contain the radiative tail from exclusive reactions as a
separate contribution involving the exclusive structure
functions. The first estimate of the exclusive radiative
tail contribution was made for the unpolarized SIDIS in
[13] and showed rather large effects in the region near
the pion threshold. The explicit expressions for RC to
SIDIS with initial polarized particles were calculated
n [14]. Based on the results obtained in this article, a
Monte Carlo generator has been developed for the simu-
lation of the hard-photon emission excluding the exclu-
sive radiative tail [15]. Recently RC to SIDIS in leading
logarithmic approximation was estimated by Liu et al.
in [16] and our group in [17].

Here, we generalize the expressions obtained exactly
and within the lowest order leading log approximation
in [14] and [17] respectively for polarized SIDIS. The
first component of these developments is the inclusion
of the contribution of the radiative tail from exclusive
processes or, simply, exclusive radiative tail. The con-
tribution represents an important part of the total RC,
but before the contribution was analyzed only for the
case of unpolarized particles [13]. Partly this is because
of limited information on the exclusive structure func-
tions for the spin-dependent part of the cross section. In
this paper we represented the exclusive structure func-
tions in the form appropriate for RC calculations in
terms of the six invariant exclusive amplitudes [18-20].
The second is the analytic representation and numeri-
cal evaluation of the QED model independent RC. The
obtained expressions could allow to obtain expressions
for the RC with the highest accuracy achievable to-
day: RC of the lowest order calculated exactly with the
highest order RC obtained within the method of the
electron structure functions [21-24]. This approach re-
quires the calculation of RC in the leading log approx-
imation with further generalization using the methods
of the electron structure functions. In turn, the leading
log expressions for the cross section require the repre-
sentation of all kinematic variables in the kinematics
of radiative processes (or in the so-called shifted kine-
matics). The explicit representation of the proton po-
larization appropriate for these expressions is the third
component of our development.

The remainder of this article is organized as follows.
The kinematics of SIDIS process, representation for
the hadronic tensor, and the structure functions used
in the literature, as well as the one-photon exchange
(Born) contribution to the SIDIS process, are discussed
in Sect. 2. In Sect. 3 the results for RC are presented fo-
cusing on novel features in calculations of RC in SIDIS.
The numerical evaluations of RC to Sivers [25] and
Collins [26] asymmetries using both exact calculation
and leading logarithmic approximation are presented



and discussed in Sect. 4. We presented the numeric il-
lustrations for 7T -electroproduction at Jlab kinematic
conditions, though the obtained results are rather gen-
eral and can be applied to other hadron leptoproduction
processes in polarized SIDIS. The Wandzura-Wilczek
model [27] for SIDIS structure functions and the pa-
rameterization of MAID2007 for the six amplitudes of
exclusive processes[18-20] were used in numeric ana-
lyzes. Discussion and conclusion remarks are presented
in the last Section 5. Technical details are presented in
three appendices.

2 Kinematics and Born contribution

The process of semi-inclusive hadron leptoproduction

1(k1,8) +nl(p,n) — U(k2) + hipn) + z(p2) (1)

(k¥ = k3 = m?, p> = M?, p7 = m3) can be described
by the following set of independent variables

¢ . _ap P

a9 - ) 9 t= q - p 27
2qp kip Pq ( )
¢h7 QS (2)

Here ¢ = k1 — ko, ¢p is the angle between the planes
(k1,k2) and (q, pn) planes, and ¢ is the angle between
(k1,k2) and the ground planes in the target rest frame
reference system (p = 0).

Also we use the following set of invariants:
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X =2ky, S, =5 X, §, =5+ X,
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Am = Q*(Q +4m?). (3)
Following the Trento conventions [28] we define the
azimuthal angle ¢, of the outgoing hadron by
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Fig. 1 Definition of azimuthal angles for semi-inclusive deep
inelastic scattering in the target rest frame [28]. p; and n; are
the transverse parts of p, and n with respect to the photon
momentum.

¢ ¢
Here the tensors ¢, and g;,, have nonzero components

ely = —¢b; and g}, = g5, in the coordinate system of
Fig. (1) and can be expressed through our variables as
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where gjy = guv + ¢uq,/Q* and for any four-vector

ay = a, +aq q,/Q*.
The quantities

A
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are the transverse components of k; o and p; with re-

spect to the virtual photon momentum, and
28, 252 —AMPV_

TV Vs

are the energy and the longitudinal component of the

three-momenta of the detected hadron.
As a result,

Q* (255, —AM?Vy) — S, (SVo — X V1)
2pev Ay A1 ’
9ehvpo
3 kluphl/prU ) (8)

DV A1

Since the initial lepton is considered to be longitu-
dinally polarized, its polarization vector has the form
[7,14]

AeS 2A.m
£= k1 — D1-
VAs

ma (7)

Phro

cos ¢, =

sin ¢h = —

To describe the properties of initial hadron polar-
ization, it is convenient to decompose the polarized



vector of the proton on the complete orthogonal ba-
sis (Xn,¥Yn,2n). In this basis, z, is chosen along the
direction of the virtual photon three-momentum q =
k; — ko, x;, lies in the plane (q,pn) along the part
of the registered hadron momentum that is transverse
to the z; axis whereas the rest axial axis is defined as
Yh = Zp XXp. In covariant form its representation reads:

1 r
eh(z) _ _ 8lw'wpqupho eh(g) _ 2M2(]u - Sxpu (10)
z A T My
with
25, (2Q* +V_)
ro—=—""""F7—"

) (11)
Vv
and has the following properties
eZ(“)eZ(b)g"” =g
eh(l))u = Epuast
As a result, the target polarized vector n can be
decomposed on the basis presented in Eq. (10)

3
n= Zmeh(i)- (13)
i=1

Here we take into account ne(®) = Mnp = 0. There-
fore, the components of the vector n reads
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where ¢, is an azimuthal angle defined in analogy to
¢n in Egs. (4), with pj, replaced by 7.

The one-photon exchange (Born) contribution to
SIDIS is presented by the Feynman graph in Fig. 2 and
has a form

(47a)?
2V AsQ4
where the phase space is parametrized as

d3ks d3pp,
(27T)32k20 (27T)32ph0
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dr? = (2r)?

Fig. 2 Feynman graph for the one-photon exchange (Born)
contribution to SIDIS scattering

Taking into account (9) the leptonic tensor is

L = STv((ky + m)a(y + m)(L 4 v

Q2
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i
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The covariant form for the hadronic tensor that was
used in [14] for RC calculation is:
9
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where n* = e*?? q,p,phs and the real nine generalized
structure functions ‘H; corresponding to a certain tensor
structure wy,,. Each generalized structure function H;
has two terms H1_5 contain unpolarized components
and terms proportional to 72 components whereas the
other structure functions include terms proportional to
71 and 7n3. Therefore, we obtain 5 spin-independent and
13 spin dependent real structure functions. In practice
another set of this structure functions suggested in [4]
is used:
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where C; = 4Mp;(Q? + 22 M?)/Q*, and r( is defined
in Eq. (11). The first and second subscripts in this set
of the structure functions refer to the polarization of
the initial lepton and proton, respectively. The third
index specifies the polarization of the virtual photon
exchanged in the reaction. The upper indices show the
sine/cosine to which the given structure function is pro-
portional at the level of the Born cross section. The
convenient parameterization in the Wandzura-Wilczek
approximation was developed for this set of the struc-
ture functions [27].

Finally, we find the Born contribution in the form
of ref. [14]
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Here
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3 Radiative corrections

As it was presented in [14] RC to SIDIS consists of two
parts, namely RC from the semi-inclusive contribution
o™ presented by Feynman graphs in Fig.3(a-d) and the
exclusive radiative tail o¢* presented in Fig.3(e,f).
Therefore, the radiatively corrected (or observed)
contribution to the SIDIS cross section reads

o = o8B 4 o™ ox. (23)

3.1 Semi-inclusive contribution

According to [14], the final expression for RC to SIDIS
from semi-inclusive process reads

; «
o = ;(6VR + 5éac + 6ilac)O-B + 0'1}; + UAMM7 (24)

where the quantities representing the vacuum polariza-
tion by lepton and hadrons (6%") and the contribution
of anomalous magnetic moment oMM are described
n [14]. The factor dy g is the result of cancellation of
the infrared divergence, and o is the infrared-free con-
tribution of the real photon radiation [14]. We present
these in the form that is more compact (e.g., the new
expression for the function Sg. Thus,
2

- M7 1
OvVR = 2(@%1[/771 — 1) logpwi;h + ES/LS/ + S(z,

my/ Dz
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Fig. 3 Feynman graphs for (a)-(d) SIDIS and (e), (f) exclu-
sive radiative tail contributions to the lowest order RC for
SIDIS scattering

1
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is the infrared free sum of the infrared divergent terms
including soft photon emission and the vertex contribu-
tion. Here

1 Vam + Q?
L, = log >
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1 X'+ /N
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and the explicit expression of the term Sy is presented
by Eq. (40) of work [14] coincide with classical defi-
nition. Recently a simpler expression of Sy was found
[29]:
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The finite part of real photon emission
e(k1,§) +n(p,n) — e(kz) + h(pn) + x(ps) +~(k), (30)

has a form
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where X%—S = 17 )2(1}—9 = ﬁlv X%—E) = ﬁQa X%—Q = ﬁ3a
ki = {37333a3737474a4a4}a
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and ¢y is an angle between (ky, ko) and (k,q) planes.
The limits of integration are
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The variables with the tilde symbol are defined as

Q*+ TR . 28y
T A

i‘:

b= /=Gl phvh = [} — 5 — 3,
_ 28.(S: — ) —2M?2(2V_ — ,LLR)
P =
M+ Xy

Ay = (S, — ) +4M?*(Q* + TR), (35)
and gfw as well as the components of the target polar-
ized vector 7); are presented in Appendix A.

The explicit expression for the quantities 0;; can be
found in Appendix B of ref. [14]. In Appendix B the

improved expression for one of them is presented and
discussed.

3.2 Exclusive radiative tail

Similarly to SIDIS process, the exclusive hadron lep-
toproduction v* +n — h + n’ with the initial polar-
ized nucleon can be described by 5 spin-independent
and 13 spin-dependent structure functions. For their
representation we use the hadronic tensor in the form
(18) with 9 generalized exclusive structure functions
that depend on three variables W2, Q2 and ¢, namely
HE® (xFer, x2er W2 Q2 t). Here, similarly to the semi-
inclusive process, x1°% = 1, x§%% = 7%, X3%% = ns®,

2ex

X620 = 15"
Using these definitions the exclusive radiative tail

can be presented as double integral over ¢y and 7 [14]:
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(36)
where m,, is the mass of undetected hadron,
W2=W? - (1+47)Rew, t=t+(u—7)Rex. (37)

and the third photonic variable is fixed by the semi-

inclusive variable z

2 2
Py — My,

1+7—p
Therefore, the components of the target polarized vec-
tor for the exclusive radiative tail 7{*, are obtained
from the respective SIDIS quantities presented in Ap-
pendix A with the replacements R — R.,.

In the present paper, we are interested in the electro-
production of pions that is described by the six invari-
ant amplitudes A;_¢ introduced in [18]. Their numeri-
cal values in the resonance region (i.e., for 0 < W2 < 4

Rey = (38)

GeVZ and 0 < Q% < 5 GeV?) are obtained from
MAID2007 [20], and the asymptotic extension in the
regions with the highest values of these quantities is
obtained using the fit from [30].

On the level of one photon exchange (Born) the ma-
trix elements for the exclusive leptoproduction can be
expressed in terms of these amplitudes [19] as:
(ZF“A) (p), (39)

M* = U (p,)TEU (p)
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7
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Il = —ivs (d¢" + Q%) . (40)

As a result, the exclusive hadronic tensor reads:

Tr [Fg;(p + M)A+ )l (p, + M)}
8ra

where ', = voI'“ivo, and I'%, is defined by Eq. (40).

The result of calculation of the traces in (41) can be
presented in the form of the standard hadronic tensor
(18) with the coefficients at the tensor structures repre-
senting the generalized exclusive structure functions of
exclusive processes that contribute to the cross section
of exclusive radiative tail (36):
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where Q = 1/Q? and

. 2(Q*(M? —m2 + Sy +t) + S, V)

These structure functions H$* depends on amplitudes
A; and the components of the polarization vector n but
these dependencies are hidden in H, ™" and explicitly
presented in Appendix C. These expressions show that
we have 5 unpolarized and 13 spin dependent structure
functions exactly as in the case of SIDIS.

(43)

4 Numerical results

Numerical analysis is focused on the evaluation of RC
to the Sivers A?}r}wh_%) and Collins A?}I¥¢h+¢”) asym-
metries for electroproduction of 7% in the kinematics
of JLab experiments. These asymmetries are defined
through the ratio of two-fold integrals:

27 2
Z/dth doy sin(on £+ ¢p)o
sin(pnton,
AUT(d) o) = - 2(7)7 2 (44)
/dd)h/dd)na
0 0

Recall that the exclusive radiative tail (36) will be
calculated using the six complex amplitudes whose nu-
merical values are obtained from the MAID2007 website
[20].

For semi-inclusive structure functions, the Wand-
zura-Wilezek type approximation [27] is used, which
is based on the set of structure functions that was
introduced in [4] and discussed in Sect. 2. Only 15
of them are nonzero (Fyy = 0, inf,d)h = 0 and
)

At the one photon exchange (Born) level, the Sivers
and Collins asymmetries in Wandzura-Wilczek model

(44) are expressed as the ratios of F(S'ji;f?r(b") and
FISJI;((than) to FUU7T:
sin (¢, —dy)
Asin(d)hfd),,) _ F;]];,Th '
ur - F
UuU,T
in(¢n+
gementen) _ Ly Fyyp o) 4
ur - 2 . ( 5)
l-y+y*/2 Fyur

Here F, E,i;f?"_%) is Sivers [25] structure functions which
describes the distribution of unpolarized quarks inside a
transversely polarized proton, Ff]i;(d’”%) is Collins [26]
fragmentation function, which decodes the fundamental
correlation between the transverse spin of a fragmenting
quark and the transverse momentum of the produced
final hadron, and Fyy,r is the structure function due
to transverse polarization of the virtual photon.

We evaluated RC for Sivers and Collins asymme-
tries both exactly and in the lowest order leading log
approximation. p?-dependence of these asymmetries is
presented in Fig. 4 under the JLab kinematic conditions
with the electron beam energy Epeqm = 10.65 GeV. The
black, blue, and red curves in Fig. 4 correspond to the
Born, Born with RC excluding the contribution of the
exclusive radiative tail, and total contributions, respec-
tively. Solid and dashed lines correspond to exact RC
and RC in the leading logarithmic approximation. The
results show that the total radiative corrections have
a rather complicated p; dependence due to the con-
tribution of the exclusive radiative tail. This is espe-
cially pronounced for the region of small z. The latter
is expected because the kinematic room for the radi-
ated photon is higher for small z (3). Collins asymme-
try is more sensitive to this effect compared to Sivers
asymmetry. We note that the contribution of the ex-
clusive radiative tail to the Collins asymmetry can ex-
ceed the asymmetry calculated in the Born approxi-
mation. The region of larger z and large p; is close to
the pion threshold. In this region p2 is close to th
and therefore the first term of (25) can diverge. This
divergence cancels by adding the effect of multiple soft
photon emissions through the exponentiation procedure
suggested by Yennie, Frautschi and Suura [31] and fur-
ther developed and applied for this types of divergence
by Shumeiko [32]. Our general conclusion form these
studies is that the results show rather good agreement
between the exact and leading-order corrections in the
kinematics of JLab experiments.

We also tested the magnitude of the effects on
the Sivers and Collins asymmetries generated by other
structure functions when we exclude the contribution
from the leading SIDIS structure functions of the re-
spective asymmetries, i. e., F;;%"_%) for Sivers and

F[sji;((bh T91) for Collins asymmetries. At the Born level

these asymmetries (45) are exactly zero, so it is interest-
ing to evaluate the effect generated by other structure
functions due to RC. Numerical estimation shows that
these effects can reach 3% for the Sivers asymmetries
and 10% for the Collins asymmetries. These effects in-
crease with decreasing Q?. We also detected a strong
model dependence on these effects. For example, if we
modify the structure function Fg;% = Ff,i;(?"_%) to
make it more appropriate for HERMES measurements
[33], the effect will be greater: about 20% for the Sivers
and 60% Collins asymmetries.
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Fig. 4 pi-dependence of Sivers (left) and Collins (right) asymmetries for 71 electroproduction. Black, blue, and red lines
correspond to Born, Born neglecting the exclusive contributions, and total contributions to these asymmetries, respectively.
Solid (dashed) lines correspond to exact RC (RC in the leading logarithmic approximation).

5 Discussion and Conclusion tions depending on the type of hadronic process: semi-
inclusive or pure exclusive channel. The second process

The complete RC of the lowest order includes the con- provides a contribution to the Born SIDIS cross section

tributions of the loops and real photon emission. The
effects of loops are combined to the cross section of soft
photon emission resulting in the infrared divergence free
correction that is factorized at the Born cross section.
Radiation of the hard photon results in two contribu-

because the unobserved final state (the hard photon
and the exclusive hadron) can be kinematically similar
to the final unobserved hadron state in the SIDIS pro-
cess. Both SIDIS and exclusive processes are described
by 5 spin-independent and 13 spin-dependent structure
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functions, and limited knowledge on these functions
(especially in the case of scattering of polarized par-
ticles) represent the main obstacle in implementation
of RC to SIDIS cross sections and spin asymmetries
in actual experimental data analysis. In this paper we
firstly demonstrated how the complete RC can be calcu-
lated in kinematical points of the modern experiments
at JLab. We presented the minimal but complete set of
analytic expressions and developed an implementation
scheme for these 18 structure functions. For the case of
exclusive scattering this was done for the first time.

All contributions to the RC including the exclusive
radiative tail were calculated both exactly and in the
lowest order leading-log approximation that generalize
previous calculations in [17]. The analytic formulae are
presented in a convenient form when the polarization
vector of the proton is explicitly expressed in terms of
the kinematic variables of the base SIDIS process and
integration variables. The explicit representation of the
proton polarization vector in the kinematics of radiative
processes is one important component of this develop-
ment. These results are presented in Appendix A for the
shifted kinematic both for exact RC and RC in leading
log approximation. For example, we demonstrated that
in the leading log approximation the shifted compo-
nents of the polarization vector can be expressed as a
composition of three simple rotations. Another innova-
tion in our analysis is the specific implementations of
the exclusive structure functions originally provided by
the six complex invariant amplitudes A;_¢ introduced
in [18]. The numerical value for these amplitudes in
the resonance region (i.e., for 0 < W2 < 4 GeV? and
0 < Q% < 5 GeV?) are obtained from MAID2007 [20],
and the asymptotic extension in the regions with the
highest values of these quantities is obtained using the
fit from [30]. The matrix elements for the exclusive lep-
toproduction (39,40) allowed us to construct the ex-
clusive hadronic tensor in the form (41) and extract
necessary structure functions. However for the repre-
sentation of the exclusive structure functions in Ap-
pendix C we use Chew-Goldberger-Low-Nambu ampli-
tudes [34] F;. The Wandzura-Wilczek model [27] for
SIDIS structure functions is used, and the set of these
for SIDIS structure functions and MAID-based exclu-
sive structure functions [18-20] represents the minimal
set of structure functions for data analyses in experi-
ments on SIDIS measurements.

The obtained results are rather general and can
be applied to any hadron leptoproduction in polar-
ized SIDIS. However, as a numerical illustration we re-
stricted our consideration only to 7T -electroproduction
at Jlab kinematic conditions when the unpolarized elec-
tron is scattering off the transversely polarized proton.

The numerical analysis was focused on the Sivers [25]
and Collins [26] asymmetries, as both asymmetries are
key observables in studies of the 3D structure of the
nucleon at JLab and future Electron Ion Collider. Com-
parison of the exact and leading-order corrections shows
good agreement. RC increases with increasing p; of the
detected hadron. The exclusive radiative tail gives a
large contribution for small z and this effect requires
further investigation, including quantifying the contri-
butions of possible resonances and model dependence.
Similarly to the unpolarized case, the exclusive radia-
tive tail gives the maximum contribution in the region
of high p;, that is, when p; goes to the maximum value
allowed by kinematics of the SIDIS process. This re-
gion is close to the pion threshold, so further steps in
the analysis of RC in this region should include the ex-
ponentiation procedure to account for multiple-photon
emission [31,32]. The effect of non-leading structure
functions was found to be quite moderate (which does
not exceed 3% for the Sivers and 10% for Collins asym-
metries). These estimates are sensitive to the model
for structure functions. Studies of model dependence
should be an important step in further improving RC
calculations in SIDIS experiments.

Both exact and leading log formulae were presented
in this paper. There are several reasons why we need to
consider the approximation. Experimentalists continue
using approximate formulae in their analyses and some-
times these approximations are not so justified, e.g.,
the soft photon approximation. That is why we usually
present the set of exact formulae and reasonably ap-
proximated expressions in the leading log approxima-
tion. However there are at least two theoretical reasons
why we need to use leading log approximation in our
paper. First, these formulae represent an intermediate
step for the application of the methods of the electron
structure functions and the task “to represent formu-
lae for QED RC with maximal accuracy available for
now”. Currently, this task is resolved by representing
the lowest order RC exactly (in the meaning we dis-
cussed above) and the effects of higher order RC using
the methods of the electron structure functions. Second,
the leading log formulae provide certain factorization,
i.e., the RC cross section is expressed in terms of the
Born cross section, and this essentially extends its area
of applicability in both experimental and pure theoret-
ical studies. For example, the form is identical for un-
polarized and polarized parts of RC. Experimentalists
appreciate this form because it helps them to under-
stand why RC in certain regions is too large or small.
This is especially important for SIDIS measurements
where the cross section is five-fold and each kinemat-



ical variable produces their unique and often rapidly
changing contribution to the Born cross section.

The points that have to be addressed in further
studies also include: i) implementation of other models
for structure functions for both semi-inclusive and ex-
clusive processes, ii) implementation of RC procedure
of experimental data that is important to reduce the
bias in extracted asymmetries; this bias is proportional
to the difference between the values of asymmetries (fi-
nally extracted and used in RC codes) in a given bin, iii)
finalize the analytic and numeric comparison of leptonic
RC calculated by other groups, e.g., the calculation of
Liu et al. [16], iv) discuss and decide whether and how
non leptonic corrections (including box diagrams and
emission by hadrons) should be calculated and imple-
mented, v) implement approaches for approximate or
even exact calculations of the higher order corrections
with paying a specific attention to the region close to
the pion threshold, vi) estimation of high order effects
using electron structure function approach [21-24], and
vii) continue developing Monte Carlo generators, e.g.,
implement the exclusive radiative tail to currently avail-
able generators, e.g., [15].
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Appendix A: Components of 7;

The components of the target polarized vector 7; that
contributes to Eq. (31) have to be defined in respect of
vector ¢ — k instead of ¢ as in Eq. (14) in a following
way:

v ~t
- - - 7 ppm g
il = 7 cos(¢y — o) = —
23
_ _pantpis
Dt

pi(2Mkn + n3v/Ay)
Ny 7

Ph’
e

_ 2600450 P (07 — KT)1°

eV Ay
_ VATl = 269550 PRE T
5V Ay ’

_ 2M(g—k)n _ VAvns +2Mkn

n3 =
vV Ay vV Ay

1
= —|m3pr +Mmpt —
Pt

il = iy sin(dy — dn) =

M = /=gt n” = /1 —73. (A1)
Here the tensors ¢}, and g}, are modified as:
§t _ 25;1,1/p0pp(q0 - ka)
V(8. = R HAME(Q? - TR)
gt — é't é‘tp — gl _ 4(Q2 + TR)ﬁleﬁlJ; .
py T ppTY o (Sy — R)2+4M?%(Q? + TR)
(A.2)

For the integration of the expression (31) over the real
photon variables we need to express the terms contain-
ing k in terms of scalar quantities:

R
T oMy

_2M277t \/(Tmaw - T) (T - Tmin) COS(¢7} - ¢k):| >

{(2M27 — Su)ms

R
EPO”Ylspppgk’yné = 2\/E |:(Sa: - 2TM2)772

+2M? (ngpy sin(dn — ¢x) — mepr sin(dy — )
X \/(7me — 7)1 — Tmm):l .

In the leading logarithmic approximation, the ex-
pressions (A.1l) split into two parts corresponding to
collinear radiation along the initial or final electron
(historically known as s- and p-peaks). Both contribu-
tions come from the region where ¢, is equal to zero,
and values of R and 7 specific for s- and p-peak: i)
T—7s=-0Q%/S and R = (1 — z1)S for s-peak and ii)
T =7, =Q%/X and R = (25" —1)X for p-peak. Here
dimensionless variables z; and 29 reflect the remain-
ing degree of freedom, i.e. photon energy, as follows
k — ks, where

(A.3)

ks = (1 — 21)k1, ke = (251 — 1)ko. (A.4)
Thus
Hov o S,p
s, s s, s P9
m P =n; cos( hp - ¢n’p) =8
Dt 5,p
1
= N3pL + NPt
Dt s,p
—Di s,p(cos ¢77 sin es,pnt — COs 08,])7]3):| s
MtV S,p
s, Sp . /s, s bp gLy
ny? = n P sin(gyt — opt) = ———H~
Dts
1 . .
= (cos s pne — sin b, , sin @pn3)pe
Pt s,p
+sin 6 p sin @,nmz] )
2Mq, .
ny? = _2E el _ g 05 pn3 — oS ¢y sin b, . (A.5)

)\Ys
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Here q; = z1k1 — k2, ¢ = k1 — 2’2_1]62, 05, are the
angles between three-momenta q and g, in the target
rest frame reference system,

Yo e
58117 _ QEMupUp qS)p
pr T N
>\Y s,p
g#;P —¢ 7175 7PP

(A.6)

and the others quantities from (A.5) are presented as

. 252 ) )
Pt sp = \/W AM?2 T Prsp T M
_ 28:(218 = X) —2MP(z1 Vi = V)
Pis = 2M /X5 ’
) 28,(S — 25 ' X) — 2M2(Vy — 25 ' Vs)
lp = )
2M /N,
$ = (218 — X)? + 42, M?Q?,
N = (8 — 251 X)? + 425 ' M2Q?,

cosh. — L Ds (218 — X)S; +2(21 + 1) M?Q?
* lallas VA ’

sinfs = /1 — cos 62

2(1 — 21) M \/Q2(SX — M2Q?)

NYDX ’

cosf, = L I _ (S =2y ' X)Se +2(1 + 2 )M?Q?
" lallay| NoYo ’
sinﬁp:m
22 — 1)MA/O2(SX — M20Q?2
_ 2z —1)M/Q2(S Q) A

AyA@
Here we take into account that

N T VOHSX —MPQP)

- Tmin) =

MS ’
Q*(SX — M?Q?)
\/(Tmax - Tp)(Tp - Tmin) = \/ MX 5
Vv _ VAV
la| = oM |ds,p| = oM (A.8)

Notice that the presented decomposition can be ex-
pressed through Born components 7;_3 (14) as a result

of the three rotations
s,p

M , ‘ m
" | = A Ay Ag, | 2 (A.9)
S,
M3 P 3
The first rotation around g
cosgp —singy, 0
Ay, = | singp, cos¢p 0 (A.10)
0 0 1

turns the basis from the hadronic plane to leptonic
planes, as depicted in Fig. 1.

The second transformation in the leptonic plane

cos 0, p 0 sinf,,
ApP = 0 1 0 (A11)
—sinf,, 0 cosfs,

change the direction of the axis z from q to qs p.
At last rotation the basis turns to the true hadronic
plane

cosgy?  singp? 0
AP = | —singy?  cosgp” 0 (A.12)
0 0 1
whose changes were induced by real photon emission.
Here
$,p kllungft’l? o Pt COS gs,p COoSs ¢h + sin gs,p
cos (bh CESP - ’
t Ptsp Dt s,p
. $,p klll‘phg 5 pt Sin ¢h
sin ¢;" = s )
t pt s,p
. Q?(SX — M2Q?
kP =/ —Kl'kY gk = \/ 5P ) (A.13)
Y
As a result we obtained that
Z Afj’p% (A.14)
where A*P = AJVAPP Ay, and
1
APt = [(1 — cos? ¢y, sin? 05.)p
Dt S,p
+sin 6,y cos O p, cos qﬁhpl} )
Al = [cos b sin ¢y, sin? 0 ,p;
Dt s,p
— sin ¢y, cos 0, p, sin QS,ppl] ,
sp  €cospcosl, ,psinbs ,p; + sin? Os pp1
Ay = ’
Dt 5,p
A5P sin ¢p, sin 6, pp;
21 = )
Dt s,p
s cos 05 pp; + cos ¢y, sin O, pp:
22 — )
Dt s,p
A5P sin ¢y, sin 0, pp:
23 = )
Dt s,p
AP = cos ¢y, sin 6°P,
AP = —sin ¢p, sin 0P,
AP = cos6°P. (A.15)

It is easy to show by direct analytical comparison
that Eqs. (A.5) and (A.14) are identical.



13

Appendix B: Improved expression for 62,

The quantities §;; incoming into Eq. (31) are appeared
as a result of convolution of the leptonic radiative ten-
sor presented by Eq. (25) of [14] with the hadronic
structures LD;W Generally, such a convolution includes
the square of the leptonic propagators that is propor-
tional to the square of the lepton mass. However, as
presented in Appendix B of [14], only the quantity 6%
does not obey this rule. This situation occurs because
of a specific form of the polarized part of the leptonic
tensor we used to obtain Eq. (26) of [14]:

2m2F,. — 2(Q? + 2m?2)F, F,
LZIV%:M)‘@H(m 2+ (Q+m)d_7'd>

R? R

Fy+ F:
Xk1akap + (T(d;m)

—2m2F22 - (Q2 + 4m2)F21)> kaklg}&?wjaﬁ

b (@ + 4m?) Fy

kY Fy — (k* + K F
4o27d (R2+ 1) Qlayaﬂwkakmkh
k¥ Fy — (kY + kY) F:
—pt27d <R2+ ) 2L BTk ke gk | . (B.16)
After applying an identity
guyaaﬂ’yé — gﬂaguﬁ'yé _’_guﬂgay'yé +gu'y€aﬂl/5
+gu56PM (B.17)
we can find that
. o was | [ 2mPFay —2(Q% 4+ 2m2)Fy
L = dice" ﬁ[( 7z
F, 2 L 4m>)Fy — 2m?F
—Td>k‘1ak:2ﬁ+ <(Q +4m )R2d m=Fao

TFd+F1+ ’TFd—F1+
+42R kaklﬁ + 721%

2 | 4m?)Fy — 2m?F,
O m)Rj m 21)%@]. (B.18)

Therefore after convolution of the improved leptonic
tensor (B.18) with w},, the quantity 695 has an equiva-
lent form

AeS
0% = [ pa(T((27M? — S,)(Q* + 4m?)
A1)s

+27(M?Q? — SX))Fy — S,Q*Fi1 +2)\,)

k
+ 5 (P (S, (X V1 = SVR)

+(282 —AM2V_)(Q?* + 4m?))F,
+(SPSI(ZQ2 + Vo) = AV Pyl (B.19)

that does not contain the square of the leptonic propa-
gators Fhy and Fog.

Appendix C: Exclusive structure functions.

The most compact expression for the exclusive struc-
ture functions H¢y can be obtained through the so-
called Chew-Goldberger-Low-Nambu amplitudes [34]
F; in the following way:

427 W2

h=w—nas
1
= W{Al + (W - M)A,
+Q2AG +V_(As — Ay)
W—M ’
B 427 W2 P
f2 = G ) a2
1
= m |:—A1 + (W+M)A4
Q%A +V_(Az — A4)}
W+ M ’
B 8v2r W3 x
= W sy ?
1
= 2\/%{A3—A4+(W—M)A2
Q2(A2—2As)}
2W+ M) |’
_ 8/ 2mrs W3 F
P W= a7+ — ) — )
1
Q*(Az — 245)
- 2(W - M) }
B 427 W2 7
R R B
1
= i {(WQ +m3 —m2)(Q*(Ay — 245)
+2(M +W)((W — M)Ag + Az — Ay))
+V_((M? + Q* — W?)(245 — 345)
+AW (Ay — 2W Ay — A3)) — (M? 4+ Q% — W?)?
+4Q*W?) Ay + 2r1 (W — M) (Ay — Ag) + Al)} ,
fo = V2mra W2 Fe

(W2 — M? — Q?)\/ary
_ m Ay Ay — 2r9( Ay + (W + M) Ag)
+(W2 +mi —m?)(2Q%As +2(W — M)As
+2M Ay + (2M? — 2W? — Q%) Ay)

+2(M(M? + Q* — W?) — W(M? —m2 + 1)) Ay
+V_(2(W? — M? — Q) A5 — 4W A3
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+(3M? + 5W?2 + 3Q%)As) |, (C.20)

where
ri=(W+M)?>+Q% ro =W —-M)>*+Q
rg = (W + mu)2 — m%, rg=(W — mu)2 — mi, (C.21)
Taking into account that each f, has real and imag-

inary parts, i.e. representation f, = fr + if! where
fI* € R we can construct the following combination

faa = (1) + (F2)%,
o = fofy + fofy
w =Ty = Ity
for a,b=1—-6 and a < b.

As a result the exclusive structure functions in or-
thogonal basis read:

(C.22)

cx ex 1L 3 4
Hyg + Hzy = w2 [2Q2W2<7,1f55 + mfGG)
T
+— (W2 = M)Ay fl, — 4Q* W fZ;)
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2120 i i
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with
rs = W2(M? +mj +m2 — Q* — 2t)
+(M? 4+ Q?*)(m7 —m?2) — W™ (C.24)
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