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1 Introduction

The introduction of the Large-Momentum Effective Theory (LaMET) by X. Ji [1, 2] opened
a new window for calculations of light-cone correlation functions using lattice quantum chro-
modynamics (QCD). Numerous works have implemented both LaMET and many variations,
such as the pseudo-distribution approach at the center of this paper [3–5] and the equal time
current-current correlator approach [6–8] (Good Lattice Cross Sections). We refer the reader
to the recent reviews [9–11] for a panorama of this field of research. The fundamental prin-
ciple underlying these approaches is that equal-time non-local matrix elements in Euclidean
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space – with space-like separation of the constituent fields – contain the same soft physics as
light-cone distributions, although they differ by their regularization of collinear divergences
[7, 12, 13]. Evolution in z2 of pseudo-distributions in this so-called “short-distance factoriza-
tion” scheme (SDF) offers the remarkable possibility of accessing non-perturbative evolution
from first principles.

Perturbation theory provides significant inputs for evolution in SDF: the matching kernels
that relate SDF to MS for parton distribution functions (PDFs) are available to order O(α2

s)
[14, 15], and PDF evolution equations in MS are known exactly to order O(α3

s) [16, 17].
However, due to the perturbative divergence of the strong coupling at ΛQCD, matching derived
from perturbation theory can induce a sizeable theoretical uncertainty even at quite small
values of z2. We demonstrate in this paper that enforcing the existence of evolution operators
directly in the SDF scheme – which can be tied to the validity of the operator product
expansion (OPE) at small values of z2 – allows us to place a non-perturbative requirement
on the z2 dependence of the pseudo-distributions, and therefore improve their extraction with
a much lesser degree of model dependence compared to imposing MS perturbative results.
Furthermore, one can then assess the degree of compatibility of the two approaches.

Before going further, it is useful to retrace some of the difficulties that lattice computations
of non-local matrix elements face. As for any lattice calculation with a position-space cut-off
a (i.e. a space-time lattice) and a finite volume L, the physical box size must be much larger
than the inverse of the hadronic scale Λ−1QCD to avoid finite volume effects, and the lattice
spacing must be much smaller than Λ−1QCD to avoid discretization errors. Thus, we have the
scale hierarchy:

a≪ Λ−1QCD ≪ L . (1.1)

Similarly, the hadron momentum P and the separation z between space-like separated fields
must obey:

a≪ P −1 , z ≪ L . (1.2)

On the other hand, probing the parton distributions in SDF with a fine resolution in x requires
large Ioffe times, ν = z ⋅ P , which can be achieved by either large momentum, P , or large
separations, z, or both, challenging the hierarchy expressed in Eq. (1.2). For large z, the
increasing presence of higher twist effects and the breakdown of perturbation theory prevent
a clean use of these data in our current state of understanding of the matrix element [18],
although the ratio renormalization in SDF reduces some higher twist effects [5, 19]. The major
source of improvement in terms of kinematic range on the lattice – which is desirable both for
the pseudo- and quasi-distribution formalism – resides therefore in an access to larger momenta
P . However, two obvious issues plague the quest for larger momenta: the requirement of finer
lattices, and the issue of the exponential decrease of the signal-to-noise ratio. The approach
outlined in this paper is designed to replace need for the perturbative matching at large z2

scales. By studying the non-perturbative z2 evolution of this matrix element, data with larger
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z, and thereby large range in ν, can be related to matrix elements at the same range of ν,
but shorter z2 where perturbative matching is more under control. Extending this range in ν
is crucial for the pseudo-distribution approach since the wider the range the more accurately
the PDF can be determined at lower x [20].

A similar problem arises for heavy quark physics in lattice QCD, where the lattice spacing
must be much smaller than the inverse of the heavy quark mass [21]. A solution arises through
the relaxation of the requirement that L ≫ Λ−1QCD. Working in volumes smaller than the
hadronic scale allows a considerable alleviation of the computational burden, but requires a
careful connection to the infinite volume limit, obtained thanks to the step-scaling function
technique [22]. Step-scaling is also used to determine the running of the strong coupling
constant in lattice QCD over a range of scales spanning several orders of magnitude [23, 24].
Inspired by our work on the non-perturbative evolution operator in SDF, we will explore at
the end of this paper how a program based on step-scaling can be proposed for the study of
non-local partonic matrix elements in small volume.

In order to keep the discussion simple and highlight the main points of our work, in
this paper we concentrate on the flavor non-singlet unpolarized PDF case. The outline of
the paper is as follows. First, we briefly introduce the SDF formalism in section II. Then we
derive non-singlet PDF evolution operators in SDF from MS perturbative results at all orders
in subsection III.A. Finding an appropriate truncation and evaluating some of the systematic
effects it generates is discussed in subsection III.B. We perform a numerical application with
the perturbative ingredients in subsection III.C. After that, we extract in section IV a non-
perturbative SDF evolution operator from actual lattice data for the first time by several
methods, and discuss the results in view of the previous perturbative calculations. Finally, in
section V, we describe a program to access larger momenta thanks to small volume calculations
of non-local matrix elements.

2 PDFs in the short-distance factorization approach

PDFs can be probed through the computation of objects in which quark fields are displaced
at space-like separations rather than by light-cone intervals. In this work, we will focus on a
non-singlet quark PDFs. The basic building block in this paradigm is the matrix element (in
the case of unpolarized quark PDFs of the nucleon):

Mα(z,P ) ≡ ⟨P ∣ψ̄(0)λ3
2
γα Ê(0, z;A)ψ(z)∣P ⟩ , (2.1)

where λ3 is a non-singlet flavor projection and Ê(0, z;A) is the 0 → z straight Wilson line
gauge link formed by the gauge field Aµ in the fundamental representation of SU(3). The
external hadronic states ∣P ⟩ carry momentum P . A Lorentz covariant decomposition of this
matrix element yields:

Mα(z,P ) = PαM(ν, z2) + zαN(ν, z2) , (2.2)

– 3 –



where we have introduced the quantity ν = z ⋅P known as Ioffe time. In the pseudo-distribution
approach, one uses z = (0,0,0, z3), α = 0 and the momentum P = (P0,0,0, P3) such that
M0(z,P ) = P 0M(ν, z2), and forms the Lorentz invariant ratio:

M(ν, z2) ≡M
0(z,P )

M0(z,0)
M0(0,0)
M0(0, P ) , (2.3)

which is finite in the continuum limit, requires no renormalization, and is directly related
to the PDF. The fact that the soft physics contained in the z2-dependent matrix element
is similar to that of ordinary PDFs up to higher-twist contributions allows one to interpret
these matrix elements as PDFs expressed within another factorization scheme, the SDF. The
approach is formalized through a non-local OPE, in which short distance contributions are
computed perturbatively, as discussed, e.g., in [4, 7, 12, 13].

As a consequence, the matrix elements computed on the lattice can be related to the
Fourier transform of MS PDFs by:

M(ν, z2) = ∫
1

0
dαC(α, z2µ2, αs(µ2))Q(αν,µ2) + z2B(ν, z2) , (2.4)

where αs(µ2) is the strong coupling. C(α, z2µ2, αs(µ2)) is called the matching kernel, com-
puted in perturbation theory, and Q(ν,µ2) is the (normalized) Ioffe-time distribution (ITD)
[25], defined by:

Q(ν,µ2) ≡ ∫
1

−1
dxeiνxq(x,µ2)/∫

1

−1
dxq(x,µ2) , (2.5)

where q(x,µ2) is the MS PDF. Notice that the ITD is a complex quantity, whose real part
probes the x-even part of q(x,µ2) and the imaginary part probes the x-odd part of q(x,µ2).
The term z2B(ν, z2) in Eq. (2.4) captures additional corrections to the leading order expres-
sion, which vanish in the limit of z2 = 0. In particular, because the reduced function by
construction satisfies M(0, z2) = 1, one can see that B(0, z2) = 0 and

∫
1

0
dαC(α, z2µ2, αs(µ2)) = 1 . (2.6)

The expansion to fixed order O(αs) of the matching kernel C(α, z2µ2, αs(µ2)) yields [4, 13, 26]:

C(α, z2µ2, αs(µ2)) = δ(1 − α) −
αs(µ2)
2π

[ln(−z2µ2 e
2γE+1

4
)B1(α) +D(α)] +O(α2

s) , (2.7)

where γE is the Euler-Mascheroni constant, and B1(α) and D(α) are given by:

B1(α) = CF [
1 + α2

1 − α ]+
, D(α) = CF [4

ln(1 − α)
1 − α − 2(1 − α)]

+
. (2.8)

Here we follow the two prescriptions,

f(x) = ∫
1

0
dαf(αx)δ(1 − α) , (2.9)

and
G(α)+ ≡ G(α) − δ(α)∫

1

0
dα′G(α′) . (2.10)

The expansion of the matching kernel up to order O(α2
s) can be found, e.g., in [14, 15].
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3 Evolution operators in perturbation theory

In this section, we will derive evolution equations in the SDF scheme based on the perturbative
matching kernels. For convenience, we will only consider a non-singlet PDF so as to not have
to deal with the complication of gluon mixing.

3.1 All-order expression

The DGLAP differential evolution equation of unpolarized non-singlet PDFs reads [27–29]:

d

d lnµ2
q(x,µ2) = ∫

1

x

dα

α
B(α,αs(µ2)) q (

x

α
,µ2) , (3.1)

where B(α,αs(µ2)) is known as the DGLAP splitting function and admits a perturbative
expansion as:

B(α,αs(µ2)) =
∞
∑
n=1
(αs(µ2)

2π
)
n

Bn(α) . (3.2)

The expression of B1(α) has already been given in Eq. (2.8), obtained by expanding the
matching kernel relating z2-dependent matrix elements to µ2-dependent PDFs. We clarify the
reason the matching kernel contains the expansion of the DGLAP splitting function later on.

Performing the integration of the differential evolution equation (3.1), we introduce the
DGLAP integrated evolution operator from µ20 to µ21, denoted E(α;µ20, µ21), such that:

q(x,µ21) = ∫
1

x

dα

α
E(α;µ20, µ21) q (

x

α
,µ20) . (3.3)

Anticipating the concepts presented at the end of this paper, we will refer to E(α;µ20, µ21) also
as the “step-scaling” function in the MS scheme, as it characterizes scale dependence in a
“step” from µ20 to µ21. For brevity, we will from now on use the symbolical notation for the
DGLAP convolution:

[f(paramf)⊗ g(paramg)](x) ≡ ∫
1

x

dα

α
f(α,paramf) g (

x

α
,paramg) . (3.4)

It is trivial to verify that f ⊗ g = g ⊗ f , and that 1⊗ ∶ α ↦ δ(1 − α) is the identity element
(f ⊗ 1⊗ = f). We will also use the notation f⊗n to denote the repeated convolution of f with
itself n times, and f⊗−1 the inverse for the convolution defined by:

f⊗−1 ⊗ f = 1⊗ . (3.5)

There exist some non-trivial considerations on the existence and properties of this inverse,
which we will address in the next section. To exemplify the use of the notation, the DGLAP
integrated evolution equation (3.4) now reads:

q(µ21) = E(µ20, µ21)⊗ q (µ20) , (3.6)

and E(µ20, µ21)⊗−1 represents the DGLAP backward evolution operator, that is E(µ21, µ20).
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The Fourier transform of the DGLAP differential evolution equation (3.1) gives the dif-
ferential evolution equation of the ITD [25]:

d

d lnµ2
Q(ν,µ2) = ∫

1

0
dαB(α,αs(µ2))Q(αν,µ2) . (3.7)

Applying the Fourier transform has changed the nature of the convolution compared to the
one we have dubbed by ⊗, although the splitting function B is unchanged. Among the obvious
differences, the integral runs from 0 to 1 instead of x to 1. Consequently, the evolution of
ITDs probes the entire range of the evolution operator, regardless of the value of the Ioffe
time ν, whereas evolution of momentum-dependent PDFs only probes the evolution operators
for α > x. Therefore, extracting ITDs provides, in principle, a better setting for the study of
evolution than working in x space – although obtaining a good resolution requires as always
to access large values of Ioffe time.

Observing that the z2-dependent matrix element, whose relation to the ITD is stated
in Eq. (2.4), has no µ2 dependence, we write, assuming z2 is sufficiently small that power
corrections are suppressed:

0 = d

d lnµ2
M(ν, z2) = ∫

1

0
dα

d

d lnµ2
C(α, z2µ2, αs(µ2))Q(αν,µ2)

+ ∫
1

0
dβ C(β, z2µ2, αs(µ2))∫

1

0
dαB(α,αs(µ2))Q(αβν,µ2) +O(z2) , (3.8)

with the leading power term giving:

∫
1

0
dβ C(β, z2µ2, αs(µ2))∫

β

0

dα

β
B (α

β
,αs(µ2)) Q(αν,µ2) =

∫
1

0
dαQ(αν,µ2)∫

1

α

dβ

β
C(β, z2µ2, αs(µ2))B (

α

β
,αs(µ2)) . (3.9)

The latter term contains the DGLAP convolution, and the combination of Eqs. (3.8) and (3.9)
gives therefore that the renormalization group equation of the matching kernel is exactly the
opposite of the ordinary DGLAP equation:

d

d lnµ2
C(z2µ2, αs(µ2)) = −B(αs(µ2))⊗ C (z2µ2, αs(µ2)) . (3.10)

This relation already expressed in various forms in the literature (see e.g. [30–32]) explains
the observation made earlier that the matching kernel contains the terms of the expansion
of the DGLAP splitting function. Due to the sign flip compared to the ordinary differential
equation, the µ2 dependence of the matching kernel is dictated by the DGLAP backward
evolution operator (compare to Eq. (3.6)):

C(z2µ2, αs(µ2)) = E(µ2, µ′2)⊗ C(z2µ′2, αs(µ′2)) . (3.11)

In short, the matching can be performed at an intermediate scale µ′2 and evolved later without
any consequences, because of a trade-off between the matching and the DGLAP evolution that
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occurs if all orders are considered. The physical content of Eq. (3.11) is very intuitive, and
summarized in Figure 1. Of course, if one uses a finite truncation, then the scale at which the
matching is done actually matters.

Figure 1. The matching to any scale in MS can be performed by dividing the operation into matching
to an intermediate scale and evolution to the desired final scale as long as all orders are considered.

We have reviewed the evolution equations of the PDF (3.6), Ioffe-time distribution (3.7)
and matching kernel (3.11). We are now ready to derive the final result of this subsection,
namely the evolution equation with respect to z2 of the matrix element.

Expressing the matrix element (with the subtraction of the higher-twist corrections) as a
function of itself at a different value of z2, some algebra gives:

M(ν, z21) = ∫
1

0
dαC(α, z21µ2, αs(µ2))Q(αν,µ2) , (3.12)

= ∫
1

0
dαM(αν, z20)∫

1

α

dβ

β
C (α

β
, z21µ

2, αs(µ2))C⊗−1(β, z20µ2, αs(µ2)) . (3.13)

The SDF step-scaling function is therefore given by:

Σ(z20 , z21) ≡ C(z21µ2, αs(µ2))⊗ C⊗−1(z20µ2, αs(µ2)) . (3.14)

The SDF step-scaling function is independent of µ2 if all orders are considered. To see this, we
notice that introducing an intermediate scale (λz2)−1 where λ ≡ −e2γE+1/4 gives a simplified
form of the matching kernel without logarithmic dependence in Eq. (2.7):

C0(z2) ≡ C (
1

λ
,αs((λz2)−1)) = 1⊗ −

αs((λz2)−1)
2π

D +O(α2
s) . (3.15)

We explore in more depth the perturbative expansion of the SDF matching kernel, how it
relates to the DGLAP splitting function at higher orders, and the question of the scale setting
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subtended by this coefficient λ in Appendix A. Then Eq. (3.11) gives:

Σ(z20 , z21) = E (µ2,
1

λz21
)⊗ C0(z21)⊗ E (

1

λz20
, µ2)⊗ C⊗−10 (z20) , (3.16)

= E ( 1

λz20
,

1

λz21
)⊗ C0(z21)⊗ C⊗−10 (z20) . (3.17)

The latter expression shows how the SDF step-scaling function can be computed perturbatively
to any order from the MS one. The content of Eq. (3.17) is again intuitive, and summarized
in Figure 2.

Figure 2. The evolution in SDF depending on z2 is derived from the MS evolution by a back-and-
forth matching procedure.

By differentiating Eq. (3.17) with respect to ln z21 , one can derive SDF splitting functions:

d

d ln z21
Σ(z20 , z21) =

d

d ln z21
E ( 1

λz20
,

1

λz21
)⊗ C0(z21)⊗ C⊗−10 (z20)

+ E ( 1

λz20
,

1

λz21
)⊗ d

d ln z21
C0(z21)⊗ C⊗−10 (z20) . (3.18)

The first term produces the opposite of the ordinary DGLAP splitting function:

d

d ln z21
E ( 1

λz20
,

1

λz21
) = −B(αs((λz21)−1))⊗ E (

1

λz20
,

1

λz21
) , (3.19)

whereas the second term can be reshaped by noticing that:

E ( 1

λz20
,

1

λz21
)⊗ C⊗−10 (z20) = Σ(z20 , z21)⊗ C⊗−10 (z21) . (3.20)

Therefore, we obtain:

d

d ln z21
Σ(z20 , z21) = { −B(αs((λz21)−1)) +

d

d ln z21
C0(z21)⊗ C⊗−10 (z21)}⊗Σ(z20 , z21) . (3.21)
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Alternatively, using the running of the strong coupling defined by:

d

d lnµ2
αs(µ2) = β(αs(µ2)) , (3.22)

we find:

d

d ln z21
Σ(z20 , z21) = { −B(αs((λz21)−1)) − β(αs((λz21)−1))

d

dαs
C0(z21)⊗ C⊗−10 (z21)}⊗Σ(z20 , z21) .

(3.23)
The bracketed result of Eq. (3.23) is the SDF splitting function. This result closely resem-
bles the “physical anomalous dimensions” derived in [33–35] for the Q2 dependence of the
structure functions of deep inelastic scattering (DIS) – or the results obtained for the renor-
malization relating dimensionally regularized quantities to MS (see, for instance, Eq. (9) of
[36]). This does not come as a surprise since M(ν, z2) is scheme-independent. Therefore,
the SDF step-scaling and splitting functions are independent of the scheme used to compute
them in perturbation theory, provided all orders are considered. Notably, scheme indepen-
dence can be seen by recognizing that β(αs)d/dαs is scheme-invariant and that the scheme
dependence of the first term cancels by that of the second term. However, any truncation of
the perturbative expansion introduces scheme dependence.

3.2 Performing the perturbative truncation

Eqs. (3.17) and (3.23) give, respectively, the SDF step-scaling function and the SDF splitting
function at any desired order in perturbation theory. To derive the SDF perturbative evolution,
we only need to find a consistent expression for C⊗−10 . For instance, if one works at order O(αs)
for the matching kernel (3.15), one would be tempted to use:

C⊗−10 (z20) = (1⊗ −
αs(µ20)
2π

D)
⊗−1

, (3.24)

where µ20 = (λz20)−1. However, that this expression defines an actual distribution is doubtful.
Working in Mellin space allows one to pinpoint the potential issue. The Mellin moments of
the matching kernel are defined as:

cn(z2) ≡ ∫
1

0
dααn−1C0 (α, z2) . (3.25)

It is well-known and easy to verify that the Mellin transform converts the DGLAP convolution
⊗ into an ordinary product of Mellin moments, and that, provided C⊗−10 exists, its Mellin
moments are simply 1/cn. An issue arises obviously if cn = 0. We refer the interested reader
to Appendix B for more details on the consequences of this pole in the Mellin moments of
C⊗−10 . The intuitive conclusion of Appendix B is that one can obtain a workable definition of
C⊗−10 provided that one truncates it equally to the same perturbative order, as done e.g. in
[37, 38]. Here:

C⊗−10 (z20) = 1⊗ +
αs(µ20)
2π

D . (3.26)
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Then the direct relation between the SDF and MS step-scaling functions (3.17) yields:

Σ(z20 , z21) = E(µ20, µ21)⊗ (1⊗ −
αs(µ21)
2π

D)⊗ (1⊗ +
αs(µ20)
2π

D) . (3.27)

A contribution of order O(α2
s) results in that Σ(z20 , z20) ≠ 1⊗, so not applying any evolution

does not correspond to the identity operator. To preserve Σ(z20 , z20) = 1⊗, a further truncation
is required yielding the final form of the SDF step-scaling function matched at fixed order
O(αs). We will be using this form for our numerical applications:

Σ(z20 , z21) = E(µ20, µ21)⊗ (1⊗ +
αs(µ20) − αs(µ21)

2π
D) . (3.28)

3.2.1 Alternative truncation choices

In the MS scheme a fixed-order truncation at the level of the step-scaling function is sub-
optimal, and a fixed-order truncation at the level of the splitting function is preferred. When
integrating the differential equation with the truncated splitting function, one obtains a step-
scaling function with renormalization group improvement – that is the resummation of the
dominant logarithms of the ratio of scales, classified as LL (leading logarithms resummed),
NLL (next-to-leading logarithms), and so on. Eq. (3.28) presents a factorized form of the step-
scaling function, with an evolution and a matching term. It is straightforward to implement
the MS renormalization group improvement on E . On the other hand, the truncation we
have suggested is of fixed-order at the level of the matching term. Since we have computed
the SDF splitting function, we could try to introduce a renormalization group improvement of
the matching part as well, using Eq. (3.23), instead of working directly with the step-scaling
functions (3.17).

Applying our O(αs) truncated C0 and C⊗−10 in Eq. (3.23) yields:

d

d ln z21
Σ(z20 , z21) = { −B(αs(µ21)) +

β(αs(µ21))
2π

D ⊗ [1⊗ +
αs(µ21)
2π

D]}⊗Σ(z20 , z21) . (3.29)

However, this expression lends itself to multiple different perturbative truncations depending
on the ingredients one chooses to use. Indeed, as β(αs) = −β0α2

s + ..., the one-loop direct
matching kernel D only enters at order O(α2

s) in Eq. (3.29). The one-loop inverse matching
kernel only enters at order O(α3

s). If one used a fixed-order truncation of Eq. (3.29) to
order O(α3

s) for instance, one would be manipulating simultaneously the three-loop DGLAP
splitting function, two-loop direct matching kernel and one-loop inverse matching kernel, in a
curious mixture from a physical point of view.

Instead, we propose to illustrate the similarities and differences between Eqs (3.29) and
(3.28) by expressing both with the same physical ingredients, namely one-loop DGLAP split-
ting function (O(αs)), matching kernel (O(αs)), and beta function (O(α2

s)).
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Let us first review the effect of renormalization group improvement at one-loop on the
MS step-scaling function. The LL evolution operator, ELL(µ20, µ21) is given by the solution of:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

d lnµ21
ELL(µ20, µ21) =

αs(µ21)
2π

B1 ⊗ ELL(µ20, µ21) ,

d

d lnµ21
αs(µ21) = −β0α2

s(µ21) .
(3.30)

This system of differential equations yields:

ELL(µ20, µ21) =
+∞
∑
k=0

1

k!
B⊗k1 (

1

2πβ0
ln(αs(µ20)

αs(µ21)
))

k

. (3.31)

The result looks more familiar when expressed in terms of Mellin moments. If γn and
en(µ20, µ21) are respectively the Mellin moments of B1 and ELL(µ20, µ21) defined analogous to
Eq. (3.25), then:

en(µ20, µ21) = (
αs(µ20)
αs(µ21)

)
γn/(2πβ0)

. (3.32)

A crucial observation is that, although B1 is mathematically a distribution defined as a plus-
prescription according to Eq. (2.8), ELL(µ20, µ21) is an ordinary function as long as µ1 > µ0:
the MS renormalization group improvement has the effect of removing the plus-prescription
that appears in the splitting function. This effect is not evident as ELL(µ20, µ21) is written as
an infinite sum of convolutions of B1, as seen in Eq. (3.31).

As we will show below, ELL(µ20, µ21) is not only an ordinary function, but a positive one
for µ1 > µ0. In the context of the probabilistic interpretation of the PDF q(x,µ2) as the
number density of partons carrying a momentum fraction x at scale µ2, one could likewise
interpret ELL(α,µ20, µ21) as the probability of finding a parton with momentum fraction αx at
scale µ21 inside a parton with momentum fraction x at scale µ20. Indeed, we remind that the
probability density of the product of two independent probability densities f and g restricted
to the interval [0,1] is precisely f ⊗ g. This picture has been used to derive the DGLAP
evolution equation [39]. Note, however, that the probabilistic interpretation may appear
problematic, as it is established that renormalization may spoil the positivity of PDFs at low
MS scales [40].

Aside from probabilistic considerations, the existence of evolution operators, whether in
µ2 or z2, can be tied to the validity of the OPE that defines the moments of (pseudo-) PDFs
[19] at small z2. Provided that the moments exist, in Mellin space the DGLAP convolution
reduces to:

qn(µ21) = en(µ20, µ21)qn(µ20) , (3.33)

where qn(µ2) are the Mellin moments of q(x,µ2). Eq. (3.33) defines the evolution operator
straightforwardly as the inverse Mellin transform of en(µ20, µ21) = qn(µ21)/qn(µ20)1. However,

1An enlightening parallel could be drawn with the Radon transform and the polynomiality property of
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one still needs to demonstrate that the operator defined in this fashion is restricted to a
support α ∈ [0,1], which can be done to all orders in perturbation theory thanks to the use
of partonic on-shell states (see e.g. [46]).

Let us mention another perspective, related to the arguments of growth of higher-twists
and breaking of perturbation theory mentioned in the introduction, on why the evolution
operators E and Σ are limited to small z2. The factorization scale of PDFs is akin to a cut-off
in the k⊥ integration of transverse momentum of partons inside the hadron. One can introduce
a “primordial” (straight-link) transverse momentum distribution (TMD) F(x, k⊥) [3, 47, 48]
whose Fourier transforms give the pseudo-ITD:

M(ν, z2⊥) = ∫ dx∫ d2k⊥e
iνx+ik⊥⋅z⊥F(x, k2⊥) . (3.34)

With z2 = 0, one can write schematically the PDF evolution equation as:

dq(x,µ2)
d lnµ2

= d

d lnµ2
∫

µ2

0
d2k⊥F(x, k2⊥) . (3.35)

The large k⊥ region of the TMD can be computed in perturbation theory – in renormalizable
theories, it varies as 1/k2⊥, which integrated against d2k⊥ gives the usual logarithmic scale
dependence at large µ2 or small z2 of the PDFs. On the other hand, the small k⊥ (soft)
regime of the TMD is deeply non-perturbative and tied to the confinement and finite size of
the proton. Typical models of the soft TMD component have a very different form compared
to the hard tail, such as a Gaussian dependence in k⊥. The evolution equation is therefore
fundamentally different at small k⊥ or large z, and there are no first-principle grounds that the
step-scaling definition we have used would hold at large z – except maybe for the hope that
the cancellation of z2 effects induced by the ratio renormalization results in a trivial evolution
at large z.

Finally, note that regardless of the probabilistic interpretation attributed to ELL(α,µ20, µ21),
it is a positive ordinary function, which allows one to consider evolution to a higher scale as
a simple reweighting of the parton distribution at an initial scale. This forms the basis of the
study led in [49] which deals with the question “which region of the parton distribution at
initial scale contributes the most to which region at final scale?”.

We will only show that ELL is an ordinary function in the main text, the positivity
being demonstrated in Appendix C. That ELL does not present the same distribution-like
features as B1 can be broadly understood as a consequence of the fact that ELL results from

generalized parton distributions (GPDs). The polynomiality property implies a sophisticated dependence
of GPDs on their variables (x, ξ) [41, 42]. However, if one applies an inverse Radon transform to GPDs
to express them under the form of “double distributions” [43], the polynomiality property becomes trivially
verified [44, 45]. In the end, the polynomiality property is converted into a requirement of well-definition of
the inverse Radon transform with additional requirements on the support of the distributions. In our case, the
DGLAP relation implies a sophisticated dependence of PDFs on their variables (x,µ2

) that can be converted
into a requirement of a well-defined inverse Mellin transform with again some support properties. That the
Mellin transform is applicable is ultimately guaranteed by the validity of the OPE.
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the integration of B1, and therefore smooths out the singular behavior of the latter. The
argument can be made rigorous in Mellin space, where the distribution-like features, which
are localized at α = 1, are mirrored in the large n behavior of the Mellin moments. Indeed, the
Mellin moments of an ordinary integrable function whose support is restricted to [0,1] tend
to 0 as n → +∞. A Dirac delta at α = 1 induces Mellin moments which tend to a non-zero
constant as n → +∞, whereas a plus-prescription O(1/(1 − α))+ induces moments diverging
logarithmically at large n. That is the case for the Mellin moments of B1, known as the
leading order (LO) DGLAP anomalous dimensions, γn:

γn
n→+∞= −2CF ln(n) +CF (

3

2
− 2γE) +O (

1

n
) . (3.36)

Therefore, the large n behavior of the Mellin moments of ELL(µ20, µ21) reads:

en(µ20, µ21) = (
αs(µ20)
αs(µ21)

)
γn/(2πβ0)

n→+∞∼ An
−
CF

πβ0
ln(αs(µ20)

αs(µ21)
)
, (3.37)

where

A = (αs(µ20)
αs(µ21)

)
CF (3−4γE)/(4πβ0)

. (3.38)

When µ1 > µ0, we have αs(µ20)/αs(µ21) > 1, so en(µ20, µ21) falls off as a negative power of n.
A straightforward inverse Mellin transform implies a behavior of ELL(α,µ20, µ21) for α → 1

dominated by the ordinary function:

ELL(α,µ20, µ21)
α→1∼ (− ln(α))

−1 + CF

πβ0
ln(αs(µ20)

αs(µ21)
)
× A

Γ( CF

πβ0
ln(αs(µ20)

αs(µ21)
))

, (3.39)

where Γ is the ordinary Gamma function. The LL MS step-scaling function therefore only
presents an integrable power divergence at α = 1 when µ1 > µ0. On the contrary, if µ1 = µ0,
the step-scaling function reduces to the identity 1⊗, which is a Dirac delta at α = 1. If µ1 < µ0,
then en(µ20, µ21) increases at large n as a power of n. This shows that the LL backward
DGLAP evolution operator presents distribution-like features in the vicinity of α = 1, which
explains the observation that backward evolution is considerably noisier than the forward one:
renormalization group improvement does not always smooth out the distribution-like features.

The large n behavior of the Mellin moments of the matching kernel, presented in more
details in Eq. (B.3), diverges as a power of ln(n) as the matching kernel contains a plus-
prescription:

cn(z2) n→+∞∼ −αs(µ2)
π

CF ln2(n) . (3.40)

Therefore, the SDF step-scaling function derived in Eq. (3.28) has Mellin moments σn(z20 , z21)
that satisfy:

σn(z20 , z21)
n→+∞∼ en (µ20, µ21)

αs(µ20) − αs(µ21)
π

CF ln2(n) . (3.41)
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If z20 > z21 , en falls off like a negative power of n, and the ln2(n) term added by the matching
kernels does not change that general behavior: the SDF step-scaling function remains an
ordinary function. An inverse Mellin transform gives that the large α behavior of the SDF
step-scaling function is multiplied by ln2(1−α) compared to the LL MS step-scaling function.

On the other hand, Eq. (3.29) yields:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

d lnµ21
Σ(z20 , z21) = {

αs(µ21)
2π

B1 + β0
α2
s(µ21)
2π

D + β0
α3
s(µ21)
(2π)2 D

2}⊗Σ(z20 , z21) ,

d

d lnµ21
αs(µ21) = −β0α2

s(µ21) .
(3.42)

The solution, which one may verify by differentiating the result and observing that it obeys
the previous system, is obtained as:

Σ(z20 , z21) = ELL(µ20, µ21)⊗
⎛
⎝
+∞
∑
k=0

1

k!
D⊗k (αs(µ20) − αs(µ21)

2π
)
k⎞
⎠
⊗
⎛
⎝
+∞
∑
k=0

1

k!
D⊗2k (α

2
s(µ20) − α2

s(µ21)
8π2

)
k⎞
⎠
,

(3.43)
or noting dn the Mellin moments of D:

σn(z20 , z21) = (
αs(µ20)
αs(µ21)

)
γn/(2πβ0)

exp(dn
αs(µ20) − αs(µ21)

2π
+ d2n

α2
s(µ20) − α2

s(µ21)
8π2

) . (3.44)

By expanding Eq. (3.43) to order O(αs), we obtain:

Σ(z20 , z21) = ELL(µ20, µ21)⊗ (1 +
αs(µ20) − αs(µ21)

2π
D +O(α2

s)) , (3.45)

which is exactly the form of Eq. (3.28): one finds naturally that the fixed-order truncation of
the matching gives the same result as the renormalization group improved one up to higher
order corrections. However, the dominant term at large n of the Mellin moments of the
step-scaling function is now (see Eq. (B.3) for more details):

en(µ20, µ21) exp(dn
αs(µ20) − αs(µ21)

2π
+ d2n

α2
s(µ20) − α2

s(µ21)
8π2

)

n→+∞= en(µ20, µ21) exp(C2
F ln4(n)α

2
s(µ20) − α2

s(µ21)
2π2

+O(ln3(n))) . (3.46)

Here en tends to zero only as exp(K ln(n)), with K < 0 when n → +∞ (see Eqs. (3.36) and
(3.38)), which is not fast enough to counter the divergence of the last factor in Eq. (3.46).
Therefore, the SDF step-scaling function derived through the splitting function has lost the
appealing characteristic of being an ordinary function and the renormalization group improve-
ment applied to the matching part enhances the distribution-like behavior (as in the case of
the backward evolution in MS). Therefore, we will stick in the rest of this work with the form
expressed in Eq. (3.28).
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Let us draw a short conclusion from this discussion. Dealing with several perturbative
objects, namely the evolution and the matching terms either at the level of the step-scaling or
splitting functions, the possibilities of perturbative truncation at a given order are multiple,
and give different results due to the handling of higher order terms. We have confronted several
possible truncations, and selected the one we found to have the most desirable properties.
However, it must be clear that all methods are essentially valid, the difference between them
vanishing in the limit αs → 0, or when all orders are taken into account. We will show in
the next section, devoted to a numerical application, that we are in neither scenario. The
uncertainty introduced by the perturbative matching will motivate us to advocate for a new
technique later in the document.

3.3 A perturbative numerical application

For this preliminary numerical exploration of PDF evolution in the SDF scheme, we will revisit
the results of the isovector proton PDF published in [50], obtained with a lattice spacing of
a = 0.094 fm. The space-like separation z is an integer multiple of the lattice spacing a. It
is customary to exclude non-local operators separated by only one lattice spacing, z = a, for
which discretization errors are expected to be large. The smallest distances we will consider
are therefore z1 = 2a = 0.188 fm and z0 = 3a = 0.282 fm. To give an account of the uncertainty
in the scale fixing procedure, we will consider scales given by µ2 = (λz2)−1 with λ ∈ [−2,−0.5]2,
which yields:

µ1 ∈ [0.74,1.48] GeV and µ0 ∈ [0.49,0.99] GeV . (3.47)

The lower range of these MS scales is sufficiently low that instabilities in the perturbation
theory could be expected. Indeed, using the PDG world average of αs(MZ = 91.19 GeV) =
0.118 [51] in a variable flavor number scheme with threshold crossings at pole masses of the
charm mc = 1.4 GeV and bottom mb = 4.5 GeV, the running of the strong coupling computed
with the APFEL++ evolution code [52, 53] is shown on Figure 3. This plot demonstrates
that going to higher order in perturbation theory is not a tool to access lower scales, as the
divergence of αs appears earlier. That the renormalization group improvement makes SDF
matching diverge as z increases and gives a very different picture compared to the fixed-
order truncation is well established, see e.g. Ref. [18] or [54], where the renormalization group
improvement can only be applied for z ≤ 3a for a = 0.093 fm. On the other hand, when
the perturbative expansion converges (say above 1 GeV), going to higher order reduces the
systematic uncertainty [15].

The situation is critical and unreliable at the low scale µ0 at NNLL. We will therefore
limit ourselves to a comparison of the LL and NLL results. We extract from APFEL++
the LL and NLL step-scaling functions in the MS scheme, between µ0 and µ1 in Figure 4.
The edges of the bands for perturbative quantities represent the results obtained for λ = −0.5
and λ = −2. At LL, there is only one non-singlet splitting function. In contrast, at NLL

2We have derived the formalism so far with λ = −e2γE+1
/4 which guarantees the simple form of the matching

in Eq. (3.15). For arbitrary values of λ, D should be replaced by D + ln (− e2γE+1

4λ
)B1 (see Appendix A).
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Figure 3. Running of the strong coupling as a function of the scale at LL, NLL and NNLL.

there are two components to the non-singlet splitting function, which are responsible for the
independent evolution of the respective flavor asymmetries:

(u − ū) − (d − d̄) and (u + ū) − (d + d̄) . (3.48)

The first asymmetry corresponds to the real part of the isovector matrix element, whereas
the second corresponds to the imaginary part. In Fig. 4 we have plotted the NLL evolution
operator of the real part of the isovector matrix element. The evolution operator of the
imaginary part is essentially the same at this order in perturbation theory.

A few comments on Figure 4 are in order:

1. We have demonstrated in the previous section that the (forward) LL MS step-scaling
function is an ordinary positive function. We observe that the numerical extraction of
the step-scaling function also converges towards an ordinary positive function at NLL,
allowing us to present the results as simple curves in the figure.

2. Both the LL and NLL MS step-scaling functions diverge at small and large α. The
NLL step-scaling function has a stronger divergence at small α compared to the LL, and
inversely at large α. This corresponds to the fact that the NLL step-scaling function
deviates more than the LL one from the identity 1⊗ = δ(1−α): NLL radiates more small
momentum fraction partons than LL. At small α, the difference is of several orders of
magnitude, a testament to the poor perturbative convergence achieved at those scales.
The scale uncertainty of the NLL curves is larger than that of the LL as a consequence
of the stronger divergence of αs.

3. We have already derived, in Eq. (3.39), the behavior of the LL MS step-scaling function
at large α through an analysis of the large n behavior of the anomalous dimensions γn.
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Figure 4. LL (hatched blue) and NLL (hatched orange) non-singlet MS step-scaling functions. The
lower edge of the band around α = 0.5 represents evolution with µ2 = −2/z2, that is from µ0 = 0.99

GeV to µ1 = 1.48 GeV. The upper edge at α = 0.5 represents evolution with µ2 = −0.5/z2 (so stronger
evolution effects as the scale is lower) from µ0 = 0.49 GeV to µ1 = 0.74 GeV. A zoom on the behavior
at small α (upper right) and large α (lower right) is displayed.

Applying the formula to the case λ = −1 (i.e. µ0 = 0.70 GeV and µ1 = 1.05 GeV) yields:

ELL(α,µ20, µ21)
α→1∼ 0.148(− ln(α))−0.865 . (3.49)

We can proceed in a similar way at small α by studying the Mellin moments in the limit
where n→ 0. We find for the anomalous dimensions:

γn
n→0= CF (

1

n
+ 1

2
) +O(n) . (3.50)

Hence

en(µ20, µ21) = (
αs(µ20)
αs(µ21)

)
γn/(2πβ0)

n→0∼ B (αs(µ20)
αs(µ21)

)
CF /(2nπβ0)

, (3.51)

where

B = (αs(µ20)
αs(µ21)

)
CF /(4πβ0)

. (3.52)

The inverse Mellin transform of this term is not as straightforward as the one we per-
formed for the large α behavior. It is useful to introduce the confluent hypergeometric
limit function 0F1(; 2;x) defined by its series expansion:

0F1(; 2;x) =
∞
∑
n=0

xn

n!(n + 1)! , (3.53)
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and to notice that the Mellin transform of 0F1(; 2;−a ln(α))Θ(1 − α) gives:

ea/n − 1
a

, (3.54)

where Θ is the Heaviside step function. In the limit of n → 0, we may neglect the term
−1/a, and obtain therefore that the small α behavior of the LL MS step-scaling function
is dominated by:

ELL(α,µ20, µ21)
α→0∼ B

CF

2πβ0
ln(αs(µ20)

αs(µ21)
) 0F1 (; 2;−

CF

2πβ0
ln(α) ln(αs(µ20)

αs(µ21)
)) . (3.55)

For the values of µ0 and µ1 we consider here, we obtain:

ELL(α,µ20, µ21)
α→0∼ 0.0701 0F1 (; 2;−0.0677 ln(α)) . (3.56)

In Figure 5 we represent the result of the matching at order O(αs) of both the LL and
NLL MS step-scaling functions following Eq. (3.28). A first consequence of the matching is a
significant reduction of the contribution for α < 0.9, to the point that the matched step-scaling
becomes compatible with zero or slightly negative in this region. That evolution in the SDF
scheme might not populate – or at least considerably less than the MS evolution – the small
momentum fraction domain is an interesting finding. In particular, the reasoning developed
in [49], which used the fact that evolution ended up dominating the small x behavior of the
parton distributions to produce a perturbative modelling of this region, may be inapplicable
in the SDF scheme.

More strikingly, for very large values of α, the matched functions can dip to extremely
negative values. The smaller the value of ∣λ∣ (so the higher the perturbative scale), the stronger
the negative dip. LL also exhibits a stronger dip than NLL. Only for values of α typically larger
than 1 − 10−9 is the matched LL step-scaling function in line with the predicted asymptotic
behavior – namely ln2(1−α)CF (αs(µ20)−αs(µ21))/π times the LL MS large α behavior (3.41).

To understand this very stark oscillation at very large α, recall that the MS step-scaling
functions are positive functions whose weight is mostly gathered around α = 1. As such, one
could consider them akin to a smeared Dirac delta function. The higher the perturbative
scale, the less evolution effects are felt and the closer the MS step-scaling is to a Dirac delta
function. We have noticed already that LL step-scaling functions are also closer to a Dirac
delta than the NLL ones. The SDF step-scaling function (3.28) is the convolution of this
smeared Dirac delta with a term which contains a plus-prescription, the distribution D. A
plus-prescription distribution convoluted with a smeared Dirac delta exhibits large oscillations
at large α, which become bigger as the smeared Dirac delta approaches an actual Dirac delta.
In that limit, the convolution would become equal to the plus-prescription itself, which cannot
be represented as an ordinary function since it would exhibit oscillations of infinite amplitude
localized at α = 1.

However spectacular this strong oscillation is, it is barely relevant to our study for two
main reasons. The first is that it is likely an artifact of the perturbative truncation. A
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Figure 5. The same LL (hatched blue) and NLL (hatched orange) MS step-scaling functions as on
Figure 4. The uniformly colored bands are the O(αs) matching to the SDF scheme of both the LL
and NLL step-scaling functions. The edges of the band are made of the result for µ2 = −0.5/z2 and
µ2 = −2/z2.

fixed-order truncation of the MS step-scaling function presents a “naked” plus-prescription
– an infinitely narrow oscillation of infinite amplitude. One needs the resummation of the
full leading logarithmic expansion to ensure the MS step-scaling function is an ordinary
well-behaved function. Although we use renormalization group improvement for the MS

step-scaling function, we used a fixed-order truncation of the non-logarithmic matching part
(see e.g. Eq. (3.28) and the discussion below). Renormalization group improvement of the
non-logarithmic part through the SDF splitting function did not actually prove beneficial (see
Eq. (3.46) and discussion). The discussion of the last section demonstrates that oscillating
features at large α are very dependent on the handling of missing higher orders. Therefore,
one could legitimately worry that there is little physical insight to draw from the pointwise
value of the evolution operator, at least at large α. This is indeed the case, but in practice,
this is unlikely to cause a problem: what matters is only what can be measured, as we explain
below.

More fundamentally, the second reason why these oscillations are mostly not relevant is
that the step-scaling function is only ever accessed when convoluted with a PDF / ITD /
matrix element, which are smooth functions. If the ITD only exhibits sizeable variations on a
scale ∆ν, then the information content in the ITD over the interval [0, νmax] can be roughly
summarized by νmax/∆ν points. If one views the extraction of the step-scaling function as
a linear system where we have about νmax/∆ν good measurements, then we can also only
characterize the evolution operator on a similar number of points, so at a resolution level of
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Figure 6. On the left, the effect of smearing the MS step-scaling functions with the kernel S(α)
(3.57). There is little influence on the overall shape of the function. On the right, the smearing of the
matched step-scaling functions. This time, the effect is dramatic, entirely erasing the sharp negative
fluctuation at very large α.

∆ν/νmax.
This argument is of course only qualitative. One could argue that by measuring arbitrarily

well the ITD on any interval in Ioffe-time, one could extract equally well the step-scaling
regardless of the value of νmax or the level of smoothness ∆ν. However, in practice, νmax/∆ν
represents an empirical threshold between the resolution which can be reasonably reached,
and the one which becomes computationally highly challenging.

In fact, current lattice data probably do not reach the threshold of ∆ν/νmax. If ν = z3 ⋅Pz,
the closest ∆ν we can probe at fixed value of z2 is given by a variation of one lattice unit of the
hadron momentum. Then the lattice proxy of ∆ν/νmax is given by the inverse of the number
of available hadron momenta, which is typically of the order of ∼ 0.1. Some of the matched
step-scaling functions in Figure 5 show a strong negative dip up to α ∼ 0.9999, followed by an
extremely sharp trend reversal. We would need a resolution of the order 10−4 to be effectively
sensitive to this kind of feature of the step-scaling function. Therefore, the data we collect
do not allow us to access the step-scaling function in the full complexity of its α-dependence,
but rather its convolution with some unknown smearing kernel of width ∆α ∼ 0.1. As an
example, we depict on Figure 6 the effect of convoluting all the step-scaling functions with an
additional smearing kernel:

S(α) = (− ln(α))
−0.9

Γ(0.1) . (3.57)

The smearing has the general effect of taming the behavior at large α, and displacing
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some weight of the step-scaling function towards lower values of α. The general shape of the
MS step-scaling functions is only weakly altered by the smearing. On the other hand, the
smearing has entirely suppressed the sharp negative oscillation of the SDF-matched functions
at large α. Therefore, we do not expect that these oscillations will play any role in evolving
realistic data points. The displacement of the curves when convoluted with the smearing
kernel represents a typical systematic uncertainty we will be facing in any extraction of the
step-scaling function due to the fact that we do not know precisely what the smearing kernel
is aside from an estimate of its resolution.

4 Fitting a non-perturbative step-scaling function to lattice data

In principle, the lattice matrix elements already published should give us a first hint of non-
perturbative evolution in the SDF scheme, which we can compare to the perturbative appli-
cation we have performed in the previous section. The leading order DGLAP evolution was
first used in [5], where numerical evidence suggested that the quenched lattice QCD results
for M(ν, z2) indeed follow this evolution in z2. More generally, a wealth of numerical analyses
have shown that for z < 0.2 ∼ 0.3 fm, various truncations of the perturbative matching give
rather similar results, mostly compatible with the phenomenological knowledge of unpolarized
PDFs [38, 50, 55–71].

Data published in [50] with 2+1 flavors of Wilson clover quarks with a lattice spacing
of a = 0.094 fm, volume of 323 × 64, pion mass of 358 MeV and 349 gauge configurations are
shown on Figure 7. We present the two values z0 = 3a and z1 = 2a, and the different Ioffe
times are obtained by varying the momentum P of the hadron. The small value of z should
guarantee a reduction of higher-twist effects and offers scales where we can compare to the
perturbative results at LL and NLL.

As the hadron momentum increases, the signal-to-noise ratio decreases. To counter this
phenomenon, for P ≥ 4 × 2π

L , the hadron interpolating operators are “phased” [72, 73]: their
spatial extension is modulated by an oscillation which increases their coupling to the ground
state of the boosted hadron. The effect is striking on Figure 7. The fifth red point, where the
phasing kicks in, has a significantly smaller uncertainty than the fourth point as witnessed
by the tightening of the red band. The same behavior is also visible for the fifth blue point
(the rightmost one – the first blue point is hidden at ν = 0 by the first red one) compared to
the fourth blue point. This gives however the unfortunate consequence that the distribution
at the initial scale is considerably less constrained than at the final scale for ν ∈ [1.2,2], and
the opposite is true for ν ≥ 2, to some extent obfuscating the z2 dependence of the matrix
elements.
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Figure 7. The real part of the isovector proton matrix element M(ν, z2) published in [50]. The light
curves represent 60 cubic splines interpolations of jack-knife samples of the matrix elements.

4.1 Methodology

Our strategy to extract an empirical step-scaling function from the lattice data is first to
propose a parametric form of Σ(α; z20 , z21), and then to fit it to the lattice data:

M(ν, z21) = ∫
1

0
dαΣ(α; z20 , z21)M(αν; z20) . (4.1)

As discussed in section III.B, the existence of Σ can be inferred at small z2 from the validity
of the OPE and all order perturbative results. Let us note that if there are significant higher
twist contributions in the lattice data, they will be encompassed in some way in the extracted
Σ, whose existence or support we might not be able to guarantee. This limits us to only
studying the small z2 domain.

We only have at our disposal a discrete set of Ioffe-time values (νi,0)i at the initial scale
z20 to compute the integral of Eq. (4.1). Therefore, we perform a cubic spline interpolation
of the initial-scale matrix element samples. Denoting by (νj,1)j the set of Ioffe-time values at
the final scale z21 , we can write schematically the fit as the optimization of a function TΣ of
the initial-scale matrix elements:

M(νj,1, z21) = TΣ(νj,1, z21 ; (M(νi,0; z20))i ) , (4.2)

where TΣ contains both the parametric dependence of the step-scaling function Σ, and the
effect of the cubic spline interpolation on the discrete set of matrix elements at initial scale
(M(νi,0; z20))i.

The presence of largely correlated uncertainties within the jack-knife samples of the matrix
elements must be accounted for in the fit. At a fixed value of P , the points at z20 and z21 are
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correlated in excess of 97%. On the other hand, at a fixed value of z2, neighboring points in
Ioffe time (so in P ) are typically correlated at the level of 50%. It drops to about 20% with
one more separation in Ioffe time, and to less than 10% with one more.

Eq. (4.2) represents a typical fit of the form y(t) = f(t, x) where we want to learn the
parameters of f , but there are uncertainties in the value of x which are furthermore correlated
with the uncertainties of y. For such an errors-in-variables model, we will use the total least
square method. We assume that there exist true values M∗(ν, z2) of the matrix elements,
and that the jack-knife samples arise from a measurement of M∗(ν, z2) with classical errors.
This means that although there is correlation between the measurement of M(ν, z2) at various
kinematics, there is no correlation assumed between the uncertainty of the measurement and
the true value M∗(ν, z2). We form a vector of fit residuals defined by:

r =
⎛
⎜⎜⎜⎜
⎝

(M∗(νi,0, z20) −M(νi,0, z20))
i

(TΣ(νj,1, z21 ; (M∗(νi,0; z20))i ) −M(νj,1, z
2
1))

j

⎞
⎟⎟⎟⎟
⎠
. (4.3)

The vector of residuals contains both the discrepancy of the true values to the measured ones,
and quantifies the ability of the model to reproduce the data. Then introducing the empirical
covariance matrix evaluated from the full set of jack-knife samples:

Ω = (Cov[M(νi,0, z20),M(νj,0, z20)]i,j Cov[M(νi,0, z20),M(νj,1, z21)]i,j
Cov[M(νi,0, z20),M(νj,1, z21)]i,j Cov[M(νi,1, z21),M(νj,1, z21)]i,j

) , (4.4)

we form a goodness-of-fit measure:
χ2 = rTΩ−1r , (4.5)

where rT denotes the transpose of r. To give an account of uncertainty, we study the distri-
bution of parameters in the vicinity of the minimal χ2. This distribution reflects the aleatoric
uncertainty of the data, but not the epistemic uncertainty introduced by the specific choice
of the parametric form.

In practice we face an ill-defined inverse problem. The step-scaling function might be
in full generality a distribution with an arbitrary dependence on α. However, as we have
discussed in the previous section, since we only have a restricted kinematic access to the
PDFs which phenomenology tells us are smooth functions, we are only sensitive to the step-
scaling function smeared on some resolution of the order of ∆α ∼ 0.1. The fact that we can
really only extract the smeared step-scaling function is actually a blessing to some extent, as
demonstrated by our toy smearing on Figure 6: there, the smeared perturbative SDF step-
scaling function exhibits a fairly generic shape similar to its MS counterparts, i.e. an ordinary
function with a simple divergence at α = 0 and α = 1 once the large oscillation at very large α
is erased by smearing. At first, we hope to circumvent the ill-posedness by finding a generic
parameterization of the smeared step-scaling function that we can fully constrain from the
data, but it is clear that this object can only be used to evolve the PDF at the same level of
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resolution as the one used for its extraction. That we have done a good job at extracting the
smeared step-scaling function within the uncertainties of the data will be identified by the fact
that we obtain a good reproduction of the z2 dependence of the data, that is a χ2 (4.5) per
fitted points close to one (called χ2 per npts in the following). We will be considering another,
less model-dependent approach later on.

We propose the following parameterization of the step-scaling function:

Σ(α; z20 , z21) = Aα−δ(1 + rα) + b(− ln(α))−η ln2(1 − α) + σα(1 − α) . (4.6)

There are six parameters: A, δ, r, b, η, σ. The first term produces a divergence when α → 0, the
second term when α → 1, and the third term only contributes to the intermediate α range.
One will notice that the asymptotic behaviors of Eq. (4.6) when α → 0 and 1 do not correspond
to those we have analytically computed for the LL MS case (see Eqs. (3.55) and (3.39)). The
large α behavior of the LL MS step-scaling function only diverges as b(− ln(α))−η, and the
small α behavior was determined to be of the general form A 0F1(; 2;−δ ln(α)), which is less
divergent than any term Aα−δ where δ > 0. But although Eq. (4.6) does not have the same
asymptotical behavior than the true LL MS step-scaling function, it is able to produce a very
satisfactory account on a compact interval [α0, α1] ⊂ (0,1). We demonstrate in Figure 8 that
our parametric form is able to reproduce satisfactorily the various perturbative step-scalings
we have derived before on a large range of α when we use the smearing of the extremely sharp
variations of the SDF-matched step-scaling functions.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
LLMS

NLLMS

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

3

4
LL + SDF( s) smeared
NLL + SDF( s) smeared

Figure 8. The bands are the same as in Figure 6. The dotted lines represent fits with the functional
form of Eq. (4.6) on the edges of the bands. The agreement is very satisfactory. Since the asymptotic
behaviors are not the same, going to extremely small or large values of α would show discrepancies,
but those are not meaningful numerically due to the resolution smearing induced by the convolution.
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4.2 Test of the methodology

To exemplify our fitting methodology, we first work in a controlled setting with synthetic data.
We start with a simple toy valence PDF at µ0 = 0.49 GeV, normalized so that its integral from
0 to 1 equals 1:

q(x,µ20) =
35

32
x−0.5(1 − x)3 . (4.7)

We evolve this PDF to the scale µ1 = 0.74 GeV using the exact LL DGLAP evolution, and
extract the values of the ITD (2.5) on the kinematics shown by the datapoints on Figure 7.
Then we fluctuate the true data according to the covariance matrix of the lattice data (4.4).
The result is depicted in Figure 9. Although the true values of the ITD at final scale (red
stars) are strictly above their values at initial scale (blue stars), the uncertainty makes it far
less visible at the level of the noisy data. Nonetheless, how well can we extract the LL MS

step-scaling function from this noisy dataset?
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Figure 9. Real part of the Ioffe-time distribution associated to the PDF (4.7). The stars represent
the true values of the Ioffe-time distribution, and the bands the result of their reshuffling with the
covariance matrix of the actual lattice data shown of Figure 7.

Exploring the 10-parameter space (6 parameters for the step-scaling function and 4 pa-
rameters for the unknown true values of the ITD at initial scale) with a non-linear χ2 proves
rather challenging. We start from 2000 random initial sets of widely distributed parameters
and run independent stochastic gradient optimizations to find good fit candidates. In fact,
this will provide a series of local minima, and hopefully the global one among them. We
achieve a smallest χ2 per npts of 0.823, which demonstrates an excellent ability to explain the

3Since the data at Ioffe time ν = 0 is exactly 1 with no uncertainty, to practically perform a fit, we have to
grant it a standard deviation – or enforce analytically the reproduction of that point. We choose the precise
uncertainty of 0.0001, which ensures that the integral of the step-scaling function is equal to 1 ± 0.0001.
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data with the parametric form of the step-scaling function and within the uncertainty.
To produce an account of uncertainty, we select first the 8 local minima with a χ2 per

npts below 1, and then the 32 ones with a χ2 per npts below 3. We explore the vicinity of
these local minima to produce as large a sampling as possible of the distribution of parameters
which offers either a χ2 per npts below 1 or 34. The result with a threshold of 1 is shown
as the hashed band on Figure 10, whereas the result for a threshold of 3 is depicted as the
dotted grey lines. In fact, exploring the χ2 in the vicinity of the local minima is rather useless.
The plot would be exactly the same if we had only plotted the distribution of local minima:
the χ2 varies so abruptly that a change of the parameters by less than 0.1% is often enough
to see the χ2 increase by several units. Therefore, the crucial part of the evaluation of the
uncertainty is to attempt to determine the largest possible amount of local minima.
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Figure 10. The hatched band results from an exploration of the fits whose χ2 per npts is less than
1. The dotted grey lines represent the uncertainty with a χ2 per npts ≤ 3. This extraction of the
step-scaling function is in good agreement with the actual LL MS step-scaling function which has
been used to produce the data, and also mostly compatible with its smeared version.

In spite of the significant noise in the data, the fit allows us to reconstruct the LL MS

step-scaling function in good agreement with its true value. The small α domain is poorly
constrained as one would expect considering the limited range in Ioffe time where the data are
available. The smeared LL MS step-scaling function that we have introduced in Figure 6 is

4For this part of the study, we present uncertainties computed from a fixed threshold in χ2 per fitted points.
Linear propagation of uncertainty invites to use one unit of the full χ2 (not divided by the number of points
or degrees of freedom) around its (unique) minimum as the standard measure of uncertainty. However, in the
highly non-linear case we are facing, we find this uncertainty quantification both overly optimistic and difficult
to interpret. We prefer to use the intuitive absolute goodness of fit as a criterion. In the later results with a
quadratic χ2, we will use the standard result of linear propagation of uncertainty.
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Figure 11. The stars and bands are the same as on Figure 9. The green points with error bars on the
left represent the fitted result of the true ITD value with a χ2 per d.o.f. threshold of 1 at initial scale
Q∗(ν,µ2

0). The larger orange error bars stands for a threshold of 3. The purple points with purple
and light blue error bars on the right represent the convolution of the fitted step-scaling function with
the fitted true ITD values at initial scale TΣ(ν,µ2

1, (Q∗(ν,µ2
0))).

also mostly compatible with the extraction, a fortiori if a threshold on χ2 per npts of 3 is used.
We expected this result as we have explained that we only have an access to the step-scaling
function with a limited resolution.

In Figure 11, we show the “true” values of the ITD obtained thanks to the fit, with both
the thresholds in χ2 per npts of 1 and 3. The correction induced by the fit reduces significantly
the uncertainty and discrepancy introduced by the noise. For instance, the last point at the
higher scale µ1 is correctly displaced by more than 1σ compared to its noisy value, and its
uncertainty is considerably reduced compared to the original data for a threshold of 1. The
second to last point at initial scale sees its uncertainty reduced by a factor 3 compared to the
original data. As we will see later on, it is the requirement of self-consistent evolution in z2,
encompassed in the form of the convolution of Eq. (4.1), that is responsible for the correction of
aberrations in the data, more than the parametric form chosen for Σ. These corrections would
otherwise require significant computational time to obtain from better lattice calculations.
This underlines how crucial a fine understanding of the evolution effect is to the effort of
extraction of parton distributions from lattice QCD.

4.3 Extraction from actual lattice data with a parametric form

The success of the previous test motivates us to apply the same technique to the actual lattice
data. The results are shown in Figures 12 and 13 for the real part. The smallest χ2 per npts
that we have found for the real part is 1.65, which shows a satisfactory level of explanation of
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the data. This time, we will therefore compare a threshold of 2 (9 local minima found) and 3
(32 local minima found).
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Figure 12. Empirical extraction of the SDF step-scaling function from the real part of the lattice
data. The shadow band contains all fit results whose χ2 per npts is less than 2, the dotted grey lines
less than 3.
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Figure 13. Real part of the isovector proton matrix element M(ν, z2) displaced by our fitting method-
ology. The two colored error bars stand for a tolerance parameter of 2 and 3. The fourth and seventh
purple points have been slightly displaced to avoid collision with the green points. The fit correction
produces data with a smaller evolution effect than the – slightly erratic – effect present in the original
data.
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Overall, the extracted SDF step-scaling function is highly compatible with most inputs
from perturbation theory, except the NLL MS evolution if one uses the most stringent thresh-
old in χ2. The SDF step-scaling function extracted directly from the lattice data shows com-
patibility with zero as soon as α < 0.8 as the matched and smeared NLL calculation, and a
very similar large α behavior to all perturbative derivations. One should remember that the
uncertainty depicted for perturbative derivations is the theoretical uncertainty tied to scale
fixing, whereas the uncertainty of the lattice SDF step-scaling function is tied to the uncer-
tainty of the lattice data and the choice of parametric form. That both coincide so well for
the matched and smeared NLL term is therefore rather coincidental. The “true” values of the
matrix elements are shown in Figure 13. The matrix elements corrected by the requirement of
self-consistent z2 evolution show a much reduced effect of evolution compared to that typically
produced by evolution in the MS scheme, in line with the conclusions we drew from the study
of the perturbative matching. We observe that, as in our toy model, the last point at higher
scale has been significantly moved, and the uncertainty of some data points largely reduced
by our fitting procedure.

We conduct a similar study for the imaginary part of the lattice data at the same scales.
At ν = 0, the imaginary part of the isovector data is zero, due to the x symmetries of this
non-singlet distribution. This means that we lose one constraint on the step-scaling function,
namely that its integral over α should be equal to one. The data is depicted on Figure 14.
The effect of z2 evolution is here again fairly difficult to discern clearly, due to the noise in
the data.
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Figure 14. Imaginary part of the isovector proton matrix element M(ν, z2) published in [50].

The smallest χ2 per npts we find is 0.54, that is significantly smaller that with both our
previous studies of the real part (ideal LL MS case and actual lattice data). The data is easier
to explain, and the χ2 not such an abrupt function as for the real case, to the point that all
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22 local minima we find correspond to a χ2 per npts ≤ 1. We will use a tolerance parameter of
1 and 3. The result is shown on figures 15 and 16.
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Figure 15. Empirical extraction of the SDF step-scaling function from the imaginary part of the
lattice data.
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Figure 16. Imaginary part of the isovector proton matrix element M(ν, z2) displaced by our fitting
methodology. The error bars are noticeably dissymmetric as the non-linear fitting procedure produces
non-Gaussian uncertainty distributions. The dot corresponds to the mean of the distribution, whereas
the error bar to all values below the threshold in χ2.

Overall, the imaginary data is less constrained by evolution, can be fit much more easily
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and shows larger uncertainties both at small and large α. Less stark behavior at large α are
more favored by the fit, but also much larger contributions at small α. The results of the
“corrected” lattice data on Figure 16 show very little evolution effect.

Notice that we have theoretically no expectation that the real and imaginary parts of the
isovector matrix elements evolve in a similar way. However, there is no difference at LL in
MS, and the difference at NLL is so minute that it is not visible on the plot. Unfortunately,
the larger uncertainties of the step-scaling function extracted from the imaginary part do not
allow any conclusive statement on a difference with the evolution of the real part.

4.4 Bayesian reconstruction of the step-scaling function

As we have already mentioned, determining the SDF step-scaling function from lattice data
is an ill-posed integral inverse problem, which tends to have significant modeling bias when
studying fixed functional forms. There exists an alternative class of solutions to the parametric
forms studied in the previous sections to this sort of inverse problem based upon Bayes’s
theorem, such as the Maximum Entropy Method [74] and Bayesian Reconstruction [75]. These
approaches are similar in theme, but vary in the specific choice of prior distribution given via
Bayes’s Theorem. In work on lattice calculation of PDFs, these approaches have been used to
determine the PDF from lattice matrix elements [20, 76].

The goal of each of these approaches is to determine the most probable function whose
integrals correspond to a given set of data and some prior information. The most probable
function is given by the expectation value:

⟨Σ(α; z20 , z21)⟩ = ∫ D[Σ(α; z20 , z21)]Σ(α; z20 , z21)P [Σ(α; z20 , z21)∣M(z20),M(z21), I] , (4.8)

where the posterior distribution P [Σ(α; z20 , z21)∣M(z20),M(z21), I] is defined by Bayes’s theorem
as:

P [Σ(α; z20 , z21)∣M(z20),M(z21), I]∝ exp [−χ
2

2
+ uS[Σ(α; z20 , z21)]] . (4.9)

The χ2 term represents the likelihood of the observed data knowing the value of the step-
scaling function, and is defined in the same manner as in Eq. (4.5) including the interpolation
of M∗(z20) with a cubic spline. The S[Σ] term represents the prior enforced on the step-
scaling function, which distinguishes the various approaches of this type. The hyperparameter
u controls the relative importance of the goodness of fit and the prior. The hyperparameter
can be varied to study its effect or can be integrated away. The values of the function Σ on a
discrete grid in α become the model parameters and the integral whose inverse is desired and
those in S are evaluated numerically. In this work, the trapezoid method is used on various
grids. Due to the fact that no evolution corresponds to a step-scaling which is a Dirac delta at
α = 1, high resolution in the large α region is required to accurately reproduce Σ. The choice
of this grid, the integration method, and the choice of S will collectively define a model with
some specific bias. By varying the choices, the model dependence can be studied.
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The goal of the prior information is to bias the result away from unphysical results. In the
case of spectral functions, known to be positive definite, it is desirable to require the function
to be positive. This feature was therefore baked into the Bayesian Reconstruction prior infor-
mation in [75]. Without physical guidance many “reasonable” choices must be studied, though
as always with Bayesian methods the choice of prior information can dramatically change the
result. Hence what is “reasonable” may end up debatable.

In this work, we shall use the Quadratic Difference Ratio (QDR) which is defined by the
prior function:

log [P [Σ∣I]] = uSQDR[Σ] = −u∫
1

0
dα
(Σ(α) − h(α))2

2σ2(α) (4.10)

where h is a prior model and σ a prior weight function. This prior will attempt to push
the step-scaling function towards the prior model, but through the prior weight it allows Σ in
different regions of α to differ from the prior model by a varying amount. If the hyperparameter
u is integrated away, then the magnitude of the weight function becomes trivialized and only
its shape dictates which regions of α must agree more or less than other regions. Without
integrating u, its size as well as σ determine how restrictive this prior distribution is.

For the first example of this approach, we take the seemingly simple choices of:

u = 1 h(α) = 0 σ(α) = 1 (4.11)

for the prior distribution. The function is parameterized on a grid of 1000 equally spaced
points. The set of Σi on that grid that maximizes the posterior is shown in Figure 17. The
minimum of twice the negative log posterior is given by χ2 = 3.76 and 2uS = 9.20. It should be
noted that the χ2 reported has not been reduced by the number of datapoints, so this value
represents significant agreement with the data. The errors are determined by the inverse of
the Hessian near the minimum since both S and χ2 are quadratic in Σi and M∗(z20). Some
level of tension with the prior was expected, as for instance the prior does not respect the basic
requirement that the integral of the step-scaling function should be close to 1. On the other
hand, the χ2 is significantly less than the number of data points, so the data is well reproduced.
The reconstructed step-scaling function is globally compatible with the parametric fit result
presented in Figure 12, except at very large α where the flat prior penalizes an attempt
at divergence. Although the uncertainty obtained thanks to this Bayesian reconstruction
is typically quite larger than that of the parametric fit, the correction effect on the matrix
elements shown on the right panel of Figure 17 is similar to the one derived with the most
stringent statistical tolerance in the parametric fit of Figure 13.

Using the same flat prior, we introduce another grid in α consisting of 1000 unevenly
spaced points. Specifically, the points between [10−4,0.1] and [0.9,1−10−12] are evenly spaced
logarithmically, while those in the middle are evenly spaced linearly. There are twice as many
points in the upper α region than the other two. The results are shown in Figure 18. The
minimum of twice the negative log posterior is very similar: χ2 = 3.76 and 2uS = 9.24. Since
the grid is denser for α ≤ 0.1 and α ≥ 0.9 compared to the previous case, more fluctuations
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Figure 17. (Left) The step-scaling function from Bayesian Reconstruction (blue) and from the analysis
of Sec. 4.3 (orange). The grid consists of 1000 evenly spaced points in α. The prior distribution is
defined by u = 1, h(α) = 0, and σ(α) = 1. The prior model (solid) and width (dashed) are shown in
black. (Right) The reproduction of the data sets.
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Figure 18. (Left) The step-scaling function from Bayesian Reconstruction (blue) and from the analysis
of Sec. 4.3 (orange). The grid consists of 1000 unevenly spaced points in α. The prior distribution is
defined by u = 1, h(α) = 0, and σ(α) = 1. The prior model (solid) and width (dashed) are shown in
black. (Right) The reproduction of the data sets.

away from the prior are allowed for the same prior penalty in Eq. (4.10) as these fluctuations
occur on a shorter range in α. This generates a much larger uncertainty in the extraction of the
step-scaling function as the smoothness of the reconstructed function decreases. Remarkably,
this has very little effect on the correction of the matrix elements. Indeed, the matrix elements
result from a convolution with the spline-interpolated data, so as we have already argued, they
are not sensitive to the short-range fluctuations of the extraction of the step-scaling function.

There is little reason to believe that the prior model h = 0 will generate a useful bias to
obtain the physics we are interested in. For instance, it contains potentially incorrect limits
for α = 0,1 and does not produce an overall integral close to 1. In order to reproduce the

– 33 –



0.0 0.2 0.4 0.6 0.8 1.0

α

−10

−5

0

5

10

15

20

Σ
(α
,z

0
=

2a
,z

=
3a

)

0.0 0.5 1.0 1.5 2.0

ν

0.85

0.90

0.95

1.00

M
(ν
,z

2
)

Original z0
Original z
Reconstructed z0
Reconstructed z

Figure 19. (Left) The step-scaling function from Bayesian Reconstruction (blue) and from the analysis
of Sec. 4.3 (orange). The grid consists of 1000 evenly spaced points in α. The prior distribution is
defined by u = 1, h(α) = N(1−α,w = 0.01), and σ(α) = 1. The prior model (solid) and width (dashed)
are shown in black. (Right) The reproduction of the data sets.

Dirac-like behavior as α → 1, the prior distribution could be a sharply peaked Gaussian

h(α) = N(1 − α,w) =
exp [ − (1−α)

2

2w2 ]

w
√
2π

(4.12)

which simulates 1
2δ(1 − α) for small w. Figures 19 and 20 show the results of this analysis

with w = 0.01. The same grids in α were used again. In both scenarios, the sharply peaked
Gaussian prior pulls upward the large α region. The minima of these fits are χ2 = 3.28 and
2uS = 2.94 for the even grid and χ2 = 3.24 and 2uS = 1.88 for the uneven grid. The data
is slightly better reproduced than with the previous prior model while the prior term has
decreased significantly. The correction of the matrix elements is once again unbothered by the
change from even to uneven grid, and very close to the results obtained with the parametric
fit or the flat prior.

A final prior model and width to test would be the results from the parameterized model
in Sec. 4.3. The model is set to the central value and the width is given by the larger of
the upper or lower bands in the χ2 per npts < 2 error estimation. The results are shown in
Figure 21. This analysis has again a slightly better agreement to the data and a much better
agreement to the prior model. For the even grid, χ2 = 3.06 and 2uS = 0.046 and for the uneven
grid, χ2 = 3.04 and 2uS = 0.044. Since this prior model was itself obtained through a careful
fit on the data, it is unsurprising that the prior distribution is well satisfied.

In all these cases, the errors have been quite large on the resulting step-scaling function.
This is due to the fact that there is no requirement of smoothness in the QDR prior defined
in Eq. (4.10): the reconstructed step-scaling function can vary abruptly from one value of the
grid to the next. Using the inverse Hessian of the first fit with h = 0 and σ = 1, we produce
samples of the step-scaling function from the multivariate Gaussian distribution. The samples
fluctuate quite wildly as shown in Figure 23. Instead one could consider a prior which does
not bias the central value at all but instead biases the derivatives to be smooth.
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Figure 20. (Left) The step-scaling function from Bayesian Reconstruction (blue) and from the analysis
of Sec. 4.3 (orange). The grid consists of 1000 unevenly spaced points in α. The prior distribution is
defined by u = 1, h(α) = N(1−α,w = 0.01), and σ(α) = 1. The prior model (solid) and width (dashed)
are shown in black. (Right) The reproduction of the data sets.
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Figure 21. (Left) The step-scaling function from Bayesian Reconstruction (blue). The grid consists
of 1000 evenly spaced points in α. The prior distribution is defined by u = 1, and the fit results of
Sec. 4.3. The prior model (solid) and width (dashed) are shown in black. (Right) The reproduction
of the data sets.
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Figure 22. (Left) The step-scaling function from Bayesian Reconstruction (blue). The grid consists
of 1000 unevenly spaced points in α. The prior distribution is defined by u = 1, and the fit results of
Sec. 4.3. The prior model (solid) and width (dashed) are shown in black. (Right) The reproduction
of the data sets.
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Figure 23. Probable step-scaling functions (red/orange/green) are sampled from a multivariate
normal distribution with the full central value and covariance (blue). (Left) Results from the QDR
prior with h = 0 and σ = 1. The function is allowed to vary wildly from one point to the next as
represented by the large error band. (Right) Results from the smoothness prior. The functions vary
significantly less from one point to the next resulting in the smaller variance.
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Figure 24. (Left) The step-scaling function from Bayesian Reconstruction (blue) and from the analysis
of Sec. 4.3 (orange). The grid consists of 1000 evenly spaced points in α. The prior distribution is
defined by u = 1 and the smoothness function in Eq. (4.4). (Right) The reproduction of the data sets.

Consider instead a smoothness based prior such as:

S = ∫
1

0
dα

α(1 − α)
2

(Σ′(α))2 =∑
i

αi(1 − αi)
2

(Σ(αi+1) −Σ(αi))2
αi+1 − αi

(4.13)

This prior is intended to keep the function to be relatively smooth in the middle α region
while not disfavoring the potential divergences are α = 0 or 1. The fit results are shown in
Figure 24 where the variance is smaller than the QDR case. As can be seen in Figure 23 this
corresponds to sampled step-scaling functions that are noticeably smoother than the QDR
case. The posterior at the minimum value is given by χ2 = 3.82 and 2uS = 7.56. While the
size of the prior terms are not directly comparable, the χ2 is comparable to the previous cases,
and the effect of correction on the matrix elements again very similar.

We have shown that the Bayesian reconstruction methods can be utilized to determine
the step-scaling function from lattice QCD data. With each of our different choices of prior
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distribution, the data are well reproduced by step-scaling functions that share the same gen-
eral features, also common with the parametric fit. Among those, a small α contribution
mostly compatible with zero, and an increase at large α. Although we have exhibited a large
sensitivity of the reconstruction to the value of hyperparameters such as the grid density or
the prior model, the correction of the matrix elements induced by the fit has shown a great
stability. This motivates our claim that it is really the requirement of existence of a step-
scaling function along the convolution of Eq. (4.1) at small z2, and the self-consistency that
it imposes on the z2 dependence of the lattice data, that has been the main driver of this
correction. Implementing such a correction to the lattice data allows a systematic improve-
ment at the cost of a cheap post-processing with the possibility to limit model dependence
considerably compared to using a perturbative matching to achieve the same result.

Finally, this discussion of Bayesian reconstruction has brought again the central aspect
of the regularization of the inverse problem. We have addressed it through the angle of the
smoothness and smearing throughout this paper. An alternative could be to study many
choices of prior distributions to create a Bayesian Model Averaged [77] final result for the
step-scaling functions to alleviate the biases from any individual choice. The model averaging
could also be augmented by adding results not just from Bayesian Reconstruction but also
from parametric models. To accurately and precisely determine the step-scaling function, one
must perform this task on a series of ensembles, as we outline in the following section.

5 Lattice calculations of parton distributions in small volumes

At small z2 the extraction of a step-scaling function in z2 is possible by imposing self-
consistency of the z2 dependence, which results in a determination of corrected matrix el-
ements with sizable corrections in some cases. A much better improvement could likely be
achieved if, instead of using an internal consistency of the lattice data, one used a separate
dedicated lattice computation of the step-scaling function. In particular, the control of higher-
twist effects – which we have assumed to be negligible here, but could still be present at large
Ioffe time for z ⪆ 0.3 fm – could be understood by performing the extraction of the step-scaling
function from multiple external states accessible from lattice QCD, such as a pion, a kaon, and
even a quark state in a fixed gauge. Then, a range of validity of a truly universal leading-twist
step-scaling operator could be determined and used to hunt down higher twist contamination
that would appear as discrepancies in the z2 dependence of the data compared to the expected
leading-twist step-scaling function.

This non-perturbative evolution operator could be used to bring lattice calculations to
higher scales more amenable to perturbation theory in a self-consistent way, thereby reducing
the size of theoretical uncertainty induced by the perturbative matching as illustrated on
Figure 25. Additionally if short enough distance scales can be reached, one could invert
Eq. (3.17) to obtain the MS-bar step scaling function from a non-perturbative calculation
of the pseudo-PDF step scaling function. This evolution can be used in global analyses of
datasets whose hard scales are perhaps too low for accurate pertubative evolution. Small
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Figure 25. Instead of performing the matching at a low scale µ2λz2 = 1 where αs is nearly divergent
and perturbation theory uncertain, we evolve in a non-perturbative way the matrix element to a
smaller value of z2, where ordinary matching can now be performed safely.

volume calculations, as we will explore below, could be used to reach much smaller values of
z2, at which point one could hope to factorize directly experimental processes without any
explicit reference to matching at all. To some extent, the use of non-perturbative evolution
to reduce the uncertainty in the matching could be compared to the approach advocated
in [78]. There, the authors suggest to determine the Mellin moments of the matching kernel
by comparing experimental estimates of moments of the PDF and lattice estimates of the
moments of pseudo-PDF in the small z2 region where the matching is universal. This non-
perturbative matching kernel could be used to derive a non-perturbative evolution operator,
although the main ingredient is quite different: [78] uses experimental data as a point of
reference whereas we suggest to use a dedicated lattice computation fully inscribed within
the theoretical framework of the Standard Model which allows for an independent prediction
required for BSM studies.

One less obvious use of the discussion of section IV is however its connection to finite
volume effects, and the perspectives it opens for a radical new proposal of computations of
parton distributions in small volumes. Before highlighting this connection, let us present why
we believe that small volume calculations could present a crucial perspective for the program
of parton physics on the lattice. Demanding lattice computations by current standards could
typically use the following settings with a near-physical pion mass: a = 0.05 fm and L = 128a =
6.4 fm. Then the largest accessible momentum allowed by the Brillouin zone of the lattice is
of the order of P = 2π

L ×
L
6a = π/(3a) ≈ 4.2 GeV. This happens to also be a momentum at which

the issue of signal-to-noise ratio becomes quite critical. The break down of renormalization
group improved perturbation theory and the growth of higher twist effects precludes the use
of non-local matrix elements with a separation larger than 0.3 fm. If one uses a separation of
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z = 0.1 fm in the hope that it is small enough to effectively remove the theoretical uncertainties
in the partonic interpretation of the matrix element, then the largest accessible Ioffe times
z ⋅ P are only of about 2. This range in Ioffe time (coincidentally, it is roughly the one which
we have been working with in this paper – although we worked at smaller momentum and
larger z) is quite disappointing considering the efforts required to handle such a fine lattice.
Of course, if we do not want to increase z, the only margin of improvement is to go to ever
larger momenta and therefore finer lattices. However, both aspects are a serious issue. Just
to obtain a range in Ioffe time of about 4 would require momenta of the order of 8 GeV, and
lattice spacing of the order of 0.03 fm. The computational cost due to the issue of “critical
slowing-down” [79] and the degrading signal-to-noise ratio make this situation unrealistic for
what is additionally still a very limited range in Ioffe time. The challenge of accessing large
momenta occurs in rather similar terms in the LaMET formalism. For instance, Ref. [80]
notes that if the validity of the LaMET perturbative matching is limited to z ≈ 0.2 fm, then
reliable calculations down to x = 0.1 would require momenta in excess of 10 GeV. Efforts to
probe larger momenta at fixed lattice size are underway [81], but cannot yet achieve the large
momenta necessary.

Requiring very fine lattices, while preserving a volume (much) larger than the hadronic
scale (two-scale problem), has been a challenge in several domains of lattice QCD, notably for
B-meson physics calculations [22, 82, 83], where the large quark mass plays an analogous role
as our requirement of large momentum P . Such calculations are performed by dropping the
requirement of infinite volume limit, which allows very fine lattices in ever smaller volumes,
while keeping the number of sites constant. This solves both the question of the largest
available momentum and the issue of signal-to-noise ratio. In sub-hadronic lattice volumes,
hadrons no longer exist, and the uncomfortably light pion no longer dictates the rate of increase
of the noise. Instead, it is the scale tied to the finite volume 1/L that determines all spectral
gaps and the scaling of noise. Therefore, as the volume decreases in physical units while
keeping it fixed in lattice units the spectral gaps and the noise scaling will remain roughly
constant allowing us to access increasing momentum in physical units.

Every time the volume and spacing of the lattice are divided by two while keeping the
physical value of z constant, the accessible range in Ioffe time is multiplied by two. For
a relatively similar computational cost as the a = 0.05 fm, L = 128a = 6.4 fm lattice that
we have mentioned before, we could therefore carry out a computation with a = 0.0063 fm
and L = 128a = 0.8 fm. This would give access to a range of Ioffe time of about 16 for
z = 0.1 fm! The catch, of course, is that in this small volume the matrix element is no longer
that of a hadron, and its interpretation in terms of PDFs is impossible without further work.
Therefore, one must find a way to understand the nature of the finite volume effects to connect
the matrix element computed in small volume to its hadronic counterpart in infinite volume.
This is precisely the traditional role of the step-scaling function whose potential in B-physics
calculations has been demonstrated in [22, 82, 83].

The possibility to perform small volume computations of the first DGLAP anomalous
dimension has been demonstrated in the quenched approximation using the Schrödinger func-
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tional method and local matrix elements [84, 85]. We believe that the success of this study,
which reproduces the perturbative results at large scales, is a sign that even for non-local
matrix elements, with z ≪ L, the finite volume effects can be propagated through the form of
the standard DGLAP convolution. More precisely, we have been working so far in this paper
implicitly in the infinite volume and continuum limit, and only focused on the α dependence of
the step-scaling function that evolves from one scale z2 to another. But for z ≪ Λ−1QCD, L, we
could likewise introduce a generalized step-scaling function accounting for changes in volume:

Σ(α; z20 , z21 ;L0, L1) . (5.1)

The general principle of the computation of the PDF in small volume could then be the
following:

1. Compute the matrix element at z = 0.1 fm in a small volume lattice L = 128a = 0.8 fm.
The accessible Ioffe time range could be up to 16.

2. Compute the matrix element in a larger volume by a factor 2. The accessible Ioffe time
range is reduced to 8. By using a similar procedure to that explained in section IV
of this paper, compute the generalized step-scaling function Σ(α; z0 = z1 = 0.1 fm;L0 =
0.8 fm, L1 = 1.6 fm) using the data in both volumes on the Ioffe time range up to 8.

3. Repeat the previous step by doubling the volume up to L = 6.4 fm, each time computing
the step-scaling function on a shrinking Ioffe time range.

4. Use the computed step-scaling functions to evolve the initial computation in the full
glory of its Ioffe time range up to 16 all the way to the large volume.

One will notice that the main “trick” is that the step-scaling function is independent of the
Ioffe-time range if z2 is small enough, and can therefore be computed even though the range
in Ioffe time decreases as one approaches the infinite volume limit. One could argue that since
the step-scaling functions to the largest volumes are computed on much reduced Ioffe time
ranges, they will be less precise and will add systematic uncertainty when evolving the large
Ioffe time range of the small volume matrix elements. We believe, however, that a control of
the precision of the step-scaling uncertainty is possible for two main reasons. First, as the
volume increases, the effects of small volume should be reduced and the step-scaling function
should contain less information – it will be more akin to a simple Dirac delta. Second, if
we find the quality of the step-scaling function to be disappointing – and we have tools with
reduced model dependence to evaluate that as we have presented in this paper – then we can
always increase the density of available Ioffe times within the same limited range thanks to
twisted boundary conditions, and therefore obtain a more precise extraction of the step-scaling
function.
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6 Conclusions

In this work, we have studied the evolution of the flavor non-singlet unpolarized pseudo-
distribution with respect to the scale z2 and outlined the nature of the step scaling function,
which evolves matrix elements from one scale to another. At small enough z2, where the
OPE can be established, we have shown that the existence of this step-scaling function im-
plies a self-consistent effect of z2 dependence among the lattice data points which can lead
to sizeable corrections of fluctuations in the data. The ability to evolve matrix elements from
longer to shorter distance scales is fundamentally important for the analysis of parton distri-
butions from lattice QCD. By controlling this evolution properly, one can reach scales where
perturbative comparison to the light-cone MS parton distributions can be done with reduced
perturbative systematic errors. As has been shown this evolution is intimately connected to
the standard DGLAP evolution in the MS scheme and the matching kernels relating the
pseudo-distributions to the MS scheme.

Unfortunately the perturbative expansions, and the application of the DGLAP evolution
in the MS scheme, are potentially insufficient at the scales utilized for modern lattice QCD
calculations. We have outlined a proposal to access a larger kinematic range on the lattice,
while preserving good control of the matching accuracy. In analogy to approaches used in
heavy quark physics in lattice QCD, the step scaling functions, both in scale z2 and in volume
L, can be modelled using the techniques outlined in Sec. 4 on a series of ensembles. By
scaling in volume as well as in the invariant scale, the step scaling function can be computed
with Schrödinger functional techniques with small enough lattice spacings that perturbative
matching to the MS scheme can be done with minimal error.

We study the extraction of the step scaling functions to determine the feasibility of our
proposal. The step scaling function fit from real lattice data was modelled by a parameterized
form. The result reproduced a function quite similar to the known perturbative expansions.
To study the model dependence, a non-parameteric form, Bayesian reconstruction, was used
to reproduce the step scaling function. The function is determined by its value on a grid over
its domain and some interpolation rules. The ill-posed inverse problem is regulated by a choice
of prior distribution, several of which were studied. A dedicated study of optimal choices of
prior distributions can be performed in the future using mock or real lattice data. Such tests
will be key to understanding the model dependence of the final step scaling functions.

Finally, this work can be extended to other parton distributions and their step scaling can
be studied similarly. Comparing to the results of a pion matrix element analysis is critical to
understanding the systematic errors and range of validity in this approach. Furthermore, the
evolution of the nucleon GPD and TMD for example, would be of great interest to current
exploratory lattice calculations. Each of these distributions are significantly less well-known
from experimental results alone. If lattice QCD data for PDFs are to be compared directly
to experimental results, as done in [86, 87], then the evolution of the lattice data from long
distance scales must be done properly.
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A Technical appendix on the matching relations

A.1 Perturbative expansion of the matching kernel

Provided a perturbative expansion of the matching kernel exists, it is possible to express it
from any z2 to the MS scale (λz2)−1 as:

C0(z2) =
∞
∑
k=0
(αs((λz2)−1)

2π
)
k

ck,0(λ) , (A.1)

where ck,0(λ) are distributions which depend on the choice of λ. This expression singles out a
specific MS scale (λz2)−1. The general matching to any scale can be derived exactly following
Eq. (3.11) as the convolution of C0 with the backward MS step-scaling function. This yields
the ordinary presentation of the matching kernel in the literature as a double expansion in
terms of αs(µ2) and ln(µ2z2λ). If all orders are considered, the intermediate scale (λz2)−1
does not matter. If a perturbative truncation is performed, then this scale becomes a first
choice with a simpler matching devoid of logarithms.

If λ = −e2γE+1/4, then Eq. (2.7) teaches us that:

c0,0(λ) = 1⊗ , c1,0(λ) = −D , ... (A.2)

In general, one has:

C(z2µ2, αs(µ2)) = 1⊗ −
αs(µ2)
2π

[ln(−z2µ2 e
2γE+1

4
)B1 +D] +O(α2

s) ,

= 1⊗ −
αs(µ2)
2π

[ln (z2µ2λ)B1 + ln(−
e2γE+1

4λ
)B1 +D] +O(α2

s) , (A.3)

so

c0,0(λ) = 1⊗ , c1,0(λ) = −D − ln(−
e2γE+1

4λ
)B1 , ... (A.4)

For instance, the derivation is performed with a value of λ = −e2γE/4 in [15]. One can verify
that their matching relation gives indeed (see the next section for more details):

c0,0(λ) = 1⊗ , c1,0(λ) = −D −B1 , ... (A.5)

Let us demonstrate how the double expansion in terms of αs(µ2) and ln(µ2z2λ) arises, and
how the coefficients in front of the logarithms can be directly obtained as functions of the
DGLAP splitting function and the ck,0(λ) distributions.

A Taylor expansion of the MS step-scaling function in terms of ln(µ2) reads:

E(µ20, µ2) =
+∞
∑
k=0

1

k!
lnk (µ

2

µ20
) d

kE(µ20, µ2)
d lnk(µ2)

∣
µ2=µ2

0

, (A.6)
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where the DGLAP differential equation (3.1) and the running of the strong coupling read:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d

d lnµ2
E(µ20, µ2) = {

αs(µ2)
2π

B1 + (
αs(µ2)
2π

)
2

B2 + ...}⊗ E(µ20, µ2) ,

d

d lnµ2
αs(µ2) = −β0α2

s(µ2) − β1α3
s(µ2) − ... .

(A.7)

It is easy to see that the differential of order k of E(µ20, µ2) starts at order O(αk
s). For instance:

d2

d ln2(µ2)
E(µ20, µ2)∣

µ2=µ2
0

= (αs(µ20)
2π

)
2

(B⊗21 − 2πβ0B1) +O(α3
s) . (A.8)

Straightforward calculations then gives that the MS step-scaling function can be written as:

E(µ20, µ2) = 1⊗ +
∞
∑
n=1
(αs(µ20)

2π
)
n n

∑
k=1

lnk (µ
2

µ20
)En,k , (A.9)

where for instance:

E1,1 = B1 , E2,1 = B2 , E2,2 =
1

2
(B⊗21 − 2πβ0B1) . (A.10)

An important observation is that the terms En,n−k which constitute the k-th leading logarith-
mic expansion (NkLL) are only expressed as functions of B1+j and βj such that 0 ≤ j ≤ k.

In fact, we are interested in the backward MS step-scaling function in Eq. (3.11), so
simple calculations give:

E(µ2, µ20) = 1⊗ +
∞
∑
n=1
(αs(µ20)

2π
)
n n

∑
k=1

lnk (µ
2

µ20
) Ẽn,k , (A.11)

where:

Ẽ1,1 = −B1 , Ẽ2,1 = −B2 , Ẽ2,2 =
1

2
(B⊗21 + 2πβ0B1) . (A.12)

Evaluating Eq. (A.11) for µ20 = (λz2)−1 and convoluting with the expansion of C0(z2) yields:

C(z2µ2, αs(µ2)) = 1⊗ +
∞
∑
n=1
(αs(µ20)

2π
)
n n

∑
k=0

lnk (µ2z2λ)Fn,k , (A.13)

where:

Fn,0 = cn,0(λ) , F1,1 = −B1 , F2,1 = −c1,0(λ)⊗B1 −B2 , F2,2 =
1

2
(B⊗21 + 2πβ0B1) . (A.14)

Finally, we expand αs(µ20) as a series in αs(µ2) and log(µ2/µ20):

αs(µ20) =
∞
∑
j=0

(−1)j
j!

lnj (µ
2

µ20
) d

jαs(µ2)
d logj(µ2)

= αs(µ2) + β0α2
s(µ2) ln(

µ2

µ20
) +O(α3

s) , (A.15)
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and we obtain the general perturbative expansion of the matching kernel C:

C(z2µ2, αs(µ2)) = 1⊗ +
∞
∑
n=1
(αs(µ2)

2π
)
n n

∑
k=0

lnk(µ2z2λ)cn,k(λ) , (A.16)

where:

c1,1(λ) = −B1 , c2,1(λ) = c1,0(λ)⊗ (2πβ0 −B1) −B2 , c2,2(λ) =
1

2
(B⊗21 − 2πβ0B1) . (A.17)

This gives a very simple understanding of the structure of the matching kernel whereas the
analytical expressions of c2,1 and c2,2 already are seriously cumbersome. We check explicitly
the validity of the formula for c2,2(λ) thanks to the matching kernel at order O(α2

s) derived
in [15] in the next section. The terms cn,n−k(λ) which constitute the NkLL expansion are
only expressed as functions of cj,0(λ), B1+j and βj such that 0 ≤ j ≤ k. In particular, since
c0,0(λ) = 1⊗, the LL expansion is independent of λ.

The conventions of Eq. (2.7) use −λ = e2γE+1/4 ≈ 2.16. On the other hand, [4, 15] uses
−λ = e2γE/4 ≈ 0.79. Considering that a given choice of λ implies a simplified expression of the
matching relation to the scale µ2 = (λz2)−1, one could wonder if there is a natural choice to
select the value of λ with which to present the results. A similar question has been raised
in [4] where a value of µ2 ∼ −16/z2 (λ = −0.06) has been argued. A natural way to address
the question could be to try and minimize the convolution of a typical ITD with c1,0(λ), so
as to single out a scale which brings minimal corrections at fixed order O(αs). It has been
noted in the literature [58] that the terms B1 and D which intervene in the matching at
order O(αs) produce typically contributions of opposite signs when convoluted to realistic
ITDs. There is an optimal value λopt for which the convolution of the ITD with c1,0 at a
given ν will be 0. Figure 26 shows 4 models of ITDs obtained from the cosine transform
of xa(1 − x)b/B(a + 1, b + 1) where B is the Beta function with varying (a, b). These ITDs
are convoluted with B1 and D. In the range of Ioffe times available to modern lattice QCD,
∣λopt∣ < 0.4 for all the models given. This value corresponds to scales µ greater than 1/z by
the factor (−λopt)−1/2 which is between [2,4.5] for ν < 12. Figure 27 shows the convolutions
of c1,0 with λ = −0.1 and -0.2. These convolutions have reduced magnitude compared to the
convolutions of D in Figure 26, which corresponds to λ = −e2γE+1/4. There does appear to be
a reduction in the magnitude, specifically for the model with the largest convolutions.

Although this choice of scale reduces the typical size of the contribution of order O(αs),
it does not offer much information on the size of further terms in the expansion. The trade-off
is a potentially increase in c2,0 which contains terms proportional to ln2 (− e2γE+1

4λ ) ≈ 9.41 for
λ = −0.1. Even so a choice of λ > −e2γE+1/4 could still improve the perturbative expansion
without larger contaminations of neglected terms. For λ = −0.5 the c1,0 convolution’s peak
is reduced nearly a factor of 2 for some models while the higher order terms increase by the
smaller coefficient of ln2 (− e2γE+1

4λ ) ≈ 2.16. While the full optimization of λ for NLO and
NNLO effects is beyond the extent of this study, it appears clear that varying significantly for
λ > −e2γE+1/4 has the potential to reduce perturbative effects.
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Figure 26. (Upper Left) Models of ITDs similar to those arising from the lattice. (Upper Right)
Convolutions of those models with B1 (solid) and D (dashed). The two convolutions differ in sign and
magnitude. (Lower Left) The value of λopt which will make the convolution with c1,0 to be 0. (Lower
Right) (−λopt)−1/2 represents how much larger µ should be than 1/z in order to simultaneously cancel
the logarithms of those scales and c1,0.
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Figure 27. The convolution of the model functions with c1,0 for variance λ. This can be compared
to λ = −e2γE+1/4 ≈ 2.15 which are the dashed lines in upper right of Figure 26.
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A.2 Observations on the matching relations at order O(α2
s)

Modifying slightly the matching relation in [15] for our needs, we can write:

⟨P ∣ψ̄(z)γνÊ(0, z;A)ψ(0)∣P ⟩ = ZMS(z2, µ2)∫
1

−1
dxq(x,µ2)Kν(xν, z2, µ2) . (A.18)

On the other hand, we have used in this document the definition, neglecting the higher-twist
contributions:

M(ν, z2) ≡ ⟨P ∣ψ̄(z)γ
0Ê(0, z;A)ψ(0)∣P ⟩

⟨0∣ψ̄(z)γ0Ê(0, z;A)ψ(0)∣0⟩
⟨0∣ψ̄(0)γ0Ê(0, z;A)ψ(0)∣0⟩
⟨P ∣ψ̄(0)γ0Ê(0, z;A)ψ(0)∣P ⟩

= ∫
1

0
dαC(α, z2, µ2)Q(αν,µ2) .

(A.19)
From Eq. (A.18), we find that:

M(ν, z2) = 1

AK0(0, z2, µ2) ∫
1

−1
dxq(x,µ2)K0(xν, z2, µ2) , (A.20)

where A = ∫ 1
−1 dxq(x,µ2). Remembering that we have defined the Ioffe-time distribution

through Eq. (2.5):

Q(ν,µ2) ≡ 1

A
∫

1

−1
dxeiνxq(x,µ2) , (A.21)

we transform Eq. (A.19) into:

M(ν, z2) = 1

A
∫

1

−1
dxq(x,µ2)∫

1

0
dαeixανC(α, z2, µ2) , (A.22)

and the comparison between Eqs. (A.20) and (A.22) gives:

C(α, z2, µ2) = 1

K0(0, z2, µ2) ∫
+∞

−∞

dy

2π
e−iyαK0(y, z2, µ2) . (A.23)

From [15], we obtain that

K0(0, z2, µ2) = 2 + αsCF

π
(3
2
L + 1) +O(α2

s) , (A.24)

where L = ln(−µ2z2e2γE+1/4). On the other hand,

∫
+∞

−∞

dy

2π
e−iyαK0(y, z2, µ2) =K0(0, z2, µ2)δ(1−α)−αsCF

π
(L [1 + α

2

1 − α ]+
+ [4 ln(1 − α)

1 − α − 2(1 − α)]
+
)+O(α2

s) .

(A.25)
The ratio with K0(0, z2, µ2) gives the expected result (2.7) up to the factor A which arises
due to the lost normalization of the PDF in the ratio. We also obtain a correction of order
O(α2

s) which is a non-trivial consequence of the ratio:

C(α, z2, µ2) = δ(1 − α) − αsCF

2π
(L [1 + α

2

1 − α ]+
+ [4 ln(1 − α)

1 − α − 2(1 − α)]
+
)

+ (αsCF

2π
)
2

(3
2
L2 [1 + α

2

1 − α ]+
+L [1 + α

2

1 − α +
6 ln(1 − α)

1 − α − 3(1 − α)]
+
+ [4 ln(1 − α)

1 − α − 2(1 − α)]
+
) +O(α2

s) .

(A.26)
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The missing term of order O(α2
s) is the genuine 2-loop contribution which is particularly

cumbersome to express. The leading logarithmic term gives:

α2
sCF

2π2
L2[ −CF{

1 − α
2
+ (1 + 3α

2) ln(α)
4(1 − α) − (1 + α

2) ln(1 − α)
1 − α } − 11CA(1 + α2)

24(1 − α) + nfTF (1 + α
2)

6(1 − α) ]
+
.

(A.27)

According to the discussion of the previous section in Eq. (A.17), the sum of that term
and the corresponding correction of order O(α2

s) derived in Eq. (A.26) should yield exactly
c2,2(λ) = (B⊗21 − 2πβ0B1) /2. The sum writes:

c2,2(λ) = 2CF [−CF{
1 − α
2
+(1 + 3α

2) ln(α)
4(1 − α) −(1 + α

2) ln(1 − α)
1 − α −3(1 + α

2)
4(1 − α) }−

11CA(1 + α2)
24(1 − α) +

nfTF (1 + α2)
6(1 − α) ]

+
.

(A.28)
It is easy to recognize in the last two terms −πβ0B1. The first term is more sophisticated, and
corresponds to B⊗21 /2, as can be observed by comparing the Mellin moments for instance.

B Existence and properties of the inverse for the DGLAP convolution

At order O(αs), the Mellin moments of the matching kernel defined in Eq. (3.25) read:

cn (z2) = 1 −
αs(µ2)
2π

CF (2ψ(0)(n)[2γE + ψ(0)(n)] − 2ψ(1)(n) + 1 + 2γ2E +
π2

3
− 2

n
+ 2

(n + 1)) ,

(B.1)
where ψ(k)(n) is the polygamma function, and µ2 = (λz2)−1. The asymptotical behavior of
the moments for n→ 0 and n→ +∞ yields:

cn (z2) n→0= 1 − αs(µ2)
2π

CF (−
2

n
+ 3 − 2π2

3
+O(n))→ +∞ , (B.2)

cn (z2) n→+∞= 1 − αs(µ2)
2π

CF (2 ln(n)[ln(n) + 2γE] + 1 + 2γ2E +
π2

3
+O ( 1

n
))→ −∞ . (B.3)

Furthermore, we have demonstrated earlier (2.6) that, to all orders,

c1(z2) = 1 . (B.4)

The derivative of Eq. (B.1) is strictly negative for n ∈ [1,+∞). The technical demonstration,
without interest for the rest of the discussion, is produced at the end of this Appendix. As a
consequence, Eq. (B.1), which spans (−∞,1] for n ∈ [1,+∞) is bound to vanish for a unique
(non-integer) value which we denote n0(αs) > 1. Therefore, if cn is truncated to order O(αs),
1/cn exhibits a pole at n = n0(αs) > 1.

In general, the Mellin transform (3.25) can be evaluated for complex values of n. It
is known classically that the integral converges in “holomorphy strips” [88] defined in the
complex plane generically by (n1, n2) + iR, where n1, n2 ∈ R ∪ {±∞}. The Mellin transform
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of a distribution is really the pair consisting of the Mellin moments and the holomorphy strip
on which they are defined. Let us briefly observe an example borrowed from [88] where the
Mellin moments diverge at some value of n (here n = −2):

cn = −
1

n + 2 . (B.5)

There are two possible holomorphy strips, (−∞,−2) + iR and (−2,+∞) + iR. In fact, one
can verify easily that the distribution giving rise to the Mellin moments (B.5) in the first
holomorphy strip is α2Θ(α − 1) where Θ is the Heaviside step function:

∫
∞

0
dααn−1 α2Θ(α − 1) = ∫

∞

1
dααn+1 = − 1

n + 2 if Re(n) ≤ −2 . (B.6)

On the other hand, the distribution giving rise to the same Mellin moments in the second
holomorphy strip is α2[Θ(α − 1) −Θ(α)]:

∫
∞

0
dααn−1 α2[Θ(α − 1) −Θ(α)] = −∫

1

0
dααn+1 = − 1

n + 2 if Re(n) ≥ −2 . (B.7)

The two distributions which give rise to the same general expression for the Mellin moments,
but on two different holomorphy strips are shown on Figure 28. It appears clearly that the
choice of holomorphy strip changes crucially the properties of the distribution, notably its
support.
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Figure 28. Two distributions whose Mellin moments are −1/(n + 2), but defined on different holo-
morphy strips: (left) (−∞,−2) + iR, (right) (−2,+∞) + iR.

In the case of the inverse matching kernel, we face a similar issue. In fact, there are
infinitely many holomorphic strips available to reconstruct the inverse matching kernel from
1/cn, spanning the entire real values of n. But only one of those strips produces an integrable
distribution: by definition, if the distribution is integrable, its moment for n = 1 is finite.
Therefore, the holomorphy strip which we will use is (n′, n0(αs))+ iR, where n′ < 1 < n0(αs)5.

5In fact, n′ = 0 as a consequence of the (non-demonstrated) fact that the derivative of Eq. (B.1) is strictly
negative on n ∈ (0,+∞), and not just on n ∈ [1,+∞).
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If the inverse matching kernel exists, then its Mellin moments in the vicinity of n0(αs) are:

1

cn

n→n0(αs)= 1

n − n0(αs)
( d
dn
cn0)

−1
+O(1) . (B.8)

An inverse Mellin transform of the right-hand side of (B.8) on the strip (n′, n0(αs))+ iR gives
that, provided the inverse of the matching kernel exists and is integrable, its general behavior
at large α has to be dominated by:

C⊗−1(α) α→+∞∼ ( d
dn
cn0)

−1
α−n0(αs) . (B.9)

Therefore, the only integrable inverse matching kernel we can plausibly reconstruct from 1/cn
has a support which extends to arbitrarily large α, unlike the direct matching kernel whose
support is limited to α ∈ [0,1]. This unwanted large α behavior decreases as a power function
whose exponent depends on the value of αs, and vanishes in the limit where αs = 0 which
implies n0(αs) = +∞.

Schematically speaking, the Mellin moments of the direct matching kernel have the form:

cn = 1 − αsh(n) . (B.10)

Hence:
1

cn
= 1 + αsh(n) + α2

sh
2(n) + ... (B.11)

The terms of order α2
s and beyond are incomplete, since they will receive unknown corrections

from higher orders in the perturbative expansion of cn. Therefore, the issue of determining
whether the inverse of the matching kernel truncated at order O(αs) exists, and what its
support is, is not particularly worrisome per se. It should serve however as a warning of
potentially complicated effects linked to the perturbative truncation. To recover a well-defined
object that can serve as an inverse matching kernel and whose support is restricted to [0,1],
it is enough to truncate C⊗−10 (or equivalently 1/cn) to order O(αs) too, thereby ignoring
altogether the higher-order contributions we partially resummed when we considered the exact
value of 1/cn:

C⊗−10 (z2) = 1⊗ +
αs(µ2)
2π

D +O(α2
s) . (B.12)

A technical demonstration

We want to demonstrate that the derivative of the Mellin moments of the matching kernel
truncated at order O(αs) (B.1) is strictly negative for n ∈ [1,+∞). In fact, that is also true
for n ∈ (0,+∞) although the demonstration is more sophisticated in the latter case and of no
interest for this discussion. The polygamma function may be defined as:

ψ(k)(n) ≡ dk+1

dnk+1
lnΓ(n) , (B.13)
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where Γ is the ordinary Gamma function. Then it follows immediately that:

d

dn
ψ(k)(n) = ψ(k+1)(n) , (B.14)

and the derivative of Eq. (B.1) gives:

d

dn
cn = −

αs(µ2)
2π

CF(4ψ(1)(n)(γE + ψ(0)(n)) − 2ψ(2)(n) +
2

n2
− 2

(n + 1)2) . (B.15)

In parallel, it is well-known that the polygamma function admits the following integral repre-
sentation for k > 0:

ψ(k)(n) = −∫
1

0
dt
tn−1

1 − t ln
k(t) , (B.16)

which gives trivially that ψ(1)(n) > 0 and ψ(2)(n) < 0 for n > 0. Therefore, ψ(0)(n) is a strictly
increasing function, and since ψ(0)(1) = −γE , we find for n ≥ 1,

γE + ψ(0)(n) ≥ 0 . (B.17)

This demonstrates that the derivative (B.15) is strictly negative for n ≥ 1 and gives the
expected result. The result is also true for n ∈ (0,1), for instance since

ψ(0)(n) − ψ(0)(1) > ψ(2)(n)
2ψ(1)(n)

. (B.18)

This statement is particularly obvious if n ≥ 1 since the l.h.s. is positive and the r.h.s. strictly
negative, but is more subtle if n ∈ (0,1). We will not seek a further demonstration.

C Positivity of the LL MS step-scaling function

To demonstrate the positivity of the LL MS step-scaling function, we can show that it sat-
isfies the Hausdorff moment problem [89]. The latter establishes the necessary and sufficient
condition so that a sequence of integer Mellin moments for n = 1 to infinity corresponds to a
unique Borel measure supported on the interval [0,1]. The condition is that the sequence of
Mellin moments (en)n is completely monotonic, that is for all n ≥ 1 and k ≥ 0:

(−1)k∆ken ≥ 0 , (C.1)

where ∆k is the difference operator applied k-times:

∆en = en+1 − en , ∆2en = en+2 − 2en+1 + en , ... (C.2)

We remind that (3.32):

en(µ20, µ21) = (
αs(µ20)
αs(µ21)

)
γn/(2πβ0)

, (C.3)

– 50 –



and the anomalous dimensions γn are given by:

γn = −2ψ(0)(n) − 2γE +
3

2
− 1

n
− 1

n + 1 , (C.4)

where ψ(0) is the digamma function defined in Eq. (B.13).
The theorem 11d in Chapter 4 of [90] gives that the sequence (en)n is completely mono-

tonic if the function en of n is a completely monotonic function for n ≥ 1, a related property
expressed in terms of derivatives instead of difference operators:

(−1)k d
k

dnk
en ≥ 0 . (C.5)

The demonstration is a straightforward application of the mean value theorem. As en ≥ 0, the
property is obviously satisfied for k = 0. Differentiating repeatedly en as a composite function
allows to express its derivatives with respect to those of γn for k ≥ 1:

dk

dnk
en = en

k

∑
m=1

1

(2πβ0)m
lnm (αs(µ20)

αs(µ21)
) ∑
A={i1,...,im}
ij≥1 ,∑ ij=k

cA ∏
ij∈A

dij

dnij
γn , (C.6)

where

c{m} = 1 , c{1,...,1} = 1 , c{2,1} = 3 , c{2,1,1} = 6 , c{2,2} = 3 , c{3,1} = 4 , ... (C.7)

In spite of its apparent complicated form, Eq. (C.6) is simply a Leibniz-rule kind of formula
where all possible combinations of the derivatives of γn with correct order enter. The precise
value of the coefficients cA is a complicated combinatorial expression which does not matter
in this discussion except for the observation that it is a positive number, since no negative
signs are ever involved in the differentiation formula. Then, let us express the derivatives of
Eq. (C.4) for k ≥ 1:

dk

dnk
γn = −2ψ(k)(n) − (−1)kk! [

1

nk+1
+ 1

(n + 1)k+1 ] , (C.8)

where we have used Eq. (B.14). We can rewrite that relation in an integral form inspired from
Eq. (B.16):

(−1)k d
k

dnk
γn = 2∫

1

0
dt tn−1(− ln(t))k [ 1

1 − t −
1

2
− t
2
] , (C.9)

and it is easy to see that the last term is positive for t ∈ [0,1] (for instance by derivating it
yet again) so that (−1)k dk

dnk γn ≥ 0 if k ≥ 1 and n ≥ 0.
Therefore, if A = {i1, ..., im} is a set of strictly positive integers such that ∑ ij = k, then

(−1)k ∏
ij∈A

dij

dnij
γn ≥ 0 . (C.10)

Using this relation in conjunction with Eq. (C.6) gives the expected property of Eq. (C.5)
provided that αs(µ20)/αs(µ21) ≥ 1, or in other words if evolution is performed in the forward
direction. The property is not verified for the backward evolution operator as we have already
observed.

– 51 –



Acknowledgments

We thank Jianwei Qiu and Anatoly Radyushkin for stimulating discussions and comments
on the manuscript. HD further thanks Valerio Bertone for technical discussions on the
APFEL++ evolution code. KO and HD were supported in part by the U.S. DOE Grant
#DE-FG02-04ER41302. CJM is supported in part by the U.S. DOE EC Award #DE-SC0023047.
KO and JK were supported in part by the US Department of Energy (DOE) Contract No. DE-
AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. SZ
acknowledges support by the French Centre national de la recherche scientifique (CNRS)
under an Emergence@INP 2023 project. This work has benefited from the collaboration
enabled by the Quark-Gluon Tomography (QGT) Topical Collaboration, U.S. DOE Award
DE-SC0023646.

References

[1] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

[2] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014), arXiv:1404.6680 [hep-ph] .

[3] A. V. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488 [hep-ph] .

[4] A. Radyushkin, Phys. Rev. D 98, 014019 (2018), arXiv:1801.02427 [hep-ph] .

[5] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos, Phys. Rev. D 96, 094503 (2017),
arXiv:1706.05373 [hep-ph] .

[6] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller,
K. Somfleth, R. D. Young, and J. M. Zanotti, Phys. Rev. Lett. 118, 242001 (2017),
arXiv:1703.01153 [hep-lat] .

[7] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018 [hep-ph] .

[8] G. S. Bali, P. C. Bruns, L. Castagnini, M. Diehl, J. R. Gaunt, B. Gläßle, A. Schäfer,
A. Sternbeck, and C. Zimmermann, JHEP 12, 061, arXiv:1807.03073 [hep-lat] .

[9] K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019, 3036904 (2019),
arXiv:1811.07248 [hep-lat] .

[10] A. V. Radyushkin, Int. J. Mod. Phys. A 35, 2030002 (2020), arXiv:1912.04244 [hep-ph] .

[11] M. Constantinou et al., Prog. Part. Nucl. Phys. 121, 103908 (2021), arXiv:2006.08636 [hep-ph] .

[12] V. Braun and D. Müller, Eur. Phys. J. C 55, 349 (2008), arXiv:0709.1348 [hep-ph] .

[13] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao, Phys. Rev. D 98, 056004 (2018),
arXiv:1801.03917 [hep-ph] .

[14] L.-B. Chen, W. Wang, and R. Zhu, Phys. Rev. Lett. 126, 072002 (2021), arXiv:2006.14825
[hep-ph] .

[15] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Phys. Rev. Lett. 126, 072001 (2021), arXiv:2006.12370
[hep-ph] .

[16] S. Moch, J. A. M. Vermaseren, and A. Vogt, Nucl. Phys. B 688, 101 (2004),
arXiv:hep-ph/0403192 .

– 52 –

https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1007/s11433-014-5492-3
https://arxiv.org/abs/1404.6680
https://doi.org/10.1103/PhysRevD.96.034025
https://arxiv.org/abs/1705.01488
https://doi.org/10.1103/PhysRevD.98.014019
https://arxiv.org/abs/1801.02427
https://doi.org/10.1103/PhysRevD.96.094503
https://arxiv.org/abs/1706.05373
https://doi.org/10.1103/PhysRevLett.118.242001
https://arxiv.org/abs/1703.01153
https://doi.org/10.1103/PhysRevLett.120.022003
https://arxiv.org/abs/1709.03018
https://doi.org/10.1007/JHEP12(2018)061
https://arxiv.org/abs/1807.03073
https://doi.org/10.1155/2019/3036904
https://arxiv.org/abs/1811.07248
https://doi.org/10.1142/S0217751X20300021
https://arxiv.org/abs/1912.04244
https://doi.org/10.1016/j.ppnp.2021.103908
https://arxiv.org/abs/2006.08636
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://arxiv.org/abs/0709.1348
https://doi.org/10.1103/PhysRevD.98.056004
https://arxiv.org/abs/1801.03917
https://doi.org/10.1103/PhysRevLett.126.072002
https://arxiv.org/abs/2006.14825
https://arxiv.org/abs/2006.14825
https://doi.org/10.1103/PhysRevLett.126.072001
https://arxiv.org/abs/2006.12370
https://arxiv.org/abs/2006.12370
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192


[17] A. Vogt, S. Moch, and J. A. M. Vermaseren, Nucl. Phys. B 691, 129 (2004),
arXiv:hep-ph/0404111 .

[18] X. Ji, (2022), arXiv:2209.09332 [hep-lat] .

[19] J. Karpie, K. Orginos, and S. Zafeiropoulos, JHEP 11, 178, arXiv:1807.10933 [hep-lat] .

[20] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, JHEP 04, 057, arXiv:1901.05408
[hep-lat] .

[21] G. M. de Divitiis, M. Guagnelli, R. Petronzio, N. Tantalo, and F. Palombi, Nucl. Phys. B 675,
309 (2003), arXiv:hep-lat/0305018 .

[22] M. Guagnelli, F. Palombi, R. Petronzio, and N. Tantalo, Phys. Lett. B 546, 237 (2002),
arXiv:hep-lat/0206023 .

[23] M. Luscher, P. Weisz, and U. Wolff, Nucl. Phys. B 359, 221 (1991).

[24] M. Luscher, R. Sommer, P. Weisz, and U. Wolff, Nucl. Phys. B 413, 481 (1994),
arXiv:hep-lat/9309005 .

[25] V. Braun, P. Gornicki, and L. Mankiewicz, Phys. Rev. D 51, 6036 (1995),
arXiv:hep-ph/9410318 .

[26] J.-H. Zhang, J.-W. Chen, and C. Monahan, Phys. Rev. D97, 074508 (2018), arXiv:1801.03023
[hep-ph] .

[27] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[28] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

[29] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

[30] C. Monahan and K. Orginos, JHEP 03, 116, arXiv:1612.01584 [hep-lat] .

[31] X. Gao, K. Lee, S. Mukherjee, C. Shugert, and Y. Zhao, Phys. Rev. D 103, 094504 (2021),
arXiv:2102.01101 [hep-ph] .

[32] Y. Su, J. Holligan, X. Ji, F. Yao, J.-H. Zhang, and R. Zhang, Nucl. Phys. B 991, 116201
(2023), arXiv:2209.01236 [hep-ph] .

[33] S. Catani, Z. Phys. C 75, 665 (1997), arXiv:hep-ph/9609263 .

[34] J. Blumlein, V. Ravindran, and W. L. van Neerven, Nucl. Phys. B 586, 349 (2000),
arXiv:hep-ph/0004172 .

[35] J. Blümlein and M. Saragnese, Phys. Lett. B 820, 136589 (2021), arXiv:2107.01293 [hep-ph] .

[36] V. Bertone, H. Dutrieux, C. Mezrag, J. M. Morgado, and H. Moutarde, Eur. Phys. J. C 82, 888
(2022), arXiv:2206.01412 [hep-ph] .

[37] A. V. Radyushkin, Phys. Rev. D 100, 116011 (2019), arXiv:1909.08474 [hep-ph] .

[38] X. Gao, A. D. Hanlon, J. Holligan, N. Karthik, S. Mukherjee, P. Petreczky, S. Syritsyn, and
Y. Zhao, Phys. Rev. D 107, 074509 (2023), arXiv:2212.12569 [hep-lat] .

[39] J. C. Collins and J.-w. Qiu, Phys. Rev. D 39, 1398 (1989).

[40] J. Collins, T. C. Rogers, and N. Sato, Phys. Rev. D 105, 076010 (2022), arXiv:2111.01170
[hep-ph] .

– 53 –

https://doi.org/10.1016/j.nuclphysb.2004.04.024
https://arxiv.org/abs/hep-ph/0404111
https://arxiv.org/abs/2209.09332
https://doi.org/10.1007/JHEP11(2018)178
https://arxiv.org/abs/1807.10933
https://doi.org/10.1007/JHEP04(2019)057
https://arxiv.org/abs/1901.05408
https://arxiv.org/abs/1901.05408
https://doi.org/10.1016/j.nuclphysb.2003.10.001
https://doi.org/10.1016/j.nuclphysb.2003.10.001
https://arxiv.org/abs/hep-lat/0305018
https://doi.org/10.1016/S0370-2693(02)02700-4
https://arxiv.org/abs/hep-lat/0206023
https://doi.org/10.1016/0550-3213(91)90298-C
https://doi.org/10.1016/0550-3213(94)90629-7
https://arxiv.org/abs/hep-lat/9309005
https://doi.org/10.1103/PhysRevD.51.6036
https://arxiv.org/abs/hep-ph/9410318
https://doi.org/10.1103/PhysRevD.97.074508
https://arxiv.org/abs/1801.03023
https://arxiv.org/abs/1801.03023
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/JHEP03(2017)116
https://arxiv.org/abs/1612.01584
https://doi.org/10.1103/PhysRevD.103.094504
https://arxiv.org/abs/2102.01101
https://doi.org/10.1016/j.nuclphysb.2023.116201
https://doi.org/10.1016/j.nuclphysb.2023.116201
https://arxiv.org/abs/2209.01236
https://doi.org/10.1007/s002880050512
https://arxiv.org/abs/hep-ph/9609263
https://doi.org/10.1016/S0550-3213(00)00422-3
https://arxiv.org/abs/hep-ph/0004172
https://doi.org/10.1016/j.physletb.2021.136589
https://arxiv.org/abs/2107.01293
https://doi.org/10.1140/epjc/s10052-022-10793-0
https://doi.org/10.1140/epjc/s10052-022-10793-0
https://arxiv.org/abs/2206.01412
https://doi.org/10.1103/PhysRevD.100.116011
https://arxiv.org/abs/1909.08474
https://doi.org/10.1103/PhysRevD.107.074509
https://arxiv.org/abs/2212.12569
https://doi.org/10.1103/PhysRevD.39.1398
https://doi.org/10.1103/PhysRevD.105.076010
https://arxiv.org/abs/2111.01170
https://arxiv.org/abs/2111.01170


[41] X.-D. Ji, J. Phys. G 24, 1181 (1998), arXiv:hep-ph/9807358 .

[42] A. V. Radyushkin, Phys. Lett. B 449, 81 (1999), arXiv:hep-ph/9810466 .

[43] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997), arXiv:hep-ph/9704207 .

[44] O. V. Teryaev, Phys. Lett. B 510, 125 (2001), arXiv:hep-ph/0102303 .

[45] N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, Eur. Phys. J. C 77, 906
(2017), arXiv:1711.05108 [hep-ph] .

[46] J. Collins, Foundations of Perturbative QCD , Cambridge Monographs on Particle Physics,
Nuclear Physics and Cosmology (Cambridge University Press, 2011).

[47] A. Radyushkin, Phys. Lett. B 767, 314 (2017), arXiv:1612.05170 [hep-ph] .

[48] A. V. Radyushkin, Phys. Lett. B 788, 380 (2019), arXiv:1807.07509 [hep-ph] .

[49] H. Dutrieux, M. Winn, and V. Bertone, Phys. Rev. D 107, 114019 (2023), arXiv:2302.07861
[hep-ph] .

[50] C. Egerer, R. G. Edwards, C. Kallidonis, K. Orginos, A. V. Radyushkin, D. G. Richards,
E. Romero, and S. Zafeiropoulos (HadStruc), JHEP 11, 148, arXiv:2107.05199 [hep-lat] .

[51] Workman et al. (Particle Data Group), Progress of Theoretical and Experimental Physics
2022, 10.1093/ptep/ptac097 (2022), 083C01,
https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf .

[52] V. Bertone, S. Carrazza, and J. Rojo, Comput. Phys. Commun. 185, 1647 (2014),
arXiv:1310.1394 [hep-ph] .

[53] V. Bertone, PoS DIS2017, 201 (2018), arXiv:1708.00911 [hep-ph] .

[54] S. Bhattacharya, K. Cichy, M. Constantinou, X. Gao, A. Metz, J. Miller, S. Mukherjee,
P. Petreczky, F. Steffens, and Y. Zhao, Phys. Rev. D 108, 014507 (2023), arXiv:2305.11117
[hep-lat] .

[55] J.-H. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schäfer, and Y. Zhao, Phys. Rev. D 100,
034505 (2019), arXiv:1804.01483 [hep-lat] .

[56] H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao,
Phys. Rev. Lett. 121, 242003 (2018), arXiv:1807.07431 [hep-lat] .

[57] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Phys.
Rev. Lett. 121, 112001 (2018), arXiv:1803.02685 [hep-lat] .

[58] B. Joó, J. Karpie, K. Orginos, A. Radyushkin, D. Richards, and S. Zafeiropoulos, JHEP 12,
081, arXiv:1908.09771 [hep-lat] .

[59] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, R. S. Sufian, and
S. Zafeiropoulos, Phys. Rev. D 100, 114512 (2019), arXiv:1909.08517 [hep-lat] .

[60] H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, and R. Zhang, Phys. Rev. D 103, 014516 (2021),
arXiv:2003.14128 [hep-lat] .

[61] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, and S. Zafeiropoulos, Phys.
Rev. Lett. 125, 232003 (2020), arXiv:2004.01687 [hep-lat] .

– 54 –

https://doi.org/10.1088/0954-3899/24/7/002
https://arxiv.org/abs/hep-ph/9807358
https://doi.org/10.1016/S0370-2693(98)01584-6
https://arxiv.org/abs/hep-ph/9810466
https://doi.org/10.1103/PhysRevD.56.5524
https://arxiv.org/abs/hep-ph/9704207
https://doi.org/10.1016/S0370-2693(01)00564-0
https://arxiv.org/abs/hep-ph/0102303
https://doi.org/10.1140/epjc/s10052-017-5465-6
https://doi.org/10.1140/epjc/s10052-017-5465-6
https://arxiv.org/abs/1711.05108
https://doi.org/10.1017/CBO9780511975592
https://doi.org/10.1016/j.physletb.2017.02.019
https://arxiv.org/abs/1612.05170
https://doi.org/10.1016/j.physletb.2018.11.047
https://arxiv.org/abs/1807.07509
https://doi.org/10.1103/PhysRevD.107.114019
https://arxiv.org/abs/2302.07861
https://arxiv.org/abs/2302.07861
https://doi.org/10.1007/JHEP11(2021)148
https://arxiv.org/abs/2107.05199
https://doi.org/10.1093/ptep/ptac097
https://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac097.pdf
https://doi.org/10.1016/j.cpc.2014.03.007
https://arxiv.org/abs/1310.1394
https://doi.org/10.22323/1.297.0201
https://arxiv.org/abs/1708.00911
https://doi.org/10.1103/PhysRevD.108.014507
https://arxiv.org/abs/2305.11117
https://arxiv.org/abs/2305.11117
https://doi.org/10.1103/PhysRevD.100.034505
https://doi.org/10.1103/PhysRevD.100.034505
https://arxiv.org/abs/1804.01483
https://doi.org/10.1103/PhysRevLett.121.242003
https://arxiv.org/abs/1807.07431
https://doi.org/10.1103/PhysRevLett.121.112001
https://doi.org/10.1103/PhysRevLett.121.112001
https://arxiv.org/abs/1803.02685
https://doi.org/10.1007/JHEP12(2019)081
https://doi.org/10.1007/JHEP12(2019)081
https://arxiv.org/abs/1908.09771
https://doi.org/10.1103/PhysRevD.100.114512
https://arxiv.org/abs/1909.08517
https://doi.org/10.1103/PhysRevD.103.014516
https://arxiv.org/abs/2003.14128
https://doi.org/10.1103/PhysRevLett.125.232003
https://doi.org/10.1103/PhysRevLett.125.232003
https://arxiv.org/abs/2004.01687


[62] L. Del Debbio, T. Giani, J. Karpie, K. Orginos, A. Radyushkin, and S. Zafeiropoulos, JHEP
02, 138, arXiv:2010.03996 [hep-ph] .

[63] X. Gao, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee, P. Petreczky, C. Shugert, S. Syritsyn,
and Y. Zhao, Phys. Rev. D 102, 094513 (2020), arXiv:2007.06590 [hep-lat] .

[64] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, and
F. Steffens, Phys. Rev. Lett. 125, 262001 (2020), arXiv:2008.10573 [hep-lat] .

[65] J. Karpie, K. Orginos, A. Radyushkin, and S. Zafeiropoulos (HadStruc), JHEP 11, 024,
arXiv:2105.13313 [hep-lat] .

[66] M. Bhat, W. Chomicki, K. Cichy, M. Constantinou, J. R. Green, and A. Scapellato, Phys. Rev.
D 106, 054504 (2022), arXiv:2205.07585 [hep-lat] .

[67] C. Egerer et al. (HadStruc), Phys. Rev. D 105, 034507 (2022), arXiv:2111.01808 [hep-lat] .

[68] T. Khan et al. (HadStruc), Phys. Rev. D 104, 094516 (2021), arXiv:2107.08960 [hep-lat] .

[69] C. Egerer et al. (HadStruc), Phys. Rev. D 106, 094511 (2022), arXiv:2207.08733 [hep-lat] .

[70] R. G. Edwards et al. (HadStruc), JHEP 03, 086, arXiv:2211.04434 [hep-lat] .

[71] J. Delmar, C. Alexandrou, K. Cichy, M. Constantinou, and K. Hadjiyiannakou, (2023),
arXiv:2310.01389 [hep-lat] .

[72] G. S. Bali, B. Lang, B. U. Musch, and A. Schäfer, Phys. Rev. D 93, 094515 (2016),
arXiv:1602.05525 [hep-lat] .

[73] C. Egerer, R. G. Edwards, K. Orginos, and D. G. Richards, Phys. Rev. D 103, 034502 (2021),
arXiv:2009.10691 [hep-lat] .

[74] M. Asakawa, T. Hatsuda, and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001),
arXiv:hep-lat/0011040 .

[75] Y. Burnier and A. Rothkopf, Phys. Rev. Lett. 111, 182003 (2013), arXiv:1307.6106 [hep-lat] .

[76] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang (XQCD), Phys. Rev. D 101,
114503 (2020), arXiv:1906.05312 [hep-ph] .

[77] W. I. Jay and E. T. Neil, Phys. Rev. D 103, 114502 (2021), arXiv:2008.01069 [stat.ME] .

[78] N. Karthik and R. S. Sufian, Phys. Rev. D 104, 074506 (2021), arXiv:2106.03875 [hep-lat] .

[79] M. Lüscher, JHEP 08, 071, [Erratum: JHEP 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .

[80] Z. Fan, X. Gao, R. Li, H.-W. Lin, N. Karthik, S. Mukherjee, P. Petreczky, S. Syritsyn, Y.-B.
Yang, and R. Zhang, Phys. Rev. D 102, 074504 (2020), arXiv:2005.12015 [hep-lat] .

[81] X. Gao, W.-Y. Liu, and Y. Zhao, (2023), arXiv:2306.14960 [hep-ph] .

[82] D. Guazzini, R. Sommer, and N. Tantalo, JHEP 01, 076, arXiv:0710.2229 [hep-lat] .

[83] B. Blossier et al. (ETM), JHEP 04, 049, arXiv:0909.3187 [hep-lat] .

[84] M. Guagnelli, K. Jansen, and R. Petronzio, Nucl. Phys. B 542, 395 (1999),
arXiv:hep-lat/9809009 .

[85] M. Guagnelli, K. Jansen, and R. Petronzio, Phys. Lett. B 457, 153 (1999),
arXiv:hep-lat/9901016 .

– 55 –

https://doi.org/10.1007/JHEP02(2021)138
https://doi.org/10.1007/JHEP02(2021)138
https://arxiv.org/abs/2010.03996
https://doi.org/10.1103/PhysRevD.102.094513
https://arxiv.org/abs/2007.06590
https://doi.org/10.1103/PhysRevLett.125.262001
https://arxiv.org/abs/2008.10573
https://doi.org/10.1007/JHEP11(2021)024
https://arxiv.org/abs/2105.13313
https://doi.org/10.1103/PhysRevD.106.054504
https://doi.org/10.1103/PhysRevD.106.054504
https://arxiv.org/abs/2205.07585
https://doi.org/10.1103/PhysRevD.105.034507
https://arxiv.org/abs/2111.01808
https://doi.org/10.1103/PhysRevD.104.094516
https://arxiv.org/abs/2107.08960
https://doi.org/10.1103/PhysRevD.106.094511
https://arxiv.org/abs/2207.08733
https://doi.org/10.1007/JHEP03(2023)086
https://arxiv.org/abs/2211.04434
https://arxiv.org/abs/2310.01389
https://doi.org/10.1103/PhysRevD.93.094515
https://arxiv.org/abs/1602.05525
https://doi.org/10.1103/PhysRevD.103.034502
https://arxiv.org/abs/2009.10691
https://doi.org/10.1016/S0146-6410(01)00150-8
https://arxiv.org/abs/hep-lat/0011040
https://doi.org/10.1103/PhysRevLett.111.182003
https://arxiv.org/abs/1307.6106
https://doi.org/10.1103/PhysRevD.101.114503
https://doi.org/10.1103/PhysRevD.101.114503
https://arxiv.org/abs/1906.05312
https://doi.org/10.1103/PhysRevD.103.114502
https://arxiv.org/abs/2008.01069
https://doi.org/10.1103/PhysRevD.104.074506
https://arxiv.org/abs/2106.03875
https://doi.org/10.1007/JHEP08(2010)071
https://arxiv.org/abs/1006.4518
https://doi.org/10.1103/PhysRevD.102.074504
https://arxiv.org/abs/2005.12015
https://arxiv.org/abs/2306.14960
https://doi.org/10.1088/1126-6708/2008/01/076
https://arxiv.org/abs/0710.2229
https://doi.org/10.1007/JHEP04(2010)049
https://arxiv.org/abs/0909.3187
https://doi.org/10.1016/S0550-3213(98)00809-8
https://arxiv.org/abs/hep-lat/9809009
https://doi.org/10.1016/S0370-2693(99)00463-3
https://arxiv.org/abs/hep-lat/9901016


[86] J. Bringewatt, N. Sato, W. Melnitchouk, J.-W. Qiu, F. Steffens, and M. Constantinou, Phys.
Rev. D 103, 016003 (2021), arXiv:2010.00548 [hep-ph] .

[87] P. C. Barry et al. (Jefferson Lab Angular Momentum (JAM), HadStruc), Phys. Rev. D 105,
114051 (2022), arXiv:2204.00543 [hep-ph] .

[88] J. Bertrand, P. Bertrand, and J. Ovarlez, The Transforms and Applications Handbook , edited
by A. Poularikas (CRC Press., 1995).

[89] F. Hausdorff, Math. Z. 9, 74 (1921).

[90] D. Widder, Laplace Transform (PMS-6), Princeton Mathematical Series (Princeton University
Press, 2015).

– 56 –

https://doi.org/10.1103/PhysRevD.103.016003
https://doi.org/10.1103/PhysRevD.103.016003
https://arxiv.org/abs/2010.00548
https://doi.org/10.1103/PhysRevD.105.114051
https://doi.org/10.1103/PhysRevD.105.114051
https://arxiv.org/abs/2204.00543
https://doi.org/https://doi.org/10.1201/9781315218915
https://doi.org/10.1007/BF01378337
https://books.google.com/books?id=_iDWCgAAQBAJ

	Introduction
	PDFs in the short-distance factorization approach
	Evolution operators in perturbation theory
	All-order expression
	Performing the perturbative truncation
	Alternative truncation choices

	A perturbative numerical application

	Fitting a non-perturbative step-scaling function to lattice data
	Methodology
	Test of the methodology
	Extraction from actual lattice data with a parametric form
	Bayesian reconstruction of the step-scaling function

	Lattice calculations of parton distributions in small volumes
	Conclusions
	Technical appendix on the matching relations
	Perturbative expansion of the matching kernel
	Observations on the matching relations at order O(s2)

	Existence and properties of the inverse for the DGLAP convolution
	Positivity of the LL MS step-scaling function

