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Abstract The lowest order radiative corrections to the

cross section and asymmetries measured in experiments

on semi-inclusive deep inelastic scattering of polarized

particles were calculated. Both exact and leading log

expressions were presented and discussed for the total

correction that include the contributions from the pro-

cesses of i) real photon emission with semi-inclusive pro-

cesses, ii) loop diagrams, and iii) real photon emission

with exclusive processes. Radiative corrections to the

Sivers and Collins asymmetries in π+ electroproduc-

tion were studied numerically within the kinematical

conditions of modern experimental environments at Jef-

ferson Laboratory (JLab). The Wandzura-Wilczek ap-

proximation for the semi-inclusive structure functions

and MAID2007 parameterization for the six amplitudes

of exclusive processes were used in numeric analyses.

The results show that i) radiative effects can generate

a correction comparable to the size of Sivers and Collins

asymmetries at the Born level, ii) there is good agree-

ment between the exact and leading-order corrections,

iii) external functions (that is, other than the Sivers

and Collins functions in the respective asymmetries)

can generate a contribution to the radiative correction

up to 20%, and iv) there exists a strong dependence of

the radiative correction on the models for semi-inclusive

and exclusive structure functions.

1 Introduction

Modern achievements in theoretical physics as well

as improvement of experimental techniques allow re-
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searchers to access the spin structure of the nucleon en-

coded in transverse momentum-dependent parton dis-

tribution functions by studying polarized semi-inclusive

deep-inelastic scattering (SIDIS). The usual interpreta-

tion of the nucleon dynamics in high-energy interactions

that is often limited to a simple one-dimensional picture

of a fast moving nucleon has to be replaced by a truly

3-dimensional study of the nucleon structure [1].

The main task of data analysis in lepton nucleon

scattering is to extract the basic contribution to the

cross section that contains only one photon exchange

process between lepton and hadron legs. However, this

process is accompanied by other processes known as ra-

diative corrections (RC) that cannot be distinguished

from the basic process by experimental methods. These

processes are related to the contributions of the addi-

tional virtual particles and real photon emission, and

therefore, they are of the next order with respect to the

QED fine structure constant α ≈ 1/137 and expected to

be essentially suppressed due to its smallness. At Jeffer-

son Lab three halls are involved in studies of SIDIS [2]

including i) the HMS and Super HMS at Hall C, ii)

the BigBite and Super BigBite, as well as, the SoLID

detector at Hall A, and iii) CLAS12 at Hall-B with sev-

eral experiments already approved to study in details

the modulations of the cross section in SIDIS, involv-

ing azimuthal angles of hadrons (ϕh) and nucleon spin

(ϕη)
1 for different hadron types, targets, and polariza-

tions in a broad kinematic range. Measurements of all

kind of structure functions [3,4] defined by correspond-

ing azimuthal modulations containing cosϕh terms, like

Sivers (F
sin(ϕh−ϕη)
UT ) and Collins (F

sin(ϕh+ϕη)
UT ), as well

1Note that due to specifics of our calculations we use the
notation ϕη for the azimuthal angles of nucleon spin instead
of generally accepted ϕS
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as Kotzinian-Multers (F sin 2ϕh

UL ), Cahn (F cosϕh

UU ), and

Boer-Mulders (F cos 2ϕh

UU ) are expected to be most sensi-

tive to RC due to large cosines generated by the BH pro-

cess due to shift of the direction of the virtual photon

direction. The newly achieved accuracies in the JLab

experiments require renewed attention to RC calcula-

tions and their implementation in data analysis soft-

ware. In this approach, RC have to be calculated within

a theoretical model and extracted from the experimen-

tal data.

Usually with some exceptions (see, e.g. [5,6]) RC

to lepton-nucleon scattering is calculated in model-

independent way [7,8], when the calculation does not

require additional assumptions on hadronic interac-

tions. These RC include the radiation of an unobserved

real photon from the lepton line, vacuum polarization,

and lepton-photon vertex corrections. These effects can

be calculated without any assumptions on hadron inter-

actions and represent the so-called model-independent

RC. They give the largest contributions to the total

RC and can be calculated exactly or in the leading-log

approximation if the accuracy provided by this approx-

imation is sufficient. By “exactly” calculated RC we

understand the analytic expressions obtained without

any simplifying assumptions with opportunities for nu-

meric estimates with any predetermined accuracy. The

structure of dependence of the RC cross section on the

electron mass is σRC = A log Q2

m2+B+O(m2/Q2), where

A and B do not depend on the electron mass m. If only

A is kept in the formulae for RC, this is the leading log

approximation. The leading log approximation can be

sufficient in certain cases because the factor logQ2/m2

is of the order of 15 for JLab energies. The model inde-

pendent RC include the effects of emissions of real and

virtual photons from the lepton line only. Uncertain-

ties of the model independent RC can come only from

fits and data used for structure functions, whereas the

model dependent corrections (i. e. box-type diagrams,

emission by hadrons) require the additional information

about hadron interactions and therefore contain addi-

tional purely theoretical uncertainties, which are hard

to control.

Radiative corrections to the three-fold cross section

over the Bjorken variables x, y and the fraction of

the virtual photon energy transferred to the detected

hadron z were estimated in [9,10] and implemented in

the SIRAD patch of the FORTRAN code POLRAD

[11]. The RC to the five-fold differential cross section

for unpolarized particles with two additional variables

characterized by the detected hadron (that is, the trans-

verse momentum pt and the azimuthal angle between

the lepton scattering and hadron production planes,

ϕh) was calculated in [12]. These calculations did not

contain the radiative tail from exclusive reactions as a

separate contribution involving the exclusive structure

functions. The first estimate of the exclusive radiative

tail contribution was made for the unpolarized SIDIS in

[13] and showed rather large effects in the region near

the pion threshold. The explicit expressions for RC to

SIDIS with initial polarized particles were calculated

in [14]. Based on the results obtained in this article, a

Monte Carlo generator has been developed for the simu-

lation of the hard-photon emission excluding the exclu-

sive radiative tail [15]. Recently RC to SIDIS in leading

logarithmic approximation was estimated by Liu et al.

in [16] and our group in [17].

Here, we generalize the expressions obtained exactly

and within the lowest order leading log approximation

in [14] and [17] respectively for polarized SIDIS. The

first component of these developments is the inclusion

of the contribution of the radiative tail from exclusive

processes or, simply, exclusive radiative tail. The con-

tribution represents an important part of the total RC,

but before the contribution was analyzed only for the

case of unpolarized particles [13]. Partly this is because

of limited information on the exclusive structure func-

tions for the spin-dependent part of the cross section. In

this paper we represented the exclusive structure func-

tions in the form appropriate for RC calculations in

terms of the six invariant exclusive amplitudes [18–20].

The second is the analytic representation and numeri-

cal evaluation of the QED model independent RC. The

obtained expressions could allow to obtain expressions

for the RC with the highest accuracy achievable to-

day: RC of the lowest order calculated exactly with the

highest order RC obtained within the method of the

electron structure functions [21–24]. This approach re-

quires the calculation of RC in the leading log approx-

imation with further generalization using the methods

of the electron structure functions. In turn, the leading

log expressions for the cross section require the repre-

sentation of all kinematic variables in the kinematics

of radiative processes (or in the so-called shifted kine-

matics). The explicit representation of the proton po-

larization appropriate for these expressions is the third

component of our development.

The remainder of this article is organized as follows.

The kinematics of SIDIS process, representation for

the hadronic tensor, and the structure functions used

in the literature, as well as the one-photon exchange

(Born) contribution to the SIDIS process, are discussed

in Sect. 2. In Sect. 3 the results for RC are presented fo-

cusing on novel features in calculations of RC in SIDIS.

The numerical evaluations of RC to Sivers [25] and

Collins [26] asymmetries using both exact calculation

and leading logarithmic approximation are presented
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and discussed in Sect. 4. We presented the numeric il-

lustrations for π+-electroproduction at Jlab kinematic

conditions, though the obtained results are rather gen-

eral and can be applied to other hadron leptoproduction

processes in polarized SIDIS. The Wandzura-Wilczek

model [27] for SIDIS structure functions and the pa-

rameterization of MAID2007 for the six amplitudes of

exclusive processes[18–20] were used in numeric ana-

lyzes. Discussion and conclusion remarks are presented

in the last Section 5. Technical details are presented in

three appendices.

2 Kinematics and Born contribution

The process of semi-inclusive hadron leptoproduction

l(k1, ξ) + n(p, η) −→ l(k2) + h(ph) + x(px) (1)

(k21 = k22 = m2, p2 = M2, p2h = m2
h) can be described

by the following set of independent variables

x = − q2

2qp
, y =

qp

k1p
, z =

php

pq
, t = (q − ph)

2,

ϕh, ϕ. (2)

Here q = k1 − k2, ϕh is the angle between the planes

(k1,k2) and (q,ph) planes, and ϕ is the angle between

(k1,k2) and the ground planes in the target rest frame

reference system (p = 0).

Also we use the following set of invariants:

S = 2pk1, Q
2 = −q2, Q2

m = Q2 + 2m2,

X = 2pk2, Sx = S −X, Sp = S +X,

V1,2 = 2k1,2ph, V+ =
1

2
(V1 + V2),

V− =
1

2
(V1 − V2) =

1

2
(m2

h −Q2 − t),

S′ = 2k1(p+ q − ph) = S −Q2 − V1,

X ′ = 2k2(p+ q − ph) = X +Q2 − V2,

W 2 = (p+ q)2 = Sx +M2 −Q2,

p2x = (p+ q − ph)
2 = M2 + t+ (1− z)Sx.

λS = S2 − 4M2m2, λY = S2
x + 4M2Q2,

λ1 = Q2(SX −M2Q2)−m2λY ,

λ′
S = S′2 − 4m2p2x, λ

′
X = X ′2 − 4m2p2x.

λm = Q2(Q2 + 4m2). (3)

Following the Trento conventions [28] we define the

azimuthal angle ϕh of the outgoing hadron by

cosϕh = −
kµ1 p

ν
hg

t
µν

ktpt
= −

kµ2 p
ν
hg

t
µν

ktpt
,

sinϕh = −
kµ1 p

ν
hε

t
µν

ktpt
= −

kµ2 p
ν
hε

t
µν

ktpt
. (4)

y

z

x

hadron plane

lepton plane

0

?

ηtk1
k 2

ph

pt

ϕη

ϕh

Fig. 1 Definition of azimuthal angles for semi-inclusive deep
inelastic scattering in the target rest frame [28]. pt and ηt are
the transverse parts of ph and η with respect to the photon
momentum.

Here the tensors εtµν and gtµν have nonzero components

εt12 = −εt21 and gt11 = gt22 in the coordinate system of

Fig. (1) and can be expressed through our variables as

εtµν =
2√
λY

εµνρσp
ρqσ,

gtµν = εtµρε
ρ
tν = g⊥µν − 4Q2

λY
p⊥µ p

⊥
ν , (5)

where g⊥µν = gµν + qµqν/Q
2 and for any four-vector

a⊥µ = aµ + aq qµ/Q
2.

The quantities

kt =
√
−gtµνk

µ
1 k

ν
1 =

√
−gtµνk

µ
2 k

ν
2 =

√
λ1

λY
,

pt =
√

−gtµνphµphν =
√
p2h0 − p2l −m2

h (6)

are the transverse components of k1,2 and ph with re-

spect to the virtual photon momentum, and

ph0 =
zSx

2M
, pl =

zS2
x − 4M2V−

2M
√
λY

(7)

are the energy and the longitudinal component of the

three-momenta of the detected hadron.

As a result,

cosϕh =
Q2(zSxSp − 4M2V+)− Sx(SV2 −XV1)

2pt
√
λY λ1

,

sinϕh = −2εµνρσk1µphνpρqσ

pt
√
λ1

. (8)

Since the initial lepton is considered to be longitu-

dinally polarized, its polarization vector has the form

[7,14]

ξ =
λeS

m
√
λS

k1 −
2λem√

λS

p1. (9)

To describe the properties of initial hadron polar-

ization, it is convenient to decompose the polarized
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vector of the proton on the complete orthogonal ba-

sis (xh,yh, zh). In this basis, zh is chosen along the

direction of the virtual photon three-momentum q =

k1 − k2, xh lies in the plane (q,ph) along the part

of the registered hadron momentum that is transverse

to the zh axis whereas the rest axial axis is defined as

yh = zh×xh. In covariant form its representation reads:

eh(0)µ =
pµ
M

, eh(1)µ =
1

pt

[
p⊥hµ − r0√

λY

p⊥µ

]
,

eh(2)µ = −2
εµνρσpνqρphσ

pt
√
λY

, eh(3)µ =
2M2qµ − Sxpµ

M
√
λY

, (10)

with

r0 =
2Sx(zQ

2 + V−)√
λY

, (11)

and has the following properties

eh(a)µ eh(b)ν gµν = gab,

(eh(3) × eh(1))µ = ερµσδe
h(0)
ρ eh(3)σ e

h(1)
δ = eh(2)µ . (12)

As a result, the target polarized vector η can be

decomposed on the basis presented in Eq. (10)

η =

3∑
i=1

ηie
h(i). (13)

Here we take into account ηeh(0) = Mηp ≡ 0. There-

fore, the components of the vector η reads

η1 = −ηeh(1) = ηt cos(ϕη − ϕh) = −
pµhη

νgtµν
pt

= −phη + plη3
pt

,

η2 = −ηeh(2) = ηt sin(ϕη − ϕh) = −
pµhη

νεtµν
pt

=
2ερσγδp

ρpσhq
γηδ

pt
√
λY

,

η3 = −ηeh(3) = −2Mqη√
λY

,

ηt =
√
−gtµνη

µην =
√
1− η23 , (14)

where ϕη is an azimuthal angle defined in analogy to

ϕh in Eqs. (4), with ph replaced by η.

The one-photon exchange (Born) contribution to

SIDIS is presented by the Feynman graph in Fig. 2 and

has a form

dσB =
(4πα)2

2
√
λSQ4

WµνL
µν
B dΓB , (15)

where the phase space is parametrized as

dΓB = (2π)4
d3k2

(2π)32k20

d3ph
(2π)32ph0

=
1

4(2π)2
SSxdxdydϕ

2
√
λS

Sxdzdp
2
tdϕh

4Mpl
. (16)

k
1

k
2

p

p
h

X
Fig. 2 Feynman graph for the one-photon exchange (Born)
contribution to SIDIS scattering

Taking into account (9) the leptonic tensor is

Lµν
B =

1

2
Tr[(/k2 +m)γµ(/k1 +m)(1 + γ5/ξ)γν ]

= 2[kµ1 k
ν
2 + kµ2 k

ν
1 − Q2

2
gµν

+
iλe√
λS

εµνρσ(Sk2ρk1σ + 2m2qρpσ)]. (17)

The covariant form for the hadronic tensor that was

used in [14] for RC calculation is:

Wµν =

9∑
i=1

wi
µνHi = −g⊥µνH1 + p⊥µ p

⊥
ν H2

+p⊥hµp
⊥
hνH3 + (p⊥µ p

⊥
hν + p⊥hµp

⊥
ν )H4

+i(p⊥µ p
⊥
hν − p⊥hµp

⊥
ν )H5 + (p⊥µ nν + nµp

⊥
ν )H6

+i(p⊥µ nν − nµp
⊥
ν )H7 + (p⊥hµnν + nµp

⊥
hν)H8

+i(p⊥hµnν − nµp
⊥
hν)H9, (18)

where nµ = εµνρσqνpρphσ and the real nine generalized

structure functionsHi corresponding to a certain tensor

structure wi
µν . Each generalized structure function Hi

has two terms: H1−5 contain unpolarized components

and terms proportional to η2 components whereas the

other structure functions include terms proportional to

η1 and η3. Therefore, we obtain 5 spin-independent and

13 spin dependent real structure functions. In practice

another set of this structure functions suggested in [4]

is used:

H1 = C1[FUU,T − F cos 2ϕh

UU + η2(F
sin(3ϕh−ϕη)
UT

−F
sin(ϕh+ϕη)
UT − F

sin(ϕh−ϕη)
UT,T )],

H2 =
2C1

λY p2t

[
(r20 − 2Q2p2t )F

cos 2ϕh

UU

+2ptQ(r0F
cosϕh

UU + ptQ(FUU,T + FUU,L))

+η2((r
2
0 − 2Q2p2t )(F

sin(ϕh+ϕη)
UT − F

sin(3ϕh−ϕη)
UT )

+2ptQ(r0(F
sinϕη

UT − F
sin(2ϕh−ϕη)
UT )

−ptQ(F
sin(ϕh−ϕη)
UT,L + F

sin(ϕh−ϕη)
UT,T )))

]
,
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H3 =
2C1

p2t

[
F cos 2ϕh

UU + η2(F
sin(ϕh+ϕη)
UT − F

sin(3ϕh−ϕη)
UT )

]
,

H4 = − 2C1√
λY p2t

[
r0F

cos 2ϕh

UU + ptQF cosϕh

UU

+η2(ptQ(F
sinϕη

UT − F
sin(2ϕh−ϕη)
UT )

+r0(F
sin(ϕh+ϕη)
UT − F

sin(3ϕh−ϕη)
UT ))

]
,

H5 = − 2C1Q√
λY pt

[
F sinϕh

LU + η2(F
cos(2ϕh−ϕη)
LT − F

cosϕη

LT )

]
,

H6 =
2C1

λY p2t

[
η1(r0(F

sin(3ϕh−ϕη)
UT + F

sin(ϕh+ϕη)
UT )

+2ptQ(F
sinϕη

UT + F
sin(2ϕh−ϕη)
UT ))

+η3(r0F
sin 2ϕh

UL + 2ptQF sinϕh

UL )

]
,

H7 = − 2C1

λY p2t

[
η1(2ptQ(F

cos(2ϕh−ϕη)
LT + F

cosϕη

LT )

+r0F
cos(ϕh−ϕη)
LT ) + η3(r0FLL + 2ptQF cosϕh

LL )

]

H8 = − 2C1√
λY p2t

[
η1(F

sin(ϕh+ϕη)
UT + F

sin(3ϕh−ϕη)
UT )

+η3F
sin 2ϕh

UL

]
,

H9 =
2C1√
λY p2t

[
η1F

cos(ϕh−ϕη)
LT + η3FLL

]
, (19)

where C1 = 4Mpl(Q
2 + 2xM2)/Q4, and r0 is defined

in Eq. (11). The first and second subscripts in this set

of the structure functions refer to the polarization of

the initial lepton and proton, respectively. The third

index specifies the polarization of the virtual photon

exchanged in the reaction. The upper indices show the

sine/cosine to which the given structure function is pro-

portional at the level of the Born cross section. The

convenient parameterization in the Wandzura-Wilczek

approximation was developed for this set of the struc-

ture functions [27].

Finally, we find the Born contribution in the form

of ref. [14]

σB ≡ dσB

dxdydzdp2tdϕhdϕ

=
α2SS2

x

8MQ4plλS

9∑
i=1

θBi Hi(χ
1
i , χ

2
i , Q

2, x, z, pt), (20)

where χ1
1−5 = 1, χ1

6−9 = η1, χ
2
1−5 = η2, χ

2
6−9 = η3,

θBi = Lµνwi
µν/2,

θB1 = Q2 − 2m2,

θB2 = (SX −M2Q2)/2,

θB3 = (V1V2 −m2
hQ

2)/2,

θB4 = (SV2 +XV1 − zQ2Sx)/2,

θB5 =
2λeSε⊥ph√

λS

,

θB6 = −Spε⊥ph,

θB7 =
λeS

4
√
λS

[λY V+ − SpSx(zQ
2 + V−)],

θB8 = −2V+ε⊥ph,

θB9 =
λe

2
√
λS

[S(Q2(zSxV+ −m2
hSp) + V−(SV2 −XV1))

+2m2(4M2V 2
− + λY m

2
h − zS2

x(zQ
2 + 2V−))].

(21)

Here

ε⊥ph = εµνρσph νpνk1ρqσ = −1

2
pt
√

λ1 sinϕh. (22)

3 Radiative corrections

As it was presented in [14] RC to SIDIS consists of two

parts, namely RC from the semi-inclusive contribution

σin presented by Feynman graphs in Fig.3(a-d) and the

exclusive radiative tail σex
r presented in Fig.3(e,f).

Therefore, the radiatively corrected (or observed)

contribution to the SIDIS cross section reads

σobs = σB + σin + σex
R . (23)

3.1 Semi-inclusive contribution

According to [14], the final expression for RC to SIDIS

from semi-inclusive process reads

σin =
α

π
(δV R + δlvac + δhvac)σ

B + σF
R + σAMM, (24)

where the quantities representing the vacuum polariza-

tion by lepton and hadrons (δl,hvac) and the contribution

of anomalous magnetic moment σAMM are described

in [14]. The factor δV R is the result of cancellation of

the infrared divergence, and σF
R is the infrared-free con-

tribution of the real photon radiation [14]. We present

these in the form that is more compact (e.g., the new

expression for the function Sϕ. Thus,

δV R = 2(Q2
mLm − 1) log

p2x −M2
th

m
√
p2x

+
1

2
S′LS′ + Sϕ
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k

k
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k
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p

p
h
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2

p

p
h

X
a) b)

k
1

k
2

p

p
h

X

k
1

k
2

p

p
h

X
c) d)

k

k
1

k
2

p

p
h

n

k

k
1

k
2

p

p
h

n
e) f)

Fig. 3 Feynman graphs for (a)-(d) SIDIS and (e), (f) exclu-
sive radiative tail contributions to the lowest order RC for
SIDIS scattering

−2 +
1

2
X ′LX′ +

(
3

2
Q2 + 4m2

)
Lm

− Q2
m√
λm

(
1

2
λmL2

m + 2Li2

[
2
√
λm

Q2 +
√
λm

)
− π2

2

]
(25)

is the infrared free sum of the infrared divergent terms

including soft photon emission and the vertex contribu-

tion. Here

Lm =
1√
λm

log

√
λm +Q2

√
λm −Q2

,

LS′ =
1√
λ′
S

log
S′ +

√
λ′
S

S′ −
√
λ′
S

,

LX′ =
1√
λ′
X

log
X ′ +

√
λ′
X

X ′ −
√
λ′
X

(26)

and the explicit expression of the term Sϕ is presented

by Eq. (40) of work [14] coincide with classical defi-

nition. Recently a simpler expression of Sϕ was found

[29]:

Sϕ =
Q2

m√
λm

(
λ′
S

4
L2
S′ −

λ′
X

4
L2
X′

+Li2

[
1− ρ

(S′ +
√
λ′
S)

]
+ Li2

[
1−

(S′ +
√
λ′
S)ρ

4m2p2x

]

−Li2

[
1−

Q2(X ′ +
√
λ′
X)ρ

p2x(Q
2 +

√
λm)2

]
−Li2

[
1− 4m2Q2ρ

(X ′ +
√
λ′
X)(Q2 +

√
λm)2

])
, (27)

where

Li2(x) = −
x∫

0

log |1− y|
y

dy (28)

is Spence’s dilogarithm and

ρ =
(Q2

m +
√
λm)S′ − 2m2X ′
√
λm

. (29)

The finite part of real photon emission

e(k1, ξ) + n(p, η) → e(k2) + h(ph) + x(px) + γ(k), (30)

has a form

σF
R = − α3SS2

x

64π2MplλS

√
λY

τmax∫
τmin

dτ

2π∫
0

dϕk

Rmax∫
0

dR

×
9∑

i=1

[
ki∑
j=1

Hi(χ̃
1
i , χ̃

2
i , Q

2 + τR, x̃, z̃, p̃t)θijR
j−2

(Q2 + τR)2

−θi1
R

Hi(χ
1
i , χ

2
i , Q

2, x, z, pt)

Q4

]
, (31)

where χ̃1
1−5 = 1, χ̃1

6−9 = η̃1, χ̃
2
1−5 = η̃2, χ̃

2
6−9 = η̃3,

ki = {3, 3, 3, 3, 3, 4, 4, 4, 4},

R = 2kp, τ = kq/kp (32)

and ϕk is an angle between (k1,k2) and (k,q) planes.

The limits of integration are

Rmax =
p2x −M2

th

1 + τ − µ
, τmax/min =

Sx ±
√
λY

2M2
, (33)

and the variable µ is defined as

µ =
kph
kp

=
ph0
M

+
pl(2τM

2 − Sx)

M
√
λY

−2Mpt cos(ϕh − ϕk)

√
(τmax − τ)(τ − τmin)

λY
. (34)
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The variables with the tilde symbol are defined as

x̃ =
Q2 + τR

Sx −R
, z̃ =

zSx

Sx −R
,

p̃t =
√
−g̃tµνp

µ
hp

ν
h =

√
p2h0 − p̃2l −m2

h,

p̃l =
zSx(Sx −R)− 2M2(2V− − µR)

2M
√
λ̃Y

,

λ̃Y = (Sx −R)2 + 4M2(Q2 + τR), (35)

and g̃tµν as well as the components of the target polar-

ized vector η̃i are presented in Appendix A.

The explicit expression for the quantities θij can be

found in Appendix B of ref. [14]. In Appendix B the

improved expression for one of them is presented and

discussed.

3.2 Exclusive radiative tail

Similarly to SIDIS process, the exclusive hadron lep-

toproduction γ∗ + n → h + n′ with the initial polar-

ized nucleon can be described by 5 spin-independent

and 13 spin-dependent structure functions. For their

representation we use the hadronic tensor in the form

(18) with 9 generalized exclusive structure functions

that depend on three variables W 2, Q2 and t, namely

Hex
i (χ1ex

i , χ2ex
i ,W 2, Q2, t). Here, similarly to the semi-

inclusive process, χ1ex
1−5 = 1, χ1ex

6−9 = ηex1 , χ2ex
1−5 = ηex2 ,

χ2ex
6−9 = ηex3
Using these definitions the exclusive radiative tail

can be presented as double integral over ϕk and τ [14]:

σex
R = − α3SS2

x

29π5MplλS

√
λY

τmax∫
τmin

dτ

2π∫
0

dϕk

×
9∑

i=1

ki∑
j=1

Hex
i (χ̃1ex

i , χ̃2ex
i , Q2 +Rerτ, W̃

2, t̃)θijR
j−2
ex

(1 + τ − µ)Q̃4
,

(36)

where mu is the mass of undetected hadron,

W̃ 2 = W 2 − (1 + τ)Rex, t̃ = t+ (µ− τ)Rex. (37)

and the third photonic variable is fixed by the semi-

inclusive variable z

Rex =
p2x −m2

u

1 + τ − µ
. (38)

Therefore, the components of the target polarized vec-

tor for the exclusive radiative tail η̃ex1−3 are obtained

from the respective SIDIS quantities presented in Ap-

pendix A with the replacements R → Rex.

In the present paper, we are interested in the electro-

production of pions that is described by the six invari-

ant amplitudes A1−6 introduced in [18]. Their numeri-

cal values in the resonance region (i.e., for 0 < W 2 < 4

GeV2 and 0 < Q2 < 5 GeV2) are obtained from

MAID2007 [20], and the asymptotic extension in the

regions with the highest values of these quantities is

obtained using the fit from [30].

On the level of one photon exchange (Born) the ma-

trix elements for the exclusive leptoproduction can be

expressed in terms of these amplitudes [19] as:

Mµ = Ū(pu)Γ
µ
exU(p) = Ū(pu)

(
6∑

i=1

Γµ
i Ai

)
U(p), (39)

where

Γµ
1 =

i

2
γ5
(
/qγ

µ − γµ
/q
)
,

Γµ
2 = iγ5

[(
2V− +Q2

)
pµ − Sx

(
pµh − 1

2
qµ
)]

,

Γµ
3 = iγ5

(
/qp

µ
h − V−γ

µ
)
,

Γµ
4 = iγ5

(
2/qp

µ − Sxγ
µ
)
− 2MΓµ

1 ,

Γµ
5 = iγ5

(
qµV− + pµhQ

2
)
,

Γµ
6 = −iγ5

(
/qq

µ + γµQ2
)
. (40)

As a result, the exclusive hadronic tensor reads:

Wµν
ex = −

Tr
[
Γµ
ex(/p+M)(1 + γ5/η)Γ̄

ν
ex(/pu +M)

]
8πα

, (41)

where Γ̄ ν
ex = γ0Γ

ν†
ex γ0, and Γ ν

ex is defined by Eq. (40).

The result of calculation of the traces in (41) can be

presented in the form of the standard hadronic tensor

(18) with the coefficients at the tensor structures repre-

senting the generalized exclusive structure functions of

exclusive processes that contribute to the cross section

of exclusive radiative tail (36):

Hex
1 = Hex

22 ,

Hex
2 =

1

λY

[
4Q2(Hex

00 +Hex
22 )−

4Qrex
pt

Hex r
01

+r2ex
Hex

11 −Hex
22

p2t

]
,

Hex
3 =

Hex
11 −Hex

22

p2t
,

Hex
4 =

1√
λY

[
rex

Hex
22 −Hex

11

p2t
+

2Q

pt
Hex r

01

]
,

Hex
5 =

2Q

pt
√
λY

Hex i
01 ,

Hex
6 =

2

ptλY

[
2QHex r

02 − rex
pt

Hex r
12

]
,

Hex
7 =

2

ptλY

[
2QHex i

02 − rex
pt

Hex i
12

]
,

Hex
8 =

2

p2t
√
λY

Hex r
12 ,

Hex
9 =

2

p2t
√
λY

Hex r
12 , (42)
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where Q =
√

Q2 and

rex =
2(Q2(M2 −m2

u + Sx + t) + SxV−)√
λY

. (43)

These structure functions Hex
i depends on amplitudes

Ai and the components of the polarization vector η but

these dependencies are hidden in Hex r,i
ab and explicitly

presented in Appendix C. These expressions show that

we have 5 unpolarized and 13 spin dependent structure

functions exactly as in the case of SIDIS.

4 Numerical results

Numerical analysis is focused on the evaluation of RC

to the Sivers A
sin(ϕh−ϕη)
UT and Collins A

sin(ϕh+ϕη)
UT asym-

metries for electroproduction of π+ in the kinematics

of JLab experiments. These asymmetries are defined

through the ratio of two-fold integrals:

A
sin(ϕh±ϕη)
UT =

2

2π∫
0

dϕh

2π∫
0

dϕη sin(ϕh ± ϕη)σ

2π∫
0

dϕh

2π∫
0

dϕησ

. (44)

Recall that the exclusive radiative tail (36) will be

calculated using the six complex amplitudes whose nu-

merical values are obtained from the MAID2007 website

[20].

For semi-inclusive structure functions, the Wand-

zura-Wilczek type approximation [27] is used, which

is based on the set of structure functions that was

introduced in [4] and discussed in Sect. 2. Only 15

of them are nonzero (FUU,L = 0, F sinϕh

LU = 0 and

F
sin(ϕh−ϕη)
UT,L = 0).

At the one photon exchange (Born) level, the Sivers

and Collins asymmetries in Wandzura-Wilczek model

(44) are expressed as the ratios of F
sin(ϕh−ϕη)
UT,T and

F
sin(ϕh+ϕη)
UT to FUU,T :

A
sin(ϕh−ϕη)
UT =

F
sin(ϕh−ϕη)
UT,T

FUU,T
,

A
sin(ϕh+ϕη)
UT =

1− y

1− y + y2/2

F
sin(ϕh+ϕη)
UT

FUU,T
. (45)

Here F
sin(ϕh−ϕη)
UT,T is Sivers [25] structure functions which

describes the distribution of unpolarized quarks inside a

transversely polarized proton, F
sin(ϕh+ϕη)
UT is Collins [26]

fragmentation function, which decodes the fundamental

correlation between the transverse spin of a fragmenting

quark and the transverse momentum of the produced

final hadron, and FUU,T is the structure function due

to transverse polarization of the virtual photon.

We evaluated RC for Sivers and Collins asymme-

tries both exactly and in the lowest order leading log

approximation. p2t -dependence of these asymmetries is

presented in Fig. 4 under the JLab kinematic conditions

with the electron beam energy Ebeam = 10.65 GeV. The

black, blue, and red curves in Fig. 4 correspond to the

Born, Born with RC excluding the contribution of the

exclusive radiative tail, and total contributions, respec-

tively. Solid and dashed lines correspond to exact RC

and RC in the leading logarithmic approximation. The

results show that the total radiative corrections have

a rather complicated pt dependence due to the con-

tribution of the exclusive radiative tail. This is espe-

cially pronounced for the region of small z. The latter

is expected because the kinematic room for the radi-

ated photon is higher for small z (3). Collins asymme-

try is more sensitive to this effect compared to Sivers

asymmetry. We note that the contribution of the ex-

clusive radiative tail to the Collins asymmetry can ex-

ceed the asymmetry calculated in the Born approxi-

mation. The region of larger z and large pt is close to

the pion threshold. In this region p2x is close to M2
th

and therefore the first term of (25) can diverge. This

divergence cancels by adding the effect of multiple soft

photon emissions through the exponentiation procedure

suggested by Yennie, Frautschi and Suura [31] and fur-

ther developed and applied for this types of divergence

by Shumeiko [32]. Our general conclusion form these

studies is that the results show rather good agreement

between the exact and leading-order corrections in the

kinematics of JLab experiments.

We also tested the magnitude of the effects on

the Sivers and Collins asymmetries generated by other

structure functions when we exclude the contribution

from the leading SIDIS structure functions of the re-

spective asymmetries, i. e., F
sin(ϕh−ϕη)
UT,T for Sivers and

F
sin(ϕh+ϕη)
UT for Collins asymmetries. At the Born level

these asymmetries (45) are exactly zero, so it is interest-

ing to evaluate the effect generated by other structure

functions due to RC. Numerical estimation shows that

these effects can reach 3% for the Sivers asymmetries

and 10% for the Collins asymmetries. These effects in-

crease with decreasing Q2. We also detected a strong

model dependence on these effects. For example, if we

modify the structure function F
sinϕη

UT = F
sin(ϕh−ϕη)
UT,T to

make it more appropriate for HERMES measurements

[33], the effect will be greater: about 20% for the Sivers

and 60% Collins asymmetries.
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Fig. 4 pt-dependence of Sivers (left) and Collins (right) asymmetries for π+ electroproduction. Black, blue, and red lines
correspond to Born, Born neglecting the exclusive contributions, and total contributions to these asymmetries, respectively.
Solid (dashed) lines correspond to exact RC (RC in the leading logarithmic approximation).

5 Discussion and Conclusion

The complete RC of the lowest order includes the con-

tributions of the loops and real photon emission. The

effects of loops are combined to the cross section of soft

photon emission resulting in the infrared divergence free

correction that is factorized at the Born cross section.

Radiation of the hard photon results in two contribu-

tions depending on the type of hadronic process: semi-

inclusive or pure exclusive channel. The second process

provides a contribution to the Born SIDIS cross section

because the unobserved final state (the hard photon

and the exclusive hadron) can be kinematically similar

to the final unobserved hadron state in the SIDIS pro-

cess. Both SIDIS and exclusive processes are described

by 5 spin-independent and 13 spin-dependent structure
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functions, and limited knowledge on these functions

(especially in the case of scattering of polarized par-

ticles) represent the main obstacle in implementation

of RC to SIDIS cross sections and spin asymmetries

in actual experimental data analysis. In this paper we

firstly demonstrated how the complete RC can be calcu-

lated in kinematical points of the modern experiments

at JLab. We presented the minimal but complete set of

analytic expressions and developed an implementation

scheme for these 18 structure functions. For the case of

exclusive scattering this was done for the first time.

All contributions to the RC including the exclusive

radiative tail were calculated both exactly and in the

lowest order leading-log approximation that generalize

previous calculations in [17]. The analytic formulae are

presented in a convenient form when the polarization

vector of the proton is explicitly expressed in terms of

the kinematic variables of the base SIDIS process and

integration variables. The explicit representation of the

proton polarization vector in the kinematics of radiative

processes is one important component of this develop-

ment. These results are presented in Appendix A for the

shifted kinematic both for exact RC and RC in leading

log approximation. For example, we demonstrated that

in the leading log approximation the shifted compo-

nents of the polarization vector can be expressed as a

composition of three simple rotations. Another innova-

tion in our analysis is the specific implementations of

the exclusive structure functions originally provided by

the six complex invariant amplitudes A1−6 introduced

in [18]. The numerical value for these amplitudes in

the resonance region (i.e., for 0 < W 2 < 4 GeV2 and

0 < Q2 < 5 GeV2) are obtained from MAID2007 [20],

and the asymptotic extension in the regions with the

highest values of these quantities is obtained using the

fit from [30]. The matrix elements for the exclusive lep-

toproduction (39,40) allowed us to construct the ex-

clusive hadronic tensor in the form (41) and extract

necessary structure functions. However for the repre-

sentation of the exclusive structure functions in Ap-

pendix C we use Chew-Goldberger-Low-Nambu ampli-

tudes [34] Fi. The Wandzura-Wilczek model [27] for

SIDIS structure functions is used, and the set of these

for SIDIS structure functions and MAID-based exclu-

sive structure functions [18–20] represents the minimal

set of structure functions for data analyses in experi-

ments on SIDIS measurements.

The obtained results are rather general and can

be applied to any hadron leptoproduction in polar-

ized SIDIS. However, as a numerical illustration we re-

stricted our consideration only to π+-electroproduction

at Jlab kinematic conditions when the unpolarized elec-

tron is scattering off the transversely polarized proton.

The numerical analysis was focused on the Sivers [25]

and Collins [26] asymmetries, as both asymmetries are

key observables in studies of the 3D structure of the

nucleon at JLab and future Electron Ion Collider. Com-

parison of the exact and leading-order corrections shows

good agreement. RC increases with increasing pt of the

detected hadron. The exclusive radiative tail gives a

large contribution for small z and this effect requires

further investigation, including quantifying the contri-

butions of possible resonances and model dependence.

Similarly to the unpolarized case, the exclusive radia-

tive tail gives the maximum contribution in the region

of high pt, that is, when pt goes to the maximum value

allowed by kinematics of the SIDIS process. This re-

gion is close to the pion threshold, so further steps in

the analysis of RC in this region should include the ex-

ponentiation procedure to account for multiple-photon

emission [31,32]. The effect of non-leading structure

functions was found to be quite moderate (which does

not exceed 3% for the Sivers and 10% for Collins asym-

metries). These estimates are sensitive to the model

for structure functions. Studies of model dependence

should be an important step in further improving RC

calculations in SIDIS experiments.

Both exact and leading log formulae were presented

in this paper. There are several reasons why we need to

consider the approximation. Experimentalists continue

using approximate formulae in their analyses and some-

times these approximations are not so justified, e.g.,

the soft photon approximation. That is why we usually

present the set of exact formulae and reasonably ap-

proximated expressions in the leading log approxima-
tion. However there are at least two theoretical reasons

why we need to use leading log approximation in our

paper. First, these formulae represent an intermediate

step for the application of the methods of the electron

structure functions and the task “to represent formu-

lae for QED RC with maximal accuracy available for

now”. Currently, this task is resolved by representing

the lowest order RC exactly (in the meaning we dis-

cussed above) and the effects of higher order RC using

the methods of the electron structure functions. Second,

the leading log formulae provide certain factorization,

i.e., the RC cross section is expressed in terms of the

Born cross section, and this essentially extends its area

of applicability in both experimental and pure theoret-

ical studies. For example, the form is identical for un-

polarized and polarized parts of RC. Experimentalists

appreciate this form because it helps them to under-

stand why RC in certain regions is too large or small.

This is especially important for SIDIS measurements

where the cross section is five-fold and each kinemat-
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ical variable produces their unique and often rapidly

changing contribution to the Born cross section.

The points that have to be addressed in further

studies also include: i) implementation of other models

for structure functions for both semi-inclusive and ex-

clusive processes, ii) implementation of RC procedure

of experimental data that is important to reduce the

bias in extracted asymmetries; this bias is proportional

to the difference between the values of asymmetries (fi-

nally extracted and used in RC codes) in a given bin, iii)

finalize the analytic and numeric comparison of leptonic

RC calculated by other groups, e.g., the calculation of

Liu et al. [16], iv) discuss and decide whether and how

non leptonic corrections (including box diagrams and

emission by hadrons) should be calculated and imple-

mented, v) implement approaches for approximate or

even exact calculations of the higher order corrections

with paying a specific attention to the region close to

the pion threshold, vi) estimation of high order effects

using electron structure function approach [21–24], and

vii) continue developing Monte Carlo generators, e.g.,

implement the exclusive radiative tail to currently avail-

able generators, e.g., [15].
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Appendix A: Components of η̃i

The components of the target polarized vector η̃i that

contributes to Eq. (31) have to be defined in respect of

vector q − k instead of q as in Eq. (14) in a following

way:

η̃1 = η̃t cos(ϕ̃η − ϕ̃h) = −
pµhη

ν g̃tµν
p̃t

= −phη + p̃lη̃3
p̃t

=
1

p̃t

[
η3pl + η1pt −

p̃l(2Mkη + η3
√
λY )√

λ̃Y

]
,

η̃2 = η̃t sin(ϕ̃η − ϕ̃h) = −
pµhη

ν ε̃tµν
p̃t

=
2ερσγδp

ρpσh(q
γ − kγ)ηδ

p̃t
√
λ̃Y

=
pt
√
λY η2 − 2ερσγδp

ρpσhk
γηδ

p̃t
√

λ̃Y

,

η̃3 = −2M(q − k)η√
λ̃Y

=

√
λY η3 + 2Mkη√

λ̃Y

,

η̃t =
√
−g̃tµνη

µην =
√
1− η̃23 . (A.1)

Here the tensors εtµν and gtµν are modified as:

ε̃tµν =
2εµνρσp

ρ(qσ − kσ)√
(Sx −R)2 + 4M2(Q2 + τR)

,

g̃tµν = ε̃tµρε̃
tρ
ν = g̃⊥µν −

4(Q2 + τR)p̃⊥µ p̃
⊥
ν

(Sx −R)2 + 4M2(Q2 + τR)
.

(A.2)

For the integration of the expression (31) over the real

photon variables we need to express the terms contain-

ing k in terms of scalar quantities:

kη =
R

2M
√
λY

[
(2M2τ − Sx)η3

−2M2ηt
√

(τmax − τ)(τ − τmin) cos(ϕη − ϕk)

]
,

ερσγδp
ρpσhk

γηδ =
R

2
√
λY

[
(Sx − 2τM2)η2

+2M2(η3pt sin(ϕh − ϕk)− ηtpl sin(ϕη − ϕk))

×
√

(τmax − τ)(τ − τmin)

]
. (A.3)

In the leading logarithmic approximation, the ex-

pressions (A.1) split into two parts corresponding to

collinear radiation along the initial or final electron

(historically known as s- and p-peaks). Both contribu-

tions come from the region where ϕk is equal to zero,

and values of R and τ specific for s- and p-peak: i)

τ → τs ≡ −Q2/S and R = (1− z1)S for s-peak and ii)

τ → τp ≡ Q2/X and R = (z−1
2 − 1)X for p-peak. Here

dimensionless variables z1 and z2 reflect the remain-

ing degree of freedom, i.e. photon energy, as follows
k → ks,p where

ks = (1− z1)k1, ks = (z−1
2 − 1)k2. (A.4)

Thus

ηs,p1 = ηst cos(ϕ
s,p
h − ϕs,p

η ) = −
pµhη

νgs,pµν

pt s,p

=
1

pt s,p

[
η3pl + η1pt

−pl s,p(cosϕη sin θs,pηt − cos θs,pη3)

]
,

ηs,p2 = ηs,pt sin(ϕs,p
h − ϕs,p

η ) = −
pµhη

νεs,pµν

pts

=
1

pt s,p

[
(cos θs,pη2 − sin θs,p sinϕhη3)pt

+sin θs,p sinϕηηtpl

]
,

ηs,p3 = −2Mqs,pη√
λY s

= cos θs,pη3 − cosϕη sin θs,pηt. (A.5)
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Here qs = z1k1 − k2, qp = k1 − z−1
2 k2, θs,p are the

angles between three-momenta q and qs,p in the target

rest frame reference system,

εs,pµν =
2εµνρσp

ρqσs,p√
λY s,p

,

gs,pµν = εs,pµρ ε
s,p ρ
ν , (A.6)

and the others quantities from (A.5) are presented as

pt s,p =
√
−pµhp

ν
hg

s,p
µν =

√
z2S2

x

4M2
− p2l s,p −m2

h,

pls =
zSx(z1S −X)− 2M2(z1V1 − V2)

2M
√
λs
Y

,

plp =
zSx(S − z−1

2 X)− 2M2(V1 − z−1
2 V2)

2M
√
λp
Y

,

λs
Y = (z1S −X)2 + 4z1M

2Q2,

λp
Y = (S − z−1

2 X)2 + 4z−1
2 M2Q2,

cos θs =
q · qs

|q||qs|
=

(z1S −X)Sx + 2(z1 + 1)M2Q2√
λY λs

Y

,

sin θs =
√
1− cos θ2s

=
2(1− z1)M

√
Q2(SX −M2Q2)√
λY λs

Y

,

cos θp =
q · qp

|q||qp|
=

(S − z−1
2 X)Sx + 2(1 + z−1

2 )M2Q2√
λY λ

p
Y

,

sin θp =
√
1− cos θ2p

=
2(z−1

2 − 1)M
√
Q2(SX −M2Q2)√
λY λ

p
Y

. (A.7)

Here we take into account that√
(τmax − τs)(τs − τmin) =

√
Q2(SX −M2Q2)

MS
,√

(τmax − τp)(τp − τmin) =

√
Q2(SX −M2Q2)

MX
,

|q| =
√
λY

2M
, |qs,p| =

√
λs,p
Y

2M
. (A.8)

Notice that the presented decomposition can be ex-

pressed through Born components η1−3 (14) as a result

of the three rotations ηs,p1

ηs,p2

ηs,p3

 = As,p
ϕh

As,p
θ Aϕh

 η1
η2
η3

 (A.9)

The first rotation around q

Aϕh
=

 cosϕh − sinϕh 0

sinϕh cosϕh 0

0 0 1

 (A.10)

turns the basis from the hadronic plane to leptonic

planes, as depicted in Fig. 1.

The second transformation in the leptonic plane

As,p
θ =

 cos θs,p 0 sin θs,p
0 1 0

− sin θs,p 0 cos θs,p

 (A.11)

change the direction of the axis z from q to qs,p.

At last rotation the basis turns to the true hadronic

plane

As,p
ϕh

=

 cosϕs,p
h sinϕs,p

h 0

− sinϕs,p
h cosϕs,p

h 0

0 0 1

 (A.12)

whose changes were induced by real photon emission.

Here

cosϕs,p
h = −

kµ1 p
ν
hg

s,p
µν

ks,pt pt s,p
=

pt cos θs,p cosϕh + pl sin θs,p
pt s,p

,

sinϕs,p
h = −

kµ1 p
ν
hε

s,p
µν

ks,pt pt s,p
=

pt sinϕh

pst
,

ks,pt =
√
−kµ1 k

ν
1g

s,p
µν =

√
Q2(SX −M2Q2)

λs,p
Y

. (A.13)

As a result we obtained that

ηs,pi =

3∑
j=1

As,p
ij ηj , (A.14)

where As,p = As,p
ϕh

As,p
θ Aϕh

and

As,p
11 =

1

pt s,p

[
(1− cos2 ϕh sin

2 θs,p)pt

+sin θs,p cos θs,p cosϕhpl

]
,

As,p
12 =

1

pt s,p

[
cosϕh sinϕh sin

2 θs,ppt

− sinϕh cos θs,p sin θs,ppl

]
,

As,p
13 =

cosϕh cos θs,p sin θs,ppt + sin2 θs,ppl
pt s,p

,

As,p
21 =

sinϕh sin θs,ppl
pt s,p

,

As,p
22 =

cos θs,ppl + cosϕh sin θs,ppt
pt s,p

,

As,p
23 =

sinϕh sin θs,ppt
pt s,p

,

As,p
31 = cosϕh sin θ

s,p,

As,p
31 = − sinϕh sin θ

s,p,

As,p
31 = cos θs,p. (A.15)

It is easy to show by direct analytical comparison

that Eqs. (A.5) and (A.14) are identical.
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Appendix B: Improved expression for θ0
53

The quantities θij incoming into Eq. (31) are appeared

as a result of convolution of the leptonic radiative ten-

sor presented by Eq. (25) of [14] with the hadronic

structures w̃i
µν . Generally, such a convolution includes

the square of the leptonic propagators that is propor-

tional to the square of the lepton mass. However, as

presented in Appendix B of [14], only the quantity θ̂053
does not obey this rule. This situation occurs because

of a specific form of the polarized part of the leptonic

tensor we used to obtain Eq. (26) of [14]:

Lµν
pR = 4iλe

[{(
2m2F2+ − 2(Q2 + 2m2)Fd

R2
− τFd

R

)

×k1αk2β +

(
τ(Fd + F21)

R
+

1

R2
((Q2 + 4m2)Fd

−2m2F22 − (Q2 + 4m2)F21)

)
kαk1β

}
εµναβ

+2
kµ2Fd − (kµ + kµ1 )F21

R2
εναβγkαk1βk2γ

−2
kν2Fd − (kν + kν1 )F21

R2
εµαβγkαk1βk2γ

]
. (B.16)

After applying an identity

gµνε
αβγδ = gµαε

νβγδ + gµβε
ανγδ + gµγε

αβνδ

+gµδε
αβγν (B.17)

we can find that

Lµν∗
pR = 4iλeε

µναβ

[(
2m2F2+ − 2(Q2 + 2m2)Fd

R2

−τFd

R

)
k1αk2β +

(
(Q2 + 4m2)Fd − 2m2F22

R2

+
τFd + F1+

2R

)
kαk1β +

(
τFd − F1+

2R

+
(Q2 + 4m2)Fd − 2m2F21

R2

)
kαk2β

]
. (B.18)

Therefore after convolution of the improved leptonic

tensor (B.18) with w̃5
µν the quantity θ053 has an equiva-

lent form

θ053 =
λeS

λ1λS
[ε⊥ph(τ((2τM

2 − Sx)(Q
2 + 4m2)

+2τ(M2Q2 − SX))Fd − SpQ
2F1+ + 2λq)

+
ε⊥k

R
(τ(Sp(XV1 − SV2)

+(zS2
x − 4M2V−)(Q

2 + 4m2))Fd

+(SpSx(zQ
2 + V−)− λqV+)F1+)], (B.19)

that does not contain the square of the leptonic propa-

gators F22 and F21.

Appendix C: Exclusive structure functions.

The most compact expression for the exclusive struc-

ture functions Hex
ab can be obtained through the so-

called Chew-Goldberger-Low-Nambu amplitudes [34]

Fi in the following way:

f1 =
4
√
2πW 2

(W −M)
√
αr1r3

F1

=
1

2
√
2πα

[
A1 + (W −M)A4

+
Q2A6 + V−(A3 −A4)

W −M

]
,

f2 =
4
√
2πW 2

(W +M)
√
αr2r4

F2

=
1

2
√
2πα

[
−A1 + (W +M)A4

+
Q2A6 + V−(A3 −A4)

W +M

]
,

f3 =
8
√
2πW 3

(W +M)r3
√
αr2r4

F3

=
1

2
√
2πα

[
A3 −A4 + (W −M)A2

+
Q2(A2 − 2A5)

2(W +M)

]
,

f4 =
8
√
2πr3W

3

(W −M)((W 2 +m2
h −m2

u)
2 − 4W 2m2

h)
√
αr1

F4

=
1

2
√
2πα

[
A3 −A4 − (W +M)A2

−Q2(A2 − 2A5)

2(W −M)

]
f5 =

4
√
2πr1W

2

(W 2 −M2 −Q2)
√
αr3

F5

=
1

8W
√
2πα

[
(W 2 +m2

h −m2
u)(Q

2(A2 − 2A5)

+2(M +W )((W −M)A2 +A3 −A4))

+V−((M
2 +Q2 −W 2)(2A5 − 3A2)

+4W (A4 − 2WA2 −A3))− ((M2 +Q2 −W 2)2

+4Q2W 2)A2 + 2r1((W −M)(A4 −A6) +A1)

]
,

f6 =

√
2πr2W

2

(W 2 −M2 −Q2)
√
αr4

F6

=
1

8W
√
2πα

[
λY A2 − 2r2(A1 + (W +M)A6)

+(W 2 +m2
h −m2

u)(2Q
2A5 + 2(W −M)A3

+2MA4 + (2M2 − 2W 2 −Q2)A2)

+2(M(M2 +Q2 −W 2)−W (M2 −m2
u + t))A4

+V−(2(W
2 −M2 −Q2)A5 − 4WA3
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+(3M2 + 5W 2 + 3Q2)A2)

]
, (C.20)

where

r1 = (W +M)2 +Q2, r2 = (W −M)2 +Q2,

r3 = (W +mu)
2 −m2

h, r4 = (W −mu)
2 −m2

h, (C.21)

Taking into account that each fa has real and imag-

inary parts, i.e. representation fa = fr
a + if i

a where

fr,i
a ∈ R we can construct the following combination

faa = (fr
a)

2 + (f i
a)

2,

fr
ab = fr

af
r
b + f i

af
i
b

f i
ab = f i

af
r
b − fr

af
i
b (C.22)

for a, b = 1− 6 and a < b.

As a result the exclusive structure functions in or-

thogonal basis read:

Hex
00 +Hex

22 =
1

W 2

[
2Q2W 2

(
r3
r1

f55 +
r4
r2

f66

)
+

r5
r1r2

((W 2 −M2)λY f
r
12 − 4Q2W 2fr

56)

+
1

2
((W −M)2r1r3f11 + (W +M)2r2r4f22)

]
+

2η2pt

W
√
λY

[(W 2 −M2)λY f
i
12 + 4Q2W 2f i

56],

Hex
11 −Hex

22

p2t
=

1

2W 2

[
(W +M)2r2(4Wfr

23 + r3f33)

+2(M2 −W 2)r5f
r
34 + (W −M)2r1(4Wfr

14 + r4f44)

]
+

η2

W 2pt
√
λY

[
r5((W −M)2r1f

i
14 − (M +W )2r2f

i
23)

+(W 2 −M2)λY (r4f
i
24 + 2W (p2tf

i
34 − 2f i

12)

−r3f
i
13)

]
,

Hex
22 =

1

2W 2

[
(W −M)2r1r3f11 + (W +M)2r2r4f22

+2(W 2 −M2)r5f
r
12

]
+

2η2pt
√
λY

W
(W 2 −M2)f i

12,

Hex r
01 =

Qpt

W
√
λY

[
(W −M)(r1(2Wfr

16 + r4f
r
46)

−r5f
r
45) + (W +M)(r2(2Wfr

25 + r3f
r
35)− r5f

r
36)

]
+

η2Q

r1r2W

[
(W −M)(r1r5f

i
16 − λY (r3f

i
15 + 2Wp2tf

i
45))

+(M +W )(λY (r4f
i
26 + 2Wp2tf

i
36)− r2r5f

i
25)

]
,

Hex i
01 =

Qpt

W
√
λY

[
(W −M)(r5f

i
45 − r1(2Wf i

16

+r4f
i
46)) + (W +M)(r5f

i
36 − r2(2Wf i

25 + r3f
i
35))

]

+
η2Q

r1r2W

[
(W −M)(r1r5f

r
16 − λY (r3f

r
15 + 2Wp2tf

r
45))

+(M +W )(λY (r4f
r
26 + 2Wp2tf

r
36)− r2r5f

r
25)

]
,

Hex r
02 =

Qη1
r1r2W

[
(W −M)(r3λY f

i
15 − r1r5f

i
16)

+(W +M)r2(r5f
i
25 − r1r4f

i
26)

]
−2η3Qpt√

λY

[
(W +M)r2f

i
25 + (W −M)r1f

i
16

]
,

Hexi
02 =

Qη1
r1r2W

[
(W −M)(r3λY f

r
15 − r1r5f

r
16)

+(W +M)r2(r5f
r
25 − r1r4f

r
26)

]
−2η3Qpt√

λY

[
(W +M)r2f

r
25 + (W −M)r1f

r
16

]
,

Hex r
12 =

ptη1

2W 2
√
λY

[
(W 2 −M2)(r1r2(4Wf i

12 − r4f
i
24)

+r3λY f
i
13) + r5((W +M)2r2f

i
23 − (W −M)2r1f

i
14)

]
−η3p

2
t

W

[
(W −M)2r1f

i
14 + (W +M)2r2f

i
23

]
,

Hex i
12 =

ptη1

2W 2
√
λY

[
(W 2 −M2)(r3λY f

r
13 − r1r2r4f

r
24)

+r5((M +W )2r2f
r
23 − (M −W )2r1f

r
14)

]
− η3
2W 2r1r2

[
(W −M)2r1(2WλY p

2
tf

r
14 + r1r2r3f11)

+(W +M)2r2(2WλY p
2
tf

r
23 + r1r2r4f22)

+2(W 2 −M2)r5λY f
r
12

]
, (C.23)

with

r5 = W 2(M2 +m2
h +m2

u −Q2 − 2t)

+(M2 +Q2)(m2
h −m2

u)−W 4. (C.24)
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