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ABSTRACT

Construction and commissioning of Gas Electron Multiplier detectors in advanced

assembly design and analysis of scattering data from the MUSE experiment at PSI

(August 2023)

Sahara Jesmin Mohammed Prem Nazeer, B.Sc., University of Peradeniya;

Ph.D. Hampton University

Chair of Advisory Committee: Dr. Michael Kohl

The search beyond the Standard Model explores dark matter and a potential

fifth force. DarkLight@ARIEL investigates the dark photon as a mediator between

ordinary and dark matter. The experiment aims to measure the process e−Ta →
e−TaX → e−Ta(e−e+), by detecting a charged lepton pair in the final state. The

spectrometers will be instrumented with Gas Electron Multiplier (GEM) detectors

with minimal material budget for tracking.

A novel GEM construction technique is employed for fabricating 25 cm x 40 cm

GEM detectors, where all layers are mechanically stretched and assembled within a

double frame. The dissertation outlines physics motivation, methods, experimental

setup, and the role of GEM detectors in DarkLight. A comprehensive discussion on

GEM detectors, focusing on the ”NS2” technique, including design, parts, assembly,

testing, and performance evaluation will be discussed.

The proton has garnered attention due to discrepancies in measuring its charge ra-

dius using muonic hydrogen and electron-based methods. The 2010 muonic hydrogen

measurement of the proton charge radius Rp = 0.84184(67) fm, showed a significant

7σ discrepancy compared to the previously known value of Rp = 0.8775(51) fm, giv-

ing rise to the proton radius puzzle. Through simultaneous measurements of e − p

and μ− p elastic scattering, MUSE facilitates a precise and direct comparison of the
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proton radius. The physics background of the proton radius puzzle, measurement

techniques, the approach adopted by the MUSE experiment, its significance and the

experimental setup will be discussed. Furthermore, the role of GEM detectors, along

with an in-depth analysis of their data and efficiency will be discussed and evaluated.
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Goity, Dr. Eric Christy and Dr. Paul Guèye. Their expertise and dedication in
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1

CHAPTER 1

INTRODUCTION

1.1 GEM Detector Construction for DarkLight@ARIEL Ex-

periment

The Standard Model explains subatomic particles and interactions, but not all

mysteries. Dark matter constitutes 27% of the universe, yet remains invisible. A

mediator, the dark photon or A′, could interact with ordinary and dark matter.

DarkLight@ARIEL experiment investigates a hypothetical particle using an electron

beam at ARIEL facility, TRIUMF, Canada to understand the fifth force and dark

matter.

The X17 particle, a hypothetical mediator of the fifth force, has gained significant

attention due to various unexplained phenomena observed in recent experiments.

Anomalous results in the decay of excited 8Be and 4He atoms have hinted at the

presence of a new particle with a mass of around 17 MeV/c2. These experimental

findings, coupled with the deviation in the muon’s magnetic moment (gμ-2) from the

predicted value, have piqued the interest of physicists in the existence of a new force

carrier. The DarkLight experiment aims to explore this possibility further by utilizing

the ARIEL e-linac’s high-energy electron beam to investigate the interaction between

the proposed protophobic boson and ordinary matter. By colliding the electron beam

with a tantalum target, DarkLight seeks to shed light on the nature of dark matter

and potentially discover evidence of the fifth force.

The projected scope of DarkLight@ARIEL encompasses a comprehensive inves-

tigation of the proposed fifth force parameter space. The experiment’s sensitivity is
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