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Abstract

We study the extraction of transition generalized parton distributions (GPDs) from production of two back-to-back high transverse
momentum photons (γγ) and a massive pair of leptons (ℓ+ℓ−) in hard exclusive pion-nucleon scattering. We argue that the exclu-
sive scattering amplitude of both processes could be perturbatively factorized into pion distribution amplitude and nonperturbative
transition GPDs, convoluted with perturbatively calculable short-distance matching coefficients. We demonstrate that the exclusive
diphoton production is not only complementary to the Drell-Yan type dilepton production for extracting the GPDs, but also pro-
viding enhanced sensitivities for extracting the parton momentum fraction x-dependence of GPDs. We show that both exclusive
observables are physically measurable at the J-PARC and AMBER experiment energies. If the target nucleon can be polarized,
corresponding spin-asymmetries can offer additional sensitivities for extracting transition GPDs.
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1. Introduction

With a high energy charged π-beam at J-PARC [1] and AM-
BER at CERN [2], hard exclusive processes on a nucleon target
(N) can provide unique opportunities to extract transition gen-
eralized parton distributions (GPDs), FNN′ (x, ξ, t), which could
offer fundamental nonperturbative transition information from
a hadron N to N′. If N and N′ are nucleons, the transition
GPDs can be related to nucleon GPDs through isospin symme-
try [3]. Nucleon GPDs are nonperturbative hadron correlation
functions which incorporate the concepts of parton distribution
functions (PDFs), distribution amplitudes (DAs), and form fac-
tors (FFs) in their various aspects (for reviews, see [4, 5, 6, 7]).
The Fourier transform with respect to t at ξ = 0 maps out
the parton density distribution f (x, bT ) at a position bT in the
transverse plane perpendicular to the direction of the colliding
hadron and in slices of different values of longitudinal parton
momentum fraction x. The various x moments, on the other
hand, provide important information on the hadron’s emergent
properties such as mass [8, 9, 10, 11], spin [12], and internal
pressure and shear force distributions [13, 14, 15].

Experimental extraction of GPDs of a hadron h of momen-
tum p can be achieved by measurements of QCD factoriz-
able single diffractive hard exclusive processes (SDHEPs) [16]
in its collisions with a beam particle B(p2), h(p) + B(p2) →
h′(p′) + C(q1) + D(q2), where h′(p′) represents a diffractively
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produced hadron along with two (or more) exclusively pro-
duced particles C(q1) and D(q2) with a large transverse momen-
tum qT ∼ q1T ∼ q2T that defines the hard scale of the collision.
Such processes can be thought of as occurring in two stages,

h(p)→ A∗(∆ = p − p′) + h′(p′), (1a)

A∗(∆) + B(p2)→ C(q1) + D(q2), (1b)

where the diffractive subprocess is connected to the hard scat-
tering through a virtual state A∗ of momentum ∆ = p−p′, which
has a low invariant mass t = ∆2 but high energy, ∆+ = 2ξP+,
where P = (p + p′)/2, and propagates for a long lifetime be-
fore entering the short-time hard interaction. The two-stage pic-
ture provides a clear view of factorization, which necessarily
requires qT ≫

√
|t|. Then the diffractive subprocess is factor-

ized to a universal GPD function, separated from the hard in-
teraction. The latter, on the other hand, serves as a probe for
the GPD to map out partonic information of the transition from
h(p)→ h′(p′).

Depending on the beam particle B(p2) and specific hard scat-
tering subprocesses, the SDHEPs can probe various GPDs.
With an electron beam, we have the well studied electro-
production processes, such as deeply virtual Compton scat-
tering (DVCS) [17, 18] and deeply virtual meson production
(DVMP) [19, 20]. With a photon beam, we have timelike
Compton scattering (TCS) [21]. The pion (and also kaon)
beams at J-PARC and AMBER at CERN allow “mesoproduc-
tion” processes to probe transition GPDs, which can be ex-
pressed in terms of flavor diagonal GPDs and are only sensi-
tive to the valence parts of the latter. Two processes have been
identified of this type: the Drell-Yan (DY) dilepton production
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process [22, 23],

N(p) + π(p2)→ N′(p′) + γ∗[→ ℓ−(q1) + ℓ+(q2)], (2)

and the diphoton production process,

N(p) + π(p2)→ N′(p′) + γ(q1) + γ(q2), (3)

which was first introduced in Ref. [24].
For exclusive hard scatteirng, like those in Eqs. (2) and (3),

QCD factorization requires at least two active partons from
each identified hadron in the scattering amplitude due to the
color singlet nature of the identified hadron. The hadron cor-
relation functions associated with the factorization of exclusive
processes are generally harder to be extracted from experimen-
tal data than their inclusive counterparts, especially for their de-
pendence on the relative momentum fraction of the two active
partons, e.g., the x-dependence of GPDs. This is because at the
amplitude level, x is fully integrated from −1 to 1 in the factor-
ization formulas. Kinematically, due to its exclusive nature, the
invariant mass of the produced C(q1) and D(q2) of the 2 → 3
SDHEPs in Eq. (1) is uniquely determined by the observed p′.
It is the transverse momentum qT of C(q1) (or D(q2)) in Eq. (1b)
that could provide additional details of the state A∗(∆) and the
x-dependence of GPDs if the x-integration is entangled with the
observable qT distributions. However, such entanglement is ab-
sent for most processes, including the DVCS, DVMP, TCS, and
DY dilepton production, where the qT dependence simply fac-
tors out of the x dependence in the hard scattering, at least to the
leading order, leaving only the GPD moment (see Eq. (14) be-
low) to be measured. Without considering the relatively weak
QCD evolution effects [25], extracting GPDs merely from such
moments gives infinite families of solutions quantified by the
so-called shadow GPDs [26].

Fortunately, we could have processes [24, 27] whose hard
coefficients do not factorize in the above sense, allowing us to
have more direct access to hadron’s partonic structure or the x-
dependence of GPDs. As demonstrated in Ref. [27], such new
process can greatly reduce the ambiguity caused by shadow
GPDs due to its entanglement between the measured hard scale
and x-dependence of GPDs.

In this Letter, we explore the role of SDHEPs with a charged
π beam for extracting transition GPDs, focusing on the dipho-
ton production process in Eq. (3) where the observed two pho-
tons do not come from the decay of a single virtual particle,
unlike the DY dilepton process in Eq. (2). We will evaluate
both the production rate and target spin asymmetry, and then
explore how they can help distinguish shadow GPDs from the
real GPDs, complementing the DY dilepton process in the same
facilities. Our study could be extended further by replacing the
two photons by two back-to-back high transverse momentum
mesons, for example.

2. Kinematics and observables

2.1. Kinematics and two-stage paradigm
Following Eq. (1) and Refs. [16, 27], we describe the kine-

matics of both mesoproduction processes in Eqs. (2) and (3) in a

two-stage manner, as shown in Fig. 1. First, the nucleon diffrac-
tion subprocess N(p) → N′(p′) + A∗(∆) is described in the lab
frame, which is chosen as the center-of-mass (c.m.) frame of
the colliding nucleon N and pion π(p2), with the ẑlab being along
the nucleon momentum p and x̂lab along the transverse momen-
tum ∆T of the virtual state A∗. This choice of x̂lab axis is not
fixed in the lab frame but varies from event to event, so does the
direction of the transverse spin sT of the nucleon N with respect
to x̂lab, which has a varying azimuthal angle ϕS and effectively
plays the role of the azimuthal angle of the diffractive plane.

Second, the hard scattering subprocess A∗(∆) + π(p2) →
γ(q1) + γ(q2) (or ℓ−(q1) + ℓ+(q2)) is described in the SDHEP
frame, defined as their c.m. frame, with A∗ moving along the
ẑ direction and x̂ axis lying on the diffractive plane pointing in
the same direction as the ∆T in the lab frame. The kinematics
of this hard scattering is quantified by its c.m. energy squared,
ŝ = (∆+ p2)2 ≃ 2ξs/(1+ξ) (with s = (p+ p2)2 the total collision
energy squared), the polar and azimuthal angles (θ, ϕ) of one of
the final-state particles. For both processes, the cross section is
symmetric with θ → π−θ, so we may equivalently use the trans-
verse momentum qT = (

√
ŝ/2) sin θ in place of θ. The SDHEP

frame is in fact the same as the frames chosen in Refs. [21, 22],
except for the two-stage perspective adopted here.
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Figure 1: The diphoton mesoproduction process [Eq. (3)] in the SDHEP frame.
The DY dilepton process [Eq. (2)] is obtained by simply replacing the two final-
state photons by leptons.

2.2. Factorization

As argued in Refs. [16, 24], the two-stage paradigm is ma-
terialized when qT ≫

√
|t|, so that A∗ lives much longer than

the time scale of its exclusive hard scattering with the pion.
With the quantum interference between these two stages sup-
pressed by powers of

√
|t|/qT , the dynamics taking place at

these two stages could be factorized up to the entangled power
corrections. With only charged pion beams in experiments, the
diffracted nucleon changes flavor, forbidding the simplest pos-
sibility of A∗ being a virtual photon. To the leading power of
√
|t|/qT , A∗ = [qq̄′] is a collinear quark-antiquark pair, and the

diffractive subprocess is factorized from the whole amplitude
into flavor transition GPDs.
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For the diphoton process, we have the factorization [24],

MNπ→N′γλ1γλ2 =

∫ 1

−1
dx

∫ 1

0
dz D[q′q̄]

π (z) (4)

×
[
F̃[qq̄′]

NN′ (x, ξ, t) Cγλ1λ2
(x, ξ; z; θ) + F[qq̄′]

NN′ (x, ξ, t) C̃γλ1λ2
(x, ξ; z; θ)

]
,

where λ1,2 are the photon helicities in the SDHEP frame. D[q′q̄]
π

is the distribution amplitude (DA) for the beam π to turn into
a collinear quark-antiquark pair [q′q̄]. F[qq̄′]

NN′ and F̃[qq̄′]
NN′ are re-

spectively unpolarized and polarized nucleon transition GPDs
from N to N′ for exchanging a [qq̄′] pair with the hard colli-
sion, which can be decomposed into GPDs H, E, H̃, and Ẽ, and
C̃γ and Cγ are the corresponding perturbative hard coefficients,
describing the exclusive scattering of the two collinear and on-
shell quark-antiquark pairs into the two back-to-back photons,
[qq̄′]( p̂1) + [q̄q′](p̂2) → γ(q1) + γ(q2), with p̂1 = (∆ · n)n̄,
p̂2 = (p2 · n̄)n, and lightlike vectors, n̄µ = δµ+ and nµ = δµ−

in the SDHEP frame.
Due to the pseudoscalar nature of pion and chiral symmetry

at leading power, quark transversity GPDs do not contribute, so
the scattering in Eq. (4) has no net helicity in the initial state.
The resultant hard coefficients Cγ and C̃γ contain no nontrivial
ϕ dependence. The detailed calculations have been presented
in Ref. [24] in terms of gauge-invariant tensor decomposition,
and are reproduced in Appendix A as helicity amplitudes of the
photons.

For the DY dilepton process, to the leading order of QED,
the lepton pair arises from the decay of a timelike photon γ∗

that is produced via the annihilation of the two quark pairs in
Eq. (2). Ward identity and parity symmetry constrains the γ∗ to
be longitudinal and that only the polarized GPD contributes,

MNπ→N′ℓλ1 ℓλ2 =

∫ 1

−1
dx

∫ 1

0
dz D[q′q̄]

π (z)

× F̃[qq̄′]
NN′ (x, ξ, t) Cℓλ1λ2

(x, ξ; z; θ), (5)

where for comparison with the diphoton production, the hard
coefficient Cℓλ1λ2

is presented in terms of the polar angular dis-
tribution of one of the observed leptons in Appendix B.

In this Letter, we consider two reaction channels. For the π−

beam, we have (NN′) = (pn) and (qq′) = (ud), and for the π+

beam, (NN′) = (np) and (qq′) = (dn). In both cases, it is the
transition GPD

F [ud̄]
pn = F

[dū]
np = F

u
p − F

d
p , (F = F, F̃, H, E, H̃, or Ẽ) (6)

that is probed. So in the following, unless explicitly indicated,
the GPDs refer to such flavor specification.

2.3. Cross section and single target spin asymmetry

The polarization observables are greatly restricted by the
scalar nature of the pion beam. Without the ability to measure
polarizations of final-state particles, parity limits the only spin
asymmetry to be sin ϕS associated with the transverse nucleon
spin sT [28, 29, 30], constructed out of p · (∆T × sT ) in the lab
frame for the diffractive subprocess. Integrating out the trivial

ϕ dependence in the hard scattering, we result in the differential
cross section,

dσ
d|t| dξ d cos θ dϕS

=
1

2π
dσ

d|t| dξ d cos θ
[
1 + sT AN(t, ξ, cos θ) sin ϕS

]
, (7)

where the unpolarized cross section is

dσ
d|t| dξ d cos θ

= 2π
(
αeαs

CF

Nc

)2 1
ξ2s3ΣU(cos θ), (8)

with ΣU given by

Σ
γ
U = (1 − ξ2)

∑
α=±

(
|M[H̃]
α |

2 + |M̃[H]
α |

2
)

−

(
ξ2 +

t
4m2

)∑
α=±

|M̃[E]
α |

2 −
ξ2t
4m2

∑
α=±

|M[Ẽ]
α |

2

− 2ξ2
∑
α=±

Re
(
M̃[H]
α M̃

[E]∗
α +M[H̃]

α M
[Ẽ]∗
α

)
(9)

for the diphoton production process, with m being the nucleon
mass and the factorized helicity amplitudes Mα and M̃α de-
fined in Eqs. (A.5) and (A.6), respectively; and

ΣℓU = (1 − ξ2)|M[H̃]
0 |

2 −
ξ2t
4m2 |M

[Ẽ]
0 |

2 − 2ξ2 ReM[H̃]
0 M

[Ẽ]∗
0

(10)

for the DY dilepton production process, with the factorized he-
licity amplitudeM0 given in Eq. (B.3). The AN in Eq. (7) is the
single nucleon transverse spin asymmetry (SSA), given by

AγN =
(1 + ξ)
Σ
γ
U

∆T

m

∑
α=±

Im
[
M̃[H]
α M̃

[E]∗
α − ξM[H̃]

α M
[Ẽ]∗
α

]
(11)

for the diphoton process, and

AℓN =
(1 + ξ)
ΣℓU

∆T

m
(−ξ) ImM[H̃]

0 M
[Ẽ]∗
0 (12)

for the DY dilepton process.
The SSA arises from the interference of opposite target he-

licity states. Contrary to the SSAs in inclusive processes, with
either collinear [31, 32, 33, 34, 35] or transverse-momentum-
dependent factorizations [30, 36, 37], where the target helicity
flip is achieved by the dynamics of partons, the SSA here (of
the exclusive process) is due to the transverse momentum shift
in the diffractive subprocess, which compensates the target he-
licity flip with a nonzero orbital angular momentum. Hence the
SSAs in Eqs. (11) and (12) are proportional to ∆T . By parity
invariance, only the sT component perpendicular to the diffrac-
tive plane can play a role, explaining the sin ϕS modulation in
Eq. (7). The SSA can be measured by extracting the coefficient
of this azimuthal modulation or directly from the “up-down”
asymmetry of sT with respect to the diffractive plane,

sT AN(t, ξ, cos θ) =
π

2
·

dσ(sT · ŷlab > 0) − dσ(sT · ŷlab < 0)
dσ(sT · ŷlab > 0) + dσ(sT · ŷlab < 0)

,

(13)

3



where dσ(sT · ŷlab ≷ 0) is the ϕS -integrated cross section (still
differential in t, ξ, and cos θ) for the events with sT aligning
with or opposite to the direction of ŷlab.

Notably, all occurrences of the GPD E or Ẽ are suppressed
by t and/or ξ, which strongly limits the experimental capacity
to measure them, for moderate values. In particular, in the un-
polarized cross section, Eqs. (9) and (10), they cannot be easily
separated from the background caused by H and H̃. However,
the SSA depends linearly on E and Ẽ. Although its magni-
tude is suppressed by ∆T and ξ, the SSA can give clear signals
for extracting E and Ẽ, if it can be measured precisely enough.
With that said, the GPD Ẽ has a significant enhancement from
the pion pole contribution, as required by the sum rule. Its con-
tribution dominates in both the cross section and SSA. As we
will see, this strongly suppresses the sensitivity to GPD H and
E, but effectively provides enhancement to H̃.

3. Sensitivity to the x-dependence of transition GPDs

While the ξ and t dependence of GPDs directly corresponds
to the diffractive kinematics which can be measured in experi-
ments, the x dependence is only indirectly accessed through the
convolutions with hard coefficients as in Eqs. (4) and (5). It is
only the hard scale qT (or equivalently, θ) that can help to probe
the hadron’s partonic structure via the x-dependence of GPDs.

One can, however, immediately notice from Eq. (B.2) that the
θ dependence of the leading-order hard coefficient for the DY
dilepton process completely factorizes from the x and z depen-
dence. Its amplitude simply reduces to the moments of GPDs,

F̃±0 (ξ, t) ≡ P
∫ 1

−1
dx

F̃±(x, ξ, t)
x − ξ

, (14)

with P referring to principle-value integration, with a com-
pletely predictable sin θ distribution decoupled from the x-
dependence of GPDs. Here F̃±(x, ξ, t) = F̃(x, ξ, t) ± F̃(−x, ξ, t)
is the charge-conjugation-even or -odd GPD component and we
used the same moment notations as Eq. (A.7).

Such simple factorization property also applies to many other
processes such as DVCS, DVMP, and TCS, which only yield
moment-type sensitivity at leading order. As first demonstrated
in Ref. [26], there exists infinite families of analytic functions,
called shadow GPDs, that give zero to the moments in Eq. (14)
and cannot be distinguished from the “real GPD” by those pro-
cesses alone.

In contrast, for the diphoton process, the hard coefficients in
Eq. (A.2) contain terms in which the θ dependence is entangled
with the x (and z) dependence, resulting in a special convolution
integral for the GPDs,

I[F +; ξ, t, z, θ] =
∫ 1

−1
dx

F +(x, ξ, t)
x − xp(ξ, z, θ) + iϵ sgn

[
cos2(θ/2) − z

] ,
(15)

with a new pole for the x integration,

xp(ξ, z, θ) = ξ ·
[
1 − z + tan2(θ/2) z
1 − z − tan2(θ/2) z

]
. (16)

The special integral appears in the two helicity amplitudesM−
and M̃− in Eq. (A.5), with F = F̃ and F, respectively, and
the ‘−’ subscripts referring to the two photons having aligned
spins. The new pole in Eq. (16) scans through [ξ,∞)∪(−∞,−ξ]
as z goes from 0 to 1, and reflects the GPD x-dependence in
the DGLAP region. In comparison, the DY dilepton and other
similar processes only provide sensitivity on the ridges x = ±ξ.

The exact form of x sensitivity by Eq. (15) is further compli-
cated by the integration with the DA and depends on the specific
form of the latter. As a simple demonstration in this Letter, we
take D[ud̄]

π+ (z) = −D[dū]
π− (z) = (i fπ/2)ϕ(z), with fπ = 0.13 GeV be-

ing the pion decay constant and ϕ(z) = 6z(1 − z) the asymptotic
form. Then for the two amplitudesM− and M̃−, we define

Īa[ϕ,F +; ξ, t, θ] =
∫ 1

0
dz

2ϕ(z)
z(1 − z)

· I[F +; ξ, t, z, θ]

×

[
cos2(θ/2) − z

sin2 θ
+

a
cos2(θ/2) − z

]
=

∫ 1

−1
dxF +(x, ξ, t) Ka(x, ξ, cos θ) (17)

where a = +1 for F = F and −1 for F = F̃, and the kernel Ka

is easily obtained with the asymptotic pion DA,

6−1Ka(x, ξ, c) = a L(x, ξ, c) − iπ
θ(x2 − ξ2)
2|x − ξc|

[
ξ2(1 − c2)
(x − ξc)2 + a

]
+
ξ2(1 − c2)
(x − ξc)2

[
L(x, ξ, c) +

1
ξ(1 − c2)

+
c(x − ξc)
ξ2(1 − c2)2

]
, (18)

where c ≡ cos θ and

L(x, ξ, c) =
1

−2(x − ξc)
ln

∣∣∣∣∣ (1 − c)(x + ξ)
(1 + c)(x − ξ)

∣∣∣∣∣. (19)

As shown in Fig. 2, the kernel Ka exhibits a strong logarithmic
behavior at x→ ±ξ and becomes flatter as |x| ≫ |ξ| or |x| ≪ |ξ|.

Figure 2: Kernels Ka for the special x integrals of GPDs F and F̃ respectively,
shown for ξ = 0.2 and two values of c ≡ cos θ. Negative c values can be seen
from the symmetry Ka(x, ξ,−c) = Ka(−x, ξ, c). The solid and dashed lines refer
to the real and imaginary parts, respectively.

Clearly, the diphoton process does have the capability of dis-
tinguishing two GPD functions that differ only by some shadow
GPD by yielding different θ (or qT ) distributions, while the DY
dilepton process does not. To demonstrate this, we construct the
transition GPD models by adding two shadow GPDs, S i(x, ξ)
[S̃ i(x, ξ)] with i = 1 or 2, on H[ud̄]

pn and E[ud̄]
pn [H̃[ud̄]

pn and Ẽ[ud̄]
pn ] in
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the Goloskokov-Kroll (GK) model [38, 39, 40, 41], similar to
Ref. [27]. The specific forms of the shadow GPDs used in this
Letter are collected in Appendix C. The GPDs H and E also al-
low a D-term that lives only in the ERBL region, for which we
may similarly construct a shadow D-term. The resultant GPDs,
denoted as (Hi, Ei, H̃i, Ẽi) with i = 0 referring to the GK model,
are shown in Figs. 3 and 4.

Evaluating the integral Ī± for these GPD models gives dif-
ferent cos θ distributions, as shown in Figs. 5 and 6. Ī+ (Ī−)
evaluated on H[ud̄]+

pn or E[ud̄]+
pn (H̃[ud̄]+

pn or Ẽ[ud̄]+
pn ) gives an odd

(even) distribution of cos θ, so is only shown for the positive
cos θ. This property also strongly suppresses the value of Ī+ in
the central rapidity region, so the value of Ī− is generally larger
than Ī+. We note that the shadow GPDs give substantial con-
tributions to the special integrals, altering both magnitudes and
shapes of the GK model results. Both real and imaginary parts
are important in Ī+, whereas it is the real part that dominates in
Ī−, which agrees with the kernel behavior in Fig. 2.
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Figure 3: Transition GPD models for H[ud̄]
pn and H̃[ud̄]

pn , at (t, ξ) = (−0.2 GeV2,
0.2).
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Figure 4: Same as Fig. 3, but for the transition GPDs E[ud̄]
pn and Ẽ[ud̄]

pn .

4. Numerical study for J-PARC and AMBER energies

Charged pion beams can be accessed in fixed target exper-
iments at J-PARC [1] and AMBER at CERN [2] facilities as
secondary beams, with wide energy coverage. It is not the pur-
pose of this Letter to perform a realistic experimental simula-
tion, but rather we would explore how the diphoton process can
complement the DY dilepton one to help disentangle transition
GPDs from shadow GPDs. At a benchmark study, we choose
the two pion beam energies, Eπ = 20 and 100 GeV, for J-PARC
and AMBER, respectively, and examine only the nucleon tran-
sitions.

Figure 5: The special integrals Ī± for the GPD H[ud̄]+
pn and H̃[ud̄]+

pn evaluated at
(t, ξ) = (−0.2 GeV2, 0.2) for different GPD models labeled by the subscripts
“0”-“3”. The solid and dashed lines refer to the real and imaginary parts, re-
spectively. The shadow D-term in H[ud̄]+

pn,3 does not contribute to the imaginary
part so the corresponding curve coincides with the black dashed line and is not
shown.

Figure 6: Same as Fig. 5, but for the GPD E[ud̄]+
pn and Ẽ[ud̄]+

pn .

Evaluating the unpolarized cross sections in Eq. (8) and
SSAs in Eq. (11) for the GPD models in Figs. 3 and 4 yields
different distributions of qT , as shown in Figs. 7 and 8 at (t, ξ) =
(−0.2 GeV2, 0.2) for the pπ− and nπ+ collisions at Eπ = 20 and
100 GeV, respectively. We require qT ≥ 1 GeV to constrain
the power correction from

√
|t|/qT . The qT peaks of cross sec-

tions on right ends are due to Jacobian effects. In each choice
of the GPD models, we vary H[ud̄]

pn or H̃[ud̄]
pn one at a time, and

fix E[ud̄]
pn and Ẽ[ud̄]

pn to be of the GK model; varying the latter
makes minimal differences due to the kinematic suppression
factors in Eq. (9). We note that varying the GPDs yields not
only different magnitudes for both production rates and SSAs,
but also different shapes in the qT distributions. Thus in experi-
mental analyses with binned qT observables, each bin offers an
independent constraint on GPDs, in contrast to the DY dilepton
process, where the qT shape is universal (at leading order), to
be shown in Fig. 9.

The AMBER energy gives much wider qT coverage, but
much smaller (differential) production rates, and leads to simi-
lar sensitivity in terms the rate distribution ratios. In all cases,
we notice that the shadow D-term added to H[ud̄]

pn does not make
as much a difference as for the photoproduction process in
Ref. [27], as a result of the special pole xp in Eq. (16) lying
only in the DGLAP region.

The difference between the pπ− and nπ+ collisions is caused
by the isospin-breaking effect of QED interactions, namely, the
(e2

1 − e2
2) terms in Eq. (A.5). Numerically, the diagonal val-

ues F (ξ, ξ, t) of transition GPDs F dominate over the their mo-
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ments F0(ξ, t) for a wide range of ξ at a given t, although sea
quark components do not contribute to transition GPDs. The
(e2

1−e2
2) terms are therefore non-negligible and cause significant

differences in the imaginary parts of the amplitudes in Eq. (A.5)
between the pπ− and nπ+ collisions. This induces the differ-
ences of cross sections and SSAs between the two channels.
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Figure 7: Unpolarized qT distributions and SSAs at Eπ = 20 GeV and (t, ξ) =
(−0.2 GeV2, 0.2), evaluated for different GPD models obtained by varying H
and H̃. Left panel: π−p reaction; right panel: π+n reaction.
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Figure 8: Same as Fig. 7, but for Eπ = 100 GeV. The vertical scales of the
upper panels are logarithmic.

The GPDs H[ud̄]
pn and E[ud̄]

pn make much smaller contributions
to the cross sections and SSAs than H̃[ud̄]

pn and Ẽ[ud̄]
pn because (1)

when making the flavor transition GPDs, there is a cancella-
tion (enhancement) between u and d quark GPDs for the for-
mer (latter) in the GK model employed here; (2) aside from
the (e2

1 − e2
2) terms in Eq. (A.5), it is the C-even GPD combi-

nations that contribute to the amplitudes, which gives a further
cancellation (enhancement) for the former (latter); and (3) most
importantly, the pion pole term in Ẽ[ud̄]

pn severely leverages the
contributions from H̃[ud̄]

pn , overshadowing the effects from H[ud̄]
pn

and E[ud̄]
pn . Hence, the qT distributions are more sensitive to the

GPD H̃[ud̄]
pn than H[ud̄]

pn , for both the cross sections and SSAs.
However, one would still be able to probe the GPD H[ud̄]

pn near
|x| ∼ ξ, which is why the shadow GPDs S i(x, ξ) for H[ud̄]

pn have
been constructed to be much more dramatic in this region than
the S̃ i(x, ξ) for H̃[ud̄]

pn . If we remove or decrease the pion-pole
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Figure 9: Unpolarized qT distributions and SSAs for the DY dilepton process.
The vertical scales of the upper panels are logarithmic.

contribution from Ẽ[ud̄]
pn , the sensitivity to H̃[ud̄]

pn would become
more manifest.

Despite the kinematic suppression in Eq. (11), we get signif-
icant SSAs, especially for the π+n channel, which is dominated
by the large pion pole enhancement in the GPD Ẽ[ud̄]

pn . Hence,
the SSAs can also serve as useful probes of GPDs, in particular
of H̃[ud̄]

pn , since it is the one that interferes with Ẽ[ud̄]
pn in Eq. (11)

although it has one extra suppression factor of ξ, as shown in
Figs. 7 and 8. For the same reason, varying the GPD E[ud̄]

pn and
Ẽ[ud̄]

pn by the same shadow GPDs does not yield appreciable ef-
fects. Nevertheless, by simply scaling them with some factor,
the SSAs are proportionally changed. Measuring the SSA gives
sensitive probes to both the magnitudes and signs of GPD E[ud̄]

pn

and Ẽ[ud̄]
pn .

In comparison, for the DY dilepton process, the shadow
GPDs are constructed to give null impacts. The above GPD
models thus give the same prediction for both the unpolarized
cross section in Eq. (10) and the SSA in Eq. (12), shown in
Fig. 9 for the J-PARC and AMBER energies, respectively. At
leading power, the virtual photon decaying into the lepton pair
is purely longitudinally polarized, giving a sin2 θ angular distri-
bution [Eq. (B.3)], and so the cross section is finite at small qT .
This feature contrasts with the diphoton process whose produc-
tion rate is enhanced in the forward region, with also a larger
overall rate. Interestingly, the DY dilepton process produces a
large SSA. It does not depend on qT and the energy dependence
cancels in the ratio of Eq. (12). This measurement could set a
useful constraint on the overall magnitude of GPDs, including
especially E and Ẽ, but has no capability of probing their x de-
pendence.

5. Conclusion

While GPDs encode valuable information on hadrons’ emer-
gent properties and tomographic structures, it is a challenging
task to fully extract such information out of experiments, es-
pecially the x-dependence. In this Letter, we compared two
single diffractive hard exclusive mesoproduction processes, the
DY dilepton production and diphoton production, which can be
studied at hadron experiment facilities like J-PARC and AM-
BER at CERN using secondary pion beams. At leading power,
the scattering amplitudes of both processes can be factorized
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into transition GPDs, and provide constraints on the nucleon
GPDs through isospin symmetry, complementary to electropro-
duction and photoproduction processes.

We showed that both the unpolarized production rate and
target spin asymmetry can help probe the transition GPDs,
and clearly demonstrated that while the DY dilepton process
only constrains the polarized GPDs through simple moments,
the diphoton process encodes enhanced x sensitivity, yielding
transverse momentum (qT ) distributions of the final-state parti-
cles that are entangled with the x-dependence of GPDs. This is
similar to the kinematically crossing photoproduction process
studied in Ref. [27], but complements it by being more sen-
sitive to the DGLAP region near x = ±ξ. Both J-PARC and
AMBER at CERN give similar sensitivity; the former produces
larger rates but the latter covers a wider kinematical range.

Given the fact that we need to solve an inverse problem to
extract GPDs from experimental data, we do not expect that
one or two simple processes would be sufficient to fully map
out the x dependence of GPDs. It is therefore advocated that we
should perform global analyses by combining data from various
processes that are sensitive to the university GPDs, especially
those with enhanced x sensitivity. Only in this way would it be
possible to obtain the full tomographic images of the hadrons.
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Appendix A. Hard coefficients of the diphoton production process in Eq. (3)

As discussed in detail in Refs. [27, 16, 24], the hard coefficients in Eq. (4) can be conveniently calculated in the ERBL region
for the hard scattering subprocess by introducing the change of variables, (z1, z2) = ((x + ξ)/(2ξ), z), and carefully keeping track
of all the iϵ prescriptions. This has a direct analogy to the corresponding 2 → 2 meson annihilation process and is well suited to
the two-stage SDHEP picture. It makes manifest the symmetry property between z1 and z2, although they have different ranges,
z1 ∈ [(−1 + ξ)/(2ξ), (1 + ξ)/(2ξ)] and z2 ∈ [0, 1]. By parity property, the diphoton helicity amplitudes can be reduced to four
independent hard coefficients,

Cγ++ = Cγ−− =
N

ŝ
Cγ+, Cγ+− = Cγ−+ =

N

ŝ
Cγ−,

C̃γ++ = −C̃γ−− =
N

ŝ
C̃γ+, C̃γ+− = −C̃γ−+ =

N

ŝ
C̃γ−, (A.1)

where N = 2ie2g2CF/Nc and the four independent hard coefficients are

2ξCγ+ = (e1 − e2)2 2
sin2 θ

· P
z1z2 + (1 − z1) (1 − z2)

z1z2(1 − z1)(1 − z2)
+

2iπ

sin2 θ
·

[
(e2

1 − e2
2)

(
δ(z1)

z2
−
δ(1 − z1)

1 − z2

)
− 2e1e2

(
δ(z1)

z2
+
δ(1 − z1)

1 − z2

)]
, (A.2a)

2ξCγ− = (e1 − e2)2 2
sin2 θ

· P
z1 + z2 − 2z1z2

z1z2(1 − z1)(1 − z2)
+ (e2

1 − e2
2) · P

z1 − z2

z1z2(1 − z1)(1 − z2)

+ P
2e1e2

z1z2(1 − z1)(1 − z2)
·

(z1(1 − z1) + z2(1 − z2)) (z1z2 + (1 − z1)(1 − z2))
(2z1z2 + (1 − cos θ)(1 − z1 − z2)) (2z1z2 + (1 + cos θ)(1 − z1 − z2))

− iπ ·
{

(e1 − e2)2
(
δ(1 − z1)

z2
+
δ(z1)
1 − z2

)
− (e2

1 − e2
2)

2
sin2 θ

(
δ(z1)
1 − z2

−
δ(1 − z1)

z2

)
+ 2e1e2

[
1 + sin2 θ

sin2 θ

(
δ(1 − z1)

z2
+
δ(z1)
1 − z2

)
+

1
sin2 θ

(
sgn

[
cos2(θ/2) − z2

]
δ(z1 − ρ(z2))

( cos θ
z2(1 − z2)

−
1

cos2(θ/2) − z2

)
+sgn

[
z2 − sin2(θ/2)

]
δ(z1 − ρ̃(z2))

( cos θ
z2(1 − z2)

−
1

z2 − sin2(θ/2)

))]}
, (A.2b)

2ξC̃γ+ = (e1 − e2)2 −2
sin2 θ

· P
1 − z1 − z2

z1 z2 (1 − z1)(1 − z2)
−

2πi
sin2 θ

·

[
(e2

1 − e2
2)

(
δ(1 − z1)

1 − z2
+
δ(z1)

z2

)
− 2e1e2

(
δ(z1)

z2
−
δ(1 − z1)

1 − z2

)]
, (A.2c)

2ξC̃γ− = (e1 − e2)2 2 cos θ
sin2 θ

· P
z1 − z2

z1z2(1 − z1)(1 − z2)

+ P
2e1e2 cos θ

z1z2(1 − z1)(1 − z2)
·

(z1 − z2)(1 − z1 − z2)2

(2z1z2 + (1 − cos θ)(1 − z1 − z2)) (2z1z2 + (1 + cos θ)(1 − z1 − z2))

−
2πi

sin2 θ
·

{
(e2

1 − e2
2) cos θ

(
δ(1 − z1)

z2
+
δ(z1)
1 − z2

)
− e1e2

[
cos θ

(
δ(z1)
1 − z2

−
δ(1 − z1)

z2

)
+

z1 − z2

z2(1 − z2)

(
sgn

[
cos2(θ/2) − z2

]
δ(z1 − ρ(z2)) − sgn

[
sin2(θ/2) − z2

]
δ(z1 − ρ̃(z2))

)]}
, (A.2d)

where P indicates that the hard coefficients should be understood in the principle-value sense when convoluted with the GPD and
DA, and

ρ(z2) =
cos2(θ/2) (1 − z2)

cos2(θ/2) − z2
, ρ̃(z2) =

sin2(θ/2) (1 − z2)
sin2(θ/2) − z2

(A.3)

are the special poles of z1, with small imaginary parts by the iϵ prescription, respectively,

iϵ sgn
[
z2 − cos2(θ/2)

]
, iϵ sgn

[
z2 − sin2(θ/2)

]
. (A.4)

We have expressed the hard coefficients in the general flavor case, where the two parton lines q and q′ carry electric charge e1 and
e2, respectively, with eu = 2/3 and ed = −1/3.

The convolution of the hard coefficients in Eq. (A.2) with GPDs can be simplified by using the DA symmetry property D(z2) =
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D(1 − z2),

M
[F̃]
+ = −

2D0

sin2 θ

{
(e1 − e2)2 F̃+0 (ξ, t) + iπ

[
(e2

1 − e2
2) F̃−(ξ, ξ, t) + 2e1e2 F̃+(ξ, ξ, t)

]}
, (A.5a)

M
[F̃]
− = − (e1 − e2)2 D0

[
2

sin2 θ
F̃+0 (ξ, t) + iπF̃+(ξ, ξ, t)

]
− (e2

1 − e2
2) D0

[
F̃−0 (ξ, t) +

2iπ

sin2 θ
F̃−(ξ, ξ, t)

]
(A.5b)

+ e1e2

{∫ 1

0
dz

2D(z)
z(1 − z)

[
cos2(θ/2) − z

sin2 θ
−

1
cos2(θ/2) − z

]
· I[F̃+; ξ, t, z, θ] −

2D0

sin2 θ
·
[
F̃+0 (ξ, t) + iπ (1 + sin2 θ) F̃+(ξ, ξ, t)

]}
,

M̃
[F]
+ = −

2D0

sin2 θ

{
(e1 − e2)2 F+0 (ξ, t) + iπ

[
(e2

1 − e2
2) F−(ξ, ξ, t) + 2e1e2 F+(ξ, ξ, t)

]}
, (A.5c)

M̃
[F]
− = −

2 cos θ
sin2 θ

· D0

[
(e1 − e2)2 F+0 (ξ, t) + iπ (e2

1 − e2
2) F−(ξ, ξ, t)

]
+ e1e2

{∫ 1

0
dz

2D(z)
z(1 − z)

[
cos2(θ/2) − z

sin2 θ
+

1
cos2(θ/2) − z

]
· I[F+; ξ, t, z, θ] −

2 cos θD0

sin2 θ
·
[
F+0 (ξ, t) + iπ F+(ξ, ξ, t)

]}
, (A.5d)

where we used F to denote either GPD H or E and introduced the shorthand notations,

M[F̃]
α ≡

∫ 1

−1
dx

∫ 1

0
dz F̃(x, ξ, t) D(z) Cα(x, ξ; z; θ), M̃[F]

α ≡

∫ 1

−1
dx

∫ 1

0
dz F(x, ξ, t) D(z) C̃α(x, ξ; z; θ), (A.6)

with α denoting any helicity index. We have defined the “zeroth moments” of the DA and GPDs,

D0 ≡

∫ 1

0

dz D(z)
z
, F0(ξ, t) ≡ P

∫ 1

−1

dxF (x, ξ, t)
x − ξ

, (A.7)

and the special GPD integral,

I[F ; ξ, t, z, θ] ≡
∫ 1

−1
dx

F (x, ξ, t)
x − xp(ξ, z, θ) + iϵ sgn

[
cos2(θ/2) − z

] , (A.8)

where F can take any GPD function such as F±, F̃±, H±, etc., whose superscripts ‘±’ refer to the charge-conjugation parity
following Ref. [5]. The special pole xp is converted from Eq. (A.3),

xp(ξ, z, θ) = ξ ·
[
2ρ(z) − 1

]
= ξ ·

[
1 − z + tan2(θ/2)z
1 − z − tan2(θ/2)z

]
(A.9)

which crosses [ξ,∞) ∪ (−∞,−ξ] as z goes from 0 to 1, lying outside the ERBL region.

Appendix B. Hard coefficients of the DY dilepton production process in Eq. (2)

Similar to Appendix A, the hard coefficient in Eq. (5) for the DY dilepton process can also be calculated in the SDHEP frame and
expressed in terms of the helicity amplitudes of the leptons. Parity and chiral symmetries constrain there to be only one independent
amplitude,

Cℓ±∓ = ±
N

ŝ
Cℓ0, Cℓ±± = 0, (B.1)

with N the same as in Eq. (A.1) and

2ξCℓ0 = i sin θ
(

e1

1 − z1 + iϵ
1
z2
−

e2

z1 + iϵ
1

1 − z2

)
. (B.2)

Using the same notation as Eqs. (A.6) and (A.7), the convolution of Cℓ0 with the GPD and DA is

M
[F̃]
0 = −i D0 sin θ

[e1 + e2

2
F̃−0 (ξ, t) +

e1 − e2

2
F̃+0 (ξ, t) + iπ

(e1 + e2

2
F̃−(ξ, ξ, t) +

e1 − e2

2
F̃+(ξ, ξ, t)

)]
. (B.3)

Appendix C. Shadow GPD models

The shadow GPDs used in this Letter are the same as those in Ref. [27], except only that we use

S 1(x, ξ) = K1 ξ
2x(x2 − ξ2)(1 − x2)10

(
1 + ax2 −

29
5

(2a + 27)x4 +
899
35

(a + 18)x6
)
,

S 2(x, ξ) = K2 ξ
2x(x2 − ξ2)(1 − x2)20

(
1 + ax2 −

49
5

(2a + 47)x4 +
119
5

(3a + 94)x6
)

(C.1)

with K1,2 the normalization factors, a = −23 for S 1 and −38 for S 2, and multiplie the shadow D-term in Ref. [27] by 2. Using the
high powers for the factor (1 − x2) signifies the shadow GPD magnitude near |x| = ξ, as motivated from Fig. 2.
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