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Abstract: In this study, we investigate the flavor-decomposed gravitational form fac-
tors (GFFs) of the nucleon and the baryon octet in a mean-field approach based on the
large Nc limit of QCD. Our central focus lies on illuminating the distinctive role played by
the separate quarks in this context. We first scrutinize the behavior of the gravitational
form factors in the large Nc limit, tracing the relations governed by spin-flavor symme-
try within the framework of flavor SU(3). The results are compared with those in flavor
SU(2). Additionally, we quantitatively assess the fraction of light-front momentum carried
by individual quark flavors within the nucleon. Notably, we unravel variations arising from
the mass distribution, as evidenced through the non-conserved form factor of the nucleon,
known as the cosmological constant-term c̄(q2). Venturing further, we explore not only
the decomposition of the total angular momentum into the orbital angular momentum and
intrinsic spin, but also its flavor decomposition. Furthermore, we delve into the intricate in-
terplay between the D-term and c̄ form factors, discerning their collaborative impact on the
stabilization of the nucleon system. Alongside this, we undertake an analysis, questioning
the assumption of “large Nc blindness” concerning Du−d ∼ 0. Our examination concludes
that such an assumption finds justification predominantly within the framework of flavor
SU(3) symmetry. Using the spin-flavor symmetry, the baryon octet GFFs can be easily
obtained, and various sum rules between the baryon octet GFFs are discussed. Finally,
we introduce the generalized electromagnetic form factors, where the flavor structure of
the electromagnetic current is induced into the GFFs. Similar to the electromagnetic form
factors, we find that these newly introduced form factors possess the U -spin symmetry.
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1 Introduction

Strangeness in the nucleon has been one of the most crucial issues in comprehending the
underlying structure of the nucleon. The European Muon Collaboration (EMC) announced
the puzzling measurement that the quark intrinsic spin provides only a small portion of the
proton’s spin [1, 2], there has been a great amount of experimental and theoretical works
(see a review [3] and references therein). It is now known that the quark intrinsic spin
carries approximately 35 % of the proton’s spin [3]. The rest will come from the orbital
angular momenta of the quarks and gluons inside a proton. The EMC results triggered
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an idea to measure the strange contributions to the electromagnetic form factors (EMFFs)
of the proton [4], and the strange vector form factors were extracted from parity-violating
electron-proton scattering [5–10] and theoretically (refer to a recent review and references
therein for further details [11]). Although the strange magnetic moment is relatively small,
it remains significant. For instance, the strange magnetic form factor at Q2 ' 0.1,GeV2 was
determined to be 0.30 ± 0.17 [11]. Additionally, the πN sigma term, which contributes to
the nucleon mass, incorporates contributions from the strange quark. Specifically, approx-
imately 20 % of the πN sigma term is attributed to the strange quark [12]. Furthermore,
investigations have been carried out to explore the strange-quark contribution to the nu-
cleon tensor charge [13, 14].

The role of strange quarks can also extend to the gravitational form factors (GFFs) [15,
16] of the nucleon, which provide crucial insights into the properties of the nucleon, includ-
ing its mass, spin, mechanical pressure, and shear force [17, 18]. Although the concept of
the GFFs was introduced about sixty years ago [15, 16], experimental access to them had
been limited, so that they were regarded as a purely academic interest. However, the emer-
gence of generalized parton distributions (GPDs) [19–22] has paved the way for extracting
experimental information on the GFFs. It is possible to measure the obesrvables related to
the GFFs because the EMFFs and GFFs can be understood as the first and second Mellin
moments of vector GPDs, respectively [17].

The GFFs can also be given as parametrizations for the nucleon matrix element of
the energy-momentum tensor (EMT) current. In the rest frame of the nucleon, the matrix
element of the temporal component of the EMT current T 00 at zero momentum transfer t =

0, denoted as Aq,g(0)+ c̄q,g(0), is intricately linked to the decomposition of the nucleon mass
into the contributions of quarks (q) and gluons (g). This decomposition, which examines
the specific roles of quarks and gluons in the total mass of the nucleon, has been extensively
studied [23–32]. Meanwhile, in the infinite momentum frame (IMF), the A(t) form factor
is understood as a light-front momentum form factor normalized to unity. The c̄q,g(t)
form factor is associated with the twist-4 GPDs [33, 34], while the Aq,g(t) form factor is
directly linked to the leading-twist vector GPDs as the second Mellin moment or to the
parton distribution functions (PDFs) as the second moment. Consequently, A(0) can be
interpreted as the momentum fraction carried by the partons, which is the integral of the
structure function over x, i.e. A(0) =

∫
dxx

∑
a=q,g f

a
1 (x).

The contribution of valence quarks to the nucleon PDFs is relatively well understood.
However, the contribution of sea quarks is a more complex and substantial issue. For
example, the Gottfried sum rule, which assumes flavor-symmetric sea quark contributions
(ū = d̄), was widely accepted. The values of the unpolarized structure functions of the
neutron and proton were observed by the New Muon Collaboration (NMC) [35, 36] from
deep-inelastic muon scattering on the hydrogen and deuterium targets, and confirmed by
the HERMES [37] and NuSea [38] collaborations. The series of experiments revealed the
violation of the Gottfried sum rule. Moreover, the study of the s-quark contribution to the
A(t) form factor holds the potential for gaining profound insights into sea quarks, mass
decomposition, and is an ongoing area of investigation.

The 0k component of the EMT current is related to the angular momentum (AM),
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specifically its decomposition into the orbital angular momentum (OAM) and the spin
contributions of the partons. The EMT current in quantum chromodynamics (QCD) is
obtained by Noether’s theorem, which derives from space-time translational symmetry and
is called the canonical EMT current. While this current is conserved, it lacks gauge invari-
ance and symmetrization in the Lorentz indices. To address these limitations, a modified
EMT current has been proposed by Belinfante and Rosenfeld [39, 40]. This updated EMT
current includes a "superpotential" term added to the canonical EMT current, making it
both symmetric and gauge invariant. In fact, the need for a symmetrized EMT arises be-
cause gravity couples to a symmetric EMT in the context of general relativity [41] (see also
a review [33]). In addition, a symmetrized EMT current is related to the second Mellin
moments of the GPDs, known as the Ji’s sum rule [20]. Consequently, the definition of the
EMT current in QCD requires physical choices that can influence the interpretation and
measurement of the operators.

When dealing with distributions corresponding to the 0k component of the EMT cur-
rent, the definition of the AM distirubiton requires careful consideration, as discussed in
various references [18, 42, 43]. However, considerable theoretical work has been devoted to
addressing this issue, as exemplified by a review by Leader and Lorcé [33]. As a result, Ji’s
decomposition [20], modified by the Belinfante-Rosenfeld EMT current in the context of
QCD, has gained widespread acceptance as a definition of AM:

1

2
=

1

2

∑
q

∆q +
∑
q

Lq + ∆G+ Lg. (1.1)

∆q, also denoted as the singlet axial charge g(0)
A , is the first moment of the structure

function gq1.
∑

q L
q represents the quark OAM, and ∆G and Lg stand for the contributions

of the gluon spin and gluon OAM, respectively. Several experiments on the spin structure
have been carried out to measure the spin asymmetry in the polarized lepton-nucleon deep
inelastic scattering (DIS) [1, 2, 44–52]. The values of the isotriplet and octet axial charges,
g

(3)
A = 1.2754± 0.0013 [53] and g(8)

A = 0.58± 0.03 [54], are respectively determined through
measurements of the neutron β-decay and the hyperon semileptonic decays with flavor SU(3)
symmetry imposed. These experimental results demonstrate that only a small fraction of
the nucleon spin is carried by quarks, and the Ellis-Jaffe sum rule [55], i.e. ∆s = ∆s̄ = 0,
is no longer valid. This indicates that the s-quark plays a crucial role in understanding the
spin structure of the nucleon, with ∆s ∼ −0.10 [3, 56].

As for the OAM, lattice QCD calculations have obtained Lu+d ∼ 0.03 and Lu−d ∼
−0.38, neglecting the contributions from disconnected diagrams [57]. Additional studies
of the AM in the lattice QCD have been conducted in Refs. [58–61]. The OAM is con-
nected to the twist-3 GPDs [62–64]. However, the accurate extraction of the twist-3 GPDs
from experiments and lattice QCD simulations poses significant challenges, as discussed in
Ref. [33]. Nevertheless, the determination of this unknown dynamical information remains
crucial for the AM sum rule, including the contributions of s quarks.

In the rest frame, the three-dimensional (3D) tensor components of the EMT current,
represented as T ij , encompass the 3D pressure and shear-force distributions [18]. These
distributions are determined by the 3D Fourier transform of the Polyakov-Weiss D-term
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form factor [65]. Unlike the form factors related to mass and spin, the precise value of the
D-term is unknown yet. Initial estimations were made in the large Nc limit of QCD [66–
69]. More recently, the D-term was extracted from the experimental data on deeply virtual
Compton scattering (DVCS) [70] for the first time, assuming the large Nc approximation
in the flavor SU(2) sector, and the pressure [71] and shear-force [72] distributions were also
obtained. For a comprehensive understanding of the mechanical interpretation of the stress
tensor, refer to reviews by Polyakov et al. [73], Lorcé et al. [74], and Burkert et al. [75].

It has been demonstrated that a significant portion of the D-term form factor arises
from contributions of sea quarks [66, 68] or pion cloud effects [67], necessitating a relativistic
quantum field theoretical approach. However, the contribution of s-quarks (non-valence
quarks) to the D-term is currently unknown. Furthermore, the flavor-decomposed form
factors c̄q, which also play a certain role in the equilibrium equation for the separate quark,
remain completely unknown. Recently, Hatta and Strikman proposed a method to measure
the s-quark contribution to the D-term through exclusive φ-meson lepto-production [76].
By varying the strangeness D-term, the differential cross-section was found to be sensitive
to the value of the s-quark contribution to the D-term. Thus, knowledge of the s-quark
contribution to the D-term is very important for the determination of the differential cross-
section.

To investigate the contributions of s-quarks to mass, spin, and the D-term, we employ
the chiral quark-soliton model (χQSM), which was developed based on the pion mean-field
approach. Witten proposed in his seminal papers [77, 78] that in the large Nc limit of QCD
a classical baryon can be regarded as Nc valence quarks bound by a mesonic mean field that
arises as a classical solution of the saddle point equation in a self-consistent manner, while
the quantum fluctuations are suppressed and of order 1/Nc. Since the classical baryon has
no momentum and no good quantum numbers, the zero-mode quantization is required to
restore the translational and rotational symmetries. These rotational and translational zero
modes naturally give rise to the standard SU(2Nf ) spin-flavor symmetry in the large Nc

limit of QCD [79–81].
The χQSM can directly be connected to QCD via the instanton vacuum [82, 83]. The

low-energy effective partition function of QCD can be derived from the instanton vacuum,
realizing the spontaneous breakdown of chiral symmetry, and the relevant low-energy theo-
rems. Since this model is a relativistic quantum-field theoretic one, the contributions of the
sea quarks (Dirac continuum) naturally arise, which are crucial to yield a classical nucleon.
It is important to note that the gluon degrees of freedom have been integrated out through
the instanton vacuum, and their effects are incorporated into the momentum-dependent
dynamical quark mass M . In the χQSM, we switch off the momentum dependence of M
and introduce a regularization to tame the divergent quark loops. The χQSM has been
successful in describing the breakdown of the Gottfried sum rule [84, 85], the light-flavor
asymmetry [86–88] of polarized PDFs, and the transversity distributions [89–91]. It has
also provided a satisfactory explanation for the contributions of strange quarks to axial
charges [92, 93] and vector charges [94, 95]. For a comprehensive overview, refer to the
reviews [96, 97].

Finally, we want to address the issue of the 3D mechanical interpretation of the GFFs.
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The 3D EMT distributions have been proposed as the Fourier transform of the GFFs [18, 68].
However, the 3D interpretation of the EMT distributions has faced significant criticism [98–
102]. Due to the inability to precisely localize the nucleon wave packet below the Comp-
ton wavelength, there are ambiguous relativistic corrections to the 3D distributions (see
Ref.[41]). To deal with this ambiguity, a two-dimensional (2D) light-front (LF) distribution
has been used [99–101]. In the current work, however, we adhere to the 3D interpretation
of the EMT distributions.

As discussed in a number of works considering the large Nc limit [103, 104], the center of
motion of the nucleon exhibits a non-relativistic behavior (while the nucleon itself possesses
fully relativistic internal dynamics). Therefore, information about the 3D distributions is
conveyed into the 2D space on the light cone with no change. The frame dependence of these
distributions has been explored in Ref. [103] in the context of the large Nc limit. In addition,
it was very recently found that the 3D components of the EMT can be matched with the
2D light-front components [104]. While considering the admixture of the 3D components
in this matching, the Wigner rotation (Melosh rotation) effects under the Lorentz boost
are suppressed in the large Nc limit. Consequently, the light-front helicity state becomes
equivalent to the canonical spin state at rest.

The structure of our paper is as follows: In section 2, we recapitulate a definition of
the Belinfante-Rosenfeld EMT current in QCD and express the matrix element of the EMT
current, which is parametrized in terms of the GFFs. We also discuss the 3D mechanical
interpretations associated with these GFFs. In section 3, we offer a brief explanation of the
χQSM and illustrate the spin-flavor properties of the QCD GFFs in flavor SU(3) symmetry.
In addition, we analyze the scaling behavior of the GFFs with respect to Nc in flavor SU(3)
symmetry. In section 4, we discuss the numerical results on the 3D EMT distributions and
investigate the role of the strange quark in equilibrium conditions. Furthermore, we present
the flavor-decomposed GFFs for the baryon octet using the spin-flavor symmetry. Finally,
in section 5 we provide a summary of our work and draw conclusions based on our findings.

2 QCD energy-momentum tensor

According to Ji’s decomposition [20], the quark (q) part of the Belinfante-Rosenfeld-type
QCD EMT current is expressed as

T̂µνkin,q =
i

2
ψ̄q

(
γµ
←→
D ν
)
ψq, (2.1)

where
←→
D µ =

←→
∂ µ−2igAµ is the covariant derivative with

←→
∂ µ =

−→
∂ µ−

←−
∂ µ. The symmetric

and antisymmetric parts of the EMT current are given by the divergence of the spin density
and the Belinfante-Rosenfeld EMT current, respectively [33, 42]:

T̂
[µν]
kin,q = −∂αŜαµνq , T̂

{µν}
kin,q = 2T̂µν , (2.2)

where Tµν is the Belinfante-Rosenfeld EMT current. This EMT current consists of the
quark (q) and gluon (g) parts and is also a conserved quantity:

T̂µν =
∑
q

T̂µνq + T̂µνg , ∂µT̂
µν = 0, (2.3)
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which means that the flavor decomposed EMT currents are not conserved. This study
focuses primarily on the SU(3) flavor structure of the EMT current, so its gluon part (T̂µνg )
will not be discussed in the current work.

2.1 Matrix element of the energy-momentum tensor current

The matrix element of the EMT current can be described by four independent Lorentz-
invariant functions, namely Aq, Jq, Dq, and c̄q, which are obtained by considering all possi-
ble Lorentz structures and sorting them out by using the discrete symmetries (hermiticity,
time reversal, and parity). This parameterization has been studied extensively in previous
works [15, 16, 105, 106] (For further information on the generalization of this parametriza-
tion, interested readers may refer to Refs. [107, 108]). The baryon matrix element of the
EMT current is expressed as

〈
B(p′, J ′3)

∣∣T̂ qµν(0)
∣∣B(p, J3)

〉
= ū(p′, J ′3)

[
AqB(t)

PµPν
MB

+ JqB(t)
iP{µσν}ρ∆

ρ

2MB

+Dq
B(t)

∆µ∆ν − gµν∆2

4MB
+ c̄qB(t)MBgµν

]
u(p, J3),(2.4)

where Aq, Jq, Dq, and c̄q are called the mass, spin, D-term, and cosmological constant
term form factors of a baryon B, respectively. In this study, we utilize the shorthand
notation {a, b} = ab + ba. The normalization of the one-particle state for the baryon is
expressed as 〈B′(p′, J ′3)|B(p, J3)〉 = 2p0(2π)3δJ ′3J3δ

(3)(p′ − p), where J3 and J ′3 denote the
spin polarizations of the initial and final states, respectively. The MB represents the mass
of a baryon, while p and p′ refer to the initial and final momenta, respectively. We define
P = (p′ + p) /2 and ∆ = p′−p, where ∆2 = t, to represent the average momentum and the
momentum transfer between the initial and fianl states, respectively. We express the GFFs
generically as FχB, where the flavor indices run over χ = 0, 3, 8. They can be decomposed
in terms of the quark components

Fχ=0
B = F uB + F dB + F sB, Fχ=3

B = F uB − F dB, Fχ=8
B =

1√
3

(
F uB + F dB − 2F sB

)
. (2.5)

Thus, the GFFs of a baryon are given by the sum of all quark and gluon contributions∑
a=q,g

F aB(t) = FB(t), c̄B(t) = 0. (2.6)

Note that the current conservation imposes the constraint that c̄(t) is zero.

2.2 3D distribution versus 2D light-front distribution

To gain insight into the mechanical interpretation of the GFFs in coordinate space, one
can perform the Fourier transformation of these form factors. This approach was first
explored in Ref. [18] and was inspired by the concept used in EMFFs and their charge and
magnetization distributions. However, the interpretation of EMFFs and GFFs in terms of
the 3D distributions has been criticized [41, 98–102, 109] due to the inherent limitations
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imposed by the Compton wavelength, which prevents the precise localization of the nucleon
wave packet. Consequently, this limitation introduces ambiguous relativistic corrections to
the 3D distribution.

One perspective suggests that if the nucleon is treated as a non-relativistic object (where
the initial and final wave packets become equivalent and well-localized), the form factor [110]
can be understood as a 3D distribution. However, if one insists on using the strict definition
of the distribution, we can consider the following approach: if we consider the infinite
momentum frame or the light-front formalism, then ambiguous relativistic corrections are
kinematically suppressed, effectively rendering the system non-relativistic. However, we
have to pay the cost of losing longitudinal information, reducing the distribution to a 2D
one. Another way is to take a conceptual detour in the treatment of 3D distributions. From
a Wigner phase space perspective [111–114], the 3D distribution can be regarded as quasi-
probabilistic, reflecting the internal dynamics of the hadron, with all ambiguous relativistic
corrections encapsulated in the Wigner distributions. Furthermore, recent developments
have introduced the definition of 3D spatial distributions in the zero average momentum
frame [115–117].

Since the 2D IMF provides clear and unambiguous definitions of EMT distributions,
we can choose to work within that frame. However, in the context of the large Nc limit, it is
both natural and sufficient to focus on the 3D distribution. While the internal dynamics of
the nucleon is fully described within a relativistic framework (including all the relativistic
motions of the quarks), the center of motion of the nucleon is treated in a non-relativistic
manner due to the 1/Nc suppression. This means that translational corrections, such as
P 2/2MN ∼ O(N−1

c ), to the nucleon energy are parametrically suppressed, and the same
suppression applies to the nucleon GFFs. Consequently, the soliton nature of the nucleon is
inherently static and collectively non-relativistic. A related discussion of this topic can be
found in Ref. [103]. Moreover, the large Nc approximation causes the equivalence between
the light-front helicity state and the canonical spin state at rest. This allows one to perform
matching [104] between the 3D components of the EMT and the 2D LF ones.

In the Breit frame, the quark and gluon components of the GFFs are determined by
taking the Fourier transforms of the matrix element of the EMT current between the initial
and final states of the baryon. This definition is referred to in [18]:

T a,Bµν (r, J ′3, J3) =

∫
d3∆

(2π)32P 0
e−i∆·r〈B(p′, J ′3)|T̂ aµν(0)|B(p, J3)〉. (2.7)

2.3 Mass distribution

The temporal component T a,B00 of the EMT current is related to the mass distribution of
quarks and gluon inside a baryon

εaB(r)δJ ′3J3 := T a,B00 (r, J ′3, J3)

= MB

∫
d3∆

(2π)3
e−i∆·r

[
AaB(t) + caB(t)− t

4M2
B

(AaB(t)− 2JaB(t) +Da
B(t))

]
δJ ′3J3 . (2.8)
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By integrating the spatial components of the EMT current (T a,B00 ) over space, the mass of
a spin-1/2 baryon at rest can be calculated as∫

d3r
∑
a=q,g

εaB(r) = MBAB(0) = MB, (2.9)

with εB(r) =
∑

a=q,g ε
a
B(r) and the normalized mass form factor AB(0) = 1, where the

contribution of cB to εB is zero by the conservation of the EMT current. The size of the
mass distribution can be expressed by the mass radius. It is given by either the integral of
the mass distribution or the derivative of the mass form factor AB(t) with respect to the
momentum squared,

〈
r2

mass

〉
B

=

∫
d3r r2εB(r)∫
d3r εB(r)

= 6
d

dt

[
AB(t)− t

4m2
B

DB(t)

]
t=0

. (2.10)

2.4 Angular momentum distribution

The mixed components of the EMT current (T a,B0i ) are associated with the total angular
momentum distributions (sum of spin and orbital angular momentum) by the Belinfante
and Rosenfeld construction. The definition of the total angular momentum distributions
inside a baryon is given by the angular momentum operator in QCD as follows:

Ja,Bi (r, J ′3, J3) := εijkrjT
a,B
0k (r, J ′3, J3)

= 2
(
Ŝj

)
J ′3J3

∫
d3∆

(2π)3
e−i∆·r

[(
JaB(t) +

2

3
t
dJaB(t)

dt

)
δij

+

(
∆i∆j −

1

3
∆2δij

)
dJaB(t)

dt

]
. (2.11)

In the following discussion, we will separate it into its monopole and quadrupole parts. Note,
however, that the quadrupole distribution is related to the monopole distribution [18, 42,
43]. For the purpose of this discussion, we will refer to the monopole distribution [18] as
the AM distribution, which can be expressed as follows

ρaJ,B(r) :=

∫
d3∆

(2π)3
e−i∆·r

[(
JaB(t) +

2

3
t
dJaB(t)

dt

)]
. (2.12)

Integrating both Ja,Bi (r, J ′3, J3) and ρaJ,B(r) in 3D space yields the spin of the baryon as
follows∫

d3r
∑
a=q,g

Ja,Bi (r, J ′3, J3) = 2
(
Ŝi

)
J ′3J3

JB(0) =
(
Ŝi

)
J ′3J3

, (2.13)

with ρJ,B(r) =
∑

a=q,g ρ
a
J,B(r). The AM form factor JB(0) is normalized to 1/2 to ensure

that the integral of the AM distribution Ja,Bi (r, J ′3, J3) over space is equivalent to the
spin operator of a baryon. Note that the quadrupole component has no effect on the spin
normalization. For more information on the separation of the OAM and the intrinsic spin
using the QCD equation of motion, see Refs. [33, 42].
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2.5 Mechanical properties

The spatial components of the EMT, denoted T a,Bij , give information about the mechanical
properties of a baryon. These properties include the distributions of the pressure, p(r),
and shear force, s(r), inside the baryon. By decomposing T a,Bij into irreducible tensors,
the pressure and shear-force distributions are connected to the rank 0 and rank 2 tensors,
respectively:

T a,Bij (r, J ′3, J3) = paB(r)δijδJ ′3J3 + saB(r)

(
rirj

r2
− 1

3
δij
)
δJ ′3J3 . (2.14)

where the pressure and shear-force distributions are defined as

paB(r) =
1

6MB

1

r2

d

dr
r2 d

dr
D̃a
B(r)−MB

∫
d3∆

(2π)3
e−i∆·rcaB(t),

saB(r) = − 1

4MB
r
d

dr

1

r

d

dr
D̃a
B(r), (2.15)

with

D̃a
B(r) =

∫
d3∆

(2π)3
e−i∆·rDa

B(t). (2.16)

Similarly, the pressure and shear-force distributions can be expressed as the Fourier trans-
form of the c̄ and D-term form factors

Da
B(t) = 4MB

∫
d3r

j2(r
√
−t)

t
saB(r),

c̄aB(t)− t

6M2
B

Da
B(t) = − 1

MB

∫
d3r j0(r

√
−t)paB(r). (2.17)

It should be noted that the distributions of the gluon and quark shear forces do not depend
on ca(t), while the knowledge of ca(t) is necessary to determine the pressure distributions.

Reference [118] investigated the internal force between the u + d quark and the gluon
in the context of the large Nc expansion, while Ref. [119] examined the internal force
between the u and d quarks. Both studies emphasize the smallness of the c̄q,g form factors.
Furthermore, the mechanical interpretation of the c̄ form factor was discussed in Refs.[118,
119]. The distributions of the stress tensors pB and sB, which represent the sum of each
parton contribution (pB :=

∑
a=q,g p

a
B, sB :=

∑
a=q,g s

a
B), are strongly constrainted by the

conservation of the EMT current. This constraint is expressed by the equilibrium equation:

∂

∂r

(
2

3
sB(r) + pB(r)

)
+

2sB(r)

r
= 0, (2.18)

which connects the pressure distribution to the shear-force one. Upon analyzing the individ-
ual contributions of the partons to these distributions, we discover an intriguing equilibrium
equation that relates the quark and gluon subsystems, which is expressed by the continuity
equation:∑

a=q,g

∂iT a,Bij =
∑
a=q,g

rj
r

[
2

3

∂saB(r)

∂r
+

2saB(r)

r
+
∂paB(r)

∂r

]
=

∑
q=u,d,s

f qB,j + fgB,j = 0,

(2.19)
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where the internal force between the quarks and gluon inside the baryon is represented as

faB,j = −MB
∂

∂rj

∫
d3∆

(2π)3
e−i∆·rcaB(t). (2.20)

As a consequence of Eq. (2.19) for a mechanically stable baryon, the sum of the inter-
nal forces faB,j between the partons must cancel out each other. Additionally, integrating
Eq. (2.15) over space leads to a critical stability criterion known as the von Laue stability
condition:∫ ∞

0
dr r2pB(r) = 0. (2.21)

This condition implies that the pressure distribution must have at least one nodal point
where it becomes null. Furthermore, another stability criterion, proposed in several works [74,
120, 121], is worth mentioning. Perevalova et al. [120] introduced a local stability criterion
that states a specific combination of the pressure and shear-force distributions must be
positive (outward) at any given distance r:

2

3
sB(r) + pB(r) > 0. (2.22)

This function can be interpreted as the normal force field, while the tangential force can be
expressed as −1

3sB(r) + pB(r). Furthermore, the positivity of the shear-force distribution
over r in Eq. (2.18), i.e., sB(r) > 0, implies that 2

3sB(r) + pB(r) > 0 is a monotonically
decreasing function. To quantify the mechanical size of a baryon system, the mechanical
radius is defined as:

〈r2
mech〉B =

∫
d3r r2

(
2
3sB(r) + pB(r)

)∫
d3r

(
2
3sB(r) + pB(r)

) =
6DB(0)∫ 0
−∞DB(t)dt

. (2.23)

3 Chiral quark-soliton model

In this section, we briefly review the χQSM.

3.1 Classical nucleon

The χQSM is based primarily on two fundamental principles: chiral symmetry breaking
and the large Nc limit of QCD. This model is constructed, based on the effective partition
function of QCD, which is applicable in the low-energy regime. In Euclidean space, the
partition function is expressed as

Zeff =

∫
Dψ†DψDU exp(−Seff), Seff =

∫
d4xψ†

(
i/∂ + iMUγ5 + im̂

)
ψ, (3.1)

whereM denotes the dynamical quark mass. It is orginally given as a momentum-dependent
one M(k), where k stands for the quark momentm or quark virtuality. For simplicity, we
switch off the momentum dependence of M(k), and consider it as a free parameter. We
fix its value by reproducing various nucleon form factors and the mass differences between
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the nucleon and the ∆ baryon. The most favorable value of M is found to be 420 MeV. m̂
represents the diagonal matrix of the current quark masses in the SU(3) flavor space. We
assume isospin symmetry, setting m̄ = mu = md. While the strange current quark mass is
typically treated perturbatively, its contributions to the GFFs are found to be small. Thus,
we impose the flavor SU(3) symmetry, i.e. m̄ = ms.

Since we use the constant M , we have to tame the divergences arising from the quark-
loop integrals. To deal with them, we introduce the proper-time regularization. We fix the
cutoff mass Λ by fitting the pion decay constant fπ = 93 MeV, and determine the current
quark mass m by reproducing the pion mass mπ = 139 MeV (see Ref. [122] for more
details).

The chiral field Uγ5 is represented by the U field:

Uγ5 =
1 + γ5

2
U +

1− γ5

2
U †, (3.2)

with U = exp(iπaλa). The πa denote the pseudo-Nambu-Goldstone (pNG) fields, and
λa designate the Gell-Mann matrices. In the pion mean-field approach, we consider the
hedgehog symmetry, which is a minimal symmetry that align the spatial vector with the
isospin vector in the mean field:

Uγ5SU(2) = exp[iγ5n̂ · τP (r)], (3.3)

where πa(r) = n̂aP (r) with n̂a = ra/|r| for a = 1, 2, 3, and πa(r) = 0 for a = 4, ...8. This
symmetry ensures the invariance of the pion mean field under SU(2)flavor ⊗ SU(2)spin rota-
tions. The SU(3) chiral field in Eq. (3.1) is constructed by using the trivial embedding [78]:

Uγ5 =

(
Uγ5SU(2) 0

0 1

)
, (3.4)

where it contains the chiral field SU(2) as a subgroup: SU(2)flavor ⊗ SU(2)spin ⊗ U(1)Y ⊗
U(1)YR . Here, Y and YR denote the hypercharge and right hypercharge, respectively.

The SU(2) one-particle Dirac Hamiltonian in this chiral theory is defined as:

h(U) = γ4γk∂k + γ4MUγ5SU(2) + γ4m, (3.5)

where the strange part is obtained by replacing the chiral field by unity, i.e., Uγ5 → 1. The
eigenfunctions and eigenenergies are obtained by diagonalizing h(U):

h(U)ψn(r) = Enψn(r), h(1)ψn0(r) = En0ψn0(r). (3.6)

The Dirac spectrumEn consists of the upper and lower Dirac continuum, which are distorted
by the pion mean field from the free Dirac spectrum En0 , and the bound state level energy
(or valence quark energy Ev), which emerges when the chiral field is sufficiently strong.

To compute properties such as the mass, spin and electromagnetic properties in the
baryonic sector, it is necessary to evaluate the corresponding correlation function with a
pion background field. This is done by performing the functional integral described in
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Eq.(3.1). Having integrated the fermionic fields, we obtain the fermionic determinant. The
bosonic field can only be solved approximately by using the saddle-point approximation,
which holds in the large Nc approximation. In this approach, the result is determined by
the integrand evaluated in the classical mesonic configuration. It is important to note that
quantum fluctuations are suppressed in the 1/Nc expansion [77].

The classical configuration of the pion field Pcl(r) is obtained by solving the following
saddle point equation:

δSeff

δP (r)

∣∣∣∣
P (r)=Pcl(r)

= 0, (3.7)

which yields

Msol = NcEval + Esea, (3.8)

where NcEval denote the Nc valence-quark (level-quark) contribution, and Esea represents
the sum of the negative Dirac continuum energy with the vacuum energy subtracted. This
quantity is logarithmically divergent and requires a regularization. The specific regulariza-
tion functions employed are provided in Appendix A.

3.2 Collective quantization

The classical soliton does not have the well-defined momentum and spin-flavor quantum
numbers. To restore the corresponding symmetries, we introduce translational and rota-
tional zero modes. These modes allow us to replace the functional integral over the mean
field U in the presence of a background pion field with the integrals over the center of mass
(CM) coordinates X and the rotational matrix R in flavor space:∫

DUF [U(x)]→
∫
d3X

∫
DRF

[
TRUcl(x)R†T †

]
, (3.9)

where the unitary transformation T represents the translational symmetry. It is important
to note that both the CM coordinates X(t) and the rotation matrix R(t) depend weakly
on time. The translational zero modes endow the classical soliton with the momentum,
while the rotational zero modes furnish it with the spin-flavor quantum numbers. The slow
rotation and displacement of the soliton give rise to kinetic corrections that are suppressed
in the 1/Nc expansion. When considering the baryon rest frame (e.g., the Breit frame), the
translational kinetic correction does not contribute to the GFFs. Therefore, in this study
we focus on the rotational zero modes to order of Ω ∼ 1/Nc and the translational ones to
the zeroth order. Having performed the collective quantization, we obtain the collective
Hamiltonian:

Hcoll = Msol +
1

2I1

3∑
i=1

Ĵ2
i +

1

2I2

7∑
p=4

Ĵ2
p , (3.10)

where I1 and I2 represent the moments of inertia, and their explicit expressions can be found
in Appendix A. The hedgehog symmetry of the mean field implies that baryon states occur
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according to the selection rules: J + T = 0 and YR = Nc/3. Consequently, diagonalizing
Hcoll, we derive the rotational wave function for a baryon with spin and flavor indices:

Ψ
(µ)
(Y TT3)(YRJJ3)(R) =

√
dim(µ)(−1)J3−YR/2D

(µ)∗
(Y TT3)(YRJ−J3)(R), (3.11)

where D(µ)
ab denotes the SU(3) Wigner D function1 with the corresponding SU(3) represen-

tation µ.

3.3 Matrix element of the EMT current in the large Nc limit of QCD

The matrix element of the symmetrized EMT current in Euclidean space can be calculated
as follows:

〈
B(p′, J ′3)

∣∣T̂ eff
µν,χ(0)

∣∣B(p, J3)
〉

= lim
T→∞

1

Zeff
N ∗(p′)N (p)eip4

T
2
−ip′4

T
2

∫
d3x d3ye(−ip′·y+ip·x)

×
∫
DψDψ†DUJB(y, T/2)T̂ eff

µν,χ(0)J†B(x,−T/2) exp [−Seff ] ,

(3.12)

where JB represents the Ioffe-type current consisting of the Nc valence quarks [123] and
T̂ eff
µν,χ(0) denotes the symmetrized EMT current derived from the effective chiral theory in

Euclidean space. Note that N ∗(p′)N (p′) yields the non-relativistic normalization 2Msol,
and the baryon state carries the spin, isospin, and hypercharge quantum numbers B =

{J, J3, T, T3, Y }. The EMT current in Minkowski space can be expressed as

T̂ eff
µν,χ(x) =

i

4
ψ̄(x)

(
γµ
−→
∂ ν + γν

−→
∂ µ − γµ

←−
∂ ν − γν

←−
∂ µ

)
λχψ(x), (3.13)

where λχ are the SU(3) Gell-Mann matrices, and the flavor singlet λ0 = diag(1, 1, 1) EMT
current coincides with the symmetric part of the QCD EMT current.

To understand the behavior of the GFFs, we need to discuss the large Nc limit of the
kinematic variables. The large Nc behavior for the nucleon mass is given asMB ∼ O(Nc) ∼
Msol. The three-momentum shows pk ∼ O(N0

c ), and the energy scales as p0 ∼ O(N1
c ).

Therefore, the average momentum and the momentum transfer behaves as

∆0 ∼ O(N−1
c ), ∆i ∼ O(N0

c ), P 0 ∼ O(N1
c ), P i ∼ O(N0

c ). (3.14)

In addition, the moments of inertia are given in the following order

I1 ∼ O(N1
c ), I2 ∼ O(N1

c ). (3.15)

1We want to mention that the SU(2) Wigner D function is associated with the SU(4) spin-flavor gen-
erators, i.e., Dai ∼ −4/(Nc + 2)Ĝia + O(N−2

c ) with a, i = 1, 2, 3. When it comes to the SU(3) Wigner
D function, it can be interpreted in a similar way as the standard SU(6) spin-flavor generators Ĝia with
a, i = 1, ...8. See Refs. [79–81] for a detailed discussion.
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In the large Nc limit, the matrix elements of the 00-, ij-, and 0k-components of the
symmetric EMT-like current are written as

〈
B(p′, J ′3)

∣∣T̂ 00
χ (0)

∣∣B(p, J3)
〉

= 2M2
sol

[
AχB(t) + c̄χB

− t

4M2
sol

(
Dχ
B(t)− 2JχB(t)

) ]
δJ ′3J3 ,

〈
B(p′, J ′3)

∣∣T̂ ijχ (0)
∣∣B(p, J3)

〉
=

[
∆i∆j − δij∆2

2
Dχ
B(t)− 2M2

solδ
ij c̄χB(t)

]
δJ ′3J3 ,〈

B(p′, J ′3)
∣∣T̂ 0k
χ (0)

∣∣B(p, J3)
〉

= −2iMsolε
klm∆lŜmJ ′3J3

JχB(t). (3.16)

Defining the static EMT distribution in the large Nc limit

Tµνχ (r, J ′3, J3) =

∫
d3∆

(2π)32Msol
e−i∆·r

〈
B(p′, J ′3)

∣∣Tµνχ (0)
∣∣B(p, J3)

〉
, (3.17)

we obtain the final expressions for the EMT form factors as the 3D Fourier transforms of
the EMT distributions:[

AχB(t) + c̄χB(t)− t

4M2
sol

(
Dχ
B(t)− 2JχB(t)

)]
δJ ′3J3 =

1

Msol

∫
d3rj0(r

√
−t)εχB(r),[

c̄χB(t)− t

6M2
sol

Dχ
B(t)

]
δJ ′3J3 = − 1

Msol

∫
d3rj0(r

√
−t)pχB(r),

Dχ
B(t)δJ ′3J3 = 4Msol

∫
d3r

j2(r
√
−t)

t
sχB(r),

2S3
J ′3J3

JχB(t) = 3

∫
d3r

j1(r
√
−t)

r
√
−t

ρχJ,B(r),

(3.18)

where the respective distributions εχB, ρ
χ
J,B, s

χ
B, and p

χ
B are given by

εχB(r) =
1√
3
〈Dχ8〉B E(r)− 2

I1
〈DχiJi〉B J1(r)− 2

I2
〈DχaJa〉B J2(r),

ρχJ,B(r) = 〈Dχ3〉B

(
Q0(r) +

1

I1
Q1(r)

)
− 1√

3
〈Dχ8J3〉B

1

I1
I1(r)− 〈dab3DχaJb〉B

1

I2
I2(r),

sχB(r) =
1√
3
〈Dχ8〉B N1(r)− 2

I1
〈DχiJi〉B J3(r)− 2

I2
〈DχaJa〉B J4(r),

pχB(r) =
1√
3
〈Dχ8〉B N3(r)− 2

I1
〈DχiJi〉B J5(r)− 2

I2
〈DχaJa〉B J6(r). (3.19)

The 〈...〉B denotes the matrix element of the SU(2Nf ) spin-flavor operators between the
initial and final rotational wave functions

〈...〉B =

∫
dRΨ

(µ)∗
(Y ′T ′T ′3)(YRJ ′J

′
3)

(R) ...Ψ
(µ)
(Y TT3)(YRJJ3)(R). (3.20)
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The detailed expressions for the densities E , J1, J2, etc. are given in Appendix A. In the
limit χ → 0, the results for the flavor singlet EMT distributions [68, 124] are recovered as
follows:

ε0
B(r) = E(r), ρ0

J,B(r) = − 1

2I1
I1(r), s0

B(r) = N1(r), p0
B(r) = N3(r). (3.21)

The integrals of the individual EMT distributions over 3D space satisfy the following rela-
tions: ∫

d3r E(r) = Msol,

∫
d3r I1(r) = −I1,∫

d3rN3(r) = 0, (3.22)

Using Eq. (3.22), we find that the mass and AM form factors are properly normalized to
its mass and AM∫

d3r ε0
B(r) = Msol,

∫
d3r ρ0

J,B(r) = 1/2. (3.23)

In addition, the last relation in Eq. (3.22) results in the von Laue condition∫
d3r p0

B(r) = 0. (3.24)

In our study, we find that the presence of the s quark has no effect on the normalizations
of the EMT form factor and the von Laue condition. It is noteworthy that the mass and
AM normalizations hold true regardless of the configuration of the pion field. However, the
von Laue condition is only satisfied when the pion field assumes a classical configuration.
This emphasizes the importance of considering the dynamical nature of the system when
describing properties related to the stress tensor.

Furthermore, while the conserved EMT current ensures the normalization of the total
AM, the distinction between intrinsic spin and OAM remains a significant issue to investi-
gate carefully. We will address this aspect in our discussion of the numerical results.

3.4 Large Nc behavior: SU(2) versus SU(3)

Before we proceed to the numerical results, we discuss the behavior of the GFFs in the large
Nc limit. We obtained the following relations for the SU(2) isoscalar and isovector GFFs:

Au+d(t) ∼ O(N0
c ), Au−d(t) ∼ O(N−1

c ),

Ju+d(t) ∼ O(N0
c ), Ju−d(t) ∼ O(N1

c ),

Du+d(t) ∼ O(N2
c ), Du−d(t) ∼ O(N1

c ),

c̄u+d(t) ∼ O(N0
c ), c̄u−d(t) ∼ O(N−1

c ). (3.25)

According to the 1/Nc expansion, the isoscalar form factors Au+d, Du+d, and c̄u+d are
parametrically dominant over their isovector counterparts Au−d, Du−d, and c̄u−d by one
order of Nc. Conversely, the isoscalar T 0k form factor (Ju+d) is suppressed by an order of
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Nc compared to the isovector Ju−d form factor in the large Nc limit. These findings are in
agreement with results obtained from lattice QCD simulations and models.

In the context of SU(3) symmetry, the Nc behaviors of the flavor singlet GFFs remain
unchanged. However, the flavor triplet and octet GFFs show the following behaviors:

A0(t) ∼ O(N0
c ), A3(t) ∼ O(N0

c ), A8(t) ∼ O(N0
c ),

J0(t) ∼ O(N0
c ), J3(t) ∼ O(N1

c ), J8(t) ∼ O(N1
c ),

D0(t) ∼ O(N2
c ), D3(t) ∼ O(N2

c ), D8(t) ∼ O(N2
c ),

c̄0(t) ∼ O(N0
c ), c̄3(t) ∼ O(N0

c ), c̄8(t) ∼ O(N0
c ). (3.26)

The Nc bahaviors of the flavor triplet GFFs (A3, D3, and c̄3) increase, being equivalent to
those of the flavor singlet GFFs (A0, D0, and c̄0). However, the Nc behaviors of the flavor
singlet and triplet angular momenta remain unchanged. Furthermore, the Nc bahaviors
of the flavor octet GFFs are the same as those of the flavor triplet GFFs. The trivial
embedding of the SU(2) soliton into the SU(3) space changes the Nc counting of the form
factors. It brings about the difference between Eq. (3.25) and Eq. (3.26): the Nc behaviors
of the isotriplet GFFs are different from those of the flavor-triplet ones.

4 Numerical results

Before delving into the numerical results for the flavor decompositions of the EMT distribu-
tions and form factors, it is crucial to acknowledge the limitations of the current approach.
We have made certain assumptions regarding the rotational and translational zero modes,
treating them up to corrections of 1/Nc and zero, respectively. Additionally, we have con-
sidered the flavor SU(3) symmetry where the strange current quark mass, ms, is set to
mu = md = ms. We have previously investigated the impact of ms on the GFFs and
EMT distributions, and found that while these contributions introduce some differences in
the octet baryon GFFs, they are ultimately negligible, with ms corrections approximately
10% [124]. Moreover, if we were to incorporate ms corrections into the stress tensor T ij ,
the von Laue condition would be violated. Consequently, we would need to artificially
reconstruct the pressure distribution by solving the differential equation (2.18) related to
shear-force distributions. Therefore, in the context of examining flavor structures, it is rea-
sonable to disregard these contributions to allow for a clearer understanding of the GFFs
and distributions at a glance.

It is of great importance to emphasize that we have consistently considered and in-
corporated 1/Nc corrections in the estimation of the GFFs and EMT distributions. This
approach ensures that the flavor components of the GFFs and distributions are treated with
equal accuracy within the 1/Nc expansion considered.

Lastly, we should acknowledge the potential impact of Ω2 ∼ 1/N2
c corrections on the

GFFs. These corrections lead to discernible differences in the EMT structures between the
octet and decuplet baryons. However, investigating these effects falls outside the scope
of the current study. Interested readers are encouraged to explore the relevant literature,
specifically Refs. [120, 125, 126], for more in-depth discussions on this topic.
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4.1 QCD mass distribution: mass decomposition vs LF momentum

By taking the linear combinations of the χ = 0, 3, 8 components of Eq. (3.19), we can
derive the flavor-singlet, -triplet, and -octet components of the mass distributions of the
nucleon. It is important to note that the 3D mass distribution, defined in the instant form
quantization at the rest frame, is normalized as follows:

Aχp (0) + c̄χp (0) =
1

Msol

∫
d3r εχp (r). (4.1)

The values of each component χ = 0, 3, 8 for the mass form factors (or normalization of the
mass distribution) are listed as follows:

A0
p(0) + c̄0

p(0) = 1, A3
p(0) + c̄3

p(0) = 0.25, A8
p(0) + c̄8

p(0) = 0.47, [ SU(3) ]

A0
p(0) + c̄0

p(0) = 1, A3
p(0) + c̄3

p(0) = 0.24. [ SU(2) ] (4.2)

The proton mass distribution, or the flavor-singlet mass distribution ε0
p, is normalized to its

massMsol, which ensures that the mass form factor is normalized to A0
p(0)+c̄0

p(0) = 1. Since
the spin-flavor operator of the flavor-singlet component is proportional to unity, the masses
of the octet baryons are all degenerate. It is worth noting that the gluon contributions are
parametrically suppressed with respect to the instanton packing fraction [118, 127], allowing
us to consider them negligible at the low normalization point of µ ∼ 600 MeV. It implies
that the gluon contributions to the GFFs can be ignored throughout this study. Thus,
the normalization of the nucleon mass is solely determined by the quark contributions.
Furthermore, we observe that the flavor-triplet mass distribution is smaller than the flavor-
singlet one. It suggests that the parametric suppression of the flavor triplet in SU(2)
symmetry remains valid in flavor SU(3) symmetry, although they become parametrically
equivalent in flavor SU(3). In addition, the parametric equivalence of the flavor singlet,
-triplet, and -octet components in the large Nc limit is reflected by the significant value of
the flavor-octet mass form factor A8

p(0) + c̄8
p(0).

By decomposing the flavor-singlet, -triplet, and -octet components, we can determine
the individual quark contributions to the mass distribution of the proton. The left panel
of Fig. 1 shows the 3D mass distribution of the nucleon and its flavor decomposition with
the flavor SU(3) symmetry. First, they are kept positive definite at any given r

εu,d,sp (r) > 0. (4.3)

Numerically, we find that the sum of the u- and d-quark contributions, as well as the s-
quark contribution, is normalized to unity when integrated over r. At the origin of the
proton, the magnitudes of the mass distributions for the u-, d-, and s-quarks are found to
be:

εup(0) = 1.11 GeV/fm3, εdp(0) = 0.69 GeV/fm3, εsp(0) = 0.10 GeV/fm3 (4.4)

We observe that the u-quark contributions to the mass distribution are approximately twice
as large as the d-quark contributions for the proton. This can be intuitively understood
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Figure 1. The 3D mass distribution of the proton and its flavor decomposition with the flavor
SU(3) symmetry are plotted. The solid (black), long-dashed (blue), short-dashed (red), and dashed-
dotted (green) curves denote the total, u-, d-, and s-quark contributions to the mass distributions,
respectively.

by considering the number of valence quarks inside the proton. Additionally, the s-quark
contribution is approximately 10% of the u-quark contribution. Notably, while the role of
the u-quark inside a proton is taken by the d-quark inside a neutron, i.e., εup(r) = εdn(r),
the s-quark contribution remains unchanged, i.e., εsp(r) = εsn(r).

In the right panel of Figure 1, we depict the r2-weighted mass distributions. To quantify
how far the mass distributions spread over coordinates space, we introduce the 3D mass
radii. In the flavor SU(3) symmetry, the radius of the mass distribution is given by:

〈r2
mass〉p = 0.54, (4.5)

which is equivalent to the radius in the flavor SU(2) symmetry. It is important to note
that, as discussed in Refs. [121, 124], the mass radius is smaller than the charge radius.

Next, we consider the individual quark contributions to the proton mass, which are
found to be:

Aup(0) + c̄up = 0.59, Adp(0) + c̄dp = 0.35, Asp(0) + c̄sp = 0.06, [ SU(3) ]

Aup(0) + c̄up = 0.62, Adp(0) + c̄dp = 0.38, [ SU(2) ] (4.6)

We find that the contribution from the sea quarks (s-quark contribution) accounts for
approximately 5% of the proton mass, which is relatively small.

As mentioned in the introduction, in contrast to instant form (IF) quantization at
the rest frame, the form factor Aqp(t) (the 2D Fourier transform of the LF momentum
form factor) is solely responsible for the LF momentum distribution. The quantity Aqp(0)

represents the momentum fraction carried by the quarks within the proton. Mathematically,
it is related to the unpolarized PDFs in the forward limit t→ 0 and ξ → 0 (or the second

– 18 –



Mellin moments of the vector GPDs):∫
dxxf q1 (x) = Aqp(0),

∫
dxx

∑
q

f q1 (x) = 1. (4.7)

Subtracting the c̄q form factor obtained from the T ij component of the EMT current from
the IF mass form factor Aqp(0) + c̄qp(0), we obtain LF momentum form factors Aqp(0):

Aup(0) = 0.65, Adp(0) = 0.34, Asp(0) = 0.01, [ SU(3) ]

Aup(0) = 0.66, Adp(0) = 0.34, [ SU(2) ] (4.8)

While the sum over all parton contributions ensures the correct normalization of the LF
momentum sum rule, the integrals of the individual quark mass distributions over 3D space
(Eq.(4.1)) cannot be interpreted as the longitudinal momentum fraction carried by the
partons unless the information on the pressure distributions related to the c̄q form factor is
provided beforehand. The definitions of the mass and pressure distributions in the context
of the thermodynamics have been discussed in Refs. [23, 74].

Interestingly, our findings indicate that for any given parton (a = q, g), it can generally
be said that if c̄ap is positive (negative), then the fraction of proton mass Ma

p attributed
to that parton is greater (smaller) than the fraction of proton momentum carried by the
parton 〈x〉a:

c̄ap(0) > 0 → Ma
p /Mp > 〈x〉a,

c̄ap(0) < 0 → Ma
p /Mp < 〈x〉a. (4.9)

If c̄qp(0) is zero, we get the trivial relation: Ma
p /Mp = 〈x〉a. In the χQSM, we have listed

the proportions of the proton mass taken up by the u-, d-, and s-quarks compared to the
proton momentum fraction carried by the u-, d-, and s-quarks:

Mu
p /Mp [59.5%] < 〈x〉u [64.9%],

Md
p /Mp [34.5%] > 〈x〉d [33.6%],

M s
p/Mp [6.0%] > 〈x〉s [1.5%], (4.10)

where M q
p and 〈x〉q are always positive definite. We discover the inequalities between

M q
p/Mp and 〈x〉q which are determined by the signs of c̄qp(0). In particular, the fraction

of the proton mass M s
p/Mp attributed to the s-quark is about four times larger than the

momentum fraction 〈x〉s carried by the s quark.

4.2 QCD angular momentum distribution

By taking the components χ = 0, 3, 8 from equation (3.19), we obtain the flavor-singlet, -
triplet, and -octet AMs. While the flavor-singlet AM is appropriately normalized to J0

p (0) =

1/2, given by

J0
p (0) =

∫
d3r ρ0

J,p(r) =
1

2
, (4.11)
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the flavor-triplet and -octet components are not constrained by conserved quantities and
are estimated as follows:

J0
p = 0.50, J3

p = 0.58, J8
p = 0.22, [ SU(3) ].

J0
p = 0.50, J3

p = 0.55, [ SU(2) ]. (4.12)

The parametrically large value of the flavor-triplet AM in the flavor SU(2) symmetry is
retained in the flavor SU(3) symmetry. Furthermore, the flavor-octet component exhibits
the same order of Nc as the flavor-triplet component, but numerically it is approximately
a half of its magnitude.

Figure 2 illustrates the individual flavor-decomposed AM distributions inside the pro-
ton, utilizing the relations provided in Eq. (2.5). Notably, the u- and s-quark distributions
exhibit positive values throughout the range of r, while the d-quark distribution is nega-
tive. It implies that the polarization of the s-quark aligns parallel to that of the u-quark,
whereas the d-quark polarization aligns in the opposite direction to that of the u-quark.
The right panel of Fig. 2 shows the AM distributions weighted by r2. When these 3D AM
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Figure 2. The 3D AM distribution of the nucleon and its flavor decomposition with the flavor
SU(3) symmetry are drawn. The solid (black), long-dashed (blue), short-dashed (red), and dashed-
dotted (green) curves denote the total, u-, d-, and s-quark contributions to the AM distributions,
respectively.

distributions are integrated over r, the resulting values are shown below:

Jup = 0.52, Jdp = −0.06, Jsp = 0.04, [ SU(3) ].

Jup = 0.53, Jdp = −0.03, [ SU(2) ]. (4.13)

As expected, the majority of the total AM is carried by the u-quark, whereas the d-quark
and s-quark give only minor contributions. These results are in line with the predictions
from the SU(2) version of the χQSM [119] and are compatible with findings from lattice
QCD simulations [57]. A comprehensive analysis of the scale evolution of the AM form
factors can be found in Refs. [128, 129].
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In comparison with the results obtained from the SU(2) χQSM [68, 119, 130], we observe
that while the contribution of the u-quark to the total AM remains nearly unchanged, the
polarization of the d-quark contribution is slightly enhanced. This suggests that the s
quark is polarized in the opposite direction to the d quark, effectively canceling each other
out and keeping the total AM at 1/2. Interestingly, we found that the magnitude of the
s quark contribution to the total AM is nearly equal to that of the d quark contribution.
However, a non-trivial question arises regarding the decomposition of AM into spin and
OAM. According to the Ji’s relation [17], the total AM can be expressed as the sum of the
intrinsic spin and the OAM:

J =
1

2

∑
q

∆q +
∑
q

Lq. (4.14)

where we focus on the quark contributions, since the gluon contributions are parametrically
suppressed in the QCD instanton vacuum [127, 131]. In the χQSM, the antisymmetric part
of the 0k component of the Ji’s EMT current captures the spin of the s-wave quarks, while
the non-symmetric part accounts for the quark AM with OAM L = 1. This implies that
the static quark spin and the relativistic motion of the quark explain the intrinsic spin and
OAM, respectively. Remarkably, we find that 50% of the flavor-singlet AM is due to the
relativistic motion of the quarks inside the nucleon:

1

2
=

1

2

∑
q

∆q +
∑
q

Lq = 0.23 + 0.27. (4.15)

It is worth noting that the effect of corrections due to the strange quark mass (ms) on the
AM decomposition has been estimated in Ref. [124] and found to be negligible, with only
a few percent effect on the proton. Furthermore, in the χQSM, the validity of Ji’s relation
for the flavor-singlet component has been analytically proven in Refs. [68, 132], even in the
presence of flavor SU(3) symmetry breaking [124]. However, a careful treatment is required
to investigate the separate contributions of quark flavors to the OAM and intrinsic spin, as
discussed in Ref. [133].

The effective chiral action can be divided into a real part and an imaginary part. The
real part is an ultraviolet (UV) quantity, while the imaginary part is free from UV diver-
gence. Understanding the origin of UV divergence is crucial for determining the regulariza-
tion functions. For instance, the baryon number density solely arises from the imaginary
part and does not require any regularization. This can easily be demonstrated by perform-
ing the gradient expansion of the effective action with respect to the pion momentum. For
further details, we refer to Refs.[96, 134]. Similarly, the total angular momentum does not
require a regularization, as evidenced by the gradient expansion. However, when the total
angular momentum is decomposed into the contributions of OAM Lu−d and intrinsic spin
Su−d = gu−dA /2, they become UV divergent quantities and must be regularized. Notably,
the isovector axial-vector charge is a UV divergent quantity [96]. Hence, it is expected that
the individual values of Su−d and Lu−d would be enhanced and not reliable observables
when starting from the EMT current. Thus, it is important to consider these limitations
when interpreting the values of OAM and intrinsic spin. On the other hand, the divergent
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parts of both Su−d and Lu−d exactly cancel out, ensuring the validity of the prediction for
Ju−d. It should be noted that for the flavor-singlet Lu+d and Ju+d, which are UV divergent
quantities, it is relatively safe to decompose the total angular momentum into OAM and
intrinsic spin.

Second, in the χQSM, the Ji’s relation for the flavor-triplet is spoiled. As discussed in
Refs. [135, 136], the presence of the interacting term MUγ5 introduces a modification to
the Ji’s relation (4.14) through an additional term δJu−dp [135, 136]:

Ju−dp = Lu−dp + Su−dp + δJu−dp , (4.16)

where δJu−d is proportional to the dynamical quark mass M . Furthermore, the second
moment of the chiral-odd twist-3 quark distribution eu+d(x) deviates from the QCD relation
due to the presence of an additional term β [137, 138]:∫ 1

−1
dxx eu+d(x) =

m

MN
Nc +

M

MN
β. (4.17)

We expect that the origin of this discrepancy may arises from the lack of the knowledge of the
proper matching the QCD operator with the twist-3 effective opertator [139]. Consequently,
the decomposition of the flavor-decomposed AM into intrinsic spin and OAM becomes
ambiguous. For further details, refer to Ref. [33]. Therefore, we will not present the
corresponding results in this study.

4.3 QCD Mechanical properties

The ij component of the EMT is related to the pressure and shear-force distributions by
the 3D Fourier transform and provides crucial information for understanding the stability
conditions of the nucleon. To fully interpret these mechanical properties, knowledge of
both the c̄ and D term form factors is required. A well-known stability condition, known
as the von Laue condition, arises from the conservation of the EMT current. Similar to
the normalization of the mass and spin of the baryon, the von Laue condition serves as a
normalization condition for the stress tensor.

In general, the von Laue condition must be satisfied in the Breit frame with J ′3 = J3:∫
d3r

∑
a=q,g

pap(r) =
〈p(p′, J3)|δij T̂ aij |p(p, J3)〉

6P 0

∣∣∣∣
t=0

= Mp

∑
a=q,g

[
−c̄ap(t) +

t

6M2
p

Da
p(t)

] ∣∣∣∣
t=0

= 0, (4.18)

where the pressure is defined by the monopole contribution to the ij component of the
EMT, given by T ij ∝ δij . It implies that the pressure distribution (2.17) depends on both
the c̄ and D-term form factors:〈

p(p′, J3)
∣∣T̂ aij∣∣p(p, J3)

〉
= 2P 0Mpδij

[
−c̄ap(t) +

t

6M2
p

Da
p(t)

]
+ · · · . (4.19)
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Here, the ellipsis denotes the quadrupole components in the momentum transfer ∆i. Thus,
Eq. (4.18) asserts that the sum of the quark and gluon contributions to the c̄ form factors
must be zero in the forward limit ∆ = 0 in order to satisfy the von Laue condition:∑

a=q,g

c̄ap = 0. (4.20)

In other words, there exists a one-to-one correspondence between the von Laue condition
and the condition

∑
a=q,g c̄

a = 0 (4.20). Interestingly, this condition (4.20) can be viewed
as an equilibrium equation between the quark flavor and gluon subsystems, expressed as
c̄u+d+...(t) + c̄g(t) = 0, or in position space as Eq. (2.19); refer to Refs. [118, 119] for further
details.

Returning to the χQSM, as explained earlier, the gluon contributions are suppressed
at low normalization points. Consequently, the subsystem consisting of the quark flavor
and gluon reduces to the quark flavor subsystem alone. This reduction is supported by the
analytical proof of the global stability condition in Ref. [68], which considers only u and d
quarks. Importantly, this result holds even in the case of flavor SU(3) symmetry, since the
expression for the SU(2) isoscalar pressure distribution [68, 119, 124] coincides with that of
the SU(3) flavor-singlet pressure distribution [124]:∫

d3r pu+d+s
p (r) = 0. (4.21)

This implies that instead of Eq. (4.20) we have an equilibrium equation between the quark
flavor subsystems [119], represented as c̄u+d+...

p = 0, or Eq. (2.19) in position space.
In the χQSM, the flavor-singlet D-term form factor can be extracted from both the

pressure and shear-force distributions through the 3D Fourier transform (2.17), benefiting
from the fact that c̄u+d+s is zero (4.20). This indicates that the two distributions are
not independent. It is worth noting that the self-consistent determination of the pion
configuration is crucial for the pressure and shear-force distributions to naturally satisfy
the differential equation (2.18), which leads to the extracted D-terms from the pressure and
shear-force distributions being identical. For more detailed information, refer to Refs. [67,
68, 119, 124, 130, 140].

For the flavor-triplet and -octet pressure components, the absence of conserved quan-
tities leads to the violation of their von Laue conditions. This violation occurs due to the
non-zero values of the c̄3,8

p (0) form factors:∫
d3r p3,8

p (r) = −MN c̄
3,8
p (0). (4.22)

While the flavor-triplet and -octet shear force distributions are associated with their re-
spective D-term form factors, the flavor-triplet and -octet pressure distributions involve a
combination of both c̄ and D-term form factors. Consequently, the two distributions are
independent of each other. Thus, unlike the flavor-singlet distributions, there is no inher-
ent connection between the shear force and pressure distributions through the differential
equation (2.18).
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The values of the flavor triplet and octet c̄ form factors are determined as follows:

c̄0
p(0) = 0, c̄3

p(0) = −0.060, c̄8
p(0) = −0.080, [ SU(3) ]

c̄0
p(0) = 0, c̄3

p(0) = −0.07. [ SU(2) ] (4.23)

We find that c̄3
p(0) is comparable to c̄8

p(0) and both values are negative but relatively small.
These magnitudes are approximately four times larger than the internal forces between the
quark and gluon subsystems (c̄g(0) ∼ −0.014 [118]).

Additionally, we obtain the flavor singlet, triplet, and octet D-term form factors by
Fourier transform of the shear-force distributions:

D0
p(0) = −2.531, D3

p(0) = 0.063, D8
p(0) = −0.697, [ SU(3) ]

D0
p(0) = −2.531, D3

p(0) = 0.295. [ SU(2) ] (4.24)

Burkert et al. [71] analyzed the experimental data on DVCS, and extracted theD-term form
factor using the large Nc assumption while neglecting s-quark contributions. In the flavor
SU(2) sector, we observe that the isovector component of the D-term is significant. On the
other hand, in the flavor SU(3), the flavor-triplet D-term is found to be almost zero, i.e.,
D3
p ∼ 0. This indicates that the large Nc assumption is only applicable in the flavor SU(3)

sector. This finding is consistent with Ref. [141]. In lattice QCD simulations [58, 59], the
value of the isovector D-term is found to be very small with a negative sign, which differs
from the result in the χQSM. However, lattice QCD calculations suffer from substantial
uncertainties, leaving the sign of the isovector D-term undetermined.

We obtain the flavor-decomposed pressure and shear-force distributions by linearly
combining the χ = 0, 3, 8 components. The resulting distributions are depicted in Figure 3.
The values of the flavor-decomposed pressures at the center of the proton are given by
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Figure 3. The 3D pressure distribution of the nucleon and its flavor decomposition with SU(3)
symmetry are plotted. The solid (black), long-dashed (blue), short-dashed (red), and dashed-dotted
(green) curves denote the total, u-, d-, and s-quark contributions to the pressure distributions,
respectively.
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pup(0) = 0.30 GeV/fm3, pdp(0) = 0.06 GeV/fm3, psp(0) = −0.01 GeV/fm3. (4.25)

The dominance of the u-quark in the central region is evident, as valence quarks tend to
cluster in the core. Interestingly, while the repulsive forces are governed by the u and
d quarks, the attractive force is exerted by the s-quark in the core. Furthermore, it is
intriguing to examine the locations of the nodal points (r0)qp of the flavor-decomposed
pressure for the u-, d-, and s-quarks:

(r0)sp > (r0)up > (r0)dp (4.26)

with

(r0)up = 0.96, (r0)dp = 0.54, (r0)sp = 5.74. (4.27)

As depicted in Fig. 3, the inner part of the pressure is positive while the outer part is
negative for the u and d quarks. This implies that the inner part of the nodal point governs
the repulsive force, while the outer part governs the attractive force. Specifically, the nodal
point for the u-quark is located farther away from the center, indicating the dominance of
the repulsive force (valence core). The nodal point of the d-quark is closer to the center
than that of the u quark, resulting in a balance between the repulsive and attractive forces,
as reflected in the similarity between the nodal point of the total pressure and that of
the d-quark. On the other hand, the inner part of the s-quark pressure is negative, and
the nodal point is far away from the center. This fact suggests that the attractive force
predominantly arises from the non-valence quark, thus contributing to the stability of the
nucleon.

These observations can be quantified either by substituting the flavor-decomposed val-
ues (4.23) into Eq. (4.22), or by directly integrating the pressure distribution pqp(r) over
r: ∫

d3r pup(r) = 0.068 GeV,

∫
d3r pdp(r) = −0.012 GeV,

∫
d3r psp(r) = −0.057 GeV.

(4.28)

where

c̄up(0) = −0.054, c̄dp(0) = 0.009, c̄sp(0) = 0.045, [ SU(3) ]

c̄up(0) = −0.04, c̄dp(0) = 0.04. [ SU(2) ] (4.29)

We have indeed found that the u-quark predominantly contributes to the repulsive force,
while the d- and s-quarks are mainly responsible for the attractive force. Remarkably,
the attractive and repulsive forces exerted by the d-quark are well balanced. Therefore, the
internal pressure can be interpreted as follows: the majority of the valence quarks (primarily
the u-quark) tend to escape due to the Pauli exclusion principle, while the minority of
quarks (the s- and d-quarks) confine the majority of the valence quarks from the outer
region.

In Fig. 4, the flavor-decomposed shear-force distributions are drawn. All the flavor-
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Figure 4. The shear-force distribution of the nucleon and its flavor decomposition with the fla-
vor SU(3) symmetry are drawn. The solid (black), long-dashed (blue), short-dashed (red), and
dashed-dotted (green) curves denote the total, u-, d-, and s-quark contributions to the pressure
distributions, respectively.

decomposed shear-force distributions have been determined to be positive throughout the
range of r. This positive definiteness of the shear force distribution,

∑
q s

q
p(r) > 0, leads to

the inequality [68, 73, 74, 120]:

2

3
sp(r) + pp(r) > 0, (4.30)

which arises from the equilibrium equation (2.19) relating the pressure distribution to shear-
force one. This force can be interpreted as a normal force F qr (r) acting on an infinitesimal
area, in conjunction with the tangential forces F qφ(r). The normal force, as well as the tan-
gential forces, can be obtained by contracting the ij-components of the EMT distributions
with the normal vector r̂ and the tangential vector φ̂, respectively [120]:

F qr,p(r) = 4πr2

[
2

3
sq(r) + pq(r)

]
, F qφ,p(r) = F qθ,p(r) = 4πr2

[
−1

3
sq(r) + pq(r)

]
.

(4.31)

As discussed in Eq. (4.22), the flavor-triplet and -octet components do not satisfy the
von Laue condition, indicating a breakdown of the rigid relation between the pressure and
shear-force distributions described by the equilibrium equation (2.19) (or the D-term form
factor (2.15)). Consequently, the positivity of shear-force distributions for individual quark
flavors does not guarantee the positivity of the corresponding normal force distributions.
This is illustrated in Figs. 5 and 6, where the normal force of the s-quark becomes negative,
inspite of the fact that the shear-force distribution for the s-quark are positive all over r in
Fig. 4. However, the positivity of the sum of contributions from separate quark flavors to the
shear-force distribution ensures the positivity of the normal force distributions, known as the
local stability condition [73, 74, 120]. Regarding the tangential force, similar behaviors are
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Figure 5. The normal and tangential force distributions of the nucleon and its flavor decompo-
sition with the flavor SU(3) symmetry are drawn. The solid (black), long-dashed (blue), short-
dashed (red), and dashed-dotted (green) curves denote the total, u-, d-, and s-quark contributions
to the pressure distributions, respectively.
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Figure 6. Visualizations of the profiles for the normal and tangential force distributions inside the
nucleon for each quark flavor.
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observed for the d- and s-quarks. Notably, the integral of the tangential force distributions
for all quark flavors over r is found to be zero, which is referred to as the von Laue condition
for the 2D subsystem. It is important to note that this differs from the 2D von Laue stability
condition on the light-cone [74, 142–144].

We want to briefly discuss the close relation between the 3D BF and 2D LF stability
conditions. As mentioned earlier in the introduction and Section 2, a question arises as to
whether the stability condition established in the 3D BF framework holds true in the 2D LF
framework. So far, we have focused on providing information regarding the 3D distributions
and their associated stability conditions. Interestingly, it has been demonstrated that when
considering longitudinally polarized nucleon spin, the 3D stability conditions can be directly
translated into the 2D LF framework through the use of the Abel transformation [142, 143].
However, for higher-spin particles, the direct connection between the 2D LF and 3D BF
distributions becomes less clear [113, 145, 146]. Therefore, in the case of the nucleon,
providing the 3D BF distributions is sufficient to examine the criteria for the stability
conditions.

We are now ready to delve into the mechanical interpretation of the c̄ form factor,
which leads to deviations from the well-established stability conditions. As discussed in
Section 2, Eqs. (2.19) and (2.20) elucidate the intricate interplay of internal forces between
the subsystems of separate quark flavors within the nucleon. The profile of the three-
dimensional (3D) distribution f qp,j , as described in Eq. (2.20), is visualized in Fig. 7, while
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Figure 7. The internal force distributions between the quark-flavor subsystems inside the nucleon
are plotted. The left, middle, and right panels show the u-, d-, and s-quark contributions to the
internal force distributions, respectively.

its magnitude is depicted in Fig. 8. The force exerted by the u-quark (c̄ < 0) is directed
toward the center of the nucleon, while the forces exerted by the d- and s-quarks (c̄d,s > 0)
result in stretching. Consequently, we can infer that the d- and s-quarks are compressed
by the u-quark subsystem. A similar interpretation was made in a study involving the
quark-gluon subsystem, where the gluon forces (c̄g < 0) were observed to squeeze the quark
subsystem (c̄u+d > 0) [118]. It is important to note that the sum of f qp (r) must necessarily
be zero over r.
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Figure 8. The internal force distributions between the quark-flavor subsystems inside the nucleon
are drawn. The solid (black), long-dashed (blue), short-dashed (red), and dashed-dotted (gray)
curves denote the total, u-, d-, and s-quark contributions to the internal force distributions, respec-
tively.

4.4 Flavor-decomposed GFFs of the proton

We are now in a position to examine the t-dependence of the nucleon GFFs in the flavor
SU(3) symmetry. By performing a 3D Fourier transform of the EMT distributions, we
obtain the GFFs, which are depicted in Fig. 9. As discussed in the previous subsection,
we have observed that the s-quark contributions to the A and J form factors are marginal.
However, the s-quark’s influences on theD and c̄ form factors are found to be non-negligible.
Consequently, the s-quark plays an important role in the mechanical interpretation of the
proton. For additional insights into the contributions of valence and sea quarks to the
GFFs, refer to Ref. [141].

4.5 SU(3) spin-flavor sturcture and the hyperon GFFs

In the large Nc limit of QCD, the relation between the lowest-lying baryons can be under-
stood in a model-independent manner using spin-flavor symmetry. While the GFFs in the
flavor SU(2) symmetry were investigated in Ref. [104], we aim to extend this analysis to
the flavor SU(3) sector in our current work. The chiral soliton approach describes the spin-
flavor symmetry using collective operators, namely the spin Si, isospin T a, and spin-flavor
Dia generators. The matrix elements of these operators, which are listed in Tables 2 and
3, provide insights into the spin-flavor structure.

Utilizing the matrix elements of the spin-flavor operators, we establish the following
spin-flavor relations in the flavor SU(3) symmetry:

• The flavor-singlet GFFs for the octet baryons are degenerate.

• The flavor-triplet GFFs are propotional to the isospin projection T3, i.e., F 3
B ∝ T3.

Consequently, we find the relations:∑
B∈octet

F 3
B = 0,

∑
B=p,n

F 3
B = 0,

∑
B=Σ+,Σ0,Σ−

F 3
B = 0,

∑
B=Ξ0,Ξ−

F 3
B = 0. (4.32)
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Figure 9. The gravitational form factors are drawn. The solid (black), long-dashed (blue), short-
dashed (red), and dashed-dotted (green) curves denote the total, u-, d-, and s-quark contributions
to the GFFs, respectively.

• The flavor-octet GFFs for the iso-multipolets are degenerate. Additionally, we obtain:∑
B∈octet

F 8
B = 0,

∑
B=Λ,Σ

F 8
B = 0. (4.33)

Remarkably, our numerical calculations confirm that these spin-flavor relations are indeed
satisfied; see Tab. 1.

Figure 10 displays the A0,3,8 form factors for the octet baryons. Firstly, we observe
that the A0 form factors for the octet baryons are clearly degenerate, which arises from the
absence ofms corrections. Introducing these corrections would break the degeneracy among
the mass form factors A for the baryon octet, as discussed in Ref. [124]. Secondly, the A3

form factors for the baryon octet are proportional to the third component of the isospin,
denoted as ∝ T 3. This implies that A3

Λ0,Σ0(t) = 0. Additionally, the sums of the A3 form
factors for the iso-multiplets yield zero. Lastly, the A8 form factors for the iso-multiplet
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Table 1. Flavor-decomposed gravitational form factors for the octet baryons

B AuB(0) AdB(0) AsB(0) JuB(0) JdB(0) JsB(0) Du
B(0) Dd

B(0) Ds
B(0) c̄uB(0) c̄dB(0) c̄sB(0)

p 0.649 0.336 0.015 0.520 −0.057 0.036 −1.014 −1.076 −0.441 −0.054 0.009 0.045

n 0.336 0.649 0.015 −0.057 0.520 0.036 −1.076 −1.014 −0.441 0.009 −0.054 0.045

Λ 0.335 0.335 0.331 0.055 0.055 0.390 −0.960 −0.960 −0.611 0.005 0.005 −0.009

Σ+ 0.649 0.015 0.336 0.520 0.036 −0.057 −1.014 −0.441 −1.076 −0.054 0.045 0.009

Σ0 0.332 0.332 0.336 0.278 0.278 −0.057 −0.727 −0.727 −1.076 −0.005 −0.005 0.009

Σ− 0.015 0.649 0.336 0.036 0.520 −0.057 −0.441 −1.014 −1.076 0.045 −0.054 0.009

Ξ0 0.336 0.015 0.649 −0.057 −0.036 0.552 −1.076 −0.441 −1.014 0.009 0.045 −0.054

Ξ− 0.015 0.336 0.649 −0.036 −0.057 0.520 −0.441 −1.076 −1.014 0.045 0.009 −0.054
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Figure 10. Flavor-singlet, -triplet, and -octet A form factors for the octet baryons are drawn.
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members are degenerate. Interestingly, we derive the following relations:∑
B=N,Ξ

A8
B = 0,

∑
B=Λ,Σ

A8
B = 0. (4.34)

Consequently, Table 1 provides the flavor-decomposed GFFs. Notably, the u-, d-, and s-
quarks equally carry the momentum fraction of the Λ0 and Σ0 baryons. This equality arises
from the vanishing values of the flavor-octet components A8

Σ0,Λ0(0) = 0. Comparing it with
the proton, the Σ+ baryon contains one less d-quark and one additional s-quark in the
valence level, leading to an exchange in the roles of Ad and As between the proton and Σ+

baryon. Similar tendencies are observed for the Σ−, Ξ0, and Ξ− baryons.
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Figure 11. Flavor-singlet, -triplet, and -octet J form factors for the baryon octet are drawn.

Figure 11 illustrates the J0,3,8 form factors for the octet baryons. Firstly, we observe
that the J0 form factors for the octet baryons are also degenerate. However, this degeneracy
can be lifted by considering ms corrections, as discussed in Ref. [124]. Secondly, the J3

form factor for the octet baryons is once again proportional to T 3, resulting in null results
for the Σ0 and Λ0 baryons. While the octet components J8 for the iso-multiplet members
remain degenerate, we find the following relations:∑

B=N,Ξ

J8
B 6= 0,

∑
B=Λ,Σ

J8
B = 0. (4.35)
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This is in contrast to the A8 form factors, leading to different flavor-decomposed J form
factors. In Table 1, we provide the flavor-decomposed J form factors. It is interesting to
note that the Λ0 and Σ0 baryons exhibit different quark contributions despite having the
same quark content. This finding is reminiscent of the flavor-decomposed axial charges
presented in Ref. [147]:

∆uΛ0 = −0.093, ∆dΛ0 = −0.093, ∆sΛ0 = +0.623,

∆uΣ0 = +0.384, ∆dΣ0 = +0.384, ∆sΣ0 = −0.332. (4.36)

Thus, we conclude that the spin and OAM of the s-quark in the Λ0 baryon are strongly
polarized, while those in the Σ0 baryon are relatively weakly polarized, despite both baryons
having the same quark content. For the p, n, Σ+, Σ−, Ξ0, and Ξ− baryons, we can easily
obtain the flavor-decomposed Jq(0) form factors by considering the number of valence
quarks. For instance, the flavor-decomposed Jq(0) form factors for the Σ+ baryon are
found to be:

two quarks with the same flavor (u)→ Ju(0) = +0.520,

one quark (s)→ Js(0) = −0.057,

non-valence quark (d)→ Jd(0) = +0.036. (4.37)

In Fig. 12, we present the D0,3,8 form factors for the octet baryons. We observe that
the D0(t) form factors for the octet baryons are degenerate, similar to the previous cases.
Additionally, the D3 form factors for the octet baryons are proportional to T 3, following
the pattern we have seen before. Similarly to the J8 form factor, the flavor-octet D8 form
factors for the iso-multiplet members are degenerate, leading to the following relations:∑

B=N,Ξ

D8
B 6= 0,

∑
B=Λ,Σ

D8
B = 0. (4.38)

Next, we investigate the flavor-decomposed D-term form factors. Interestingly, unlike the
J(t) form factors for the Λ0 and Σ0 baryons, we find that the s-quark contributions to the
D-term for the Σ0 baryon are larger than those for the Λ0 baryon:

Du
Λ0 = −0.960, Dd

Λ0 = −0.960, Ds
Λ0 = −0.611,

Du
Σ0 = −0.727, Dd

Σ0 = −0.727, Ds
Σ0 = −1.076. (4.39)

Similarly, for the other octet baryons p, n, Σ+, Σ−, Ξ0, and Ξ−, we find that the flavor-
decomposed Dq form factors can be obtained by counting the number of valence quarks.
For example, the flavor-decomposed D-term form factors for the Σ+ baryon are given by:

two quarks with the same flavor (u)→ Du(0) = −1.014,

one quark (s)→ Ds(0) = −1.076,

non-valence quark (d)→ Dd(0) = −0.441. (4.40)

These relations are exactly the same as the flavor-decomposed J(t) form factors for the
baryon octet. It is important to note that the contributions of non-valence quarks to the D-
term form factors are rather significant. Therefore, these contributions should be considered
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Figure 12. Flavor-singlet, -triplet, and -octet D-term form factors for the baryon octet are drawn.

in estimating the flavor-decomposed D-term form factors as they play an essential role
alongside valence quarks.

In Fig. 13, we present the c̄0,3,8 form factors for the octet baryons. Remarkably, all the
flavor-singlet, -triplet, and -octet c̄ form factors exhibit the same relations as the D-term
form factors. When we perform the flavor decomposition of the c̄ form factor, we find the
following relations:

c̄q
Λ0(t) = −c̄q

Σ0(t). (4.41)

This result is attributed to the constraint imposed by the flavor-singlet c̄0(t) form factor,
namely c̄0 = 0. Additionally, we observe that the s-quark contributions to the c̄ form factors
for the Λ0 and Σ0 baryons dominate over the u- and d-quark contributions:

c̄uΛ0 = +0.005, c̄dΛ0 = +0.005, c̄sΛ0 = −0.009,

c̄uΣ0 = −0.005, c̄dΣ0 = −0.005, c̄sΣ0 = +0.009. (4.42)

Similar relations hold for the other octet baryons, consistent with the findings for the flavor-
decomposed J(t) and D(t) form factors. For instance, the flavor-decomposed c̄ form factors
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Figure 13. Flavor-singlet, -triplet, and -octet c̄ form factors for the octet baryons are drawn.

for the Σ+ baryon are given by:

two quarks with the same flavor (u)→ c̄u(0) = −0.054,

one quark (s)→ c̄s(0) = +0.009,

non-valence quark (d)→ c̄d(0) = +0.045. (4.43)

It is worth noting that the contributions of non-valence quarks turn out to be rather sig-
nificant.

Finally, we turn our attention to the generalized electromagnetic form factors (GEMFFs).
The first Mellin moments of the GPDs are directly related to the EMFFs. By retaining
the flavor structure of the EMFFs, we can derive the GEMFFs through the second Mellin
moments of the GPDs. The flavor structure of the electromagnetic current is given by the
matrix:

Q =

 2
3 0 0

0 −1
3 0

1 0 −1
3

 =
1

2

(
λ3 +

1√
3
λ8

)
. (4.44)

where λ3 and λ8 are Gell-Mann matrices. By inserting this flavor operator into the equation
governing the electromagnetic current, Eq. (3.13), we obtain the GEMFFs. These GEMFFs
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can be expressed as a linear combination of the flavor-triplet and -octet GFFs, namely
FQB = 1

2

(
F 3
B + 1√

3
F 8
B

)
. Similar to the EMFFs, the GEMFFs satisfy the U -spin symmetry.

This symmetry implies that the GEMFFs for baryons with the same charge, except for the
Λ0 and Σ0 baryons, are equivalent when the flavor SU(3) symmetry is imposed. In other
words, we have:

FQp (t) = FQ
Σ+(t), FQn (t) = FQ

Ξ0(t), FQ
Σ−(t) = FQ

Ξ−(t), FQ
Λ0(t) = −FQ

Σ0(t). (4.45)

This U -spin symmetry is observed numerically in Fig. 14. The observed U -spin symmetry
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Figure 14. Generlized electromagnetic form factor for the octet baryons are drawn.

aligns with the spin-flavor relations found in the analysis of the separate flavor-singlet,
-triplet, and -octet GFFs.

5 Conclusions and summary

In the current work, we focused on investigating the flavor-decomposed gravitational form
factors (GFFs) for the nucleon and hyperons, and their mechanical interpretations within
the framework of the SU(3) chiral quark-soliton model. Specifically, we aimed to under-
stand the role of the strange quark in the mechanics of the proton. In the large Nc limit
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of quantum chromodynamics (QCD), the collective motion of the chiral soliton is nonrela-
tivistic, while the internal dynamics remain fully relativistic. Therefore, we naturally adopt
three-dimensional mechanical interpretations of the gravitational form factors.

Initially, we determined the large Nc behavior of the flavor-decomposed GFFs in the
context of flavor SU(3) symmetry. The implementation of the trivial embedding of the
SU(2) soliton into the SU(3) space led to modifications in the Nc behavior behavior of the
form factors. Notably, the Nc dependence of the flavor-triplet components of the A3, D3,
and c̄3 form factors was enhanced by one order of Nc. As a consequence, all the flavor-
singlet, -triplet, and -octet components of a form factor became parametrically equivalent.
Conversely, the Nc behavior of the flavor-triplet J3 form factor remained unchanged under
flavor SU(3) symmetry, resulting in the continued suppression of the flavor-singlet J0 form
factor in the 1/Nc expansion.

Next, we obtained the flavor-decomposed mass distribution in the rest frame, which
is influenced by both the A and c̄ form factors. While the flavor-singlet component was
properly normalized to unity, i.e.,

∑
q(A

q(0) + c̄q(0)) = 1, no constraints were imposed on
the flavor-triplet and -octet components. Our findings revealed that approximately 60%
of the proton mass is attributed to up quarks, 35% to down quarks, and 6% to strange
quarks. Furthermore, the light-front momentum fraction carried by up, down, and strange
quarks in the proton was estimated to be 65%, 34%, and 2%, respectively. Remarkably,
this difference between mass decomposition and light-front momentum results from the
contributions from the c̄q(0) form factors.

Regarding the angular momentum distribution, we observed that the J form factor
was appropriately normalized to the proton spin, i.e.,

∑
q J

q(0) = 1/2. We determined
the fraction of the proton spin carried by up, down, and strange quarks, which were found
to be Jup = 0.52, Jup = −0.06, and Jsp = 0.04, respectively. Similar to the mass form
factor, the strange quark contributed minimally to the proton angular momentum. For the
flavor-singlet angular momentum, it can be decomposed into orbital angular momentum
and intrinsic quark spin, with each accounting for half of the proton spin. In this work,
we focused on estimating the total angular momentum instead of the flavor-decomposed
orbital angular momentum due to ambiguities in matching twist-3 QCD operators with the
effective operators we employed.

Furthermore, we investigated the mechanical properties of the proton. The stress ten-
sor was parameterized in terms of the pressure and shear-force distributions, which were
obtained through three-dimensional Fourier transforms of the c̄ and D-term form factors.
We verified that the von Laue condition, which corresponds to

∑
q c̄

q = 0, was satisfied
for the flavor-singlet pressure distribution. However, we discovered that the von Laue
condition was violated for the flavor-triplet and -octet pressure distributions due to the
contributions from the c̄ form factors. Additionally, we found no inherent relation between
the shear force and pressure distributions through the differential equation derived from
energy-momentum tensor current conservation. Notably, we observed that Du−d ∼ 0 was
only valid in the flavor SU(3) symmetry, rather than the flavor SU(2). Moreover, in the
flavor SU(3), we determined the significant contributions of strange quarks to the D-term
and c̄ form factors. Using the Fourier transform of the obtained form factors, we visualize
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these flavor-decomposed internal forces inside the proton, which revealed interplay between
quark flavor subsystems.

Lastly, utilizing the spin-flavor symmetry in flavor SU(3) symmetry, we explored the
GFFs for hyperons. We presented the interesting spin-flavor symmetries observed and
introduced the electromagnetic flavor structure into the GFFs, resulting in the observation
of U -spin symmetries in the generalized electromagnetic form factors.
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A EMT distributions and regularization functions

We provide explicit expressions for the EMT distributions. These distributions are compiled
below. We have mass distributions:

E(r) = Nc

[
Evψ

†
v(r)ψv(r) +

∑
n

ψ†n(r)ψn(r)R0n

]
,

J1(r) =
Nc

4

[∑
n6=v

En + Ev
En − Ev

〈n|τ3|v〉ψ†v(r)τ3ψn(r) +
1

2

∑
n,m

(En + Em) 〈n|τ3|m〉ψ†m(r)τ3ψn(r)R3nm

]
,

J2(r) =
Nc

8

[∑
n0

En0 + Ev
En0 − Ev

〈
n0
∣∣v〉ψ†v(r)ψn0(r)

+
∑
n0,m

(En0 + Em)
〈
n0
∣∣m〉ψ†m(r)ψn0(r)R3n0m

]
, (A.1)
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and the angular momentum distributions:

Q0(r) =
Nc

4

[
ψ†v(r)ΓJvv3τ3ψv(r)− 1

2

∑
n

sign(En)ψ†n(r)ΓJnn3τ3ψn(r)

]
,

Q1(r) =
Nc

4
ifij3

[∑
n6=v

sign(En)

En − Ev
〈n|τi|v〉ψ†v(r)τjΓ

J
vn3ψn(r)

+
1

2

∑
n,m

〈n|τi|m〉ψ†m(r)τjΓ
J
mn3ψn(r)R6nm

]
,

I1(r) =
Nc

4

[∑
n6=v

〈n|τ3|v〉
En − Ev

ψ†v(r)ΓJvn3ψn(r) +
1

2

∑
n,m

〈n|τ3|m〉ψ†m(r)ΓJmn3ψn(r)R3nm

]
,

I2(r) =
Nc

4

[∑
n0

〈
n0
∣∣v〉

En0 − Ev
ψ†v(r)τ3ΓJvn03ψn0(r)

+
∑
n0,m

〈
n0
∣∣m〉ψ†m(r)τ3ΓJmn03ψn0(r)R3n0m

]
. (A.2)

where ΓJ3 (En, Em) = ΓJnm3 =
(

2L̂3 + (En + Em)γ5(r × σ)3

)
with L̂ =

[
r × i

2(
←−
∇ −

−→
∇)
]
.

The quadrupole distributions s(r) relevant for the D-term form factors are given by

N1(r) =
3

2
Nc

[
ψ†v(r)Γsψv(r) +

∑
n

ψ†n(r)Γsψn(r)R1n

]
,

J3(r) =
3

4
Nc

∑
n6=v

〈n|τ3|v〉
En − Ev

ψ†v(r)τ3Γsψn(r) +
1

2

∑
n,m

〈n|τ3|m〉ψ†m(r)τ3Γsψn(r)R5nm

 ,
J4(r) =

3

8
Nc

∑
n0

〈
n0
∣∣v〉

En0 − Ev
ψ†v(r)Γsψn0(r) +

∑
n0,m

〈
n0
∣∣m〉ψ†m(r)Γsψn0(r)R5n0m

 , (A.3)

and the monopole distributions p(r) relevant to the c̄ and D-term form factors are written
as

N3(r) =
Nc

3

[
ψ†v(r)Γpψv(r) +

∑
n

ψ†n(r)Γpψn(r)R1n

]
,

J5(r) =
Nc

6

∑
n6=v

〈n|τ3|v〉
En − Ev

ψ†v(r)τ3Γpψn(r) +
1

2

∑
n,m

〈n|τ3|m〉ψ†m(r)τ3Γpψn(r)R5nm

 ,
J6(r) =

Nc

12

∑
n0

〈
n0
∣∣v〉

En0 − Ev
ψ†v(r)Γpψn0(r) +

∑
n0,m

〈
n0
∣∣m〉ψ†m(r)Γpψn0(r)R5n0m

 , (A.4)
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where Γs = γ0 (n̂ · p)− 1
3γ

0 (γ · p)) and Γp = γ0(γ · p). The moments of inertia I1 and I2

are written as follows:

I1 =
Nc

2

[∑
n6=v

〈n|τ3|v〉
En − Ev

〈v|τ3|n〉+
1

2

∑
n,m

〈n|τ3|m〉 〈m|τ3|n〉R3nm

]
,

I2 =
Nc

4

[∑
n0

〈
n0
∣∣v〉

En0 − Ev
ψ†v(r)ψn0(r) +

∑
n0,m

〈
n0
∣∣m〉ψ†m(r)ψn0(r)R3n0m

]
. (A.5)

In addition, all distributions are regularized, and their regularization functions are written
as

R0(En) := R0n =
1

4
√
π

∫
Λ−2

du

u3/2
e−uE

2
n ,

R1(En) := R1n = − En
2
√
π

∫
Λ−2

du√
u
e−uE

2
n ,

R3(En, Em) := R3nm =
1

2
√
π

∫
Λ−2

du√
u

[
1

u

e−uE
2
n − e−uE2

m

E2
m − E2

n

− Ene
−uE2

n + Eme
−uE2

m

En + Em

]
,

R5(En, Em) := R5nm =
1

2

sign(En)− sign(Em)

En − Em
,

R6(En, Em) := R6nm =
1− sign(En)sign(Em)

En − Em
, (A.6)

with ψv(r) := 〈r|v〉 and ψn(r) := 〈r|n〉.

B Matrix elements of the spin-flavor operators

In Appendix B we list the matrix elements of the spin-flavor operators relevant to T 00 and
T ij in Table 2, and those relevant to T 0k in Table 3.

Table 2. The matrix elements of the spin-flavor operators relevant to T 00 and T ij are listed.

B Y T D38 D88 D3iJi D8iJi D3aJa D8aJa

N 1 1
2

√
3

15 T3
3
10 − 7

10T3 −
√

3
20 −1

5T3 −3
√

3
10

Λ 0 0 0 1
10 0 3

√
3

20 0 −
√

3
10

Σ 0 1
√

3
6 T3 − 1

10 −1
4T3 −3

√
3

20 −1
2T3

√
3

10

Ξ −1 1
2

4
√

3
15 T3 −1

5
1
5T3

√
3

5 −4
5T3

√
3

5
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Table 3. The matrix elements of the spin-flavor operators relevant to T 0k are listed.

B Y T D33 D83 D38J3 D88J3 dab3D3aJb dab3D8aJb

N 1 1
2 −14

15T3J3 −
√

3
15 J3

√
3

15 T3J3
3
10J3

7
15T3J3

√
3

30 J3

Λ 0 0 0
√

3
5 J3 0 1

10J3 0 −
√

3
10 J3

Σ 0 1 −1
3T3J3 −

√
3

5 J3

√
3

6 T3J3 − 1
10J3

1
6T3J3

√
3

10 J3

Ξ −1 1
2

4
15T3J3

4
√

3
15 J3

4
√

3
15 T3J3 −1

5J3 − 2
15T3J3 −2

√
3

15 J3
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