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Generative AI is a fast-growing area of research offering various avenues for exploration in high-
energy nuclear physics. In this work, we explore the use of generative models for simulating electron-
proton collisions relevant to experiments like CEBAF and the future Electron-Ion Collider (EIC).
These experiments play a critical role in advancing our understanding of nucleons and nuclei in
terms of quark and gluon degrees of freedom. The use of generative models for simulating collider
events faces several challenges such as the sparsity of the data, the presence of global or event-wide
constraints, and steeply falling particle distributions. In this work, we focus on the implementation of
diffusion models for the simulation of electron-proton scattering events at EIC energies. Our results
demonstrate that diffusion models can accurately reproduce relevant observables such as momentum
distributions and correlations of particles, momentum sum rules, and the leading electron kinematics,
all of which are of particular interest in electron-proton collisions. Although the sampling process
is relatively slow compared to other machine learning architectures, we find diffusion models can
generate high-quality samples. We foresee various applications of our work including inference for
nuclear structure, interpretable generative machine learning, and searches of physics beyond the
Standard Model.

I. INTRODUCTION

High-energy particle and nuclear collider experiments
along with theoretical progress in the past decades have
allowed for an increasingly sophisticated understanding
of the quark and gluon dynamics at subatomic scales.
Electron-proton scattering experiments including HERA
at DESY, CEBAF at JLab, and the future Electron-
Ion Collider (EIC) at BNL [1] and LHeC [2]/FCC-eh at
CERN [3] play a critical role in advancing our under-
standing of the structure of hadrons, probing cold nu-
clear matter effects, and searching for physics beyond
the Standard Model. In particular, the measurement of
the scattered leading electron provides a clean electro-
magnetic probe of the inner structure of hadrons and
nuclei. The experimental data has been analyzed within
the framework of QCD factorization to extract the three-
dimensional structure of hadrons in terms of quantum
correlation functions, such as parton distribution func-
tions (PDFs). In addition, collider studies related to the
emergence of hadrons and the associated neutralization
of color have remained at the forefront of collider ex-
periments. See Fig. 1 for an illustration of the average
distribution of particles in high-energy electron-proton
collisions, which will be discussed in more detail below.

The rapid development of AI and machine learning
in recent years has led to a wide range of applications
in particle and nuclear physics [4, 5]. Examples include
the simulation of lattice gauge configurations [6–10], the
classification of jets [11–20], the simulation of collider
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FIG. 1. Momentum distribution of the particles in the η-
ϕ plane created in electron-proton scattering events in the
laboratory frame at

√
s = 105 GeV. The events that have

been generated with Pythia8 [50] are rotated such that the
scattered electron is in the same azimuthal direction for all
events as indicated in the figure.

events [21–25], the unfolding of detector effects [26–30],
data analyses with machine learning-improved Bayesian
posterior sampling [31–36], regression tasks [37–42], and
searches of physics beyond the Standard Model [43–48].
See Ref. [49] for a broad overview. Several of these ap-
plications rely on generative models that can learn the
structure or latent space of a data set and generate
new samples. Various types of generative models have
been developed including Variational Autoencoders [51],
Autoregressive Models [52], Generative Adversarial Net-
works (GANs) [53], flow based models [54] and diffusion
models [55, 56]. The different types of generative mod-
els each have their own advantages and disadvantages.
The choice of generative models for a particular appli-
cation depends for example on the computational cost
of training and sampling from the model, the quality of
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the generated samples, the scalability, and the stability
of the training procedure, etc. In this work, we imple-
ment a diffusion model, which can generate samples from
a data distribution by learning to reverse a stepwise nois-
ing or diffusion process, see Fig. 2. While sampling from
diffusion models is generally relatively slow compared to
other architectures, they have been shown to generate
high-quality samples and allow for a scalable and sta-
ble training procedure. For example, in Ref. [57] it was
found that diffusion models outperform GANs in image
synthesis. The ability of diffusion models to generate
high-quality samples is essential for the applications we
foresee in the context of high-energy collider physics. In
addition, Ref. [58] reported that diffusion models may
cover a larger portion of the target distribution as GANs.

The development of generative models for simulating
collider events or jets, collimated sprays of particles, was
first initiated with GANs in Refs. [21, 59, 60]. Since then,
different architectures such as normalizing flows [61] have
been explored as well as different data representations
such as point clouds instead of images have been con-
sidered [62–66]. In addition, efforts have been made to
increase the interpretability of generative models [67, 68].
One of the challenges for generative models is the spar-
sity of collider events, which is distinct from typical tasks
encountered in computer vision. In addition, event-wide
constraints such as momentum conservation and steeply-
falling momentum distributions of particles add to the
complexity of the problem. Recently, diffusion and score-
based generative models [69] have been developed for
simulations of calorimeter showers [70–74] and jets using
point clouds [62–65, 75]. In this work, we will simulate
full collider events with diffusion models focusing in par-
ticular on the unique characteristics of electron-proton
(and similarly electron-nucleus) collisions. For example,
the kinematics of the leading electron play a critical role
since it is used to determine both the photon virtuality
Q2 and the scaling variable Bjorken x of the event. In ad-
dition, particle spectra span up to 6 orders in magnitude
and, depending on the type of particle, they peak in dif-
ferent regions of phase space. We address this challenge
by using a suitable preprocessing step before training the
model on the data. In addition, we explore different loss
functions and optimization procedures of diffusion mod-
els. Our findings demonstrate that diffusion models are
able to generate high-quality samples indicating their po-
tential for various future applications in high-energy nu-
clear and particle physics.

We foresee various applications of generative models
for collider events. For example, generative models are
closely related to the development of parton showers and
Monte Carlo event generators. While the perturbative
part is increasingly well understood from first principles
in QCD [76–79], other components of Monte Carlo event
generators can be simulated with generative models, see
for examples the approach developed in Ref. [67]. Nu-
clear physics applications include the modification of the
shower due to hot or cold nuclear matter. Moreover,

anomaly detection techniques based on generative models
have been developed for searches of physics beyond the
Standard Model. The identification of anomalous signals
requires an accurate modeling of the background distri-
bution. Generative modeling also finds applications in
hadron structure studies, which are a prominent subject
of research within the Jefferson Lab 12 GeV program and
the future EIC. The increasing sophistication required
to extract parton-level information including transverse
momentum distributions (TMDs) and generalized par-
ton distributions (GPDs), necessitates the analysis of
multi-dimensional phase space distributions from semi-
inclusive and exclusive observables. In this context, gen-
erative modeling can be used as a generator of partonic
structures for QCD global analysis, a phase space gen-
erator for particle reactions, or emulators for detector
simulation [28, 29]. It is also opening new avenues to
integrate theory and experiment within a unified event-
level analysis.

The remainder of this paper is organized as follows. In
section II, we provide a review of diffusion models. In sec-
tion III, we discuss the generation of electron-proton scat-
tering events with Pythia8 [50], which is subsequently
used as the training data, as well as the data represen-
tation. In section IV, we provide details of our imple-
mentation and the training procedure. In section V, we
present numerical results comparing the diffusion model
to Pythia8 using various metrics relevant to simulat-
ing collider events. Lastly, we conclude and present an
outlook in section VI.

II. DIFFUSION MODELS

Diffusion models are a class of generative machine
learning models that can learn the underlying distribu-
tion of a given data set. The training procedure of diffu-
sion models consists of two components – a noising, and a
denoising process, see Fig. 2. Starting with pixelated im-
ages of the training data set, noise is incrementally added
to the image until it is ultimately transformed into pure
noise. Subsequently, the inverse denoising process can be
learned by a suitably chosen machine learning architec-
ture. Due to the stepwise nature of the diffusion process,
the results of the entire chain can be included in the loss
function allowing for a scalable training process. After
the training procedure is finished, we can generate new
samples of the target data set by passing noise through
the trained machine learning architecture.

Before starting the diffusion process, the pixelated im-
ages are treated as data vectors, which we label as x0.
The corresponding probability distribution of the data
is x0 ∼ q0(x0). Analogously, we denote the data vec-
tor at time step t of the diffusion process as xt, with
t ∈ [0, T ], and the corresponding probability distribution
is xt ∼ qt(xt). The stepwise forward diffusion or noising
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FIG. 2. Sequence of images illustrating the noising/denoising process of a diffusion model trained on Pythia8 simulations of
electron-proton scattering events. Pixels colored in black are empty, and the three RGB color channels correspond to charged
pions π+, electrons e−, and kaons K+, respectively.

process is given by

q(x1, . . . , xT |x0) =

T∏

t=1

q(xt|xt−1) . (1)

The probability distribution for a given timestep of the
noising process xt−1 → xt, is given by

q (xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) . (2)

Here N is a multi-variate Gaussian distribution with a
diagonal covariance matrix. The values of βt are cho-
sen according to a predefined variance schedule {βt ∈
(0, 1)}Tt=1. We are thus adding a certain amount of Gaus-
sian noise at each time step leading to a sequence of in-
creasingly noisy samples x0, . . . , xT , where the variance
schedule and the time steps are chosen such that xT is
eventually an isotropic Gaussian distribution q(xT ) =
N (xT ; 0, I). Note that Eqs. (1) and (2) describe a Marko-
vian process since the probability distribution at time
step t only depends on the current sample at time t− 1.

Next, we consider the reverse diffusion or denoising
process. We need to train a suitable machine-learning
model to approximate the probability distribution of
the inverse process q(xt−1|xt). The diffusion process is
stochastic, which does not allow for the use of back-
propagation techniques to obtain the gradient. Instead,
the reparametrization trick is used to make the problem
tractable and learn the parameters of a Gaussian distri-
bution for which backpropagation can be used [51]. The
denoising process xt → xt−1 proceeds again in T time
steps where the following Gaussians are sampled from

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (3)

The mean µθ and covariance Σθ are learned by the model,
where θ denotes the trainable parameters. Typically a U-
shaped convolutional neural network (U-Net) is used as
a model to learn the mean and variance at each time step
t [80].

The model parameters are obtained by minimizing a
loss function during the training procedure. Different
options have been explored in the literature. We start by
considering the Variational Lower Bound (VLB), which
can be written as follows

LVLB = L0 + L1 + . . .+ LT−1 + LT (4)

L0 = − log pθ (x0|x1) , (5)

Lt−1 = DKL (q (xt−1|xt, x0) ∥ pθ (xt−1|xt)) , (6)

LT = DKL (q (xT |x0) ∥ p (xT )) . (7)

Here Lt−1 is used for all terms in Eq. (4) except for
t = 0, T . Except for L0, closed-form expressions can
be found for all KL divergences since each term involves
two Gaussian distributions. In Ref. [56], it was found em-
pirically that a simplified objective function can improve
the sample quality. Instead of using a neural network to
predict µθ and Σθ, the network is used to predict x0 and
the noise ϵθ at each time step, which can be related to
µθ, see Ref. [56] for more details. The simplified mean
squared error objective function, is given by

Lsimple
t = Et,x0,ϵ[∥ϵ− ϵθ (xt, t)∥2] , (8)

where ϵ represents the noise of the forward diffusion pro-
cess. Since this simplified objective function is only sen-
sitive to µθ but not Σθ, a hybrid loss function was intro-
duced in Ref. [58]

Lhybrid = Lsimple + λLVLB . (9)

Here, λ is a hyperparameter that determines the relative
importance of the two objective functions. Typically, λ
is chosen to be relatively small such that µθ is primarily
determined by Lsimple and Σθ is related to LVLB. In
section IV, we will provide more details of the setup used
in this work.

After the training procedure, we can obtain new sam-
ples q(x0) from the target distribution by sampling xT ∼
N (0, I) and running the reverse process of the diffusion
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model. The Markovian noising and denoising processes
described in Eqs. (2), (3) are analogous to the diffusion
process in non-equilibrium thermodynamics and in the
continuous-time limit, a stochastic differential equation
is obtained [81]. See also Ref. [82] for a more detailed
introduction to diffusion models.

III. TRAINING DATA SET AND DATA
REPRESENTATION

We generate the training data set, by simulating
neutral-current electron-proton scattering events with
Pythia8 [50] using

√
s = 105 GeV as a representative

center-of-mass (CM) energy for the future EIC [1]. Since
the photoproduction region (low photon virtuality Q2),
and deep inelastic scattering (DIS) region (high Q2) are
sensitive to different physics, we choose to impose a lower
cut of Q2 > 25 GeV2 to exclude the photoproduction
events. Fig. 1 shows a 2D histogram of the momen-
tum distribution of particles in electron-proton scattering
events in the laboratory frame. We highlight in particu-
lar the kinematic region of the scattered electron. Note
that the electron pseudorapidity does not extend to very
low values due to the Q2 cut. In addition, we indicate
the recoiling hadronic system or jet, which is produced
in the opposite azimuthal direction as the scattered elec-
tron. For each generated particle i in the event, we record
the transverse momentum pTi relative to the beam axis,
the pseudorapidity ηi = − ln tan θ/2 with the polar angle
θi with respect to the direction of colliding electron, the
azimuthal angle ϕi and the particle identification (PIDi).
We impose a cut on the pseudorapidity of |ηi| < 10,
which captures the vast majority of particles produced
by Pythia8, see Fig. 1. We do not apply a lower cut on
the transverse momentum pTi of the particles. Instead of
directly incorporating the transverse momentum of each
particle as a feature of the training data set, we choose
to work with a rescaled variable. A natural choice for the
rescaled momentum variable is

z̃i =
2MTi√

s
cosh yi . (10)

Here yi is the rapidity and M2
Ti = p2Ti +m2

i is the trans-
verse mass, where mi is the hadron mass. This variable
is of great interest for simulating full collider events since
it satisfies the following event-wide momentum sum rule

∑

i∈event

z̃i = 2 , (11)

where we sum over all particles in a given event. This pro-
vides an important global constraint for simulating full
collider events. However, in practice, this requires having
access to all particle species and fully hermetic detectors.
In general, the rapidity coverage of detectors is limited
and, in this work, we also limit the diffusion model setup
to simulating only three particle species. As a result,
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FIG. 3. Momentum distribution of electrons e− in electron-
proton scattering events for three different levels of pixelation
compared to the original Pythia8 result.

Eq. (11) is not exactly satisfied. Instead, Eq. (11) pro-
vides an upper bound on the sum over all z̃i values in
each event. In the limit of massless particles, z̃i reduces
to

zi =
2pTi√

s
cosh ηi , (12)

where η is the pseudorapidity, as introduced above. This
variable is frequently used in the perturbative QCD lit-
erature, see for example Refs. [79, 83]. Therefore, we
choose zi as the rescaled momentum variable for this
work. Eq. (11) also provides an upper bound for the
sum over all zi in each event. In summary, we record
the variables (zi, ηi, ϕi,PIDi) for each particle in the
event. When training the diffusion model, as described
below, we limit ourselves to only three “color” channels
for which we choose: pions π+, kaons K+, and electrons
e−. In particular, the (leading) scattered electron in the
event plays an important role in electron-proton scatter-
ing and we will study its kinematic distributions in detail
below.
A convenient way to digitize collider events is to rep-

resent them as images, which is well suited for machine
learning applications. We partition the cylindrical detec-
tor around the scattering vertex into a grid of uniformly
sized rectangular pixels located at regular intervals in
both rapidity and azimuth. We choose the pixel inten-
sity to be the rescaled particle momentum zi, and the
rapidity ηi and azimuthal angle ϕi index the location of
each pixel on the cylinder. The particle type (PIDi) is
stored as indices of the different image color channels sim-
ilar to RGB color channels. Whenever multiple particles
of the same type are in the same pixel, their zi values are
added.
In an actual experiment, the natural choice for the

pixel intensity is pTi since zi is a derived quantity given
in terms of the measured value of pTi and ηi. Therefore,
combining multiple particles in a given pixel will occur at
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the level of pTi instead of zi. However, as we will discuss
in section V below, the reconstruction of physical observ-
ables in inclusive DIS scattering experiments is strongly
affected by distortions induced by the ηi pixelation. In
part, this is due to the large pseudorapidity interval cho-
sen for this work. In principle, this can be mitigated by
increasing the number of pixels for the rapidity. Due to
limited computing resources, we were not able to increase
the number of pixels further in this work. In future work,
this can be addressed by increasing the number of pix-
els or by changing the data representation. Here, we opt
for using the zi as the pixel intensities, which reduces
pixelation effects.

We quantify the discretization effect by considering as
an example the inclusive momentum distribution of elec-
trons e− in Pythia8-generated electron-proton scatter-
ing events, which is shown in Fig. 3. We observe a large-
pT peak due to the leading scattered electron and a con-
tinuous spectrum at intermediate to small-pT values due
to electrons generated during the shower. We compare
the actual distribution with its discretized counterparts
using three different choices for the number of pixels for
the image: 16×16, 32×32, and 64×64. We observe that
the actual distribution is increasingly well reproduced as
the number of pixels is increased. Throughout this work,
we use 64 × 64 pixels as our default choice. With larger
computing resources this can be increased until the ex-
perimental resolution of the detector is reached.

As mentioned in the introduction, different than typ-
ical tasks in computer vision, images of collider events
are very sparse, especially at the relatively low energies
of the CEBAF experiment at JLab and the future EIC.
For a CM energy of

√
s = 105 GeV, we find that the av-

erage level of sparsity or the percentage of empty pixels
is 99.95±0.02% (including all particle species) for 64×64
images, which can be challenging for generative models.
We address this problem by choosing a suitable data rep-
resentation as discussed in the following. Besides the
sparsity of the data, a significant challenge is the steeply
falling distributions of particles. The inclusive momen-
tum z-distributions peak close to the endpoints z → 0 for
π+,K+ since soft hadrons have a large production cross
section in QCD. Instead, for electrons e− the distribution
peaks in the region z → 1, see Fig. 3. The large-z peak of
the electron/positron momentum distribution is a unique
feature of electron-proton scattering events. Instead, in
proton-proton collisions, all distributions peak at small-z
values. This feature appears due to the scattered lead-
ing electron, which plays a unique role in electron-proton
collisions since it is used to determine the virtuality of
the exchanged photon Q2 and Bjorken x. Therefore, the
accurate modeling of its kinematics plays a critical role.
In order to take into account the logarithmic behavior of
the data near both endpoints z → 0, 1 and to simplify
the training procedure, we rescale z as follows

z → S(z)E(z) + (1− S(z))L(z) . (13)

Here E(z) is an exponential function, L(z) is a logarith-

FIG. 4. The log loss of the diffusion model training procedure
as a function of the number of samples that the model is
trained on.

mic function, and S(z) is a sigmoid. The three functions
are defined as

E(z) = a1e
c1z + b1 , (14)

L(z) = a2 ln(z + c2) + b2 , (15)

S(z) =
1

1 + e−α(z−β)
, (16)

where we have introduced additional parameters that will
be discussed in the following. First, we require that the
parameters are chosen such that Eq. (13) is a bijective
function allowing us to eventually recover to the original
momentum distribution. Second, we choose the parame-
ters such that the rescaling in Eq. (13) matches the peak
structures of the z distributions near both endpoints.
Note that we apply the same z rescaling to all three chan-
nels. We choose the rescaling to be linear in the inter-
mediate z region while near the upper (lower) endpoint,
the function approximates an exponential (logarithmic)
function. This can be achieved by choosing two values
z1 < z2 ∈]0, 1[ with z2 being the value where the expo-
nential E(z) smoothly becomes a linear function, i.e.

E(z2) = z2 ,
dE(z2)

dz
= 1 . (17)

Similarly, we require the logarithmic function L(z) to
become linear at z1. These conditions along with the
need to construct a bijective function fixes or constrains
several of the parameters in Eq. (13). We then choose
the sigmoid S(z) to smoothly interpolate between the
exponential and logarithmic functions. The remaining
parameters are chosen such that the rescaled z distribu-
tion is sufficiently smooth for the training of the diffusion
model.
The diffusion model takes as input values of the mo-

mentum fraction in the range [−1, 1] (floating point num-
bers). Before pixelation and the rescaling in Eq. (13), the
range of the particle momentum fractions is in the range
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FIG. 5. Counts for the distributions of the rescaled momentum variable z, pseudorapidity η, and azimuthal angle ϕ (left to
right). The results are shown separately for electrons e−, charged pions π+, and kaons K+ (top to bottom). We show the
diffusion model results (red) compared to Pythia8 with (black) and without (purple) pixelation effects.

of z ∼ [10−6, 1]. We choose a suitable range of values
z′ ∈ [z′min, z

′
max] with −1 < z′min < z′max < 1 to which

we map the original z values. This includes the rescaling
in Eq. (13) as well as an additional linear transformation
to match the targeted range. In practice, we find that
z′min = −0.76 and z′max = 0.86 work well for the purposes
of this work. These values are chosen to allow for an up-
per and lower gap from the endpoints at −1, 1. The lower
gap allows us to train a diffusion model that can generate
empty pixels. This is achieved by mapping empty pixel
values in the training data set, i.e. initially at z = 0,
to the lower end of the allowed interval z′ = −1. Since
any finite z value is mapped to z′ > z′min there is a suffi-
ciently large gap to the z′ values associated with empty
pixels. When generating new images by passing Gaussian
noise through the denoising process as described above,
the diffusion model does not need to generate pixels with
exactly z = 0 but, instead, it is sufficient to generate
a narrow peak around z′ ∼ −1. We can then apply a
lower cut at z′min and consider pixels with smaller z′ val-
ues as empty. This allows us to generate sparse images

of collider events. The upper gap associated with z′max

is introduced to avoid distortions of the distribution gen-
erated by the diffusion model near the upper endpoint.
Any values produced by the diffusion model that are out-
side of the z′ ∈ [−1, 1] range are clipped, which would
lead to artifacts near the endpoint without including the
upper gap. Note that we do not enforce a hard upper
cutoff at z′max. This requires the model to learn momen-
tum conservation, see Eq. (11) above, which we quantify
numerically below.

We note that one can likely choose E(z) = 0 and/or
S(z) = 0 for simulating proton-proton or heavy-ion col-
lisions since in this case all particle spectra peak in the
small-z region. We leave the exploration of this for fu-
ture work. In addition, we note that an alternative ap-
proach to simulating sparse collider data is the use of
point clouds as employed in Refs. [62–66] instead of the
image-based data representation that we use here.
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FIG. 6. Comparison of the (normalized) particle multiplicities ⟨Ni⟩ for electrons e−, pions π+, and kaons K+ (from left to
right).

IV. IMPLEMENTATION AND TRAINING

In this section, we are going to present more details
about the implementation of the diffusion model and the
training procedure. As a starting point for our work, we
use the implementation of the diffusion model presented
in Ref. [58]. In the following, we discuss aspects of the
training data, the evaluation of the loss function and the
parametrization of the inverse diffusion process.

• The size of the training data set is 106 images of
DIS events as described in section III above. We
choose a batch size of 8.

• For the noising process q(xt|xt−1), we use the co-
sine variance schedule introduced in Ref. [58] with
500 diffusion steps. We find that the number of dif-
fusion steps is sufficient for the 64×64 images used
in this work. The cosine variance schedule adds
noise relatively slowly and is well-suited for the rel-
atively low-resolution images considered here. For
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FIG. 7. Comparison of Pythia8 and diffusion model results
for the sum over the rescaled momentum fractions in the en-
tire event, see Eqs. (11), (12).

the denoising process pθ(xt−1|xt), we use a diago-
nal covariance matrix Σθ = σ2

t I, where σ
2
t are time-

dependent trainable parameters.

• We use the hybrid loss function Lhybrid given in
Eq. (9) with λ = 0.001 following Ref. [58]. Since the
gradient of LVLB in Eq. (4) can be very noisy, we
use importance sampling instead of uniform sam-
pling of the this part of the objective function as
proposed in Ref. [58]. We also explored the use of
the simplified loss function proposed in Ref. [56]
and λ = 0, which corresponds to the LVLB, which
generally underperformed compared to the hybrid
loss function for the purposes of this work.

• To parametrize the denoising process pθ(xt−1, xt),
we use a 3-layer U-Net [80] with circular or periodic
convolutions. Note that this is only relevant for
the azimuthal coordinate ϕ. We choose a kernel
size of 3 with stride 1 and padding 1. Multi-head
attention layers [84] and down/up sampling blocks
are included to obtain a U-shaped neural network.

• We use the AdamW optimizer [85] with a learning
rate of 10−4. The logarithm of the loss is shown
in Fig. 4 as a function of the number of samples
that the diffusion model is trained on. We observe
a steep decrease of the loss at the beginning. Even
though the curve flattens out later during the train-
ing process, we still observe a significant improve-
ment of the sample quality. Despite the importance
sampling mentioned above, the loss turns out to be
relatively noisy.

V. NUMERICAL RESULTS AND
BENCHMARKS

In this section, we will assess the quality of the trained
diffusion model in simulating fully exclusive events (three
particle species) in electron-proton collisions. We stress
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FIG. 8. Di-hadron correlations comparing Pythia8 (left) and the diffusion model (right): Leading and subleading pions π+

(upper row), and kaons K+ (lower row).

that our present work is limited in exploring the full ex-
tent of uncertainty quantification stemming from model
uncertainties, limited training, and other factors. The re-
sults presented here should be viewed as an exploratory
study, and we will focus on describing the qualitative
overall agreement between the reconstructed synthetic
phase space distributions and the training data. Dedi-
cated studies of aleatoric and epistemic uncertainties are
beyond the scope of our current work and will be ad-
dressed in the future.

We start with the inclusive momentum, rapidity, and
azimuthal angle distributions for electrons e−, pions π+,
kaons K+. The comparison between the diffusion model
results and Pythia8 with and without pixelation is
shown in Fig. 5. Analogous to Fig. 3, the electron z-
distribution peaks at z → 1, whereas the pion and kaon

distributions peak at small-z values, see the first col-
umn of Fig. 5. Due to the remapping of the z values in
Eq. (13), both peak structures at small and large-z are
well described. We only observe a relatively small impact
due to the pixelation. Overall, the electron distribution
appears to be somewhat better reproduced compared to
pions and kaons. In all instances, the distributions span
multiple orders in magnitude, which is well described by
the diffusion model. We also note that the multiplicities
of the three particle species, modeled by different chan-
nels, are significantly different, which is well described
by our model. The rapidity distribution for electrons
shows qualitatively different features compared to pions
and kaons, see the middle column of Fig. 5. The differ-
ence is again due to the unique role of the leading electron
in electron-proton scattering events. The steep drop of
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from the diffusion model (right).

the rapidity distributions for electrons near η ∼ −3 is
due to the imposed cut on the photon virtuality Q2, see
also Fig. 1. Our model achieves an accurate description
of all three rapidity distributions. We note that if an
additional transverse momentum cut for the electron is
included, the rapidity distributions for pions and elec-
trons would be more similar. Lastly, the right column
of Fig. 5 shows the azimuthal distributions where the
events have been rotated such that ϕ = 0 corresponds
to the direction opposite to the leading electron, which
itself is not included in these histograms. Overall, we ob-
serve that the three bell-shaped curves of the azimuthal
angular correlations are well described by the diffusion
model. We observe small differences of the kaon distri-
butions in the tails of the distribution. This is likely
due to the relatively low multiplicity of kaons. As dis-
cussed above, more quantitative statements about the
agreement require a detailed uncertainty quantification,
which we leave for future work.

Next, we consider particle multiplicity distributions
⟨Ni⟩. The comparison between Pythia8 with and with-
out pixelation and the diffusion model results are shown
in Fig. 6. The electron multiplicity peaks at ⟨Ne⟩ = 1,
which corresponds to the scattered leading electron. The
distribution falls off steeply as the multiplicity increases.
Both aspects are accurately described by the diffusion
model. The pion multiplicity distribution peaks at in-
termediate values ⟨Nπ+⟩ ∼ 4, and exhibits a long tail
extending up to ∼ 20 pions per event. The kaon mul-
tiplicity distribution also declines rapidly toward larger
values, with many events having no kaons. Both the
pion and kaon multiplicity distributions are accurately
described by the diffusion model. Next, we consider the
sum over the rescaled momentum fractions, see Eq. (11)
above. This provides an important test of the global
characteristics of the events generated by the diffusion
model. The diffusion model result compared to Pythia8
is shown in Fig. 7. Overall, we observe good agreement

for the event-wide momentum sum rule in Eq. (10). The
distribution peaks near

∑
i zi ∼ 1 and falls off steeply

toward the endpoints, where the upper limit results from
momentum conservation, see Eq. (11) above. It is worth
noting that while we simulate pions π+ and kaons K+,
which correspond to some the most frequently produced
particles in the events, the distributions here are signifi-
cantly shifted to the left compared to the upper boundary
due to the omission of other particle species (e.g. π−, π0)
in our current implementation. As a next step, we are go-
ing to consider multi-hadron correlations, which serves as
an important benchmark for evaluating the performance
of the diffusion model. The 2D-histograms of the mo-
mentum fractions of leading vs. subleading pions (upper
row) and kaons (lower row) are shown in Fig. 8. Over-
all, we observe good agreement for both pion and kaon
momentum correlations over the logarithmic scale shown
here.

We are now going to evaluate the diffusion model’s
performance in describing inclusive DIS reactions char-
acterized by the virtuality of the exchanged photon Q2 =
−q2 = −(l − l′)2, and the Bjorken scaling variable, de-
fined as x = Q2/2p · q. Here l, l′ denote the incoming
and outgoing four-momenta of the scattered electron, re-
spectively, and p is the momentum of the incoming pro-
ton. Assessing the diffusion model’s ability to reproduce
the distribution of these variables is a stringent test that
allows us to gauge its ability to capture the correlations
between the outgoing electron phase space and the initial
state momenta. In Fig. 9 we display the reconstructed 2D
density in the x,Q2 space. Overall, we find good agree-
ment between the diffusion model results and Pythia8
with pixelation effects with some noticeable differences
only in the x → 1 region. The presence of stripes in
the 2D density plots can be attributed to pixelation ef-
fects, which can be mitigated by increasing the number of
pixels used to represent the events, analogous to the mo-
mentum distributions shown in Fig. 3. We defer improve-
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ments to future work due to limitations of computational
resources. Nevertheless, within the described limitations,
we conclude that the diffusion model is able to accurately
reproduce the correlations of the DIS phase space.

As discussed above, we use the variable z as the pixel
intensity rather than the transverse momentum pT . Here,
we discuss why the pixelation of pT induces larger sys-
tematic uncertainties compared to z when reconstructing
the DIS kinematic variables x and Q2. The photon vir-
tuality can be expressed as Q2 = 2l0l

′
T e

−yl′ , where l0 is
the incident lepton energy, and l′T and yl′ are the outgo-
ing lepton transverse momentum and rapidity in the lab
frame, respectively. Focusing on the uncertainty induced
by the rapidity pixelation, we find that δQ2 ∼ Q2δyl′ for
fixed values of l′T . This implies that uncertainties on Q2

from the rapidity pixelation are amplified by a factor of
Q2, which is typically required to be large for phenomeno-
logical applications. Instead, when using the variable
zi, we find the that the photon virtuality is given by
Q2 = l0

√
sz(e−yl′/ cosh yl′), where

√
s is the CM energy.

In this case, the uncertainty induced by the rapidity pixe-
lation for fixed values of z is δQ2 = Q2(eyl′/ cosh yl′)δyl′ ,
i.e. there is an additional factor K = (eyl′/ cosh yl′) rel-
ative to the pT pixelation case. In the CM frame of the
electron-proton reaction, with the incoming beam of elec-
trons moving along the z-axis, the rapidity of the outgo-
ing electrons is mostly negative, and typical values for K
are around 0.01, which significantly suppresses system-
atic errors.

One of the salient features of the DIS process is the
presence of scaling in the variable Q2 which is interpreted
as the evidence of point-like constituents inside the pro-
ton. The so-called DIS neutral current (NC) reduced
cross sections is defined as

σep→e′+X
red. NC =

dσep→e′+X
NC

dxdQ2

Q4x

2πα2Y+

= F2(x,Q
2)− y2

Y+
FL(x,Q

2) +
Y−

Y+
xF3(x,Q

2) .

(18)

Here we defined Y± = 1± (1− y)2, with the inelasticity
y = Q2/(s −M2)/x. M is the proton mass, and α cor-
responds to the electromagnetic fine-structure constant.
The structure functions F2,L,3 are independent of Q2 up
to logarithmic corrections that can be predicted within
perturbative QCD, provided that Q2 is sufficiently large
relative to any other hadronic scale. In this regime the F2

structure function is the dominant contribution to the re-
duced cross section, hence it is approximately invariant
under changes in Q2. In Fig. 10 we compare the re-

constructed cross section σep→e′+X
red. NC from diffusion model

generated events and the Pythia8 samples. The recon-
structued reduced cross sections from Pythia8 shows the
expected scaling behaviour. In contrast after pixelation,
distortions on the scaling behavior are induced mostly in
the large-x valence region. We stress that this can be
mitigated by enlarging the number of pixels. Taking into

account these systematic scaling violations induced by
the pixelation, the reconstructed reduced cross sections
from the diffusion model are qualitatively in agreement
with the pixelized version of Pythia8, albeit the diffu-
sion model exhibits deviations at high values of x com-
pared to Pythia8. These deviations may be associated
with the epistemic uncertainties of the diffusion model.
We would like to highlight that achieving a faithful rep-
resentation of DIS events serves as the starting point for
studying cross sections such as semi-inclusive DIS that
are differential in up to approximately 10 variables, which
will play a critical role at the future EIC. We note that
further improvements of our results may be achieved by
using diffusion models based on point clouds [64] and
adapting methods developed in Ref. [86] in the context
of emulating hard-scattering events.

VI. CONCLUSIONS

In this work, we presented simulations of electron-
proton scattering events using diffusion models. Our re-
sults are relevant for simulations at CEBAF, the future
Electron-Ion Collider and LHeC/FCC-eh. The diffusion
model is based on a noising schedule that sequentially
turns the images from the training data set into Gaus-
sian noise. The stochastic reverse process is learned by
a U-Net architecture based on convolutional layers with
small filters. We trained the diffusion model on Pythia8
simulations of electron-proton scattering events at EIC
energies and observed that it can generate high-quality
sparse samples of collider events. We achieved good
agreement near the kinematic endpoints by rescaling the
particle momenta with a mixed exponential-logarithmic
function, which accounts for the unique role that the
scattered electron plays in electron-proton collisions. We
employed an image-based representation of the training
data and explored associated pixelation effects. As a first
step, we limited ourselves in this work to electrons, pi-
ons, and kaons, which are represented by different “color”
channels. Overall, we found good agreement for various
observables and their correlations as well as event-wide
constraints such as momentum conservation. We fore-
see various applications of our work in the context of
generative modeling for collider physics including event-
level analysis of hadron structure, data storage, stud-
ies of hadronization, exclusive processes like Deeply Vir-
tual Compton Scattering (DVCS), and searches of new
physics, which will be addressed in future work.
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