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We describe an approach of lattice extraction of Generalized Parton Distributions that is based
on use of the double distributions (DDs) formalism within the pseudo-distribution approach. The
advantage of using DDs is hat GPDs obtained in this way have the mandatory polynomiality prop-
erty, a non-trivial correlation between x- and ξ-dependences of GPDs. Another advantage of using
DDs is that the D-term appears as an independent quantity in the DD formalism rather than part
of GPDs H and E. We relate the ξ-dependence of GPDs to the width of the α-profiles of the
corresponding DDs, and discuss strategies for fitting lattice-extracted pseudo-distributions by DDs.
The approach described in the present paper may be used in ongoing and future lattice extractions
of GPDs.

I. INTRODUCTION

Generalized Parton Distributions (GPDs) [1–6] (for re-
views see [7–9]) are a major object of study at future
Electron-Ion Collider and existing facilities at Jefferson
Lab and CERN. They provide a detailed information
about hadronic structure. Being functions of 3 kinematic
variables, e.g. H(x, ξ, t) (while there are other GPDs:

E, H̃, Ẽ, etc., for brevity we will useH(x, ξ, t) as a generic
notation), they combine properties of usual parton dis-
tributions f(x), hadronic form factors F (t) and, in the
region |x| < ξ, of the distribution amplitudes ϕ(x/ξ).

However, this multi-dimensional nature of GPDs
highly complicates their extraction from experimental
data. In particular, deeply virtual Compton scattering
(DVCS), which is the most popular tool for obtaining in-
formation about GPDs, gives information about GPDs
on the diagonal x = ±ξ or through the Compton form
factors that are x-integrals of GPDs with the 1/(x − ξ)
weight.

More complicated processes like double DVCS or re-
cently proposed single diffractive hard exclusive photo-
production [10] may provide information about GPDs off
the x = ±ξ diagonals. The study of such processes is in
its early stage.

During the last decade, starting with the pioneering
paper of X. Ji [11] that introduced the quasi-distribution
approach (see also Ref. [12] for “lattice cross sections”
approach), strong efforts have been made to calculate
parton distributions on the lattice (for reviews see Refs.
[13–16]). In particular, matching conditions for GPDs in
the quasi-distribution approach were discussed in Refs.
[17–19]. For a review of recent lattice calculations of
GPDs see Refs. [20, 21].

In our paper [22], general aspects of lattice QCD ex-
traction of GPDs have been discussed in the framework
of the pseudo-distribution approach [23, 24]. The ad-
vantage of lattice calculations is that matrix elements
M(ν, ξ, t) (“Ioffe-time” distributions) of nonlocal opera-
tors measured on the lattice are related to Fourier trans-
forms of GPDs like H(x, ξ, t), etc., which may be inverted
using various technics to produce GPDs as functions of

x for fixed values of skewness ξ and invariant momentum
transfer t.

An important property of GPDs is polynomiality [7],
which states that xN moment of H(x, ξ, t) must be a
polynomial of ξ of not larger than (N + 1)th power.
This nontrivial correlation between x- and ξ- depen-
dences of H(x, ξ, t) is automatically satisfied when GPDs
are obtained from double distributions (DDs) F (β, α, t)
[1, 3, 4, 25, 26].

The goal of the present work is to describe an approach
of lattice extraction of double distributions from lattice
calculations. The paper organized as follows. To make
it self-contained, in Sec. II we formulate the definitions
of usual (light-cone) GPDs, DDs and discuss their rela-
tionship. Some basic properties of GPDs are discussed in
Sec III. There we also introduce Ioffe-time distributions
(ITDs). Pseudo-distributions, as generalizations of the
ITDs onto correlators off the light cone are introduced
in Sec. IV. Some strategies for fitting lattice-extracted
pseudo-distributions by DDs are discussed in Sec. V. Fi-
nally, in Section VI, we summarize our results.

II. GPDS AND DDS

A. Definition of GPD

In the GPD description of a nonforward kinematics
proposed by X. Ji [2], the plus-components of the initial
p1 and final p2 hadron momenta are given by (1 + ξ)P+

and (1−ξ)P+, respectively, with P being the average mo-
mentum P = (p+p′)/2, while the partons have (x+ξ)P+

and (x−ξ)P+ as the plus-components of their momenta,
see Fig. 1.

For the pion, one may define the light-cone GPDs
H(x, ξ, t;µ2) [1, 2, 6] by

〈p2|Oλ(z,A)|p1〉 = 2Pλ
∫ 1

−1

dx e−ix(Pz)H(x, ξ, t;µ2) ,

(2.1)

where Oλ(z,A) = ψ̄(−z/2)γλŴ (−z/2, z/2;A)ψ(z/2) is

the quark bilocal operator with Ŵ (−z/2, z/2;A) being
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FIG. 1. Flux of the momentum plus-components in terms of
GPD variables.

Wilson line in the fundamental representation, the co-
ordinate z has only the z− light-cone component and
γλ = γ+. The matrix element is singular on the light
cone, so one should use some regularization for it spec-
ified by a scale µ. For brevity, we will skip reference to
µ2 in what follows.

The invariant momentum transfer is given by
t = (p1 − p2)2. In principle, the r.h.s. of Eq. (2.1) has
also the rλ term, where r = p1 − p2 is the momen-
tum transfer. However, the GPD convention is to write
r+ = 2ξP+, where ξ is the skewness variable, and the
two terms are combined in one GPD H(x, ξ, t).

A similar definition holds for the nucleon,

〈p2, s
′|O+(z,A)|p1, s〉 =

∫ 1

−1

dx e−ixP
+z−

×
[
(ū′γ+u)H(x, ξ, t)− 1

2M
(ū′iσ+µrµu )E(x, ξ, t)

]
,

(2.2)

where ū′ ≡ ū(p2, s
′) and u ≡ u(p1, s) are the nucleon

spinors, while H(x, ξ, t) and E(x, ξ, t) are the nucleon
GPDs.

One may re-write these definitions in a more covariant
form that uses Lorentz invariants (Pz) and (rz) only. For
pion, we have

〈p2|zλOλ(z,A)|p1〉
∣∣
z2=0

= 2(Pz)
∫ 1

−1

dx e−ix(Pz)H(x, ξ, t;µ2)
∣∣∣
z2=0

. (2.3)

In the case of the nucleon, we have two GPDs

〈p2, s
′|zλOλ(z,A)|p1, s〉

∣∣
z2=0

=

∫ 1

−1

dx e−ix(Pz)
{

(ū′/zu)H(x, ξ, t)

− 1

2M
(ū′iσzru)E(x, ξ, t)

}
z2=0

, (2.4)

B. Double distribution description

An alternative approach to describe nonforward matrix
elements is based on double distributions formalism [1,

3, 4, 25, 26]. Its guiding idea is to treat P+ and r+ as
independent variables and organize the plus-momentum
flow as a “superposition” of P+ and r+ momentum flows.

The parton momentum in this picture is written as
k+ = βP+ + (1 + α)r+/2, i.e., as a sum of the compo-
nent βP+ due to the average hadron momentum P (flow-
ing in the s-channel) and the component (1+α)r+/2 due
to the t-channel momentum r, see Fig. 2.

FIG. 2. Flux of the momentum plus-components in terms of
DD variables.

Thus, the α-dependence of the DD F (β, α) describes
the distribution of the momentum transfer r+ between
the initial and final quarks in fractions (1 + α)/2 and
(1− α)/2. One may expect that it has a shape simi-
lar to those of parton distribution amplitudes, i.e., with
maximum at α = 0 (equal sharing of r+) and van-
ishing at kinematical boundaries. These are located
at α = ±(1− |β|), since the support region for DDs is
|α|+ |β| ≤ 1 [26].

1. Pion

In terms of DDs, the matrix element (2.3) is written
as [1, 3, 26, 27]

〈P + r/2|zλOλ(z,A)|P − r/2〉z2=0

=

∫
Ω

dαdβ e−iβ(Pz)−iα(rz)/2

×
{

2(Pz)F (β, α, t) + (rz)G(β, α, t)
}∣∣∣
z2=0

, (2.5)

where Ω is the DD support region, i.e., a rhombus in the
(αβ)-plane defined by |α| + |β| ≤ 1. The time reversal
invariance requires that F (β, α, t) is an even function of
α, while G(β, α, t) is odd in α.

Expanding e−iβ(Pz)−iα(rz)/2 in powers of (Pz) and
(rz), one observes that the generic term (Pz)N−k(rz)k

may be obtained both from F - and G-parts [28], with two
exceptions. Namely, one cannot obtain the (Pz)N term
from the G-part, and one cannot obtain the (rz)N term
from the F -part. The usual convention is to absorb all
the (Pz)N−k(rz)k terms with k < N into the F -function,
leaving all the (rz)N terms in the G-function [27]. As a
result, the G-part would not depend on (Pz), and one



3

can write

〈P + r/2|zλOλ(z,A)|P − r/2〉z2=0

=
{

2(Pz)
∫

Ω

dαdβ e−iβ(Pz)−iα(rz)/2 F (β, α, t)

+ (rz)

∫ 1

−1

dαe−iα(rz)/2D( α, t)
}∣∣∣
z2=0

, (2.6)

where D(α, t) is the D-term function introduced in Ref.
[27]. It is odd in α.

Comparing the two parameterizations (2.3) and (2.6)
we get the relation between the pion GPD and DD [1, 6,
27]

H (x, ξ, t) =

∫
Ω

dαdβ δ(x− β − αξ)F (β, α, t)

+ sgn(ξ)D(x/ξ, t;µ2)

≡ HDD +D (2.7)

As noticed in Ref. [28], the (αβ)-integral above, i.e. the
“DD part” HDD(x, ξ, t), may be treated as the Radon
transform of F .

2. Nucleon

In the nucleon case, we have the following representa-
tion [1, 3, 26]

〈P − r/2, s′|zλOλ(z,A))|P + r/2, s〉z2=0

=

∫
Ω

dαdβ e−iβ(Pz)−iα(rz)/2

×
[
(ū′/zu)h(β, α, t) − 1

2M
(ū′iσzru)e(β, α, t)

]
+ (rz)

(ū′u)

M

∫ 1

−1

dα e−iα(rz)/2D(α, t) . (2.8)

Here, h(β, α, t) and e(β, α, t) are even functions of α,
while D(α) is odd. Using Gordon decomposition

Pλ
M

ū′u =
1

2M
ū′iσλru+ ū′γλu , (2.9)

and comparing (2.8) with the GPD representation (2.4),
gives relation between the nucleon GPDs, DDs and D-
term [27]

H (x, ξ, t) =

∫
Ω

dαdβ δ(x− β − αξ)h(β, α, t)

+ sgn(ξ)D(x/ξ, t)

≡ HDD +D , (2.10)

E (x, ξ, t) =

∫
Ω

dαdβ δ(x− β − αξ)e(β, α, t)

− sgn(ξ)D(x/ξ, t)

≡ EDD −D . (2.11)

Again, we may talk about the “DD parts” HDD(x, ξ, t)
and EDD(x, ξ, t) of the corresponding GPDs. Note that
the D-term cancels in the sum H(x, ξ, t) + E(x, ξ, t) ≡
A(x, ξ, t). So, A(x, ξ, t) is built purely from the DD
a(β, α, t) ≡ h(β, α, t) + e(β, α, t).

C. Fixed parity cases

Usually we are interested in the functions correspond-
ing to operators

Oλ±(z,A) =
1

2

[
Oλ(z,A)±Oλ(−z,A)

]
(2.12)

that are symmetric or antisymmetric with respect to the
inversion of z. These combinations appear when we con-
sider “nonsinglet” q − q̄ or “singlet” q + q̄ parton dis-
tributions, respectively. Since the D-term contribution
(without the overall (rz) factor) is odd in z, it appears
in the “singlet” case only. However, the H +E sum does
not contain the D-term even in the singlet case.

In fact, it is sufficient to consider matrix element of the
original Oλ(z,A) operator. The real part of this matrix
element is even in z while its imaginary part is odd in z.

III. SOME PROPERTIES OF GPDS AND DDS

A. DD-parts of GPDs

In this section, we consider the relations between the
DDs and the “DD parts” of GPDs which they generate,
thus ignoring for a while the D-term contributions to
GPDs (we remind that it is absent in the nonsinglet case).
The D-term will be discussed later in the section. For
definiteness, we will have in mind relations between the
DD part of the pion GPD and its DD. All the relations
are equally applicable to the DD parts of the nucleon
GPDs.

xξ
−ξ

x

α

β

f(x)

H(x, ξ)

H(ξ, ξ)

H(−ξ, ξ)

H(x, ξ)

FIG. 3. DD support rhombus and integration lines producing
the DD parts of H(ξ, ξ), H(−ξ, ξ), H(x, ξ = 0) = f(x) and
H(x, ξ) in DGLAP (|x| > ξ) and ERBL (|x| < ξ) regions.
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B. ξ = 0 limit

Taking ξ = 0, we have

H (x, ξ = 0, t) =

∫ 1

−1

dβ δ(x− β)

∫ 1−|β|

−1+|β|
dαF (β, α, t)

=

∫ 1−|x|

−1+|x|
dαF (x, α, t) ≡ f(x, t) . (3.1)

This means that integrating F (β, α, t) over vertical
lines β = x gives the ξ = 0 (“non-skewed”) GPD
H (x, ξ = 0, t), which we will also denote as f (x, t). It is
the simplest GPD, that was called “nonforward parton
density” in the paper [29], where it has been introduced.
It differs from the forward PDF f(x) by the presence of
the t-dependence and satisfies f (x, t = 0) = f(x).

C. Polynomiality

The DD representation automatically produces a GPD
satisfying the polynomiality property. Indeed,∫ 1

−1

dxxnH (x, ξ, t)

=

∫ 1

−1

dxxn
∫

Ω

dαdβ δ(x− β − αξ)F (β, α, t)

=

n∑
k=0

n!

k!(n− k)!
ξk
∫

Ω

dαdβ βn−kαkF (β, α, t) , (3.2)

i.e., the nth x-moment of GPD H (x, ξ, t) is a polynomial
in ξ of the order not exceeding n.

Note that, since F (β, α, t) is even in α, the summa-
tion over k involves even k only, i.e. (3.1) is in fact an
expansion in powers of ξ2.

D. Ioffe-time distributions

By Lorentz invariance, the matrix element (2.3) defin-
ing GPD is a function of the scalars (p1z) ≡ −ν1 and
(p2z) ≡ −ν2, two Ioffe-time parameters, so we may write

〈p2|ψ̄(−z/2)/zψ(z/2)|p1〉 = 2(Pz)I(ν1, ν2, t) , (3.3)

where I(ν1, ν2, t) is the double Ioffe-time distribution
(ITD). Since z = z− is assumed, only the value of the
plus components of momenta are essential in the scalar
products (p1z) and (p2z). The skewness variable ξ in this
case is given by

ξ =
ν1 − ν2

ν1 + ν2
≡ ν1 − ν2

2ν
. (3.4)

We have introduced here the variable ν = (ν1 + ν2)/2.
Treating ν and ξ as independent variables, we define the
generalized Ioffe-time distribution (GITD) as

I(ν1, ν2, t) = I(ν, ξ, t) . (3.5)

According to (2.1), it is a Fourier transform of the GPD

I(ν, ξ, t) =

∫ 1

−1

dx eixν H (x, ξ, t) . (3.6)

Using Eq. (2.5), we can write GITD in terms of DD

I(ν, ξ, t) =

∫ 1

−1

dβ eiνβ
∫ 1−|β|

−1+|β|
dαeiναξF (β, α, t) . (3.7)

E. DD profile and ξ-dependence

If F (β, α, t) has an infinitely narrow profile in the
α-direction, i.e. if F (β, α, t) = f(β, t)δ(α), then the
ξ-dependence disappears, and we deal with the simplest
GPD f(x, t). A nontrivial dependence on the skewness
ξ is obtained if DD has a nonzero-width profile in the
α-direction.

Using the DD representation (3.7) for the GITD and
expanding eiναξ into Taylor series, we get the following
expansion in powers of ξ2

I(ν, ξ, t) =

∫ 1

−1

dβ eiνβ
∫ 1−|β|

−1+|β|
dαF (β, α, t)

− ξ2ν2

2

∫ 1

−1

dβ eiνβ
∫ 1−|β|

−1+|β|
dαα2F (β, α, t) + . . . (3.8)

(odd powers of ξ do not appear because F (β, α, t) is even
in α). By analogy with (3.1), we will use notation f2(β, t)
for the second α-moment of F (β, α, t)∫ 1−|β|

−1+|β|
dαα2 F (β, α, t) ≡ f2(β, t) (3.9)

As a result, we write

I(ν, ξ, t) =

∫ 1

−1

dβ eiνβ

{
f(β, t)− ξ2ν2

2
f2(β, t)

}
+O(ξ4)

= I0(ν, t)− ξ2ν2

2
I2(ν, t) +O(ξ4) . (3.10)

IV. PSEUDODISTRIBUTIONS

A. Definitions

On the lattice, we choose z = z3, and introduce
pseudo-GPDs H

(
x, ξ, t; z2

3

)
(and also E

(
x, ξ, t; z2

3

)
in the

nucleon case),
The two Ioffe-time parameters are given now by

ν1 = p
(3)
1 z3 ≡ P1z3 and ν1 = p

(3)
2 z3 ≡ P2z3. In terms

of momenta P1,2, the skewness ξ is given by

ξ =
P1 − P2

P1 + P2
. (4.11)
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The pseudo-GITD will be denoted as M(ν, ξ, t; z2
3), e.g.,

the inverse transformation for H is written as

H
(
x, ξ, t; z2

3

)
=

1

2π

∫ ∞
−∞

dν e−ixνM(ν, ξ, t; z2
3) . (4.12)

Similarly, to denote pseudo-DDs, we will just add z2
3 to

their arguments.

B. Contaminations

On the lattice, we have z2 6= 0, and we need to add
extra z-dependent structures to the original parameteri-
zation

zλM
λ ≡ 〈P − r/2, s′|zλOλ(z,A)|P + r/2, s〉

=

∫
Ω

dαdβ e−iβ(Pz)−iα(rz)/2

×
{

(ū′/zu)h(β, α, t)− 1

2M
(ū′iσzru)e(β, α, t)

+
ū′u

M
(rz)δ(β)D(α, t)

}

≡ (ū′/zu)HDD −
1

2M
(ū′iσzru)EDD + (rz)

ū′u

M
D ,

(4.13)

where z2 = 0 and the ITDs HDD, EDD and D are func-
tions of ν, ξ and t.

Also, for lattice extractions, we need to parametrize
the “non-contracted” matrix element Mλ. In this
case, the index λ in local operators ψ̄γλ(zD)Nψ is not
symmetrized with the indices Dµ1 . . . DµN in covariant
derivatives. A way to perform symmetrization on the
level of bilocal operators was indicated in Ref. [30].

Further studies of parameterizations for matrix el-
ements with an open index have been performed in
Refs. [31–36]. An important observation made there is
that Mλ should contain terms that vanish when con-
tracted with zλ, such as rλ(Pz) − Pλ(rz). One can see
that rλ − Pλ(rz)/(Pz) ≡ ∆λ

⊥ is the part of the momen-
tum transfer r that is transverse to z. As shown in these
papers, one should add Wandzura-Wilczek-type (WW)
terms [38] to the parametrizations of GPDs to secure elec-
tromagnetic gauge invariance of the DVCS amplitude [37]
with O(∆⊥) accuracy. While the WW terms are “kine-
matical twist-3” contributions built from twist-2 GPDs,
one cannot exclude non-perturbative (dynamical) twist-3
terms accompanied by the ∆λ

⊥ factor.

A possible parametrization with extra terms is

Mλ = (ū′γλu)HDD −
1

2M
(ū′iσλru)EDD + rλ

ū′u

M
D

+ i(ū′u)MzλZ1 + (ū′iσλzu)MZ2

− (ū′iσzru)

M
[PλX1 + rλX2 + zλM2X3]

+
[
rλ(Pz)− Pλ(rz)

] ū′u
M

Y . (4.14)

Using Gordon decomposition

Pλ
M

ū′u =
1

2M
ū′iσλru+ ū′γλu , (4.15)

we can re-write (4.14) as

Mλ = (ū′γλu) [HDD − (rz)Y ] + rλ
ū′u

M
[D + (Pz)Y ]

− 1

2M
(ū′iσλru)[EDD + (rz)Y ]

+ i(ū′u)MzλZ1 + (ū′iσλzu)MZ2

− (ū′iσzru)

M
[PλX1 + rλX2 + zλM2X3] , (4.16)

There are eight spin/tensor structures in total, just as
in Ref. [39]. However, in the basis of Ref. [39] (ū′γλu)
is substituted by two other structures that appear in the
Gordon decomposition (4.15). Using this basis, we have

Mλ =
Pλ
M

(ū′u)[HDD − (rz)Y ] + rλ
ū′u

M
[D + (Pz)Y ]

− 1

2M
(ū′iσλru)[HDD + EDD]

+ i(ū′u)MzλZ1 + (ū′iσλzu)MZ2

− (ū′iσzru)

M
[PλX1 + rλX2 + zλM2X3] , (4.17)

Comparing Eq. (4.17) with the coefficients Ai in
Eq. (35) of Ref. [39], we establish the correspondence
A1 = [HDD − (rz)Y ], A2 = iZ1, A3 = D + (Pz)Y ,
A4 = Z2, A5 = (HDD + EDD)/2, A6 = X1, A7 = X3,
A8 = −X2. The main difference is that HDD and D
in Eq. (4.17) come with the contamination from the
Y -function, the 9th ITD.

As one can see, the Y -term in Eq. (4.17) comes with
the Pλ(rz)−rλ(Pz) factor that vanishes after contraction
with zλ. Similarly, if we contract matrix element Mλ of
Eq. (4.16) with zλ, we get

zλM
λ = (ū′/zu)HDD + [(rz)D + iz2M2Z1]

ū′u

M

− (ū′iσzru)

2M
[EDD + (zP)X1 + (rz)X2 + z2X3]

− (rz)

[
(ū′/zu) +

(ū′iσzru)

2M
− (Pz) ū

′u

M

]
Y , (4.18)
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where the factor accompanying Y vanishes by Gordon
decomposition, as expected. Projecting zλM

λ on the
light cone, we obtain

zλM
λ|z2=0 = (ū′/zu)HDD + (rz)

ū′u

M
D

− (ū′iσzru)

2M
[EDD + ν(X1 + 2ξX2)] . (4.19)

Thus, GITD E comes from 3 DDs and the D-term:
E = EDD −D + ν(X1 + 2ξX2)].

V. FITTING PSEUDODISTRIBUTIONS

A. Nonforward parton pseudo-density f(β, t, z23)

Taking ξ = 0 we have

M(ν, ξ = 0, t; z2
3) =

∫ 1

−1

dβ eiνβ f(β, t, z2
3) , (5.1)

where ν = P1z3 = P2z3. An important point is that
ξ = 0 may be achieved for different pairs of equal initial
and final momenta P1 = P2 ≡ P . One should check
that lattice gives the same curve for different P ’s, up to
evolution-type dependence on z2

3 .

One can use relation (5.1) to fit f(β, t, z2
3). First, tak-

ing t = 0, we fit the forward pseudodistribution f(β, z2
3),

just as a pseudo-PDF. After that, one can vary t, by
changing the transverse components ∆1,2

⊥ , for several
fixed ν. In this way, one can study what kind of de-
pendence on t we have (dipole, monopole, etc.), and how
it changes with ν.

B. α2-moment function f2(β, t, z23)

The next step is to check if the ξ-dependence of the
lattice data for M(ν, ξ, t; z2

3) agrees with the form

M(ν, ξ, t; z2
3) =M(ν, ξ = 0, t; z2

3)

− ξ2ν2

2
M2(ν, t; z2

3) +O(ξ4) , (5.2)

and extract f2(β, t, z2
3) using

M2(ν, ξ, t; z2
3) =

∫ 1

−1

dβ eiνβ f2(β, t; z2
3) . (5.3)

The α-dependence of the DD F (β, α) describes the dis-
tribution of the momentum transfer r = P1−P2 between
the initial and final quarks. It is expected that it has a
shape similar to those of parton distribution amplitudes.

C. Factorized DD Ansatz

A nonzero-width profile of DD in the α-direction may
be modeled by using the Factorized Ansatz [25, 26]

FN (β, α, t) = f(β, t)
Γ
(
N + 3

2

)
√
πΓ(N + 1)

[(1− |β|)2 − α2]N

(1− |β|)2N+1

(5.4)

The [(1 − |β|)2 − α2] factor reflects the support prop-
erties of the DD, which vanishes if |β| + |α| > 1. The
Ansatz also complies with the requirement that F (β, α)
should be an even function of α.

For f(β, t) one can also take a factorized form f(β, t) =
f(β)F (t), where f(β) is the forward PDF, and F (t) some
form factor.

Combining (3.7) and (5.4) gives

M(ν, ξ, t; z2
3) =

∫ 1

−1

dβ eiνβ f(β, t; z2
3)

×
∫ 1−|β|

−1+|β|
dα eiναξ

Γ
(
N + 3

2

)
√
πΓ(N + 1)

[(1− |β|)2 − α2]N

(1− |β|)2N+1
.

(5.5)

Integral over α can be taken

AN (β) =

∫ 1−|β|

−1+|β|
dα eiναξ

[(1− |β|)2 − α2]N

(1− |β|)2N+1

=

∫ 1

−1

dη eiνξ(1−|β|)η (1− η2)N

= 0F̃1

(
;N +

3

2
;−ν

2ξ2(1− |β|)2

4

)√
πΓ(N + 1) (5.6)

where

0F̃1 (; b; z) =

∞∑
k=0

zk

Γ(b+ k)k!
(5.7)

is a hypergeometric function.
So, we have a model for pseudo-GITD

M(ν, ξ, t; z2
3 ;N) =

∫ 1

−1

dβ eiνβ f(β, t)

× 0F̃1

(
;N +

3

2
;−ν

2ξ2(1− |β|)2

4

)
Γ

(
N +

3

2

)
, (5.8)

or, expanding in ξ,

M(ν, ξ, t; z2
3 ;N) =

∫ 1

−1

dβ eiνβ f(β, t)

×
∞∑
k=0

(
−ν

2ξ2(1− |β|)2

4

)k
Γ
(
N + 3

2

)
k!Γ(N + 3/2 + k)

. (5.9)

This expansion may be also obtained by taking Taylor
series of eiνξ(1−|β|)η in Eq. (5.6), and integrating over η.
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D. Check of polynomiality

Getting GPDs from a DD representation guarantees
that the resulting GPD has the polynomiality property.
Still, we can double-check this. Note that the N th mo-
mentMN of a pseudo-GPD H

(
x, ξ, t; z2

3

)
is proportional

to the coefficient accompanying νN in the Taylor expan-
sion

M(ν, ξ, t; z2
3 ;N) =

∞∑
N=0

iNνN

n!
MN . (5.10)

Now, from

M(ν, ξ, t; z2
3 ;N) =

∫ 1

−1

dβ

∞∑
m=0

(iνβ)m

m!
f(β, t; z2

3)

×
∞∑
k=0

(
−ν

2ξ2(1− |β|)2

4

)k
Γ
(
N + 3

2

)
k!Γ(N + 3/2 + k)

(5.11)

we see that MN is a polynomial in ξ of order equal or
smaller than N .

E. Fitting α-profile width

After fixing f(β, t; z2
3) that gives the profile of DD in

the β-direction, we may quantify what kind of profile it
has in the α-direction. The presence of a nontrivial pro-
file is indicated by the presence of ξ-dependence. Using
the first terms of the series for 0F̃1 (; b; z)

Γ(b)0F̃1 (; b; z) =

∞∑
k=0

zkΓ(b)

Γ(b+ k)k!
= 1 +

z

b
+

z2

2b(b+ 1)
+ . . .

(5.12)

we write (5.9) as

M(ν, ξ, t; z2
3 ;N) =

∫ 1

−1

dβ eiνβ f(β, t)

{
1− ν2ξ2(1− |β|)2

4(N + 3/2)

+

(
ν2ξ2(1− |β|)2

4

)2
1

2(N + 3/2)(N + 5/2)
+ . . .

}
.

(5.13)

In Eq. (5.13), ξ appears through the combination
ξν = (ν1 − ν2)/2. On the lattice, we have ν1 = P1z3,
ν2 = P2z3. Hence, the presence of a nontrivial profile
should be reflected by the dependence of the data on the
difference P1 − P2 for a fixed sum P1 + P2. The first
correction in Eq. (5.13) is given by

δ1M(ν, ξ, t; z2
3 ;N) =−

∫ 1

−1

dβ eiνβ f(β, t; z2
3)(1− |β|)2

× ξ2ν2

4(N + 3/2)
. (5.14)

Using this expression, one can try to determine the
profile parameter N . This task probably will not be easy,
since the correction looks rather small due to a small
overall factor ∼ ξ2/4.

We may also estimate the extra suppression due to the
(1− |β|)2 factor in the integrand of (5.14). For a simple
illustration, take f(β, t) = 4(1− |β|)3. In this case,∫ 1

−1

dβ eiνβ f(β, t) =
48

ν4

(
cos(ν)− 1 +

ν2

2

)
= 2− ν2

15
+

ν4

840
+O

(
ν5
)

(5.15)

while ∫ 1

−1

dβ eiνβ f(β, t)(1− |β|)2

=
960

ν6

(
− cos(ν) + 1− ν2

2
+
ν4

24

)
=

4

3
− ν2

42
+

ν4

3780
+O

(
ν5
)
. (5.16)

Thus, the additional suppression is by about 2/3 for small
ν, i.e., not very strong.

F. D-term

When we take the z-odd part Oλ− of the operator

Oλ(z,A), its parametrization contains a nonzero D-term.
In GPD description, it appears in a mixture with HDD

(and also EDD in the nucleon case) GPDs. However, us-
ing all possible helicity states for nucleons and various
values of λ, one can construct sufficient number of lin-
early independent relations and separate the DDs that
appear in the parametrization of Eq. (4.16) by using,
e.g., singular value decomposition technique. Unfortu-
nately, as seen from Eq. (4.16), the D-term obtained in
this way comes together with the Y -contamination.

Another way is to eliminate HDD, EDD, etc. contribu-
tions from the matrix element ofOλ− by taking kinematics
in which (Pz) = 0. As a result, α-even DD h(β, α) will
be integrated with the α-odd function sin(α(rz)/, etc.,
so that we will have

〈P − r/2, s′|Oλ−(z,A)|P + r/2, s〉|(Pz)=0

= rλ
(ū′u)

M

∫ 1

−1

dα e−iα(rz)/2D(α, t)

+ (ū′u)Mzλ
∫

Ω

dαdβ z1(β, α, t) cos(α(rz)/2) . (5.17)

On the lattice, choosing z = z3, we can arrange
(Pz) = 0, i.e. P3 = 0, by taking p1 and p2 with opposite
components in z-direction, namely p1 = (E1,p1T , P ) and
p2 = (E2,p2T ,−P ). Introducing the relevant Ioffe time
νD ≡ −(rz)⇒ 2Pz3, we deal with the ITD

ID(νD, t) =

∫ 1

−1

dα eiανD D (α, t) . (5.18)
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However, if we choose λ = 0, we get r0 = E1 − E2 as
the accompanying factor. It vanishes for purely longitu-
dinal momenta p1 = (E1,0T , P ), p2 = (E2,0T ,−P ), and
remains rather small when one takes non-equal transverse
momenta p1T ,p2T .

Another choice is to take λ = 3. In this case, we have
∼ z3 contamination

1

i
〈(E2,p2T ,−P )|O3

−(z,A)|(E1,p1T , P )〉

= 2P

∫ 1

−1

dα sin(νDα)D(α, t)

+ z(3)M2

∫ 1

−1

dα cos(νDα)Z1(α, t) , (5.19)

where the “Z-term” function Z1(α, t) is even in α. Mul-
tiplying by zλ = z3, we have

i〈(E2,p2T ,−P )|zλOλ−(z,A)|(E1,p1T , P )〉

= νD

∫ 1

−1

dα sin(νDα)D(α, t)

+
ν2
D

4P 2

∫ 1

−1

dα cos(νDα)Z(α, t)

= νDID(νD, t) +
ν2
D

4P 2
IZ(νD, t) (5.20)

As we see, for a fixed ν, the contamination term decreases

with P . In principle, one may try to extract ID(νD, t)
by fitting the P -dependence of the matrix element.

VI. SUMMARY

In the present we outlined an approach of lattice ex-
traction of GPDs based on a combined use of the double
distributions formalism and pseudo-PDF approach. The
use of DDs guarantees that GPDs obtained through them
have the required polynomiality property that imposes a
non-trivial correlation between x- and ξ-dependences of
GPDs. We have introduced Ioffe-time distributions writ-
ing them directly in terms of DDs, and generalized them
onto correlators off the light cone. An important advan-
tage of using DDs is that the D-term appears then as
an independent quantity rather than an non-separable
part of GPDs H and E. We discussed relation of the ξ-
dependence of GPDS with the width of the α-profiles of
the corresponding DDs, and discussed strategies for fit-
ting lattice-extracted pseudo-distributions by DDs. The
approach described in the present paper is used already
in ongoing lattice extractions of GPDs by HadStruc col-
laboration.

ACKNOWLEDGMENTS

I thank J. Karpie and K. Orginos for their inter-
est in this investigation and discussions. This work is
supported by Jefferson Science Associates, LLC under
U.S. DOE Contract #DE-AC05-06OR23177 and by U.S.
DOE Grant #DE-FG02-97ER41028.

[1] D. Müller, D. Robaschik, B. Geyer, F. M. Dittes and
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