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1 Introduction

All the fundamental interactions in nature except gravity have been successfully described
within the framework of quantum field theory. A proper understanding of the dynamics of
the real-time dynamics of these interacting field theories is still an open problem in higher
dimensions. In lower dimensions, some progress has been achieved using classical compu-
tations based on MPS/PEPS tensor network methods. However, for theories close to the
critical point these methods cannot be reliable tools because these methods can only repre-
sent ground states of a special class of local Hamiltonians with gapped spectrum due to its
low entanglement. Another limitation is that even for systems with a gapped spectrum, the
growth of entanglement during the time of evolution can sometimes render these methods
ineffective. This limitation using classical methods is well-suited for quantum computers.
This has led to continued efforts in understanding various toy models using quantum com-
putation methods. Due to the current limitations on hardware resources, it is not possible to
study the real-time dynamics of QCD in four dimensions. This leads one to consider simpler
toy models with lower dimensions. In this regard, the O(3) sigma model in 1+1 dimensions
is a particularly interesting playground. This model shares some interesting properties with
QCD, the most important of which is the ‘asymptotic freedom’ [1]. It has a dynamical mass
gap and also admits instantons similar to the four-dimensional QCD [2]. This makes it a
preferred toy model [3] to explore fundamental questions. Though this model has been
extensively studied numerically, this has recently again attracted a lot of attention because

– 1 –



new classical and quantum computing methods have been developed and this model is again
relevant as a toy model. This model has been studied using tensor network methods based
on matrix product states (MPS) for θ = 0, π [4, 5] and using higher-order tensor renormal-
ization group methods [6]. We are here concerned with aspects of quantum computation.
In order to regularize the theory and carry out numerical computations, past works have
mostly focused on using qubit approach to quantum computing [7–9]. The qubitization
program has argued that to reproduce the critical point of the continuum field theory in
this model, only two qubits per site are required. In this work, we present an alternate
method that is a more natural setting for bosonic degrees of freedom such as the O(3)

model. This approach is known as continuous variable (CV) quantum computation [10]
and is an alternative to the more traditional qubit methods. The fundamental idea of the
CV approach is to not consider a system of two-state systems such as ‘qubits’ or d-state
systems such as ‘qudits’ but to harness the power of the infinite-dimensional representation
in terms of bosonic fields obeying the infinite-dimensional commutator relations. In addi-
tion to the access to the enhanced Hilbert space, a quantum computer based on the CV
approach can effectively make use of photonic elements [11] to build states that are better
suited for maintaining coherence and quantum error correction.

The outline of the paper is as follows. In Sec. 2, we describe the standard rotor
Hamiltonian which describes the lattice version of the sigma model in one spatial dimension.
We then present the qumode formulation in Sec. 3. Then in Sec. 4.1, we consider the coupled
cluster Ansatz for the ground state of the O(3) model. We present the protocol to measure
energy expectation value and do time evolution of the model in Sec. 4. We end the paper
with a summary and conclusion in Sec. 5. We provide additional details about the CV
gates in Appendix A.

(FR: Some more recent references we should briefly comment on in the introduction [12–
14]. Strawberry fields reference [15]. Examples of recent progress in photonic quantum
computing [16–18]. Will add text later, just put all Refs. here for now.)

I agree. We should add these additional references
Alt possibility

2 Description of the the O(3) sigma model - a toy model for QCD

Nonlinear sigma models have been extensively studied because they share several features
with gauge theories but without added complications related to maintaining gauge invari-
ance. An important application of these models is in the low-energy dynamics of pions de-
scribed by an effective chiral Lagrangian density given schematically by L = 1

4Tr[∂µU∂µU †],
where U is an isospin SU(2) matrix. Due to this reason, this is also sometimes referred to as
a “principal chiral field” model [19]. It has a global SU(2)L × SU(2)R symmetry which co-
incides with the O(4) symmetry of the sigma model. This is clearly seen if we parametrize
the isospin matrix as U = n0 + in · σ, where σ = (σ1, σ2, σ3) are Pauli matrices, and
nan

a ≡ n20+n2 = 1. We can define the angular momenta as Jab = −i(na ∂
∂nb
−nb ∂

∂na
) with
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a, b = 0, 1, 2, 3. The Hamiltonian discretized on a spatial lattice can be written as

H =
1

2λ

∑
a,b

J2
ab − λ

∑
⟨x,x′⟩

na(x)n
a(x′) (2.1)

where λ is a coupling constant. The potential is bi-linear in the vectors na that act as
coordinates of the system.

Moreover, a gauge theory with a local SU(2) symmetry can also be formulated in terms
of the parametrized isospin matrix on the lattice. In this case, the matrices U reside on the
links along which one also defines angular momenta Jab. The Hamiltonian can be written
as

H =
1

2λ

∑
links

J2
ab −

λ

2

∑
plaquettes

Tr[U(1)U(2)U(3)U(4)] (2.2)

where we introduced the Wilson loop over a plaquette in the second term. It can be
expressed in terms of the four-dimensional vectors na(i) with i = 1, 2, 3, 4. We obtain a
quadri-linear expression for the plaquette term

1

2
Tr[U(1)U(2)U(3)U(4)] = na(1)na(2) n

b(3)nb(4)− na(1)na(3) nb(2)nb(4)

+na(1)na(4) n
b(2)nb(3) + ϵabcdna(1)nb(2)nc(3)nd(4) . (2.3)

The states obey the constraint ϵabcdJabJcd |Ψ⟩ = 0. Additionally, the system also obeys
Gauss’s Law which further constrains the Hilbert space to the gauge singlet sector [20].
However, in this work, we will focus on quantum computations using continuous variables
for a simpler system, the nonlinear O(3) sigma model, which shares important features
with theories relevant to understanding strong interactions but is easier to tackle. We
leave extensions of the approach taken in this paper to formulate the continuous variable
formulation of gauge theories for future works. The nearest-neighbor O(3) sigma model
Hamiltonian is given by [21]

H =
1

2g2

∑
i

L2
i − g2

∑
⟨i,j⟩

ni · nj . (2.4)

Here g2 is the coupling constant, i and j index nearest neighbor sites on a uni-directional
lattice. In addition, ni is a unit 3-vector at site i, which takes values on S2 and Li is
the angular momentum operator at each site La = 1

2ϵ
abcJbc. We use periodic boundary

conditions. As is customary, we write the interaction term in terms of spherical coordinates
noting that the vectors ni have unit modulus:

ni · nj = sin θi sin θj cos(ϕi − ϕj) + cos θi cos θj . (2.5)

In fact, one can express the dot product of the vectors in terms of spherical harmonics
Yl,m(θ, ϕ) as:

ni · nj =
4π

3

(
Y1,0(θi, ϕi)Y1,0(θj , ϕj)− Y1,1(θi, ϕi)Y1,−1(θj , ϕj)− Y1,−1(θi, ϕi)Y1,1(θj , ϕj)

)
.

(2.6)
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Each term in (2.6) has a total magnetic quantum number equal to zero. We can also write
the interaction term in terms of n± = (nx ± iny)/

√
2 as [21]

ni · nj = n+i n
−
j + n−i n

+
j + nzin

z
j . (2.7)

Therefore, the lattice Hamiltonian of the 1+1-dimensional O(3) model can be written as:

H =
1

2g2

L−1∑
x=0

L2(x)− g2
L−1∑
x=0

(
n+(x)n−(x+ 1)+n−(x)n+(x+ 1)+nz(x)nz(x+ 1)

)
, (2.8)

and the continuum limit is obtained as we take g2 → ∞. The eigenvalues of the kinetic
term is proportional to l(l + 1) where l = 0 · · ·∞ denote the energy levels based on the
irreducible representations of the O(3) symmetry. However, for practical calculations, we
impose a cutoff and referred to as lmax.. The superscripts in the components of n in (2.7)
have physical significance, they are proportional to M = ±1, 0 with M = m1 −m2, which
correspond to different charge sectors of the O(3) model. If we identify n± = ∓X±1 and
nz = X0, then the matrix elements of n can be computed using the well-known expressions
involving two Wigner-3j symbols as [22]:

⟨l1,m1|XM |l2,m2⟩ = (−1)m1
√

(2l1 + 1)(2l2 + 1)

(
l1 1 l2
0 0 0

)(
l1 1 l2
−m1 M m2

)
. (2.9)

This result is obtained from the relation

⟨l1,m1|XM |l2,m2⟩ =
√

4π

3

∫
dΩ Y ∗

l,mY1,MYl′,m′

= (−1)m
√

4π

3

∫
dΩ Yl,−mY1,MYl′,m′ , (2.10)

and the Gaunt coefficients∫
dΩ Yl1,m1Yl2,m2Yl3,m3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l2
m1 m2 m2

)
. (2.11)

In order to construct a reliable Ansatz for the O(3) model, we use the coupled-cluster (CC)
method which involves a state of the form [23]

|ψ⟩ ∝ eαT̂ |ψ0⟩ (2.12)

where T̂ is the cluster operator built from single interaction terms in the Hamiltonian and α
is a tunable parameter. We can include higher-interaction terms, known as doubles ansatz
in the CC ansatz but for our purposes, an operator bilinear in n suffices. The use of CC
Ansatz for sigma models is not new and this has already been explored decades ago for a
class of O(N) non-linear sigma models [24–26] and recently also for quantum computations
in different context [27, 28]. Depending on whether the T̂ is anti-Hermitian or Hermitian,
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we can have a unitary or non-unitary CC trial state. To build the CC state, we start with
the tensor product of the states |l = 0,m = 0⟩ defined at each site

|Ω0⟩ ≡
L−1⊗
x=0

|l(x) = 0,m(x) = 0⟩ , (2.13)

which is the weak coupling vacuum state corresponding to the vanishing cluster operator
T̂ = 0. We choose to express T̂ in terms of the potential term of the Hamiltonian and we
obtain the following coupled-cluster Ansatz [29]:

|CC⟩ ∝
∏
x

e
2αg2

L
n(x)·n(x+1) |Ω0⟩ , (2.14)

where α is a variational parameter.
For L = 2 lattice sites, the energy of the CC state can be computed analytically. It is

given by
E0(α)

L
=
E0(α)

2
= − 1

4g2
+

1

2α
+
α− 2g2

2
coth(2g2α), (2.15)

For small g2, this expression is minimized for α = 0, and we obtain the estimate of the
ground state energy E0/2 = 0. This corresponds to the energy of the state with zero angular
momentum, as expected. Next, we observe that the optimal value of α goes to 1 for large
values of g2. This provides the following estimate of the ground state energy

E0

2
≈ −g2 + 1 . (2.16)

This is an expected result because at large g2, the potential energy dominates and it is
minimized when all unit vectors n(x) align (since n(x) · n(x+ 1) ≤ 1).

The ground-state energy obtained using the CC state and the Hamiltonian (2.4) is
shown in Figure 1. We plot E0(α)/L as a function of g2 for L = 3 compared to the results
from exact diagonalization (ED). Using a cutoff lmax = 3, for small g2, we see excellent
agreement between the CC and ED results for up to g2 ≈ 10 For very large g2, the CC
energies go far below the results from ED with lmax = 5 showing that a larger cutoff is
needed for accuracy of ED results.

[GS: We need to say a little more: We know that our Ansatz is accurate for large g2.
What is a good enough lmax for g2 = 10? Also, for L > 2, we should be able to show that
this Ansatz gives an accurate result for large g2.]

A similar approach based on a CC Ansatz which is a modified version of (2.14) can be
used to estimate excited state energies. For the first excited state, we apply the CC Ansatz:
(FR: Could we say a few more words where this expression is coming from?)

|CC1⟩ ∝ e
2αg2

L

∑
x n(x)·n(x+1)

∑
x

n3(x) |Ω0⟩ (2.17)

which is orthogonal to the CC Ansatz for the ground state ⟨CC|CC1⟩ = 0. For illustration
purposes, we consider again only two lattice sites L = 2. The Ansatz in Eq. (2.17) yields
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● L=2
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0.0
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L

Figure 1. First pass for E0 using ED for L = 3 with rotor Hamiltonian (2.4). The dashed curve is
−g2 + 1. The truncation level is set to lmax = 3. [GS: Include CC result and a separate figure for
L = 2. Do we know that −g2 + 1 is the right asymptote for L = 3?] [No, we don’t know the exact
one for L = 3. I think one figure is enough for both L=2 and L=3 since it is sparse anyways.][ST:
ED and CC for L = 2, 3. lmax = 3 for ED, 500, 000 sample points for MC integration for L = 3.
L = 2 CC is analytic.]
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CC
● L=2

▲ L=3
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2.0

g2

ΔE

Figure 2. First pass for gap using ED with rotor Hamiltonian (2.4). [GS: Include CC result and
a separate figure for L = 2. Same here: One figure is enough for both L=2 and L=3.][ST: ED and
CC for L = 2, 3. lmax = 3 for ED, 500, 000 sample points for MC integration for L = 3. L = 2 CC
is analytic.]

the following estimate for the energy of the first excited state

E1(α)

L
= −g2 + −α+ 4g2(1 + 2g2α− α2) + e4g

2α(−4g2 + α+ 8g4(α+ α3))

4g2(α+ e4g2αα(−1 + 4g2α))
. (2.18)

For small g2, this is minimized again for α = 0 and we obtain the following estimate of
the first excited state E1

2 = 1
2g2

. This result corresponds to a single l = 1 excitation, as
expected. In the large g2 limit, the expression in Eq. (2.18) is minimized for α = 1, similar
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to the ground state, and the corresponding energy is E1
2 = −g2+1. This demonstrates that

the gap closes asymptotically as g2 →∞.
First excited state energies obtained from the CC and ED methods are shown in Figure

2. As with the ground state, there is very good agreement with ED at smaller g2 and an
out-performance of the CC calculation over ED for large g2.

[GS: We need to say a little more: Is our Ansatz is accurate for large g2? What is a
good enough lmax for g2 = 10?]

It is possible to write the O(3) Hamiltonian given by (2.8) in terms of bosonic creation
and annihilation operators with two quantum harmonic oscillators at each site using the
Schwinger boson formalism [30]. See also Ref. [31]. Thus, it appears that only two qumodes
are needed for each lattice site to simulate this model using quantum computing based on
continuous variables. However, this approach results in expressions that appear to be
challenging to implement with near- to intermediate-term resources.

In this work, we take an alternative point of view and express the O(3) non-linear sigma
model as a limit of a three-component scalar field theory in 1+1 dimensions requiring three
qumodes at each site. We show that in the appropriate limit, this is equivalent to the
rotor Hamiltonian which is known to reproduce the sigma model in the continuum. Both
of these continuous variable approaches to the O(3) model belong to the same universality
class. One advantage of using the approach presented here is that scalar field theories can
be simulated with established methods using continuous variable quantum computing. See
Refs. [32, 33].

3 Scalar field theory formulation on the unit sphere

We now consider a linear O(3) model consisting of real scalar fields ϕa(x) (a = 1, 2, 3)
in a single spatial dimension denoted by x. We discretize space using L lattice points
x = 0, 1, . . . , L − 1, impose periodic boundary conditions, and choose units such that the
lattice spacing, and the fundamental constants c, ℏ are all set to unity. Let πa be the
conjugate momentum to ϕa obeying the canonical commutation relations

[ϕa(x), πb(x′)] = iδabδxx′ . (3.1)

We can write the Hamiltonian as

H =
1

2g2

∑
x

L2(x)−
∑
x

[
1

2
(ϕ(x)− ϕ(x+ 1))2 − g2

]
. (3.2)

Here the angular momentum operator L denotes the cross product of the vector field and
its conjugate momentum,

L(x) = ϕ(x)× π(x), (3.3)

where we used the simplified triplet notation for the fields, ϕ = (ϕ1, ϕ2, ϕ3), and similarly
for π. It is useful to define a local basis at each lattice site consisting of the states defined
on a three-dimensional space

|l,m; Λ⟩ = 1√
N

∫
drr2 d2n e−Λ2(r2−g2)2/8g2Ylm (n) |r,n⟩ . (3.4)
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Here n is a unit 3-vector, r is the radial direction, and Λ is an energy cutoff scale restricting
the wavefunction on a circle of radius r = g. We will model the energy cutoff in terms of a
squeezing parameter. The state described in (3.4) can be separated into radial and angular
parts denoted by Ylm. The radial integrand is not unique and any function that converges to
a δ-function centered at r = g as the cutoff Λ→∞ would work in practice. In what follows,
this choice affects energies only to O

(
Λ−1

)
. The states in (3.4) form an orthonormal set

with norm

N =
g2
√
π

Λ
+O(Λ−3) . (3.5)

The matrix elements of the kinetic energy are given by exact expressions for finite values
of the cutoff Λ since the radial part of the wave functions decouples

1

2g2
⟨l,m; Λ|L2 |l′,m′; Λ⟩ = l(l + 1)

2g2
δl,l′δm,m′ . (3.6)

For the interaction term of the Hamiltonian, we consider two adjacent sites labeled by i

and j. We start with the matrix elements of a local term contributing to the interaction
potential as

⟨l,m; Λ|ϕ2 |l′,m′; Λ⟩ = g2
(
1 +O

(
Λ−2

))
δl,l′δm,m′ . (3.7)

The matrix elements have a simple structure and, after subtracting g2, see (3.2), they vanish
in the limit of large values for the cutoff parameter Λ → ∞. The matrix elements of the
term involving two sites can be written as

⟨li,mi; Λ| ⟨lj ,mj ; Λ|ϕ(xi) · ϕ(xj) |l′i,m′
i; Λ⟩ |l′j ,m′

j ; Λ⟩
= g2

(
1 +O

(
Λ−2

))
⟨li,mi| ⟨lj ,mj |ni · nj |l′i,m′

i⟩ |l′j ,m′
j⟩ . (3.8)

It has the same structure as the potential term of the O(3) model discussed in the previous
section, which we therefore recover in the limit Λ→∞.

Next, we use the Hamiltonian given in (3.2) with the local basis of states given in (3.4)
to compute the ground state energy for different values of the cutoff Λ. The results are
shown in Fig. 3, which displays the ground state energy density for L = 2, 3 and lmax = 3,
for three values of g2 as a function of Λ while Figs. 4-6 display mass gaps for L = 2 and
L = 3, for three values of lmax and three values of Λ as function of g2. [GS: How do these
results compare with CC results?]

To achieve a better understanding of the energy levels, we construct a variational
Ansatz by extending the CC method used for the O(3) model in Section 2. Analogous
to (2.13), we start with a reference state |Ω(Λ)⟩ defined as a tensor product of the states
|l = 0,m = 0;Λ⟩ defined at each site,

|Ω(Λ)⟩ ≡
L−1⊗
x=0

|l(x) = 0,m(x) = 0; Λ⟩ . (3.9)

This is the weak coupling vacuum state which corresponds to the vanishing cluster operator
T̂ = 0. We define T̂ in terms of the potential term in the Hamiltonian and adopt the CC
Ansatz:

|CC(Λ)⟩ ∝ e−
α
L

∑
x(ϕ(x)−ϕ(x+1))2 |Ω(Λ)⟩ , (3.10)
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(b) g2 = 4
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(c) g2 = 10

Figure 3. E0/L vs Λ2 for L = 2, 3, lmax = 3 and three values of g2. Change Λ2 to Λ.
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(b) L = 3

Figure 4. Mass gap ∆E vs g2 for L = 2, 3, for lmax = 1, 2, 3 and Λ = 1.Compare w/ CC

which reduces to the CC Ansatz for the O(3) model (2.14) in the limit Λ → ∞. The
ground-state energy obtained using the CC state and the Hamiltonian (3.2) is shown in
Figure 13, for three values of g2. We see excellent agreement between CC and ED results as
Λ becomes large. [GS: Why are we only comparing CC with ED at infinite Λ? In particular,
we should be comparing with Figure 3. Maybe combine the two figures?]

A similar approach based on a CC Ansatz which is a modified version of (3.10) can be
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Figure 5. Mass gap ∆E vs g2 for L = 2, 3, for lmax = 1, 2, 3 and Λ =
√
10.Compare w/ CC
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Figure 6. Mass gap ∆E vs g2 for L = 2, 3, for lmax = 1, 2, 3 and Λ = 10.Compare w/ CC
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Figure 7. Ground state energy E0/L for L = 2, 3 vs g2, computed with ED and the CC method,
for Λ = 1. ED is taken at lmax = 3.

used to estimate excited state energies. Notice that

|l = 1,m; Λ⟩ ∝ Y1m(n) |l = 0,m = 0;Λ⟩ (3.11)
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Figure 8. Ground state energy E0/L for L = 2, 3 vs g2, computed with ED and the CC method,
for Λ =

√
10. ED is taken at lmax = 3.
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Figure 9. Ground state energy E0/L for L = 2, 3 vs g2, computed with ED and the CC method,
for Λ = 10. ED is taken at lmax = 3.
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Figure 10. Mass gap ∆E for L = 2, 3 vs g2, computed with ED and the CC method, for Λ = 1.
ED is taken at lmax = 3. ED disagrees w/ green points in Fig 4

which is a direct consequence of Eq. (3.4). Concentrating on m = 0 (the other cases can
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Figure 11. Mass gap ∆E for L = 2, 3 vs g2, computed with ED and the CC method, for Λ =
√
10.

ED is taken at lmax = 3.
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Figure 12. Mass gap ∆E for L = 2, 3 vs g2, computed with ED and the CC method, for Λ = 10.
ED is taken at lmax = 3.

be treated similarly), we define

|Ωx(Λ)⟩ ∝ ϕ3(x) |Ω(Λ)⟩ , (3.12)

and for the first excited state, we apply the following CC Ansatz

|CC1(Λ)⟩ ∝ e−
α
L

∑
x(ϕ(x)−ϕ(x+1))2

∑
x

|Ωx(Λ)⟩ . (3.13)

This Ansatz reduces to the one for the O(3) model, see Eq. (2.17), in the limit Λ → ∞.
The state |Ωx(Λ)⟩, given by (3.12), is the weak-coupling eigenstate with site x in the state
|l(x) = 1,m(x) = 0; Λ⟩, and all others in the |l(x′) = 0,m(x′) = 0; Λ⟩ state (x′ ̸= x). The
degeneracy persists even at finite coupling, and so it should not matter which value of m
we choose at x. The first excited state energies obtained from the CC method are shown in
Fig. 14. As with the ground state, we find very good agreement with ED for large values
of Λ. [GS: Why are we only comparing CC with ED at infinite Λ? In particular, we should
be comparing with Figure ??. Maybe combine the two figures?]
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Figure 13. Minimized coupled cluster energies for the ground state, for different values of Λ in the
state |l = 0,m = 0;Λ⟩, and L = 2. The shaded gray band is the O(3) energy obtained from exact
diagonalization, whose center is at lmax = 10 and the error given by its difference from lmax = 9.
The g2 = 10, Λ→∞ result is within the error region, indicating excellent agreement even for large
g2.

4 Quantum simulation using continuous variables

In this section, we discuss the simulation of the O(3) model using CV gates. We start
with the construction of the CC Ansatz, which we then use for the quantum computation
of energy levels. Next, we describe the relevant circuits for the time evolution within the
CV approach and we present numerical results using the Strawberry Fields quantum
simulator. More detailed discussions about CV gates can be found in the Appendix A.

4.1 Coupled Cluster Ansatz

To engineer the CC Ansatz in (3.10), let us first concentrate on a single lattice site. By
making use of three qumodes of quadratures (qa, pa) (a = 1, 2, 3), collectively denoted as
(q,p), we initialize the system in the vacuum state

|0⟩ ≡
3⊗

a=1

|0⟩a =
1

π3/4

∫
d3q e−

1
2
q2 |q⟩ (4.1)
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Figure 14. Minimized coupled cluster energies for the first excited state, for different values of
Λ in the state |l = 0,m = 0;Λ⟩. The shaded gray region is the O(3) energy obtained from exact
diagonalization, whose center is at lmax = 10 and the error given by its difference from lmax = 9.
The g2 = 10 Λ→∞ result is within the error region, indicating excellent agreement even for large
g2.

We attach an ancilla qumode of quadratures (qb, pb), also initialized in the vacuum state

|0⟩b =
1

π1/4

∫
dqb e

− 1
2
q2b |qb⟩b . (4.2)

We apply the product of two-mode entangling non-Gaussian unitaries

Uab = e
−i Λ√

2g
q2apb , (4.3)

followed by the application of a translation operator on the ancilla qumode

Ub = eig
√

Λ2

2
+1 pb . (4.4)

These operators shift the quadrature qb of the ancilla qumode. Altogether, we thus obtain

Ub

3∏
a=1

Uab |0⟩ |0⟩b =
1

π

∫
d3q dqb e

− 1
2
q2
e
− 1

2

[
qb− Λ√

2g

(
q2−

(
1+ 2

Λ2

)
g2

)]2
|q⟩ |qb⟩b . (4.5)

Next, we measure the ancilla qumode projecting it onto the state |0⟩b. The resulting state,
which we denote by |ω(Λ)⟩, now only involves the three main qumodes. It is given by

|ω(Λ)⟩ ∝ b⟨0|Ub

3∏
a=1

Uab |0⟩ |0⟩b ∝
∫
d3q e

− Λ2

8g2
(q2−g2)2 |q⟩ . (4.6)
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Figure 15. L = 2 ground and first excited state energies vs g2 for different values of Λ, computed
using exact diagonalization (ED) as well as via the coupled cluster (CC) method. ED uses a matrix
truncation of lmax = 5, while CC employs numerical integration.

|0⟩1
|0⟩2
|0⟩3

U3b U2b U1b
|0⟩b Ub

Figure 16. CV quantum circuit for the generation of the state |ω(Λ)⟩ = |l = 0,m = 0,Λ⟩ relevant
for the construction of the coupled cluster ansatz, see (4.6).

Evidently, we constructed the state |ω(Λ)⟩ = |l = 0,m = 0,Λ⟩. The associated circuit in
terms of CV gates is shown in Fig. 16. The non-Gaussian unitaries Uab in (4.3) can be
expressed in terms of cubic phase gates acting on the ancilla qumode. Using the relation

6q2apb = (qa + pb)
3 − (qa − pb)3 − 2p3b , (4.7)

we obtain the following decomposition of Uab:

Uab = CZ†
ab · F

†
b · V

†
b · Fb · CZ2

ab · F
†
b · V

†
b · Fb · CZ†

ab · F
†
b · V

2
b · Fb . (4.8)
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a
BS BS BS BS

b F V V V † V † F †

Figure 17. CV quantum circuit implementing the non-Gaussian unitary operator Uab given in
(4.3).

Here Fb = ei
π
4
(p2b+q2b ) is the Fourier transform operator, CZab = eiqapb is the controlled

phase gate, (FR: CZ or CX? see appendix) and we introduced the cubic gate

Vb = e
i Λ
6
√
2g

q3b . (4.9)

We find that we can obtain better numerical accuracy when using the quantum simulator
Strawberry Fields1 if we rewrite (4.8) in in terms of beam splitters BS rather than CZ
gates

Uab = F †
b ·BSba · V

†
b ·BSba ·BSab · V

†
b ·BSab · V

2
b · Fb , (4.10)

Here BSab implements a 50:50 beam splitter (←Write out explicitly, θ..?) and BSba is the
same beam splitter with ports switched. The quantum circuit for this unitary is shown in
Figure 17.

Next, we consider two lattice sites each occupied by qumode triplets of quadratures
(qa, pa) and (q′a, p

′
a), respectively with a = 1, 2, 3. (← should it be indices a, a′, see below?)

As before, we collectively denote them by (q,p) and (q′,p′). Analogous to the procedure
discussed above, we start by engineering the state

|ω(Λ)⟩a ⊗ |ω(Λ)⟩a′ = |l = 0,m = 0;Λ⟩ ⊗ |l′ = 0,m′ = 0;Λ⟩ , (4.11)

which is given in terms of a direct tensor product of the states constructed for each lattice
site, see (4.6). We proceed by attaching a triplet of ancilla qumodes of quadratures (qc,pc)

initialized in the vacuum state, and apply the Gaussian unitary

Vac = e−i
√

α
2L

q·pc (4.12)

followed by the analogous unitary V †
a′c. These two operators shift the quadratures of the

ancilla qumodes. We obtain the state

V †
a′cVac |ω(Λ)⟩a ⊗ |ω(Λ)⟩a′ =

∫
d3q d3q′ d3qc e

− 1
2
(q2+q′2+q2

c )e
− Λ2

8g2
(q2−g2)2

e
− Λ2

8g2
(q′2−g2)2

× |q⟩ |q′⟩ |qc −
√

α

2L
(q − q′)⟩ . (4.13)

1However, in both cases, it is important that the gate set we use in Strawberry fields consists of
entangling gates where “qumode 1” is the ancilla. Evidently, a gate set consisting of entangling gates with
reverse ordering causes significant numerical problems.
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|l = 0,m = 0;Λ⟩a′
|l = 0,m = 0;Λ⟩a

Vac V †
a′c|0⟩c

Figure 18. CV quantum circuit for constructing the CC state for two lattice sites in (4.14). Each
line represents three qumodes. (Measurement vs projection onto |0⟩c in circuit diagram, see Fig.
below?)

After measuring the ancilla qumodes and projecting them onto the vacuum state |0⟩c, we
obtain the state

e−
α
L
(q−q′)2 |ω(Λ)⟩a ⊗ |ω(Λ)⟩a′ . (4.14)

After identifying ϕ(x) = q, ϕ(x+1) = q′, we have thus engineered the desired state |CC(Λ)⟩
for two lattice sites, see (3.10). The circuit to construct this state is shown in Fig. 18. This
can be generalized to an arbitrary number of lattice sites by repeating the above procedure
for each pair of adjacent sites (x, x+ 1) of the 1-dimensional lattice.

Next, we are going to consider the construction of the first excited state, see (3.13)
above. The construction of this state is a direct extension of the procedure for the ground
state given in (3.10), which we have already engineered. After obtaining the state |Ω(Λ)⟩,
(← clarify relation between |ω(Λ)⟩ and |Ω(Λ)⟩..?) we add an ancilla of quadratures (qc, pc)
prepared in the vacuum state |0⟩c. We then apply the following string of Gaussian unitaries
(CX gates) ∏

x

e−iγϕ3(x)⊗pc , γ ≪ 1 , (4.15)

and measure the added ancilla in the photon number basis projecting it onto the single-
photon state. It is important that γ is chosen to be sufficiently small to increase the
probability of success of the projective measurement and avoid introducing an unwanted
dependence of the outcome on ϕ3. We obtain the following uniform superposition of states

c ⟨1|
∏
x

e−iγϕ3(x)⊗pc |Ω(Λ)⟩ |0⟩c ∝
∑
x

ϕ3(x) |Ω(Λ)⟩ , (4.16)

on which the CC Ansatz for the first-excited state (3.13) is based. The quantum circuit
for L = 2 lattice sites is shown in Fig. 19. After obtaining the state in (4.16), we still need
to apply the circuit show in Fig. 18 to realize the full CC Ansatz analogous to the ground
state described above.

4.2 Quantum computation of energy levels

After constructing the CC Ansatz in the previous section, we are now going to describe
the procedure to obtain the ground state energy of the Hamiltonian given in (3.2) using
quantum resources. In order to compute the expectation value ⟨H⟩, we first consider the
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|l = 0,m = 0;Λ⟩x=1

e−iγϕ3(1)pc e−iγϕ3(0)pc

|0⟩c n = 1

Figure 19. CV quantum circuit relevant for constructing the CC ansatz for the first excited state,
see (3.13), with L = 2 lattice sites.

interaction term in (3.2), which is given by 1
2

∑
x (ϕ(x)− ϕ(x+ 1))2. After engineering the

CC Ansatz, see (3.10), we create the state

|Ψ(Γ)⟩ ≡
∏
x

∏
a

Px,a(Γ) ·BSa
x,x+1 |CC⟩ , (4.17)

by acting on the CC Ansatz first with a series of 50:50 beam splitters with neighboring
lattice sites as input ports and then by applying quadratic phase gates Px,a(Γ) = eiΓϕ

2
a(x)/2,

where Γ is a real parameter. Note that the quadratic phase gate can be decomposed in
terms of a single rotation and single-mode squeezer gate. We then compute

1

Γ2

∑
x

∑
a

[⟨Ψ(Γ)|Nx,a |Ψ(Γ)⟩+ ⟨Ψ(−Γ)|Nx,a |Ψ(−Γ)⟩ − 2 ⟨Ψ(0)|Nx,a |Ψ(0)⟩] , (4.18)

where Nx,a is the number operator for the qumode labeled by x, a, which can be written
as Nx,a = 1

2(π
2
a(x) + ϕ2a(x)) with a = 1, 2, 3. To see why this gives us the expectation

value of the interaction term of the Hamiltonian in (3.2), note that for a single qumode of
quadratures (q, p), we have

P †(Γ)NP (Γ) =
1

2

(
q2 + (p+ Γq)2

)
, (4.19)

where N = 1
2(p

2 + q2) and P (Γ) is the quadratic phase gate as introduced above. We
deduce the following parameter shift rule

1

Γ2

[
P †(Γ)NP (Γ) + P †(−Γ)NP (−Γ)− 2N

]
= q2 . (4.20)

This yields the expression involving expectation values given in (4.18) by taking q = ϕa(x),
and noting that applying the 50:50 beam splitters results in ϕa(x) → ϕa(x) − ϕa(x + 1).
Therefore, we obtain the desired expression for the interaction term in the Hamiltonian in
(3.2). A quantum circuit for the above calculation is shown in Fig. 20 for qumodes ϕa(x)
and ϕa(x+ 1).

For practical purposes, when computing expectation values, it is advantageous to add
an ancilla qumode of quadratures (qc, pc) prepared in the vacuum state and to use a CX
gate instead of a P gate. That is, we make the replacement eiΓϕ2

a(x)/2 → e−iΓpc⊗ϕa(x). This
reduces numerical errors at small values of Γ, which is necessary to keep truncation errors
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BS

P (Γ) n

(x+ 1, a) P (Γ) n

|CC⟩

Figure 20. Quantum circuit for the calculation of the expectation value of the interaction term in
the Hamiltonian (3.2) for qumodes ϕa(x) and ϕa(x+ 1).

and additional squeezing minimal. Instead of a parameter shift rule, we need to choose only
one value of Γ and compute

2

Γ2
⟨Ψ(Γ)|N |Ψ(Γ)⟩ . (4.21)

This gives the desired result due to the relation

CX (−Γ) ·Nc · CX (Γ) = Nc + Γqcϕa(x) +
Γ2

2
ϕ2a(x) , (4.22)

where the expectation values of Nc and qc vanish for the vacuum state, which the ancilla is
prepared in. The only remaining term is the one we need, thereby preventing errors derived
from unphysical terms. However, with only one ancilla this method requires us to compute
⟨(∆ϕa(x))2⟩ for each value of x and a.

Next, we are going to consider the kinetic energy term in the Hamiltonian (3.2), which
is given by

1

2g2

∑
x

L2(x) =
1

2g2

∑
x

(ϕ(x)× π(x))2 . (4.23)

To obtain its expectation value, fix x and a = 3 and consider ⟨L2
3(x)⟩ (the contributions

of the other components are treated similarly). We compute the expectation value of the
square of the number operator for the a = 1, 2 qumodes at lattice site x as:

∆N12(x) ≡ (Nx,2 −Nx,1)
2 (4.24)

with respect to the state
|Ψ⟩ ≡ BS12,x · Fx,1 |CC⟩ (4.25)

where F is the Fourier transform operator (F = ei
π
4
(p2+q2)) and BS is a 50:50 beam splitter.

After some algebra, we obtain

L2
3(x) = F †

x,1 ·BS12,x ·∆N12(x) ·BS12,x · Fx,1 (4.26)

hence
⟨CC|L2

3(x) |CC⟩ = ⟨Ψ|∆N12(x) |Ψ⟩ (4.27)

The expectation values of L2
1,2(x) are obtained by cyclic permutation of the indices.

However, with matrices anything beyond L = 4, lmax = 2 where H is of size 94 × 94

presents a computational challenge. Therefore, we will use the numerical integration method
to obtain energy estimates for a larger number of sites. In obtaining direct integration results
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Figure 21. (a) Ground and first excited state coupled cluster energies for the O(3) model for up
to L = 5 sites, for g2 = 1. We used quasi-Monte Carlo integration with 500, 000 sample points. (b)
Mass gaps ∆E = E1 − E0.

for L = 2, the angular integrals could be performed analytically, and then we did numerical
integration over the r(x) to obtain CC energies for different values of R. For L ≥ 3, we
instead perform Monte Carlo integration over all variables.

The g2 = 1 energies are displayed in Fig. 21. The mass gap appears to converge near
∆ ≃ 0.48 as L → ∞. We see the accumulation of numerical error as the number of sites
is increased, especially for smaller Λ. Results for g2 = 4 are shown in Figure 22, with 10

times as many sample points. The gap at large L is very small, as expected, however, the
numerical error is far more severe than the g2 = 1 case, making it difficult to determine the
gap at more than four sites.

Strawberry fields simulation results are depicted in Figure 23 for g2 = 1 and
g2 = 4, for the ground state coupled cluster energies. Here we employed an ancilla and
CX gates instead of P gates to compute the coupling term, see Eqs. (4.21) and (4.22).
Error bars were obtained by computing the energy along each Cartesian direction. Since
the CC ground state is invariant under global rotations, each result (multiplied by 3) should
be valid, so that any variation derives from truncation error. Noticing the very significant
truncation error at Λ2 = 10 for Hilbert space dimensions of up to 147 (the extra qumode
the ancilla), we see that it requires an immense amount of computational resources to be
able to simulate a coupled cluster state with a sufficiently large value of Λ to estimate the
O(3) energies. The results at higher nmax seem to be improved somewhat if we compute
⟨L2⟩ using Eq. (4.27) but by breaking up the expectation value as

⟨CC|L2
3(x) |CC⟩ = 2

(
⟨Ψ|N2

1 (x) |Ψ⟩+ ⟨Ψ|N2
2 (x) |Ψ⟩

)
− ⟨CC| (N1 +N2)

2 |CC⟩ (4.28)

where the last term is an expectation in the state |CC⟩ rather than |Ψ⟩, see Figure 24. [ST:
Figure 23 on the other hand uses |Ψ⟩ for all terms:

⟨CC|L2
3(x) |CC⟩ =

(
⟨Ψ|N2

1 (x) |Ψ⟩+ ⟨Ψ|N2
2 (x) |Ψ⟩

)
− 2 ⟨Ψ|N1N2 |Ψ⟩ (4.29)

] In any case, we note that the truncation error is in the number basis, unlike our ED results
which were truncated in the spherical harmonic basis.
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Figure 22. (a) Ground and first excited state coupled cluster energies for the O(3) model for up
to L = 4 sites, for g2 = 4. We used quasi Monte Carlo integration with 5, 000, 000 sample points.
Numerical error increases significantly beyond three sites. (b) Mass gaps ∆E = E1 − E0.
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Figure 23. Strawberry fields simulation results for the calculation of ground state coupled
cluster energies near the minimizing value of α for (a) g2 = 1 and (b) g2 = 4 and L = 2. The black
points were obtained with numerical integration over the radial coordinates, and the dashed line
obtained using Eq. (2.15).

4.3 Time evolution circuits and quantum simulator results

In this section, we perform the time evolution for the Hamiltonian given by (3.2).
To promote the interaction term in the Hamiltonian (3.2) to a time-evolution operator,

we apply the string of unitaries UI ≡
∏

x

∏
a Ua(x), where Ua(x) is obtained by applying

50:50 beam splitters and a quadratic phase gate:

Ua(x) ≡ e−i∆t
2
(ϕa(x)−ϕa(x+1))2 = BSa

x,x+1 · Px,a(−
∆t

2
) ·BSa

x,x+1 (4.30)

A quantum circuit implementing this Trotter step is shown in Figure 25 for qumodes ϕa(x)
and ϕa(x+ 1).

The time evolution of the kinetic term can be implemented with the aid of non-Gaussian
Kerr gates, K(s) = eisN

2 , and Cross-Kerr gates, CK(s) = eisN1N2 . For a given lattice site
x, each Trotter step will contain the string of unitaries

U31(x) · U23(x) · U12(x) (4.31)
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Figure 24. Strawberry fields simulation results for the calculation of ground state coupled
cluster energies near the minimizing value of α for (a) g2 = 1 and (b) g2 = 4 and L = 2. Here we use
(4.28) to compute the kinetic energy. The black points were obtained with numerical integration
over the radial coordinates, and the dashed line obtained using Eq. (2.15).

(x, a)

BS

P (−∆t
2 )

BS
(x+ 1, a)

Figure 25. Quantum circuit for a Trotter step of the interaction term (Eq. (4.30)) in the Hamil-
tonian (3.2) for qumodes ϕa(x) and ϕa(x+ 1).

where, using Eq. (4.26),

Uab(x) = F †
x,a ·BSab

x ·Kx,a(−
∆t

2g2
) · CKab

x (
∆t

g2
) ·Kx,b(−

∆t

2g2
) ·BSab

x · Fx,a (4.32)

A quantum circuit implementing the Trotter step for the kinetic energy (4.31) is shown in
Figure 26 for the three qumodes at a given lattice site x.

(x, 1)
U

(x, 2)
U U

(x, 3)

(x, a) F

BS

K(− ∆t
2g2

)

CK(∆t
g2
) BS

F †

(x, b) K(− ∆t
2g2

)

Uab(x) :

Figure 26. CIRC6Quantum circuit for a Trotter step of the kinetic energy (Eq. (4.31)) in the
Hamiltonian (3.2) for the three qumodes ϕa(x).
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Having described the protocol for time evolution, we now quantify the errors accrued
during the evolution. In particular, we show that for a long time of evolution, t, the error
in the computed amplitudes is O

(
t2

Λ2

)
, which tells us that given any time t, we can fix Λ

so that we obtain the O(3) result to the desired accuracy.
Consider the state |l,m; Λ⟩ given by Eq. (3.4). Its wavefunction factorizes into radial

and angular parts,

⟨r,n|l,m; Λ⟩ = ψΛ(r)Ylm(n) , ψΛ(r) =
1√
N
e−Λ2(r2−g2)

2
/8g2 (4.33)

where the normalization constant is given by (3.5) for large cutoff Λ. The radial wavefunc-
tion is centered at r = g with a spread ∆r ∼ O(1/Λ). The matrix elements of the evolution
operator in the basis (3.4) can be written as

⟨l,m; Λ| e−itH |l′,m′; Λ⟩ =
∫ ∏

x

dr(x)r2(x)|ψΛ(r(x))|2 ⟨lm| e−itH |l′m′⟩ . (4.34)

where |l,m; Λ⟩ =
⊗

x |l(x),m(x); Λ⟩, and similarly for the other states. The Hamiltonian
H is a function of the radial coordinates through its interaction term which is quadratic
in the fields. Therefore, the radial spread in the exponent of the evolution operator is
t · O(r∆r) ∼ O(gt/Λ), where we used r ∼ g and ∆r ∼ 1/Λ. It follows that, given t, we
should choose Λ so that t ≲ Λ/g. To show this numerically, we computed the probability
corresponding to the transition amplitudes (4.34) for several values of Λ and g2 = 1. Results
are shown in Figs. 27 and 28. Discuss results. In Fig. 27, we computed this probability
for l = l′ = m = m′ = 0 and for three different times, for L = 2 sites. As in (4.34), this
calculation was performed by expressing the time evolution operator as a matrix in the
spherical harmonic basis, and as a function of the continuous parameter r. Monte Carlo
integration was then performed over the r coordinate to complete the computation of the
amplitude. We find that greater values of Λ are required for large times t as well as for
values of t for which the returning probability is also large.

In Fig. 28, we analyzed the time evolution using a Strawberry fields simulation.
Instead of computing an amplitude in the basis |l,m; Λ⟩, we constructed and evolved the
state |0,0; Λ⟩ but computed the amplitude with the photon number vacuum state

⟨r|0⟩ ∝ e−r2/2 |l = 0,m = 0⟩ (4.35)

Even with just two Trotter steps and a small truncation in the photon number basis, the
Figure displays good agreement with results obtained using matrices and Monte Carlo
integration, the latter of which contains no Trotter error. It is interesting that at larger
times we get better agreement with nmax = 8, 10 than with nmax = 12.

5 Conclusion

We studied the O(3) sigma model in 1+1 dimensions using continuous variables which is
an alternate approach to quantum computing. To achieve this, we considered a collection
of scalar fields with three physical qumodes at each site. In the limit of sufficiently large
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Figure 27. The probability of obtaining the original state |Ω(Λ)⟩ for several times t and for
L = 2, lmax = 3, g2 = 1. The blue points correspond to Λ2 = 10, 20, 40, 100, 200, 400, while the
histogram values correspond to the O(3) limit.
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Figure 28. Probability of obtaining the vacuum state |0⟩, after evolving the state |Ω(Λ)⟩ for a
time t, for L = 2, g2 = 1,Λ2 = 10. The black points are obtained in the same way as in Figure 27
(matrices in spherical harmonic basis at truncation lmax = 3, Monte Carlo integration over radial
direction). The points without error bars indicate results obtained from Strawberry fields with
2 Trotter steps for different Fock space cutoffs nmax. Also shown is the result for nmax = 8 and
nmax = 12 with 10 Trotter steps.

squeezing, our results show that we agree with the lattice rotor Hamiltonian. In order to
carry out the quantum simulation, we start by preparing the ground and excited states.
To achieve this, we used the coupled cluster Ansatz and found that it accurately obtains
the ground and excited state energies. Using this Ansatz, we outlined the procedure to
compute the expectation value of the energy and perform time evolution using continuous
variables. We estimated the resource requirements and the accuracy of time evolution to
leading order in the radial cutoff Λ. To show that our outlined procedure works in practice,
we prepared the ground state Ansatz and performed the time evolution for a few Trotter
steps using the photonic simulator, Strawberry fields with appropriate truncation of
the Fock space.
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A Continuous Variable Gates

In this appendix we review some of the CV gates used in this paper. Additional details and
gates can be found in [34].

A.1 Single qumode gates

To create a squeezed state on the sphere, we first apply a squeeze operation and then a
displacement in position. Squeezing is implemented by

S(r) = e
r
2

(
a†

2−a2
)
, (A.1)

where a and a† are bosonic creation and annihilation operators with [a, a†] = 1. The
position and conjugate momentum are written as

q =
1√
2

(
a† + a

)
, p =

i√
2

(
a† − a

)
(A.2)

Recall that in this paper the components of the field ϕi(x), on each of L sites, give 3L inde-
pendent position operators, each of which are accompanied by their conjugate momentum
πi(x). It follows from (A.1) and (A.2) that

S†(r)qS(r) = e−rq , S†(r)pS(r) = erp (A.3)

Note that we have
r =

1

2
lnR, (A.4)

where R is the squeezing parameter used in this paper. A displacement in position is
possible using a displacement gate equipped with a real parameter

e−ipx = D(x/
√
2) = e

x√
2
(a†−a), x ∈ R (A.5)
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Its action is

q → q + x , p→ p (A.6)

This action gives us a way to compute the expectation value of q.

q =
1

2x

(
eipxNe−ipx − e−ipxNeipx

)
, N =

1

2

(
q2 + p2

)
(A.7)

Thus to compute ⟨ψ| q |ψ⟩, we compute the mean photon number in the two states

e−ipx |ψ⟩ , eipx |ψ⟩ (A.8)

and take the difference.
We also use a rotation gate

R(θ) = eiNθ , θ ∈ R (A.9)

to help in implementing the angular momentum operator L⃗. It rotates the position and
momentum (

q

p

)
→

(
cos θ − sin θ

sin θ cos θ

)(
q

p

)
(A.10)

A particularly useful single-qumode gate is the quadratic phase gate,

P (s) = eisq
2/2, (A.11)

which has the transformation properties

P †(s)qP (s) = q , P †(s)pP (s) = p+ sq (A.12)

From this we find

P †(s)NP (s) = P †(s)
1

2

(
q2 + p2

)
P (s) =

1

2

[
q2 + (p+ sq)2

]
(A.13)

Thus

q2 =
1

2s2

(
P †(s)NP (s) + P †(−s)NP (−s)− 2P †(0)NP (0)

)
(A.14)

This means that we can compute the expectation value ⟨ψ| q2 |ψ⟩ by instead computing

⟨ψ|P †(s)NP (s) |ψ⟩ , (A.15)

for three values of s. These are found simply by measuring the mean photon number in
the state P (s) |ψ⟩. Note that it is possible to express the P gate in terms of the more
elementary rotation and single-mode squeeze gates [34].
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A.2 Two qumode gates

The fundamental two qumode gate that is typically considered is the beamsplitter gate

BSi,j(θ) = eθ(aia
†
j−a†iaj), θ ∈ R (A.16)

We use it in conjunction with R in dealing with L⃗. Its action is given by(
qi/pi
qj/pj

)
→

(
cos θ − sin θ

sin θ cos θ

)(
qi/pi
qj/pj

)
(A.17)

We note that in our qumode formulation, the beamsplitter corresponds to an O(3) rotation
in the xi − xj plane,

BSi,j(θ) = e−iθϵijkLk (A.18)

Another important gate is the ‘CX’ gate,

CXi,j(s) = e−isqipj , (A.19)

which can be decomposed in terms of beamsplitters and single-mode squeezers. Its action
is

qi → qi , pi → pi − spj
pj → pj , qj → qj + sqi (A.20)

In this paper, we use this gate for two purposes. First, it allows us to obtain the difference
in field ‘positions’,

ϕ⃗(x)− ϕ⃗(x+ 1) (A.21)

which appears in the coupling term of our Hamiltonian. Second, with the aid of an ancilla,
it enables us to engineer certain exponential wavefunctions. Let qi be a physical qumode
and qa an ancilla. Then

CXi,a(s) |ψ⟩i ⊗ |0⟩a =

∫
dq⟨q|ψ⟩ |q⟩i ⊗ e

−ipa(sq) |0⟩a =

∫
dq⟨q|ψ⟩ |q⟩i ⊗ |sq⟩a (A.22)

The state |sq⟩a is a coherent state, and so

⟨N = 0|sq⟩a = e−s2q2/2 (A.23)

Thus, measuring qa to be in the N = 0 state gives the (unnormalized) state∫
dq⟨q|ψ⟩e−s2q2/2 |q⟩i = e−s2q2i /2 |ψ⟩i (A.24)

This recipe allows us to apply the coupled cluster operator to the state |Ω(R)⟩. In this case
we couple six physical modes to the ancilla at a time:

qipa →
(
ϕ⃗(x)− ϕ⃗(x+ 1)

)
pa (A.25)

A similar procedure is used to construct |Ω(R)⟩ itself but requires more than just CX gates
since the operation is non-Gaussian.
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